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Photoinduced currents and inverse Faraday effect in graphene quantum dots
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In this work, we employ the quantum perturbation theory to investigate the photoinduced currents in graphene
quantum dots (GQDs). We find that under the radiation of circularly polarized light (CPL), two types of currents
may exist. One is dynamic and oscillates along the electric field of light; the other is quasisteady, rotating
around certain centers in the GQD. The rotational currents can generate a magnetic moment, an effect known
as the inverse Faraday effect. We develop a tight-binding-based perturbation theory to describe these intriguing
and novel currents in GQDs. We also analytically analyze the oscillation direction of the dynamic currents
and the transfer mechanism of angular momentum in this process. We find in some nondegenerate cases the
rotational photoinduced currents disappear due to symmetry breaking in the system, and the transferred angular
momentum is converted into lattice chiral vibration. This research reveals the current distributions and angular
momentum exchange in excited GQD systems and suggests potential applications in ultrafast magnetic memory
and photodetector devices.
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I. INTRODUCTION

Graphene quantum dots (GQDs) have intriguing optical
properties due to their honeycomb lattice and finite-sized
geometry [1,2]. Recent technological advances make specif-
ically shaped GQDs feasible and manageable, thus they have
potential applications in many fields, such as nano memory,
photodetectors, and quantum computation devices [3]. Due to
their shape-dependent energy levels, the absorption spectrum
of GQDs can be engineered by edge types, geometric symme-
try, vacancy defects, strain, and some external fields [4–7].

In the optical transition process, the selection rule is a
crucial factor in determining which energy states will be
excited. Typically, the selection rules impose strict transi-
tion constraints due to the conservation laws and symmetry
properties of different energy states. In recent years, E. G.
Kavousanaki and Y. Wang et al. studied the optical transitions
of GQD and twisted bilayer GQD with symmetry analysis by
the group theory [2,5,8]. They find irreducible representations
for different symmetric states in GQD and the correspond-
ing selection rules are proposed for linearly and circularly
polarized light (CPL). In optical transitions, besides energy
conservation, angular momentum conservation must also be
considered. In two-dimensional materials, certain optical tran-
sition processes are closely related to the angular momentum
of photons and electrons. One example is bulk MoS2 [9].
The electron waves in the two valleys of MoS2 have different
orbital momenta. The absorbed circularly polarized photon
transfers its spin angular momentum (h̄) to the conduction-
valley state, which has an opposite orbital angular momentum
(h̄/2) compared to that of the valence-valley state (−h̄/2);
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another example is vortex light absorption in semiconductor
quantum dots [10]. The electron in a quantum dot can absorb
both the orbital and spin angular momenta of the vortex light,
thereby changing its orbital angular momentum.

When a beam of CPL is incident on a GQD, the angular
momentum absorbed by the electrons can generate circular
currents, inducing a magnetic field and magnetic moment
[8]. This photoinduced magnetization is known as the inverse
Faraday effect (IFE) [11,12]. Not only the CPL with the spin
angular momentum, but the vortex light with the orbital an-
gular momentum can also induce IFE [12,13]. The traditional
IFE is often focused on the charged particles in plasma and
electrons in metallic materials [14–16], and it is described
by the classical Drude model [11,17]. Recently, researchers
have proposed quantum theories of IFE for graphene, Weyl
semimetals, and other systems [18,19]. I. D. Tokman et al.
found that the IFE strength is much stronger in Dirac materi-
als than in common semiconductors. Using chiral plasmonic
antenna structures, researchers found that the IFE can exist
in only one helicity of CPL [15]. S. O. Potashin et al. also
studied the hydrodynamic IFE of nanospheres embedded in
electron liquids [20]. The IFE in Mott insulators is also studied
with the Floquet theory [21]. Researchers found that with or
without inversion symmetry, the photoinduced magnetization
can couple neighboring spins with ferromagnetic or antifer-
romagnetic order. In fact, IFE is a second-order nonlinear
optical effect. The optical rectification effect induced by CPL
generates optomagnetics [22].

Although there is extensive research on symmetry-related
optical transitions in GQDs and other graphene systems [23],
and the IFE has been intensively studied in many materials,
there are few detailed investigations on photoinduced cur-
rents and IFE-related magnetizations in GQDs. Especially,
the optical current distributions in different GQDs have not
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been reported, as to our knowledge. The study for the transfer
mechanism of the angular momentum under CPL on GQD is
also lacking.

In this paper, we use the tight-binding model and time-
dependent perturbation theory to investigate photoinduced
currents in GQDs and analyze the detailed process of an-
gular momentum transfer in different shapes of GQDs. We
find that two types of currents exist in irradiated GQD. One
oscillates in the same direction as CPL, while the other type
is quasisteady and rotates around some center(s) in GQD.
The latter undergoes the transferred angular momentum from
the absorbed CPL. We also find that in the symmetry-broken
GQD, there is only a nondegenerate excitation level. In that
case, the IFE for the excited electron is suppressed, and the
dynamic current exhibits some special behavior. Due to the
conservation law of angular momentum, the angular momen-
tum in the absorbed photons will be transferred into the lattice
chiral vibration or chiral phonons through the electron-lattice
coupling [24,25].

This work is organized into three parts. Section II gives the
main models and the theory of GQD under the CPL radiation.
Section III shows our calculation results and detailed discus-
sions, especially the mechanism of the angular momentum
transfer. Section IV is the conclusion. Additional derivation
details are included in the Appendices.

II. MODEL AND THEORY

A. Tight-binding model

In this work, we employ the tight-binding (TB) model to
describe the electron states in the GQD. In each carbon atom,
we only consider the pz orbital to construct the molecular
orbitals and the nearest-neighboring approximation is used.
The Hamiltonian in this TB model is given as follows [8,26]:

H0 = −t
∑
〈i, j〉

ĉ†
i ĉ j, (1)

where ĉ†
i and ĉi are the creation and annihilation operators for

an electron at the atomic orbital with index i; in the summa-
tion, 〈i, j〉 denotes that i and j atoms are nearest neighbors; t
is the hopping energy which is t = 2.7 eV for GQD [27,28];
When diagonalizing this Hamiltonian in the N atomic basis,
we obtain the eigenenergy Ek and the corresponding eigen-
state with the molecular wave function �k , k = 1, . . . N . In the
case without any external field, all the electrons populate the
molecular orbitals with the Fermi-Dirac distribution, which
means they occupy the lower energy levels in priority.

B. Time-dependent perturbation theory

In the case of the external field, such as the CPL radiated
on the GQD, the electrons do not obey the Fermi-Dirac distri-
bution. We note that the GQD is positioned in the x-y plane,
while the light radiates along the z axis. The Hamiltonian
under this light radiation is written as

H = H0 + Hcp(t ). (2)

Here the second term Hcp(t ) is the dipole interaction between
electron and light [29,30].

Hcp(t ) = −d · E(t ), (3)

where d = qr is the electric dipole under the light field, q is
the electron charge; r = (x, y), is the electron displacement
vector. The electric field of the CPL with the angular fre-
quency ω is written as

E(t ) = E0(cos ωt,± sin ωt ), (4)

where E0 is the electric field and +(−) denotes the left-hand
(right-hand) circular polarization. Here we only consider the
left-hand case, and Hcp(t ) is rewritten as

Hcp(t ) = −qE0(x cos ωt + y sin ωt ). (5)

To obtain the evolution of the electrons in these GQD
under light, we use the time-dependent perturbation theory
and regard the electron-light interaction term Hcp(t ) as the
small perturbation. We consider the electron staying in the
initial eigenstate of �k and it is induced to a series of excited
states. From the perturbation scheme, the wave function under
light is described as [31,32]

�(t ) = �ke−iωkt +
∑

k1

Sk1 (t )
〈
�k1

∣∣x + iy|�k〉�k1 e−iωk1 t ,

(6a)

Sk1 (t ) = qE0

2h̄

ei�ωt − 1

�ω
, (6b)

where ωk = Ek
h̄ , where Ek is the eigenenergy of the state �k ,

and Sk1 (t ) is denoted as the time-dependent coefficient. In
the formula of Sk1 (t ), �ω = ωk1k − ω, and ωk1k = ωk1 − ωk .
We here employ the rotating wave approximation (RWA) and
only consider the first-order correction of perturbation. The
detailed derivations are given in Appendix A.

