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Single- and double-slit electron diffraction in an anisotropic two-dimensional medium
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We theoretically investigate the effect of anisotropy on electron diffraction in two-dimensional (2D) systems.
The calculations are performed by means of both analytical semiclassical and microscopic tight-binding ap-
proaches, with the anisotropy being introduced by assuming direction-dependent effective masses and hoppings,
respectively. Single and double slits with different orientations with respect to the anisotropy axis are considered.
Using these models, we obtain analytical expressions for the wave function and numerical results for the
probability current density for both investigated cases. In addition, we specify the conditions under which there
is constructive or destructive interference in the interference pattern in the double-slit case. The results show
that anisotropy can lead to a collimation effect, as well as a steering of the diffracted electronic beam, which
may, in turn, allow the control of the charge carriers’ propagation to be used in nanoelectronic devices based on
anisotropic 2D media systems.

DOI: 10.1103/PhysRevB.110.085424

I. INTRODUCTION

One of the early triumphs of quantum mechanics was the
development of band theory to explain the electronic proper-
ties of crystals. A striking aspect of that theory is the fact that
electrons (and holes) interacting with the periodic potential
of the crystal are described as effectively free particles, albeit
with a modified mass. For solid-state structures with dimen-
sions comparable to the mean-free path of charge carriers
(i.e., in the ballistic regime), the wave aspect of the carriers
becomes prominent, as evidenced by the fact that correct treat-
ment of transport in that regime must take into account effects
such as interference and diffraction [1,2]. Ballistic transport
of electrons and holes has also been considered in the context
of two-dimensional (2D) materials such as graphene [3–7],
silicene [8,9], and others, especially since the mean-free path
of carriers in these systems can often reach the micrometer
range. Therefore, many phenomena usually associated with
optics can now be implemented in electronic systems, and
it becomes meaningful to apply an optical-electronic anal-
ogy to describe their dynamical properties [10–15]. On the
other hand, the fact that electrons and holes, in contrast with
photons, are massive charged fermions can lead to significant
deviations from their optical counterparts, particularly their
response to external electric and magnetic fields.

Among the variety of 2D materials that have been studied
recently, some, such as phosphorene [16], arsenene [17], and
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some transition metal dichalcogenides, for instance, ReS2,
ReSe2, and TiS3 [18–24], display anisotropic properties. An
outstanding issue is then the possible influence of anisotropy
on the ballistic transport in these systems and on wavelike
phenomena such as diffraction and interference [25,26]. One
way to tackle that is to consider the effect of a preferred direc-
tion on the electron diffraction patterns in nanostructures of
anisotropic materials. Of particular interest is the possibility
of exploiting the results in device applications that make use
of optical analogies [27–32]. In particular, the fact that the
anisotropy of the system implies a preferred direction can
naturally lead one to question how the alignment of the system
in relation to such direction can influence the propagation
of charge carriers. Here, we show that the anisotropy can
significantly influence both single- and double-slit electron
diffraction, resulting in effects such as beam steering and
self-collimation, which in turn are strongly dependent on the
alignment of the setup with respect to the anisotropy axes.

Diffraction is a wave phenomenon that occurs when a wave
of wavelength λ passes through an obstacle or a slit of size
∼λ and is deflected in various directions. The longer the
wavelength relative to the dimensions of the slit or obstacle,
the stronger the diffraction effects. Diffraction can occur from
one or more diffracting objects. For the case of a single slit
of width a present in a wall far enough from a screen [see
sketch in Fig. 1(a)], regions of minima are observed in the
screen whenever a sin θ = mλ, where θ is the angular di-
rection of propagation with respect to the center of the slit
and m = 1, 2, 3, . . . . The intensity, in turn, is proportional to
(sin γ /γ )2, where γ = πa sin θ/λ. In addition, in the case of
double-slit [see sketch in Fig. 1(b)], the analysis is performed
considering two walls and a screen: on the first wall, there is
a slit through which a wave is diffracted; on the second wall,
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FIG. 1. Schematic illustrations of the (a) single- and (b) double-
slit experiments theoretically studied in this work. In (a), a plane
wave �sl coming from the slit S with width a forms an angle θ with
the x̄ axis. In (b), two plane waves �ds|1 and �ds|2 emitted by slits S1

and S2, separated by a distance d and widths a, form angles θ1 and θ2

with the x̄ axis, respectively. The plane waves in (a) and (b) reach the
P point on the screen located at x̄ = D and generate a specific pattern.
The assumed system is anisotropic, i.e., with direction-dependent
effective masses, and, consequently, exhibiting elliptical curves of
constant energy in momentum space as depicted in (c). α is the
rotation angle between the coordinate systems S̄, aligned with the
crystallographic axes (x̄ and ȳ) of the anisotropic 2D system, and S.
Sketches in (a) and (b) illustrate the α = 0 case slit experiments.