C. Photoinduced currents

Under the CPL radiation, the electron current density in
this GQD is calculated by the following expression:

j = qh̄

m
Im[�∗(t )∇�(t )]. (7)

Here j is the current density vector and m is the electron mass.
Substituting Eq. (6a) into Eq. (7), we could obtain three types
of current densities ( jtype-I, jtype-II, jtype-III), which are as
follows:

j = jtype-I + jtype-II + jtype-III, (8a)

jtype-I = qh̄

m
Im(�∗

k ∇�k ) = 0, (8b)

jtype-II = qh̄

m
Im

∑
k1

(
Gk1�

∗
k ∇�k1 + G∗

k1
�∗

k1
∇�k

)
, (8c)

jtype-III = qh̄

m
Im

∑
k1k2

G∗
k1

Gk2�
∗
k1
∇�k2 , (8d)

where Gk1 = Sk1 (t )〈�k1 |x + iy|�k〉e−iωk1kt .
Equation (8b) tells the first type of current is zero, for the

fact that in the absence of optical perturbation, the ground
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state corresponds to zero photoinduced current. It should be
noted that the type-I current may not be always zero if some
other representation is utilized. For instance, considering the
discrete rotational symmetry of GQDs, we can obtain Kramers
doublets in some GQDs, which do exhibit two intrinsic type-
I currents with the same magnitude but opposite directions
[2,8]. In our work, we are primarily concerned with the pho-
toinduced current.

In the absorption spectra calculation [see Eq. (10)], signifi-
cant transitions only occur under the Fermi golden rule, which
means �ω approaches zero, i.e., ω = ωk1k = ωk2k . Therefore,
we rewrite Eq. (8d) as

jtype-III = qh̄

m
Im

∑
k1k2

|S(t )|2〈�k1

∣∣x − iy|�k〉

× 〈
�k2

∣∣x + iy|�k〉�∗
k1
∇�k2 . (8e)

Here S(t ) = Sk1 (t ) = Sk2 (t ).
In the long-time case, we utilize two mathematical limits

[limt→∞ sin(�ωt )
�ω

= πδ(�ω), limt→∞ sin2(�ωt )
(�ω)2 = πtδ(�ω)] to

dismiss the S(t ) factor. And we use the superposition of
atomic basis |n〉 to replace the molecular state |�k〉, that
means |�k〉 = ∑

n ak
n|n〉, ak

n is the superposition coefficient
in the basis transformation, n = 1, . . . N . Then we integrate
jtype-II and jtype-III over the real space, and with some deriva-
tions, we obtain the final expressions of the local current on
each atom n

Jtype-II
n = q2E0π

m

∑
〈n′〉

∑
k1

(
xk1k cos ωt + yk1k sin ωt

)

× (
ak

nak1
n′ − ak1

n ak
n′
)〈n|∇|n′〉δ(�ω), (9a)

Jtype-III
n = q3E2

0 π

2mh̄

∑
〈n′〉

∑
k1k2

(
xk1kyk2k − xk2kyk1k

)

× ak1
n ak2

n′ 〈n|∇|n′〉tδ(�ω), (9b)

where xk1k = 〈�k1 |x|�k〉 and yk1k = 〈�k1 |y|�k〉 denote the
dipole matrix elements; 〈n′〉 in the summation above means
the site n′ is the nearest neighbor to site n. The details are
given in the Appendix B.

From Eq. (9a) we see that type-II current is dynamic,
oscillating periodically with the same frequency of light.
Equation (9b) shows that type-III current only exists when the
excited energy levels degenerate, and it increases linearly with
time. When there is no degeneracy, or k1 = k2, it is easy to see
that Jtype-III

n is zero.

D. Absorption spectrum

On the other hand, we use the Kubo formula of optical
conductivity to investigate the absorption spectrum of the
GQD under the CPL [2,23,33]

σ (ω) = 2πq2ω

Ah̄

∑
k1k

∣∣〈�k1

∣∣x + iy|�k〉
∣∣2

× [
f (Ek ) − f

(
Ek1

)]
δ(�ω). (10a)

Here the Kubo formula Eq. (10a) corresponds to the type-II
current, while the type-III current is considered a secondary

(nonlinear) effect. The detailed connection between type-II
current and optical conductivity is presented in Appendix C.

From the spectrum, we could determine the excitation
energy levels and the excitation frequency of light. In the prac-
tical calculation, we use the Lorentzian function to replace
the delta function, which mimics the finite linewidth of all the
GQD levels due to all the dissipations [34]

σ (ω) = 2q2ωγ

A

∑
k1k

∣∣〈�k1

∣∣x + iy|�k〉
∣∣2

× f (Ek ) − f
(
Ek1

)
(
Ek1k − h̄ω

)2 + γ 2
. (10b)

Here γ is the Lorentzian linewidth and A is the area of
the GQD. In Eqs. (10a) and (10b), 〈�k1 |x + iy|�k〉 indicates
under the light radiation, the electron excited from the initial
state |�k〉 to the final state |�k1〉, and Ek1k = Ek1 − Ek , which
is the excitation energy of light between these two states. f (E )
is the Fermi-Dirac distribution function, and we consider the
zero-temperature case. Although the absorption of these mi-
croscopic objects is very tiny, we can dissolve these quantum
dots in solutions and use absorption spectroscopy to measure
their absorption spectra in real experiments.

It is noted that all our calculations in this work are car-
ried out in the single-electron model. No electron-electron
interaction and other correlation effects are considered [35].
These effects may influence the exciton optical properties and
edge magnetism of GQD [33,36], induce the spin polariza-
tions [35]. And some quantum transport properties may also
change [35]. However, under this single-electron approxima-
tion, some interesting optical excitation phenomena are found
in this paper.

III. RESULTS AND DISCUSSIONS

In the following discussions, we first investigate the optical
excitations of GQDs in degenerate energy levels. Then we turn
to the nondegenerate levels.

There are two types of currents in the GQD in the light
field. To concretely show the characteristics of these currents,
we use three structures: hexagonal GQD (H-GQD), triangular
GQD (T-GQD) and rectangular GQD (R-GQD). The H-GQD,
T-GQD, and R-GQD consist of 54, 33, and 66 carbon atoms,
respectively, and their structures are shown in the insets of
Figs. 1(a1), 1(b1), and 5(a1). These three types of GQDs have
different symmetry properties and are often used in exper-
iments [2,3,37]. Moreover, by introducing H-GQD vacancy
[shown in the insets of Fig. 5(b1)], we find that the degeneracy
of excited levels has a strong effect on the light-induced cur-
rents and transfer of angular momentum from light to electron
system.

A. Degenerate energy levels

We first use the Kubo formula [Eq. (10b)] to calculate the
optical absorption spectra of H-GQD and T-GQD, as shown in
Figs. 1(a1) and 1(b1). The approximate Lorentzian linewidth
γ in the Kubo formula is set to 0.02t (0.054 eV). The
light energy for the absorption peaks in the absorption spec-
trum corresponds to the resonance to CPL. We are primarily
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FIG. 1. Absorption spectra (upper panels) and energy spectra (lower panels) for GQD. Panels (a1) and (a2) correspond to H-GQD and
panels (b1) and (b2) correspond to T-GQD respectively. In (a1) and (b1), the insets are the shapes of the GQDs, and the arrowed absorption
peaks correspond to the electron transitions in (a2) and (b2). In (a2) and (b2), the arrows indicate the optical transitions between the two sets
of degeneracy energy levels with some indexed numbers.

interested in the absorption peaks at the lowest frequency. In
Fig. 1(a1), the absorption peak indicated by the arrow has
a frequency of 0.684t (1.847 eV), while in Fig. 1(b1), the
absorption peak indicated by the arrow has a frequency of
0.823t (2.222 eV).

Figures 1(a2) and 1(b2) depict the energy spectra of
H-GQD and T-GQD, respectively with the tight-bonding
model. We see that these spectra exhibit some degenerate
energy levels. The Fermi level (EF ), which is defined at zero
energy, is occupied by half of the electrons in T-GQD. For
H-GQD, there is a band gap of 0.684t (1.847 eV). And the
arrowed absorption peak of H-GQD in Fig. 1(a1) corresponds
to the transitions between the energy levels with the indices
26, 27 → 28, 29, as indicated by the arrow in Fig. 1(a2).
The excited levels 28 and 29 are degenerate in energy. Sim-
ilarly, in Fig. 1(b1), the arrowed absorption peak of T-GQD
corresponds to the two types of transitions: one is between
the energy level indices 14, 15 → 16, 17, 18 and the other is
between the level induces 16, 17, 18 → 19, 20, as indicated
by the arrows in Fig. 1(b2). These excited levels are also
degenerate.

Through spectroscopic and energy analysis, we focus on
the absorption peaks and their corresponding transitions in-
dicated by the arrows in Fig. 1. Therefore, under the CPL at
this frequency, using the time-dependent perturbation theory
[Eqs. (6a) and (9)], we can determine the wave functions and
calculate the photoinduced currents (type-II and type-III). To
better illustrate the current characteristics, we choose H-GQD
as an example to show these currents in detail.

The Type-II currents vary dynamically with the rotational
electric field of light. For a clear demonstration, we assume
that H-GQD is radiated by CPL at the specified frequency

as arrowed in Fig. 1. The calculated type-II currents in this
H-GQD are shown in Fig. 2, where Figs. 2(a)–2(f) depict the
snapshots of current distributions at different times within one
period T . We observe that these dynamic currents rotate at the
same frequency as the incident light. At any time, its average
vector direction aligns with the electric field direction of light.
The relationship between them is described by J = σ · E,
where σ is the electrical conductivity. We see that here σ can

FIG. 2. The dynamic type-II local current distributions in the
H-GQD under the CPL. Panels (a)–(f) are snapshots in the period
of light with the time (in unit T

2π
) of π

3 , 2π

3 , π , 4π

3 , 5π

3 , and 2π ,
respectively. The transition energy corresponds to the arrowed peak
in Fig. 1(a2).

085425-4



PHOTOINDUCED CURRENTS AND INVERSE FARADAY … PHYSICAL REVIEW B 110, 085425 (2024)

FIG. 3. The type-III steady local current distributions in H-GQD
and T-GQD under CPL. The transition energy corresponds to the
arrowed peaks in Figs. 1(a2) and 1(b2).

be regarded as a scalar, due to the symmetric geometry of the
H-GQD.

Using a similar methodology, we can obtain the type-II
current distribution of T-GQD in the corresponding transition
frequency (see Fig. 1). It shows the same dynamic variations
as H-GQD, although the results and analysis are not presented
here.

Besides the type-II currents in GQDs, type-III currents are
also found to exist in H-GQD and T-GQD, due to the degen-
eracy of excited levels. These type-III currents are positioned
rotationally around the centers of GQDs [see Figs. 3(a) and
3(b)], which leads to the generation of a magnetic moment
along the z-axis direction. We observe that type-II currents
do not carry the angular momentum and magnetic moment.
Based on the derivation in Sec. II, the type-III currents actu-
ally have a small fluctuation with a very low frequency, due to
the fact that the real energy level has some linewidth broad-
ening and the experimental frequency mismatch. But there
still exist the average net magnetic moments in the radiation
process. So, we can conclude that when electrons in GQDs
undergo optical transitions, they can effectively absorb the
angular momentum of light and may subsequently generate
quasisteady rotational currents. An interesting observation in
this work is that the transfer of angular momentum between
light and electrons depends on the degeneracy of excitation
levels.

In our TB model, the highest occupied molecular orbital
(HOMO) levels in some GQDs may also be degenerate [see
Figs. 1(a2) and 1(b2)]. In that case, the electrons in these
degenerate states are considered to be uncorrelated. Therefore,
we only need to calculate the photoinduced currents (type-
II and type-III) generated from the transition in each single
HOMO state and summate all the currents as the final results.

To better demonstrate the findings, in this work we focus
on the very small GQDs, whose eigenvalues are easily dis-
tinguishable. For the much larger-sized GQD, which is more
realistic in experiments, our theory can also be used. And
the photoinduced current can be converted into macroscopic
dynamic or quasisteady currents through the integration of
type-II and type-III currents within atoms in a specific region.
However, in the large-sized GQD, the photoinduced currents
may be on the boundaries of GQD if the lowest unoccupied
molecular orbital (LUMO) and HOMO energies are close
to the Fermi level. We note that the total current vector is
always in the same direction as the electric field of the CPL.

In Appendix D, we present the current distributions for two
types of larger-sized GQDs.

We emphasize that the type-III rotational current does not
necessarily rotate around the center of the GQD. Actually, the
excited magnetic moments may also rotate around the corners
of T-GQD. This finding is detailed in Appendix E.

Now we know the apparent characteristics of type-II and
type-III local currents. However, the formation reason of type-
III currents remains unclear. To further investigate this reason
and the angular momentum transfer mechanism, we calculate
the charge density variations at different times, compared to
the electric field directions of the CPL. They are shown in
Figs. 4(a)–4(f). The charge density variations are compared
with the background of the charge in the nonradiation case.
From Figs. 4(a)–4(f), we observed that the charge density vari-
ation rotates with time. Furthermore, it is clear that throughout
one period, the phase of the polarization vector always lags
behind that of the electric field, with a stable phase difference
of about 90◦.

According to the optical torque in the polarized media [38],

M = dL
dt

= P × E, (11)

we know that the charge polarization P and electric field E in a
medium may generate some torque M, as long as P and E are
not in the same direction. L is the angular momentum. This
indicates that in the case of degeneracy of excitation levels,
CPL radiation not only induces a quasielectric-potential, but
also exerts a torque on the charges in GQD. This torque makes
the formation of Type-III current, enabling the transfer of
angular momentum between light and electrons in GQDs. A
more detailed discussion of the torque exerted on other GQDs
will be presented in Fig. 8 later.

B. Nondegenerate energy levels

Besides the photoinduced currents in GQD with degenerate
excited states, in this section, we will study the photoinduced
currents and angular momentum transfer in nondegenerate
cases. This nondegenerate energy state is illustrated using
two types of GQDs. One is the R-GQD that has lower struc-
tural symmetry and nondegeneracy levels; and the other is
the vacancy-structured hexagonal-GQD (VH-GQD), which
presents a broken symmetry and transforms the degenerate
energy levels into nondegenerate states. From the group the-
ory, the degeneracy of the GQD orbitals also corresponds to
the symmetry of the system (or its Hamiltonian). It may be
related to the dimensionality of the corresponding irreducible
representation of the symmetry group [39]. For example, in
R-GQD, the dimensionality of all the irreducible matrices is 1
[2], so all their eigenvalues are nondegenerate.