there are two slits separated by a distance d through which the
wave diffracted by the previous wall gives rise to two waves
and the screen is used to project the pattern formed by mixing
both diffraction and interference effects. Despite being a well-
established phenomenon described in detail both for light and
for particles such as electrons in many textbooks [33,34], it
has been the subject of several relatively recent studies, such
as the diffraction of massive molecules through a single, a
double, and a triple slit [35], obtaining the exact analytical val-
ues of the position and momentum information entropies for
the single-slit and double-slit diffraction experiments [36], the
electronic double-slit diffraction with a quantum mechanical
approach [37], the proposal of a time-domain version of the
double-slit experiment [38], obtaining single- and double-slit
diffraction patterns by means of path integrals [39], in addition
to the full modern realization of the experiment itself [40].

Although previous works have addressed some properties
related to the analogy between optical and electronic transport
of anisotropic 2D systems [41–49], to our knowledge, no in-
vestigation on the electronic diffraction for single and double
slits defined in an anisotropic 2D system has been carried out
on the electron optics’ point of view as we performed here. For
that, we explore the influence of the anisotropy on the wave
function and, consequently, the probability density through an
analytical semiclassical approach and the probability current

density through a quantum numerical description, where the
anisotropy is introduced by assuming a direction-dependent
effective mass and hopping energies.

The paper is organized as follows. Section II presents both
the semiclassical approach (Sec. II A), where we analytically
describe the investigated anisotropic 2D system and obtain
expressions for the momenta along the x and y directions as a
function of the effective masses for any crystallographic setup
orientation, which will allow further to conveniently treat
the single- and double-slit cases, and the quantum approach
based on the tight-binding model (Sec. II B), whose numerical
results for the probability current density will confirm our
semiclassical calculations. Results for the single- and double-
slit cases are discussed in Secs. III A and III B, respectively.
A brief summary and final considerations are presented in
Sec. IV.

II. ANISOTROPIC 2D MEDIA

A. Effective mass approach

Before discussing the electron optics of single- and double-
slit anisotropic 2D systems, let us present the analytical model
for anisotropic semiclassical systems, taking as a starting
point an effective mass model, in which the anisotropy is
introduced by assuming direction-dependent effective masses
mx and my [26]. Thus, the Hamiltonian H has the form

H = p2
x̄

2mx
+ p2

ȳ

2my
, (1)

where pq̄ and mq, with q = {x, y}, are the momentum and the
effective masses in the coordinate system S̄, respectively, and
the isoenergies in momentum space for this system exhibit
an elliptical shape. To make it more general, it is convenient
to consider another coordinate system S not parallel to the
anisotropy axes, but rather rotated by an angle α counterclock-
wise with respect to the coordinate system S̄, as illustrated
in Fig. 1(c), resulting in px̄ = px cos α − py sin α and pȳ =
px sin α + py cos α, and also in a rotation of the elliptical
constant energy curve by the angle α [see green solid curve
in Fig. 1(c)]. Hence, the Hamiltonian (1) in the rotated coor-
dinate system can be written as

H = p2
x

2μx
+ p2

y

2μy
+ px py

μ
, (2)

where

1

μx(y)
= cos2 α

mx(y)
+ sin2 α

my(x)
(3)

and

1

μ
=

[
1

my
− 1

mx

]
sin α cos α. (4)

The velocity operator vq is given by vq = ∂H
∂ pq

. Thus, from
that definition and Eq. (2), we can specify the dependency
between vq and pq as

vx = px

μx
+ py

μ
, (5a)

vy = px

μ
+ py

μy
. (5b)
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One can then obtain the relation between the momentum
and velocity components as

px(y) = v

ρ
fx(y)(θ ), (6)

where ρ ≡ 1 − μxμy/μ
2 �= 0, v = v(cos θ, sin θ ) is the veloc-

ity vector perpendicular to the elliptical isoenergy, as shown
in Fig. 1(c), and the angle-dependent functions fx,y are given
by

fx(θ ) ≡ μx cos θ − μxμy

μ
sin θ, (7a)

fy(θ ) ≡ μy sin θ − μxμy

μ
cos θ. (7b)

Equation (6) is written regarding the velocity vector’s
amplitude v and angle θ . In some cases, expressing the mo-
mentum components px(y) in terms of the energy ε or even the
magnitude of the momentum p is more convenient. Aiming
that, in Appendix A, using the Hamiltonian (2) and Eq. (6),
we derive an analytical expression [Eq. (A4)] for the energy in
analogy to the classic kinetic one. Thus, isolating the velocity
of Eq. (A4) and replacing into Eq. (6), the momenta px and py

can be rewritten in terms of the energy, such as

px(y) =
√

2ε

Mθ

fx(y)(θ )