Under the radiation of CPL, the optical absorption spectra
of R-GQD and VH-GQD are shown in Figs. 5(a1) and 5(b1).
Here we continue to focus on the absorption peak at the low-
frequency position.

For R-GQD, we choose the second absorption peak (indi-
cated by the arrow), which arises from the transitions between
the levels (indexed 32 and 35) near the Fermi surface. In
Fig. 5(a1), the absorption peak has a frequency of 0.482t eV.
For VH-GQD, the frequency of the absorption peak indicated
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FIG. 4. The electric charge density variation distributions of H-GQD under the light radiation. [(a)–(f)] Different times (in unit T
2π

) in one
period of light, which correspond to the times in Fig. 2. The red hollow arrows represent the electric-field direction of light at that time, while
the purple-filled arrows represent the charge polarization direction.

FIG. 5. Absorption spectra (upper panels) and energy spectra (lower panels) for R-GQD and VH-GQD. (a1) and (a2) correspond to
R-GQD; and (b1) and (b2) correspond to VH-GQD, respectively. In (a1) and (b1), the insets are the shapes of the GQDs, and the arrowed
absorption peaks correspond to the electron transitions in (a2) and (b2). The two sets of nondegeneracy energy levels in the optical transitions
by arrows are indexed in (a2) and (b2).
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FIG. 6. The distributions of dynamic Type-II local currents and electric charge density variations of R-GQD under the CPL. The transition
energy corresponds to the arrowed peak in Fig. 5(a2). [(a)–(h)] Snapshots in a half period of light with different times (in T

2π
unit) of π

4 [(a) and
(e)], π

2 [(b) and (f)], 3π

4 [(c) and (g)], and π [(d) and (h)]. The red hollow (purple-filled) arrows represent the electric-field vector of light
(charge polarization vector) at that time.

by the arrow is also 0.684t eV in Fig. 5(b1), compared to
H-GQD.

Figures 5(a2) and 5(b2) show that the energy levels near
the Fermi energy are not degenerate. The arrows in Figs. 5(a1)
and 5(a2) indicate the electrons in R-GQD transit from the en-
ergy levels indices 32 → 35, and for VH-GQD the electrons
transit from the energy level indices 26 → 28.

For these two GQD systems, we utilize the time-dependent
perturbation theory to obtain the photoexcited currents. We
find that for these nondegenerate transitions, only type-II cur-
rents exist; while the type-III currents do not exist, as stated
in Sec. II. The resulting local current variations are shown in
Figs. 6 and 7.

1. Photoinduced currents in R-GQD

Figure 6 shows the snapshots of type-II current and dif-
ferential charge density distributions under the CPL radiation
as H-GQD. Only half of the period is shown here, and the
distributions in another half period are in opposite directions.

We see that these type-II currents [Figs. 6(a)–6(d)] still
vary with the change of electric field of light with the same
frequency. But different from the rational current directions in
H-GQD, the local current vectors at each atom only oscillate
along some specific direction. We observe that the average
vectors of these currents only lie along the y axis (as a sym-
metry axis). The mathematical reason for these currents will
be given in Sec. III D.

Similar to the type-II currents, the charge densities of R-
GQD shown in Figs. 6(e)–6(h) are polarized only in the y
direction. We also see that within one period, there remains
some variable phase difference between the polarization and
the electric field of light. According to Eq. (11), this phase
difference still generates a positive torque with the oscillating

magnitude. It is different from the degenerate transitions. We
will present the details of this torque in Fig. 8.

2. Photoinduced currents in VH-GQD

We illustrate the type-II photoinduced current and charge
density variation distributions of this VH-GQD under the cor-
responding conditions in Fig. 7. Only half period is depicted
here, the current directions in the other half period are op-
posite. Though GQDs with regular shapes can be fabricated,
there is an inevitable probability of introducing vacancies
for technical reasons [2,40,41]. When a vacancy exists in
H-GQD, degenerate excitation levels become nondegenerate,
see Figs. 5(b1) and 5(b2).

Similarly to R-GQD, the local type-II currents in VH-GQD
only oscillate along specific directions. And the average cur-
rents only lie along the symmetry axis caused by the vacancy
in VH-GQD, shown in Figs. 7(a)–7(d). The mathematical
reason for these currents’ direction will be given in Sec. III D.
For the charge density variations shown in Figs. 7(e)–7(h),
we see the charges are dynamically polarized only along the
symmetry axis direction, resulting in the corresponding pho-
toinduced currents flowing exclusively in this direction. There
still exists some phase difference between the polarization
vector and the electric field vector, which is not a fixed value
and still generates a positive torque according to Eq. (11) (see
details in Fig. 8).

It is noted that in these nondegenerate cases, there do not
exist any type-III currents in R-GQD and VH-GQD. The
reason lies in Eq. (9b) of Sec. II C.

C. Light-induced torque and magnetic moment

From Eq. (11), we can calculate the light-induced torques
exerted on electrons in GQDs. Figure 8 illustrates the torques
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FIG. 7. The distributions of dynamic Type-II local current and electric charge density variation of VH-GQD under the CPL. The transition
energy corresponds to the arrowed peak in Fig. 5(b2). [(a)–(h)] Snapshots in a half period of light with different times (in T

2π
unit) of π

4 [(a) and
(e)], π

2 [(b) and (f)], 3π

4 [(c) and (g)], and π [(d) and (h)]. The red hollow (purple-filled) arrows represent the electric-field vector of light
(charge polarization vector) at that time. The dashed line in (a) represents the symmetry axis of this GQD.

in four types of GQDs discussed before at different times of
the CPL radiation period. From this figure, we clearly observe
that the torque applied to the electrons in H-GQD remains
stable over one period, while in T-GQD, there is a slight
fluctuation. On the other hand, for R-GQD and VH-GQD the
magnitude of the torque exerted on the electrons undergoes
harmonic oscillation between zero and its maximum value,
with a period of half of the light period.

We now further analyze the connection between the light-
induced torque and angular momentum generated by type-III
rotational currents. As mentioned in the Sec. II C, Eq. (9b)
shows that the type-III current is linearly related to time t . We

FIG. 8. Light-induced torques in one period of CPL for H-GQD,
T-GQD, R-GQD, and VH-GQD. The transition energies correspond
to the arrowed absorption peak in Figs. 1(a1), 1(b1), Figs. 5(a1),
and 5(b1), respectively.

rewrite Eq. (9b) as

Jtype-III
n = q3E2

0 π

2mh̄
JIII

n tδ(�ω), (12)

where

JIII
n =

∑
〈n′〉

∑
k1k2

(
xk1kyk2k − xk2kyk1k

)
ak1

n ak2
n′ 〈n|∇|n′〉.

We see JIII
n remains constant for each site of the GQD. Using

the formula j = ηqv ( j = Jtype-III
n /V , η = 1/V ), where v rep-

resents velocity vector, η represents electron number density
for one atom site and V is GQD volume, the photoinduced
momentum of the electron on each atom site can be evaluated
as

pn = mvn = m
Jtype-III

n

q
= q2E2

0 π

2h̄
JIII

n tδ(�ω). (13)

And the expression for the orbital angular momentum of the
type-III currents is shown

L =
∑

n

Rn × pn = q2E2
0 π

2h̄
tδ(�ω)

∑
n

Rn × JIII
n . (14)

We see the orbital angular momentum of electrons in GQD
also linearly increases with time (only in a proper range of
time, see Appendix B), and the applied torque for generating
these rotational currents is

ML = dL
dt

= q2E2
0 π

2h̄
δ(�ω)

∑
n

Rn × JIII
n . (15)

Therefore, ML is also an invariant. From the above discus-
sions, we can conclude that the angular momentum transferred
to the electrons comes from only the stable optical torque ex-
erted on electrons of GQD. This is consistent with the results
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FIG. 9. The rigorous magnetic moment variations of GQD over
time (in unit h̄/γ0), induced by three different frequency mismatches
with CPL radiation. The dashed lines denote the effective time ranges
that the magnetic moments have linear relations with time.

shown in Fig. 8. Only the torque variation curves of H-GQD
and T-GQD are stable, and they both exhibit type-III rotating
currents. On the contrary, there are no type-III currents for R-
GQD and VH-GQD, so their torques have large oscillations.

Using the relationship between magnetic moment and an-
gular momentum μL = gL

q
2m L, where gL is the Landé factor

and for orbital motion gL = 1, we have the magnetic moment
generated by the type-III currents

μ = q3E2
0 π

4mh̄
tδ(�ω)

∑
n

Rn × JIII
n . (16)

We see that under the CPL radiation, the GQD with de-
generate excitation levels can become a tiny magnet. The
calculated magnetic moment in Eq. (16) linearly increases
with time, which is due to the ideal approximation in the long-
time limit. However, there is a finite absorption linewidth γ0 in
real experiments, i.e., γ0 = h̄�ω0 	= 0. The excited magnetic
moment magnitude will not continue to increase, but oscillate
periodically in the long term, as shown in Fig. 9 [also see
Eq. (8e)]. Here we use the rigorous expression for magnetic
moment written as

μ0 = q3E2
0

4mh̄

sin2 (�ωt )

(�ω)2

∑
n

Rn × JIII
n . (17)

Equation (17) above is the result by removing the approxima-
tion condition limt→∞ sin2(�ωt )

(�ω)2 = πtδ(�ω), for details please
refer to Appendix B. Note that only when the frequency
broadening is less than the linewidth (�ω/�ω0 < 1), the
significant absorption or magnetic moment can exist.

Figure 9 shows the magnetic moment as a function of time
for three different low-frequency mismatches (�ω1, �ω2,
and �ω3). As we see, Eq. (16) is an approximation (linear
proportional to time) for the time range covered by the ver-
tical dashed lines. On the other hand, the magnitude of this
magnetic moment is still subject to the constraints of time-
dependent perturbation theory, see Appendix B.

For these induced currents in the nano-sized GQD, it is
difficult to detect them. However, the rotational type-III cur-

rents generate magnetic moments that are detectable using
spin-polarized scanning tunneling microscopy (STM) [42,43].
Thus, we believe that our calculated photoinduced currents are
experimentally measurable.

We also estimate the maximum magnetic moment gen-
erated in H-GQD and T-GQD in the case of Sec. III A. In
Appendix B, it is shown that the time-dependent perturbation
theory requires

tδ(�ω)
q2E2

0 π

2h̄2

(
x2

k1k + y2
k1k

) 
 1. (18)

We assume

max

[
tδ(�ω)

q2E2
0 π

2h̄2

(
x2

k1k + y2
k1k

)] ≈ 0.1, (19)

〈n|∇|n′〉 ≈ 1/Å. By substituting the relevant data into
Eq. (16), the calculated magnetic moment is approximately
equal to 3.03 bohr magnetons for H-GQD and 1.42 bohr
magnetons for T-GQD. However, for larger-sized GQDs, due
to the increase in the number of atoms and radius, a relatively
significant magnetic moment may be generated under the CPL
radiation.

For the linewidth of 0.02t and the quantum dot size of
1 nm, we use Eq. (19) to estimate the maximum value of
the electric field of light, Emax = 1.7 × 107 V/m. This field
of light could be obtained by the femtosecond laser (with
a pulse duration of 500 fs and peak laser pulse fluence of
0.04 mJ/cm2). We note that with a smaller linewidth or a
larger quantum size, this E -field value could be even smaller,
which is more easily achieved experimentally.

D. Analysis of the direction of type-II currents

In Sec. III C, we explored the relationship between type-III
rotating currents and light-induced torque, i.e., the condition
for transferring the angular momentum to electrons. However,
when only type-II currents exist, the torque cannot be ignored,
as in the cases of R-GQD and VH-GQD shown in Fig. 8.
The transferred angular momentum goes into the lattice chiral
vibrations as there are no type-III currents in these nondegen-
erate cases. Now we focus on the type-II currents oscillations.

It can be easily observed that the periodic variations of
the torque are related to the restriction of charge polarization
direction (see Figs. 4, 6–8). Actually, this restriction depends
on whether the excitation level is degenerate, which ultimately
stems from the geometric symmetry of the system, as dis-
cussed below.

The expression for type-II currents is already written in
Eq. (9a) of Sec. II C. Under the molecular basis, type-II cur-
rents can also be written as

Jtype-II = 2q2E0π

m

∑
k1

(
xk1k cos ωt + yk1k sin ωt

)
× 〈�k|∇

∣∣�k1

〉
δ(�ω), (20)

[see the derivations in Appendix B, Eq. (B6)]. Here we use
the bound-state relationship: 〈�k1 |∇|�k〉 = −〈�k|∇|�k1〉.
Jtype-II is the total vector for type-II currents.

When the excited energy level is nondegenerate, there is
only one excited state �k1 , i.e., the summation operation in
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FIG. 10. (a) The inner-products directions (〈�k |∇|�k1 〉 and 〈�k |∇|�k2 〉) for two transition modes of H-GQD (k = 27, k1 = 28, k2 = 29).
(b) The corresponding type-II current vectors (transition to two single-excited states and to two degenerate states) in H-GQD under the CPL
radiation for different times (in unit T

2π
) in one period of light.

the above Eq. (20) is omitted. Jtype-II only oscillate in a fixed
direction, as indicated by the vector

〈�k|∇
∣∣�k1

〉 = (〈�k|∂x
∣∣�k1

〉
, 〈�k|∂y

∣∣�k1

〉)
. (21)

Since(〈�k|∂x
∣∣�k1

〉
, 〈�k|∂y

∣∣�k1

〉) = mω

h̄

(
xk1k, yk1k

)
, (22)

see Eq. (C2). We may rewrite the type-II currents as follows:

Jtype-II
k1k =

2q2E0π
√

x2
k1k + y2

k1k

m
cos

(
ωt − θk1k

)
× 〈�k|∇

∣∣�k1

〉
δ(�ω)

= 2q2E0πω

h̄

(
x2

k1k + y2
k1k

)
cos

(
ωt − θk1k

)
× (

cos θk1k, sin θk1k
)
δ(�ω), (23)

where θk1k represents the angle between the oscillation direc-
tion determined by 〈�k|∇|�k1〉 and the positive direction of
the x axis. Equation (23) easily reveals the reason why the
type-II current direction of R-GQD and VH-GQD is restricted
(see Figs. 6 and 7). And 〈�k|∇|�k1〉 (or θk1k) ultimately de-
pends on the geometric symmetry of the system.

When the transition levels are degenerate (at least Ek1 , Ek2

exist), Jtype-II = ∑
k1

Jtype-II
k1k . This current is the sum of at

least two vibration directions, determined by the two inner
products 〈�k|∇|�k1〉 and 〈�k|∇|�k2〉.

Due to the orthogonality between the two eigenstates
(�k1 and �k2 ), the two vibration directions above must be
nonparallel, i.e., they possess different phases θk1k and θk2k

(and |θk1k − θk2k| 	= π ), which form the type-II currents cor-
responding to the circular polarization (see Fig. 2). At the
same time, there are two independent charge polarization
directions, which, as a set of two-dimensional basis vectors,
allows the final polarization direction to rotate with the elec-
tric field, and may generate type-III rotational currents. Thus,
the symmetry-related restriction of the oscillation direction

is removed and the angular momentum transfer to electrons
becomes possible.