ρ
, (8)

where Mθ corresponds to “the modified total mass of the
rotated anisotropic system” [Eq. (A3)]

Mθ ≡ 1

ρ

(
μx cos2 θ + μy sin2 θ − 2μxμy

μ
sin θ cos θ

)
. (9)

To obtain px and py with respect to the magnitude of the
momentum p, we calculate p2 = p2

x + p2
y by means of Eq. (8),

resulting in

p2 = 2ε

ρ

(
μx + μy − μxμy

Mθ

)
, (10)

which allows us to write the expression

px(y) = gx(y)(θ )p cos θ, (11)

whose all the anisotropic aspects of the system are carried out
by the gx(y)(θ ) function, given by

gx(θ ) ≡ fx(θ )

cos θ
√

ρ[Mθ (μx + μy) − μxμy]
, (12a)

gy(θ ) ≡ fy(θ )

sin θ
√

ρ[Mθ (μx + μy) − μxμy]
. (12b)

According to the equations derived in this section, one
can clearly notice that for the isotropic case, i.e., mx = my =
m and, consequently, with circular constant energy curve,
it would result that μx = μy [Eq. (3)], 1/μ = 0 [Eq. (4)],
ρ = 1, Mθ = m corresponding to the total mass m of the
system [Eq. (A3)], gx(θ ) = gy(θ ) = 1 [Eqs. (12a) and (12b)],
implying, in turn, that the velocity vector would be collinear
with the momentum vector [Eq. (11)]. As one shall discuss
(Sec. III), the interference and diffraction patterns observed
here for the isotropic single- and double-slit cases are analo-
gous to those standard textbooklike patterns, as expected.

B. Tight-binding description

The effective-mass approach presented in the previous
Sec. II A can provide a reasonable description of the low-
energy dynamics of charge carriers in anisotropic 2D systems
within the long-wavelength limit. Nevertheless, a more ac-
curate picture can be obtained from a microscopic model,
in which the anisotropy can arise from direction-dependent
interaction terms in a tight-binding Hamiltonian [50]. Such
an approach has been shown to be suitable for describing
electronic, excitonic, and transport properties of various low-
dimensional systems based on anisotropic materials [51–66].
In that approach, the Hamiltonian HTB has the form

HTB =
∑

i

(εi + Vi )c
†
i ci +

∑
i �= j

ti jc
†
i c j, (13)

where the sum runs over all sites i and j of the considered
lattice. ti j is the hopping parameter between the sites i and j,
and ci (c†

i ) is an operator that annihilates (creates) an electron
at site i with onsite energy εi. To consider the anisotropic
aspect of the system, in Sec. II A, direction-dependent masses
were assumed within the effective mass approximation. Here,
anisotropy is incorporated into the tight-binding model by
assuming different values for the hopping parameters along
the different crystallographic directions. For a square lattice,
it can be easily included by taking ti j = tx̄ and tȳ differently
along the x̄ and ȳ directions, respectively. This is illustrated in
the insets of Figs. 4(a) and 9(a) for the single- and double-slit
anisotropic systems when explored within the tight-binding
description. Vi is the onsite potential at site i used here to
simulate the rectangular potential barriers to mimic the input
screens in the atomistic case. Thus, aiming to address the
diffraction problem of single and double slits covering the
physical limits from the microscopic to the continuous ap-
proaches, next we shall consider comparative discussions and
results for these cases within the tight-binding and effective
mass frameworks. Numerical calculations within the tight-
binding approach were performed using the KWANT Python
package [67], which allows the calculation of the probability
current density of the single- and double-slit systems and,
consequently, the opticlike analogy within the atomistic de-
scription for the semiclassical diffraction patterns.

Although our approach is limited to a one-band model
case within the long-wavelength and low-energies limits
(Sec. II A), consequently, no interband scattering is taken into
account, the theoretical framework used here is generic in
the sense that similar qualitative features are expected for
any system with equivalent effective-mass anisotropy ratio.
Therefore, for a multilayer 2D anisotropic system and thus
exhibiting a band structure formed by multibands, our model
would be equivalent to assuming that one deals separately
with each band of each layer such that no modifications on the
band curvatures (and, consequently, effective masses) along
in-plane directions are considered, regardless the number of
layers. A similar assumption was assumed in Refs. [63] and
[68] for multilayer phosphorene, in which the effect of stack-
ing phosphorene layers modifies the electron and hole energy
levels but not their effective masses. This is based on the
fact [63] that the effective masses for multilayer phosphorene
systems are shown not to change significantly for N � 5.
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III. RESULTS AND DISCUSSIONS

Next, using the theoretical framework described in
Secs. II A and II B, within the effective-mass and tight-binding
approaches, respectively, we discuss the effects on the diffrac-
tion patterns due to the anisotropy in the single-slit [Fig. 1(a)]
and the double-slit systems [Fig. 1(b)], in semiclassical and
atomistic perspectives, assuming plane waves incidents on the
slits.