Here we use Eqs. (20) and (23) to calculate the directions
of the inner products of H-GQD for the transition modes
from the energy level 27 (k) to two degenerate levels 28 (k1)
and 29 (k2) [see Fig. 1(a2)], as shown in Fig. 10(a). The
variation of the type-II current vectors Jtype-II

k1k , Jtype-II
k2k , and

Jtype-II in one period are also calculated in Fig. 10(b). It can
be observed that in the transition to the two single excited
states, the inner products have different directions, while the
overall type-II current direction rotates with the electric field.
This is very similar to the formation of CPL which consists of
two orthogonal electric field oscillations with different phases.
This analysis is also consistent with the above simulation
results.

We need to clarify that in the nondegenerate transition
modes, the charge polarization direction is restricted, and it
seems that the electrons do not receive angular momentum
from the CPL. However, since the total angular momentum
must be conserved, the angular momentum from the absorbed
photons will be transferred to the lattice chiral vibration
through the optical torque exerted on the GQD system by
the electron-phonon interaction. In other words, the elec-
trons in the excited energy state only serve as a medium for
transferring the angular momentum, and the angular momen-
tum carried by light will be transferred to chiral phonons
[24,25,44] or even cause the overall mechanical rotation of
GQDs [45–47]. Due to the much larger mass of the lattice
atoms compared to the electrons, the manifestation of this
effect requires a much longer calculation time and is not
further analyzed in this paper.

IV. CONCLUSIONS

In this work, we use the tight-binding model and time-
dependent perturbation theory to study the properties of the
photoinduced currents and the mechanism of the inverse
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Faraday effect in the radiated GQD systems. We find there
exist two types of currents under the CPL. The first type
(type-II current) oscillates with the same frequency and phase
as CPL, and the polarized charge also rotates with a phase
delay relative to the light. The second type (type-III current)
is steady and rotates around some center(s) in GQD. This type
of current is also related to the IFE and can generate magnetic
moments. This rotational current results from the torque of
incident CPL exerting on electron charge and is considered a
second-order optical nonlinear effect.

The optical absorption spectra and photoinduced current
calculations show that the degeneracy of excited states is
crucial to the photoinduced currents in GQDs. The nondegen-
erate level often arises from the broken symmetry of GQD.
In the nondegenerate-level GQD, the type-II currents do not
oscillate with the same phase and direction as the CPL but
only oscillate along some fixed direction. This nondegeneracy
also eliminates the type-III currents, as well as the induced
magnetic moments in GQD.

We further analyze the transfer mechanism of angular mo-
mentum in these radiated systems. We find that the type-II
currents do not hold any angular momentum, and some of
the transferred angular momentum appears in the type-III ro-
tational currents. However, in nondegenerate GQDs, type-III
currents do not exist. We consider the transferred angular mo-
mentum gained from fluctuational optical torques goes to the
graphene lattices via electron-phonon coupling. This process
is very similar to what happens when a beam of CPL transmits
through a wire grid polarizer. The charge polarization changes
only along the wire grid direction without any other vertical
direction. The angular momentum conservation makes the
rotation of the wire lattice in the polarizer. In our system,
the nondegenerate GQD with broken symmetry acts as such
a “polarizer,” and the excited electrons take on the role of
the angular momentum transfer from the CPL to the GQD
lattice.

This paper employs some new methods to study the optical
excitation process in irradiated GQDs and gives some inter-
esting results, especially for the angular momentum transfer
analysis for nondegenerate excitation systems. Further studies
are also in progress, including electron-phonon interactions
in irradiated GQDs and electron-photon interactions under
vortex light radiation in GQD systems. We believe these novel
investigations are crucial for understanding the interactions
between light and quantum dots. They also have potential
applications in related fields such as photon detectors and
light-induced memory devices.
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APPENDIX A: TIME-DEPENDENT PERTURBATION
OF ELECTRON STATES

Here we derive the wave function under the CPL radia-
tion as shown in Eq. (6a). According to the time-dependent
perturbation theory, we assume the initial state is �k . In the
first-order approximation of the perturbation theory, we have
[32]

C(t )
k1k = δk1k + 1

ih̄

∫ t

0
eiωk1kt ′

H ′
k1kdt ′. (A1)

Here C(t )
k1k represents the coefficient of the eigenstate �k1 . Note

that |C(t )
k1k|2 
 1 (k1 	= k), and H ′

k1k is the matrix element of the
perturbation H ′

k1k = 〈�k1 |Hcp(t )|�k〉. Substituting Eq. (5) into
this matrix element formula, we have

H ′
k1k = −qE0

2

[〈
�k1

∣∣x − iy|�k〉eiωt + H.c.
]
. (A2)

With Eq. (A2), we simplify the second term on the right side
of Eq. (A1)

1

ih̄

∫ t

0
eiωk1kt ′

H ′
k1kdt ′

= −qE0

2ih̄

[〈
�k1

∣∣x − iy|�k〉
∫ t

0
ei(ωk1k+ω)t ′

dt ′

+ 〈
�k1

∣∣x + iy|�k〉
∫ t

0
ei(ωk1k−ω)t ′

dt ′
]
. (A3)

For visible light, the frequency ω is very large (ω ≈ 1014 ∼
1015 Hz). So the RWA is used to omit the first term on the
right-hand side of Eq. (A3), and then Eq. (A1) is expressed as

C(t )
k1k = δk1k + qE0

2h̄

ei�ωt − 1

�ω

〈
�k1

∣∣x + iy|�k〉. (A4)

From Eq. (A4), we could obtain the wave function Eq. (6a) in
Sec. II B from these coefficients.

APPENDIX B: DERIVATIONS OF THE LOCAL CURRENTS

Equation (8) gives the current density vectors j, jtype-I,
jtype-II, and jtype-III under the radiation of CPL. Here we
integrate these current density vectors in the whole space to
obtain the following “total” current vectors:

J =
∫

jd3r = Jtype-I + Jtype-II + Jtype-III. (B1)

Here Jtype-I = 0, and Jtype-II and Jtype-III are expressed as

Jtype-II = qh̄

m
Im

∑
k1

[
Sk1 (t )

〈
�k1

∣∣x+iy|�k〉e−iωk1kt 〈�k|∇
∣∣�k1

〉
+ S∗

k1
(t )

〈
�k1

∣∣x − iy|�k〉eiωk1kt
〈
�k1

∣∣∇|�k〉
]
, (B2)

Jtype-III = qh̄

m
Im

∑
k1k2

|S(t )|2〈�k1

∣∣x − iy|�k〉

× 〈
�k2

∣∣x + iy|�k〉
〈
�k1

∣∣∇∣∣�k2

〉
. (B3)
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Rewrite the time-dependent factors Sk1 (t ) and |S(t )|2 in
Eqs. (B2) and (B3), we have the following expressions:

Sk1 (t ) = qE0

2h̄

ei�ωt − 1

�ω
= i

qE0

2h̄

sin
(

�ω
2 t

)
�ω
2

ei �ω
2 t , (B4)

|S(t )|2 = q2E2
0

4h̄2

sin2
(

�ω
2 t

)
(

�ω
2

)2 . (B5)

Using two mathematical limitations: limt→∞ sin(�ωt )
�ω

=
πδ(�ω) and limt→∞ sin2(�ωt )

(�ω)2 = πtδ(�ω), and with the
Fermi-golden rule ω = ωk1k = ωk2k , Eqs. (B2) and (B3) are
simplified to the following form:

Jtype-II = q2E0π

m

∑
k1

(
xk1k cos ωt + yk1k sin ωt

)
× (〈�k|∇

∣∣�k1

〉 − 〈
�k1

∣∣∇|�k〉
)
δ(�ω), (B6)

Jtype-III = q3E2
0 π

2mh̄

∑
k1k2

(
xk1kyk2k − xk2kyk1k

)
× 〈

�k1

∣∣∇∣∣�k2

〉
tδ(�ω). (B7)

Here we emphasize the long-time conditions in the deriva-
tions of Eqs. (B6) and (B7). In real physical systems, due to
the finite absorption linewidth γ0, the condition for t → ∞
in the previous mathematical limit will be weakened by the
quantum uncertainty principle t�ω  1. On the other hand,
the time-dependent perturbation theory requires the small co-
efficient of the new eigenstates, i.e.,∣∣Sk1 (t )

〈
�k1

∣∣x + iy|�k〉
∣∣2 
 1. (B8)

It can be approximated as

tδ(�ω)
q2E2

0 π

2h̄2

(
x2

k1k + y2
k1k

) 
 1 (B9)

in Eq. (6a). Therefore, there exists an effective range of time
for the replacement of S(t ) by δ(�ω).

Then we use the basis transformation |�k〉 = ∑
n ak

n|n〉 to
rewrite the transition and current formula from the molecular
basis (|�k〉) to the atomic basis (|n〉). Here 〈�k|∇|�k1〉 in
formulas above is written as

〈�k|∇
∣∣�k1

〉 =
∑
〈n,n′〉

ak
nak1

n′ 〈n|∇|n′〉. (B10)

In this summation only the nearest-neighbor basis vector |n′〉
for 〈n| is calculated due to the local property of atomic basis.
Substituting Eq. (B10) into Eqs. (B6) and (B7), we obtain

Jtype-II = q2E0π

m

∑
〈n,n′〉

∑
k1

(
xk1k cos ωt + yk1k sin ωt

)

× (
ak

nak1
n′ − ak1

n ak
n′
)〈n|∇|n′〉δ(�ω), (B11)

Jtype-III = q3E2
0 π

2mh̄

∑
〈n,n′〉

∑
k1k2

(
xk1kyk2k − xk2kyk1k

)

× ak1
n ak2

n′ 〈n|∇|n′〉tδ(�ω). (B12)

Finally, we rewrite Eqs. (B11) and (B12) in a summation
form, i.e., Jtype-II(III) = ∑

n Jtype-II(III)
n . In other words, we di-

vide the “total” current vector into the “local” current vectors
belonging to the region of each atom. So the formulas for local
current at each atomic site n are obtained as shown in Eqs. (9a)
and (9b).

When using Eqs. (9a) and (9b) for specific calculations, it
involves the inner products of 〈n|∇|n′〉 and 〈n|x|n′〉 (〈n|y|n′〉).
We use the Gaussian-type function to simulate the atomic
orbitals in these GQD systems, i.e.,

|n〉 = bnexp

(
−|r − rn|2

α2

)
, (B13)

where bn and α are amplitude and localization parameter, r
represents the electron position, and rn represents the center
of the nth atom in the GQD. It is easy to obtain

〈n|∇|n′〉 = M(rn′ − rn), (B14)

〈n|r|n′〉 = rnδnn′ . (B15)

Namely, 〈n|x|n′〉 = xnδnn′ and 〈n|y|n′〉 = ynδnn′ . The value of
M in Eq. (B14) does not affect the main results of this work.
Similar results can be found in the other work [48].

APPENDIX C: DERIVATION OF THE OPTICAL
CONDUCTIVITY

We first utilize the operator commutation relation ∇ =
m
h̄2 [r, H], where ∇ denotes the gradient operator, r represents
the displacement vector operator, and H is the Hamiltonian,
and we obtain〈

�k1

∣∣∇|�k〉 = m

h̄2

〈
�k1

∣∣[r, H]|�k〉

= m(Ek − Ek1 )

h̄2

〈
�k1

∣∣r|�k〉. (C1)

With the Fermi golden rule (Ek1 − Ek = h̄ω), Eq. (C1) is
simplified into

〈�k|∇
∣∣�k1

〉 = −〈
�k1

∣∣∇|�k〉 = mω

h̄

〈
�k1

∣∣r|�k〉. (C2)

To obtain σ (ω), we start from the expression for the type-II
current given in Eq. (20). Using Eq. (C2), we rewrite Eq. (20)
in a vector form

Jtype-II

=
[

jx
jy

]

= 2q2E0πω

h̄

∑
k1

(
xk1k cos ωt + yk1k sin ωt

)[xk1k

yk1k

]
δ(�ω)

= 2q2πω

h̄

∑
k1

[
x2

k1k yk1kxk1k

xk1kyk1k y2
k1k

][
E0 cos ωt
E0 sin ωt

]
δ(�ω).

(C3)

Here jx and jy are in-plane components of Jtype-II. We also
have the definition of conductivity tensor [2]

jα =
∑

β

σαβ (ω)Eβ, (C4)
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FIG. 11. The type-II local current distributions in larger-sized H-GQD (N = 384) under the CPL. [(a)–(f)] Snapshots in the period of light
with the times (in unit T

2π
) of π

3 , 2π

3 , π , 4π

3 , 5π

3 , and 2π , respectively. The electron transition is from the HUMO to the LUMO levels.

where α and β represent x or y, respectively, and Eβ represents
the electric field component of the CPL. Eβ can be written

in a vector [E0 cos ωt
E0 sin ωt ]. So from Eq. (C3), we obtain the optical

conductivity tensor for the photoinduced type-II current

σαβ (ω) = 2q2πω

h̄

∑
k1

[
x2

k1k yk1kxk1k

xk1kyk1k y2
k1k

]
δ(�ω). (C5)

In this study, we focus mainly on the intrinsic properties of
the material, assuming the system to be isotropic. It suffices to
consider only the diagonal elements of the optical conductiv-
ity tensor [2]. This assumption leads to Eq. (C6) for a scalar
conductivity by tracing the matrix in Eq. (C5)

σ0(ω) = 2q2πω

h̄

∑
k1

Tr

[
x2

k1k yk1kxk1k

xk1kyk1k y2
k1k

]
δ(�ω)

= 2q2πω

h̄

∑
k1

(
x2

k1k + y2
k1k

)
δ(�ω). (C6)

Moreover, as the electrons follow the Fermi-Dirac distribu-
tion, by summating all possible initial and final states in the
optical transitions, the optical conductivity per unit area can
be expressed as

σ (ω) = 2πq2ω

Ah̄

∑
k1k

∣∣〈�k1

∣∣x + iy|�k〉
∣∣2

× [ f (Ek ) − f (Ek1 )]δ(�ω). (C7)

Equation (C7) is identical with the optical conductivity for-
mula of Eq. (10a).

APPENDIX D: PHOTOINDUCED CURRENTS
IN LARGE-SIZED GQDs

Here, using Eq. (9), we calculate both type-II and type-III
currents for a H-GQD with N = 384, and type-III current
for a T-GQD with N = 321, where electrons transition from
the HUMO to the LUMO levels under the CPL radiation.
These currents are displayed in Fig. 11 (type-II) and Fig. 12
(type-III).

The characteristics of these type-II dynamic currents and
type-III quasisteady rotational currents are akin to those ob-
served in smaller GQDs (as illustrated in Figs. 2 and 3).
But for the large-sized H-GQD, when the transition-related
eigenstates have the near-zero eigenvalues (we usually use the
HOMO and the LUMO, with eigenenergies of ±0.048t), the
photoinduced currents are mainly distributed on the bound-
aries of the GQD. This is because the eigenstates of HOMO
and LUMO also have the edge-state property due to their

FIG. 12. The type-III steady local current distributions in larger-
sized H-GQD (N = 384) and T-GQD (N = 321) under the CPL. The
electron transition is from the HUMO to the LUMO levels.
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FIG. 13. The type-III current distributions for three specific
T-GQDs at the photon energy of h̄ω = 2t with circular polarization.
(a) T-GQD with zigzag edges (N = 33), (b) T-GQD with zigzag
edges (N = 78), (c) T-GQD with armchair edges (N = 36).

near-zero eigenvalues. Since the currents are related to the
eigenstates (see Eq. (8c)), the currents may also flow near the
edges of GQD.