A. Single slit

To study the diffraction of electrons in the system schemat-
ically represented by Fig. 1(a), we consider that the flat slit
has width a and its distance from the screen is sufficiently
long such that D � a, i.e., it means a distance that satisfies
Fraunhofer condition [69,70], In this sense, we can write the
wave function �sl reaching the screen at a P point as

�sl (D, y) =
∫ +a/2

−a/2
CeikxDeiky (y−y′ )dy′

= CeikxDeikyy 2 sin(kya/2)

ky
, (14)

where C is the incident wave amplitude, and y is the direction
in which the slit is limited in the S-coordinate system. That is,
the slit experiment is described here by the S-coordinate sys-
tem rotated by an angle α of the S̄-coordinate system which,
in turn, is aligned with the anisotropic axes of the crystal. The
probability density, in turn, is

|�sl (D, y)|2 = C2a2 sin2 γ

γ 2
, (15)

where γ = kya/2.
Figure 2 shows contour plots of the probability density

|�sl |2 [Eq. (15)] as a function of α and θ for three dif-
ferent effective masses ratios my/mx. Figure 2(a) displays
the diffraction pattern for the isotropic case (my/mx = 1),
where, as expected, the probability density is independent
of the system rotation angle α and mirror symmetric with
respect to the (θ = 0) axis, since the isoenergy is circular and,
consequently, the momentum and velocity vectors are now
collinear. For different values of effective mass anisotropy,
Figs. 2(b) (my/mx = 2) and 2(c) (my/mx = 10) show that the
diffraction patterns are strongly affected by the system orien-
tation concerning the crystallographic axes and the direction
of the momentum of the injected beam. Analyzing the maxi-
mum amplitude of |�sl |2, one notices an approximately linear
relation between the velocity vector’s angle θ and the rotation
angle α in the range −π/4 < α < π/4. This tendency is not
trivial to be immediately identified by just analyzing Eq. (15),
although, in this relation, the anisotropic aspect of the sys-
tem is present just in ky and, in turn, it depends on both α

and θ , as given by any of Eqs. (6), (8), and (11). Note that
Eq. (15) is written in a way slightly similar to the ones found
in textbooks, except that now γ = kya/2 linearly depends on
ky and which in turn contains all the system’s anisotropy as
well as information of the orientation of the slits’ system
setup orientation with respect to the crystallographic axis of
the anisotropic 2D material. Moreover, from Figs. 2(b) and
2(c), one has that as the my/mx ratio increases, apart from the

(a)

(b) (c)

FIG. 2. Contour plot of the probability density |�sl |2 of the
single-slit system as a function of the angles α and θ [Eq. (15)]
assuming (a) my = mx , (b) my = 2mx , and (c) my = 10mx . We take
h̄ = 1, a = 4, C = 1, ε = 1, and mx = 1. Solid white lines highlight
α values (−π/4 rad, 0 rad, and π/4 rad) that will be explored further.
Dashed white curves correspond to the analytical expression for the
peak position of the central maximum in θ as a function of α given
by Eq. (B4).

angular shift, the results for |�sl |2 show a narrowing of the
central peak compared with the isotropic case, which can be
characterized as a collimation effect. An analytical expression
for the peak position of the central maximum in θ as a func-
tion of α was derived in Appendix B given by Eq. (B4) and
displayed by dashed white curves in Fig. 2.

To emphasize the narrowing of the central peak due to
the anisotropy, we show in Fig. 3 the dependence of the
probability density |�sl |2 as a function of the angular posi-
tion θ for fixed values of α, corresponding to the horizontal
white lines of Fig. 2 for α = 0 rad [Fig. 3(a)], α = −π/4
rad [Fig. 3(b)], and α = π/4 rad [Fig. 3(c)]. Results in Fig. 3
for the my = mx, 2mx, and 10mx cases are denoted by dotted
yellow, dashed magenta, and solid blue curves, respectively.
In general, note that the curves in Fig. 3 exhibit a (sin γ /γ )2-
like behavior, typical of a diffraction pattern for single-slit
systems, i.e., with the width and intensity of the single-slit
diffraction pattern decreasing as one goes away from the
central maximum. The width of the central maximum is de-
termined by the distance between the two first-order minima
on either side of the center. The minima of intensity for a
(sin γ /γ )2 curve occur for γ = ±π,±2π,±3π, . . . . Then,
the angular width of the central maximum (2θ1) can be found
by taking the angular position of the first minima at γ =
π , which results in θ1 = sin−1(2π/kya), giving θ1 ≈ 2π/kya
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(a)