For the large-sized T-GQD, we find that the HOMO and
LUMO are not very close to zero (±0.329t). So these eigen-
states and the corresponding photoinduced type-III currents
are not on the edges of GQD but in the center.

APPENDIX E: CORNER MAGNETIC
MOMENTS OF T-GQD

For different degenerate excited states, the type-III current
does not always rotate around the center of the GQD, i.e.,
there also exist some different distributions of magnetic mo-
ments, as shown in Fig. 13 below.

In the tight-binding Hamiltonian H0, all GQDs have the
electronic states with energies of ±t due to the symmetry,

similar to the Van Hove singularities in bulk graphene [28,49].
The number of these states depends on the size, shape, and
edge type of the GQD. In the T-GQD with a zigzag edge, these
states always exist regardless of the size and they are degener-
ate. On the other hand, the absorption peak corresponding to
the electronic transition h̄ω = 2t in the absorption spectrum
always exist which means this optical transition obeys the
selection rule [2,49].

Here we present a special distribution of magnetic mo-
ments in T-GQD with a zigzag edge. They result from the
transitions from the energy levels −t to t by the CPL radiation,
as seen in Fig. 13.

As we see, the rotating currents in two different sizes of
zigzag T-GQD only appear locally at the three corners. In this
way, the magnetic moment distribution is also on these three
corners. Furthermore, for these T-GQDs, it can be found that
the GQD size does not affect the magnetic moment distribu-
tion.

In Fig. 13(c), we also illustrate the type-III current distri-
bution for a T-GQD with armchair edges. We observe that
besides the three corner magnetic moments, there is still one
magnetic moment positioned in the center of this GQD. This
is different from the previous distributions.

These magnetic moments all can generate magnetic fields
in the same direction. However, this type of novel IFE
has not been reported in the GQD system before. We be-
lieve these interesting magnetic features can be detected in
future experiments on large zigzag-edge or armchair-edge
T-GQDs.

[1] I. Ozfidan, A. D. Guclu, M. Korkusinski, and P. Hawrylak,
Phys. Status Solidi RRL 10, 102 (2016).

[2] R. Pohle, E. G. Kavousanaki, K. M. Dani, and N. Shannon,
Phys. Rev. B 97, 115404 (2018).

[3] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, and
P. Chen, Adv. Mater. 31, 1808283 (2019).

[4] F. Qi and G. Jin, J. Appl. Phys. 114, 073509 (2013).
[5] Y. Wang, G. Yu, M. Rosner, M. I. Katsnelson, H.-Q. Lin, and S.

Yuan, Phys. Rev. X 12, 021055 (2022).
[6] Q.-R. Dong, Y. Li, C. Jia, F.-L. Wang, Y.-T. Zhang, and C.-X.

Liu, Solid State Commun. 273, 55 (2018).
[7] Q.-R. Dong and C.-X. Liu, RSC Adv. 7, 22771

(2017).
[8] E. G. Kavousanaki and K. M. Dani, Phys. Rev. B 91, 035433

(2015).
[9] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.

Lett. 108, 196802 (2012).
[10] G. F. Quinteiro and T. Kuhn, Phys. Rev. B 90, 115401 (2014).
[11] A. Steiger and C. Woods, Phys. Rev. A 5, 1467 (1972).
[12] V. Karakhanyan, C. Eustache, Y. Lefier, and T. Grosjean, Phys.

Rev. B 105, 045406 (2022).
[13] S. Ali, J. R. Davies, and J. T. Mendonca, Phys. Rev. Lett. 105,

035001 (2010).
[14] T. V. Liseykina, S. V. Popruzhenko, and A. Macchi, New J.

Phys. 18, 072001 (2016).
[15] Y. Mou, X. Yang, B. Gallas, and M. Mivelle, Nanophotonics 12,

2115 (2023).

[16] X. Yang, Y. Mou, R. Zapata, B. Reynier, B. Gallas, and M.
Mivelle, Nanophotonics 12, 687 (2023).

[17] M. Battiato, G. Barbalinardo, and P. M. Oppeneer, Phys. Rev. B
89, 014413 (2014).

[18] S. Abedi and A. Hamed Majedi, J. Phys. B 56, 145502 (2023).
[19] I. D. Tokman, Q. Chen, I. A. Shereshevsky, V. I. Pozdnyakova,

I. Oladyshkin, M. Tokman, and A. Belyanin, Phys. Rev. B 101,
174429 (2020).

[20] S. O. Potashin, V. Y. Kachorovskii, and M. S. Shur, Phys. Rev.
B 102, 085402 (2020).

[21] S. Banerjee, U. Kumar, and S.-Z. Lin, Phys. Rev. B 105,
L180414 (2022).

[22] A. H. Majedi and B. Lounis, Phys. Rev. B 102, 214401 (2020).
[23] H. Hsu and L. E. Reichl, Phys. Rev. B 76, 045418 (2007).
[24] S. R. Tauchert, M. Volkov, D. Ehberger, D. Kazenwadel, M.

Evers, H. Lange, A. Donges, A. Book, W. Kreuzpaintner, U.
Nowak, and P. Baum, Nature (Lond.) 602, 73 (2022).

[25] H. Zhu, J. Yi, M.-Y. Li, J. Xiao, L. Zhang, C.-W. Yang, R. A.
Kaindl, L.-J. Li, Y. Wang, and X. Zhang, Science 359, 579
(2018).

[26] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[27] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Phys. Rev.

B 66, 035412 (2002).
[28] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[29] S. Bougouffa and M. Babiker, Phys. Rev. A 102, 063706

(2020).

085425-14

https://doi.org/10.1002/pssr.201510335
https://doi.org/10.1103/PhysRevB.97.115404
https://doi.org/10.1002/adma.201808283
https://doi.org/10.1063/1.4818708
https://doi.org/10.1103/PhysRevX.12.021055
https://doi.org/10.1016/j.ssc.2018.02.009
https://doi.org/10.1039/C7RA03747C
https://doi.org/10.1103/PhysRevB.91.035433
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevB.90.115401
https://doi.org/10.1103/PhysRevA.5.1467
https://doi.org/10.1103/PhysRevB.105.045406
https://doi.org/10.1103/PhysRevLett.105.035001
https://doi.org/10.1088/1367-2630/18/7/072001
https://doi.org/10.1515/nanoph-2022-0772
https://doi.org/10.1515/nanoph-2022-0488
https://doi.org/10.1103/PhysRevB.89.014413
https://doi.org/10.1088/1361-6455/ace395
https://doi.org/10.1103/PhysRevB.101.174429
https://doi.org/10.1103/PhysRevB.102.085402
https://doi.org/10.1103/PhysRevB.105.L180414
https://doi.org/10.1103/PhysRevB.102.214401
https://doi.org/10.1103/PhysRevB.76.045418
https://doi.org/10.1038/s41586-021-04306-4
https://doi.org/10.1126/science.aar2711
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevA.102.063706


PHOTOINDUCED CURRENTS AND INVERSE FARADAY … PHYSICAL REVIEW B 110, 085425 (2024)

[30] G. F. Quinteiro, D. E. Reiter, and T. Kuhn, Phys. Rev. A 91,
033808 (2015).

[31] K. Nobusada and K. Yabana, Phys. Rev. A 75, 032518 (2007).
[32] D. J.Griffiths, Introduction to Quantum Mechanics (Addison-

Wesley, Boston, MA, 2005).
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