(b) (c)

FIG. 3. Diffraction pattern of the single-slit system obtained by
the dependence of the probability density |�sl |2 as a function of the
angular opening θ of the injected beam [Eq. (15)] taking fixed values
of α, namely, (a) α = 0 rad, (b) α = −π/4 rad, and (c) α = π/4
rad (such values are highlighted in Fig. 2 as solid white lines).
Dotted yellow, dashed magenta, and solid blue curves represent,
respectively, my = mx , 2mx , and 10mx cases. We assume the same
constant values as in Fig. 2.

in the small-angle approximation or equivalently for wave-
lengths smaller than the slit width (λ � a). In this way, it
becomes clear the independence of the width of the central
maximum for the isotropic case (dotted yellow curve) since ky

will be the same regardless of the choice of α. On the other
hand, for my �= mx cases, the anisotropy will induce α and
θ dependence on ky, modifying the angular positions θ1 of
the two first-order minima, the angular distance 2θ1 between
them, and consequently the width of the central maxima. It
is evident in Fig. 3(a), depicting a narrowing of the cen-
tral peak the higher the anisotropic of the system, i.e., the
angular width 2θ1(my=10mx ) < 2θ1(my=2mx ) < 2θ1(my=mx ). From
the relation θ1 ≈ 2π/kya, one has that as the slit width a
increases, the width of the central maximum 2θ1 decreases.
Therefore, it could lead us to roughly understand the obtained
anisotropic-induced narrowing of the central maximum in the
single-slit diffraction results, mapping it into the isotropic case
as a situation in which we are considering large slit widths, al-
though we are within D � a approximation with a negligible
slit width. However, the angular shift of the central peak to
negative (positive) values of θ for α = π/4 rad (α = −π/4
rad) observed in Figs. 3(b) and 3(c) could not be mapped in
this isotopic analogy by changing the slit parameters, being a
direct consequence of the system’s anisotropy.

In addition, by analyzing Fig. 2 beyond the previously
discussed linear (α vs θ ) region, one can notice that for
large α angles and my/mx �= 1 the width of the central
maximum 2θ1 increases as it approaches α = ±π/2. As
seen above, due to the anisotropy of the system, one has

that ky ≡ ky(θ, α), which changes for different system ori-
entations, thus modifying the angular distance 2θ1 of the
central maxima of |�sl |2. According to Eqs. (6) and (7b),
one can easily obtain for α = 0 and π/2 that ky(α = 0) =
(v/h̄)my sin θ and ky(α = π/2) = (v/h̄)mx sin θ , which lead
to angular distances in a small-angle approximation given
by 2θ1(α = 0) ≈ [4π h̄/(av sin θ )]/my and 2θ1(α = π/2) ≈
[4π h̄/(av sin θ )]/mx, respectively. These relations of 2θ1 with
α = 0 and π/2 give us a physical insight into the different
angular broadening and its mass-ratio inverse tendency for
the different system orientations. By taking the ratio between
these angular widths, one obtains θ1(α = π/2)/θ1(α = 0) =
my/mx. From that it is seen, as displayed in Figs. 2 and 3, that
as the mass ratio my/mx increases, the difference between the
angular widths for α = 0 and π/2 becomes larger (for a fixed
mass ratio, compare in Fig. 2 the broadening for α = 0 and
π/2).

A variation of the slit alignment (α) results in a pro-
nounced change in the transmission probability of electrons
that travel through the slit and are collected at the output lead.
Cunha et al. [26] theoretically investigated the electronic and
transport properties of 2D semiconductor quantum wires with
anisotropic effective masses and different orientations with
respect to the anisotropic axis. They observed a strong depen-
dence on the spacing of energy levels related to the alignment
quantum wire angle and the anisotropy axis showing, for
the case of phosphorene and arsenene (two anisotropic 2D
semiconductors with the highest effective mass being along
opposite directions) that as the quantum wire alignment α in-
creases with respect to the crystallographic axes, the confined
energy levels of the system are shifted to lower (upper) values
for phosphorene (arsenene), and the spacing between them
decreases (increases) too, which in turn increases (decreases)
in the number of accessible electronic states. In a quantum-
level approach, this result indicates how the transmission
probability may be affected due to the variation of the sys-
tem alignment; for instance, by changing α and consequently
increasing (decreasing) the number of accessible electronic
states for the propagating modes for a fixed energy range, it
leads to an increase (decrease) in the transmission probability.

Next, we investigate the single-slit system from an atom-
istic perspective using a numerical approach based on the
tight-binding model described in Sec. II B. The system con-
sists of a square lattice with a rectangular scattering region
(width of 300l and length 100l , where l is the distance be-
tween adjacent sites) connected to two semi-infinite leads
through which plane waves are injected (lead 0) and collected
(lead 1). The single-slit (width of 10l and length of 5l) is
simulated using rectangular potential barriers, as shown in
Fig. 4(a) highlighted in gold. In this region, the potential
used is high enough so that the transmission is negligible.
Anisotropy is introduced into the model by assuming different
values for the hopping parameter along the x̄ and ȳ directions,
with the hopping parameter defined as tq̄ = −h̄2/(mq̄l2) with
q = {x, y}, as illustrated in the inset of Fig. 4(a), and the
onsite energy having a value of −4tx̄. Then we numerically
obtain the probability current density for different values of
my/mx and α parameters, chosen to allow a direct compar-
ison with the semiclassical case shown in Figs. 2 and 3,
namely, Fig. 4(b) my = mx, Figs. 4(c), 4(e), 4(g) my = 2mx,
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(a)

(b) (d) (f)

(c) (e)

(h)

(g)

FIG. 4. (a) Schematic illustration of the single-slit system used to numerically simulate the probability current density consisting of a
scattering region based on a square lattice with direction-dependent tx̄ and tȳ hopping parameters within the tight-binding approximation. In
this model, plane waves are injected into the system by lead 0 and collected by lead 1. The highlighted region in gold is subjected to infinite
electric potential and acts as a single slit. The system has a width of 300l and a length of 100l , the slit has a width of 10l and a length of 5l , and
the electric potential and onsite energy were considered, respectively, ∼103 � tx̄ and −4tx̄ . (b)–(h) Represent the probability current densities
for the system shown in (a) assuming effective masses such as (b) my = mx; (c), (e), (g) my = 2mx; and (d), (f), (h) my = 10mx , and rotation
angle α = 0 rad in (c) and (d), α = −π/4 rad in (e) and (f), and α = π/4 rad in (g) and (h). We take h̄ = 1, mx = 1, l = 1, and ε = 2.

and Figs. 4(d), 4(f), 4(h) my = 10mx, setting α = 0 rad in
Figs. 4(c) and 4(d), α = −π/4 rad in Figs. 4(e) and 4(f), and
α = π/4 rad in Figs. 4(g) and 4(h).

The atomistic result for the isotropic case shown in
Fig. 4(b) has a direct correspondence with the semiclassical
one shown in Fig. 2(a) and in the dotted yellow curve in
Fig. 3(a). In this situation, the typical diffraction pattern of a
usual semiclassical single-slit system is also obtained, where
a wide and intense central maximum and a series of narrower
secondary maxima are seen. As previously discussed and
shown in Figs. 2 and 3 for the semiclassical case, the main
effects on the diffraction pattern due to the anisotropy are (i)
a change in the width of the central peak since the probability
density becomes concentrated along a particular direction the
higher the anisotropy and (ii) a shift of the angular posi-
tion of the central peak when assumes different orientations
of the diaphragm’s screen in relation to the anisotropy axes
of the material or, equivalently, for different rotation
angles of the anisotropy axes concerning the experimental
axes. In the atomistic case, the effect (i) is evident when one
analyzes Figs. 4(b), 4(c), and 4(d), whereby increasing my

for fixed mx it results in the electron beam collimation, as
observed by a beam narrowing. Moreover, the effect (ii) is

also verified in the atomistic case by comparing Figs. 4(e) and
4(f) or Figs. 4(g) and 4(h), where one observes upward (ȳ > 0
axis) and downward (ȳ < 0 axis) deviations of the electron
beam for α > 0 and α < 0, respectively. This deviation can be
understood as follows: for α = 0 rad, the S-coordinate system
coincides with the S̄ coordinate system, i.e., the coordinate
system axes are aligned to the system anisotropy axes, so that
x̄ = x and ȳ = y, being thus equivalent to analyzing the prop-
agation of the electron beam according to S or S̄. However, for
α �= 0, the S- and S̄-coordinate systems are no longer
aligned [see the alignment of the elliptical isoenergy curves
in Fig. 1(c)], such that the electron beam presents a preferred
direction of propagation not aligned with the crystallographic
S̄ axes, but instead with the direction of lower mass along
the x direction, resulting in the central peak maximum devia-
tion according to that direction. Moreover, we emphasize that
Figs. 2 and 3 with the semiclassical results of the probability
densities for different orientations α and momentum direc-
tions θ would represent by analogy the final cross sections of
the probability current densities of the atomistic results in the
limit when the distance between the input and output leads
D in Fig. 4 is sufficiently larger than the slit aperture a, i.e.,
in the Fraunhofer condition D � a. In Fig. 4, it was assumed
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that D/a = 30 and, therefore, a better qualitative agreement
between semiclassical and quantum results would be expected
the greater this D/a ratio.

Figures 4(b) to 4(h) show a narrowing of the transmit-
ted beam. Such focusing effect shows a dependence on the
anisotropy, as seen by comparing the different positions of the
focal point in Figs. 4(b) for my = mx, 4(c) for my = 2mx, and
4(d) for my = 10mx for the α = 0 case. In order to understand
that dependence of the focal length with respect to the slit
aperture and the mass ratio my/mx, we explore in Appendix C,
within the quantum-level approach based on the tight-binding
model, the interplay between the system anisotropic role and
the slit width on the focal length position for the single-slit
case. From Fig. 10, as discussed in Appendix C, one notices
that the focal length amplitude can be tuned by changing the
mass ratio, as seen by comparing the cases of my/mx = 1
[Figs. 10(a)–10(e)] and my/mx = 10 [Figs. 10(f)–10(j)], ex-
hibiting a large focal length values the larger the mass ratio
for α = 0 case, and by changing the slit aperture a, presenting
the focal point closer to the slit the narrower the slit width.

B. Double slit

1. Interference effect

To calculate interference effects starting with two apertures
as in Young’s two slits, we consider the double-slit system
as illustrated in Fig. 1(b), where the distance between the
identical slits is d , their widths are a, and their distances from
the screen are sufficiently long such that D � a. Here, we
write Eq. (14) for the wave function for the double-slit system
� in

ds, which reaches the screen at a point P = (D, y), as a sum
of two plane waves, � in

ds|1 and � in
ds|2, originating, respectively,

from the slits S1 and S2, such as

� in
ds(D, y) = � in

ds|1(D, y) + � in
ds|2(D, y), (16a)

where

� in
ds|1(D, y) = Aeik1xDeik1y (y−d/2), (16b)

� in
ds|2(D, y) = Aeik2xDeik2y (y+d/2), (16c)

with (k1x, k1y ) and (k2x, k2y ) being the incident momentum
vectors on the slits S1 and S2. As sketched in Fig. 1(b),
the plane waves � in

ds|1 and � in
ds|2 form the angles θ1 =

tan−1( y−d/2
D ) and θ2 = tan−1( y+d/2

D ) with the x̄ axis, respec-
tively. The constant A in Eqs. (16b) and (16c) denotes the
incident wave amplitude and y is the direction in which the
double slits are limited in the S-coordinate system. From
Eqs. (16a), (16b), and (16c) one obtains the probability den-
sity given by

∣∣� in
ds(D, y)

∣∣2 = 2A2{1 + cos [(k1x − k2x )D

+(k1y − k2y)y − (k1y + k2y)d/2
]}

, (17)

producing a maximum of interference whenever

(k1x − k2x )D + (k1y − k2y)y − (k1y + k2y)d/2 = 2nπ, (18)

and generating a minimum of interference when

(k1x −k2x )D + (k1y − k2y)y − (k1y + k2y)d/2 = 2(n + 1/2)π,

(19)
with n = 0,±1,±2, . . . .

Combining Eqs. (18) and (19) with Eq. (8), for the mo-
menta px and py with the explicit dependence on the energy,
we obtain[

f1x(θ1)√
Mθ1

− f2x(θ2)√
Mθ2

]
D +

[
f1y(θ1)√

Mθ1

− f2y(θ2)√
Mθ2

]
y

−
[

f1y(θ1)√
Mθ1

+ f2y(θ2)√
Mθ2

]
d/2 = 2nπ h̄ρ√

2ε
(20)

for constructive interference and[
f1x(θ1)√

Mθ1

− f2x(θ2)√
Mθ2

]
D +

[
f1y(θ1)√

Mθ1

− f2y(θ2)√
Mθ2

]
y

−
[

f1y(θ1)√
Mθ1

+ f2y(θ2)√
Mθ2

]
d/2 = 2(n + 1/2)π h̄ρ√

2ε
(21)

for destructive interference, where the de Broglie relation
pi = h̄ki was used. These last two expressions [Eqs. (20) and
(21)] generalize the conditions for the occurrence of construc-
tive [Eq. (18)] and destructive [Eq. (19)] interferences in the
case of an anisotropic system in which the effective mass
depends on the direction taken. In Appendix D, we demon-
strate that the isotropic case can be obtained analytically as a
limiting situation.

Figure 5 displays contour plots of the probability den-
sity |� in

ds|2 [Eq. (17)] as a function of angles α and θ

for three different effective masses ratios my/mx. For the
isotropic case (my/mx = 1) , Fig. 5(a) shows that the in-
terference pattern presents the typical cos2 β (with β =
γ d/a) behavior of double-slit systems well discussed in
the textbooks [33,34], leading to the probability density to
be independent of the choice of α and mirror symmetric
with respect to the (θ = 0) axis. As discussed at the end
of Sec. II A, for the isotropic case, one has mx = my and
consequently μx = μy, gx(θ ) = gy(θ ) = 1, and px = py, thus
by taking k1x = k1y = k1 and k2x = k2y = k2 in |� in

ds|2 given
by Eq. (17), one finds |� in

ds(D, y)|2 → 4A2 cos2 β, with 2β =
(k1 − k2)D + (k1 − k2)y − (k1 + k2)d/2. β reduces to β =
kd/2 for the case that the two slits radiate in phase (k1 = k2),
and the amplitudes of the waves diffracted by each slit are
added up. For different masses ratios, Figs. 5(b) (my/mx = 2)
and 5(c) (my/mx = 10) show that the interference patterns are
strongly affected by the choice of α for a given value of θ ,
i.e., being dependent on the system orientation concerning the
anisotropy axes and the orientation of the injected beams. In
addition, it is possible to notice from Figs. 5(b) and 5(c) a sim-
ilar approximately linear tendency in the α range of −π/4 <

α < π/4 between the velocity’s angle θ and the rotation angle
α for the dark and bright interference fringes, presenting a
negative linear slope as observed in Figs. 2(b) and 2(c) for the
maximum amplitude of |�sl |2 for the anisotropic single-slit
system. By comparing Figs. 2(a), 2(b), and 2(c), one notices
that the greater the negative slope, the greater the masses
ratio my/mx. Moreover, as in the case of the single slit, when
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(a)

(b) (c)

FIG. 5. Contour plot of the probability density |� in
ds|2 of the

double-slit system as a function of the angles α and θ [Eq. (17)]
assuming (a) my = mx , (b) my = 2mx , and (c) my = 10mx . We take
h̄ = 1, d = 12, A = 1, ε = 1, mx = 1, and θ1 ≈ θ2 ≈ θ . Solid white
lines highlight α values (−π/4 rad, 0.0 rad, and π/4 rad) that will
be explored further.

the effective masses ratio my/mx increases, a clear narrowing
of the interference peaks for small values of α is observed.
Consequently, the amount of light and dark fringes increases
as the ratio my/mx increases. This effect is clearly verified in
Fig. 6 that shows the dependence of the probability density

|� in
ds|2 as a function of the angle θ for three fixed values of

α, namely, α = 0 rad (red curve) in Fig. 6(a), α = −π/4 rad
(green curve) in Fig. 6(b), and α = π/4 rad (gray curve) in
Fig. 6(c), representing them cuts of Fig. 5 for the α values
highlighted by the solid white lines. For instance, for α = 0
rad in Fig. 6(a) one can see that the increasing of the my/mx

ratio leads to a reduction of the wavelength of probability
density oscillation, presenting 5, 7, and 17 bright fringes for
my/mx = 1, my/mx = 2, and my/mx = 10, respectively. The
number of maxima can be extracted from Eq. (18) where the
anisotropic aspect of the system is implicitly incorporated in
the momentum k1,2|x,y according to Eqs. (6), (8), and (11).
Aside from such reduction of the wavelength of probability
density oscillation, Figs. 5 and 6 show a focusing of the
electron beam around the x̄ axis. This is because increasing
the ratio my/mx tends to favor the propagation of electrons in
the x̄ direction. Figure 6(b) [6(c)] for α = −π/4 rad (α = π/4
rad) also highlights the shift of the light and dark fringes to
positive (negative) values of θ , as already drawn attention to
the negative-slope approximately linear behavior in Figs. 5(b)
and 5(c).

2. Interference and diffraction

Now, we shall discuss the interference and diffraction ef-
fects of the double-slit setup made from anisotropic material.
The probability density for the combined effect of interference
and diffraction is given by the product of Eqs. (15) and (17)
accounting for the diffraction of the single-slit case |�sl |2 and
the interference of the double-slit case |� in

ds|2, respectively,
that is,

∣∣� in,di
ds

∣∣2 = |�sl |2
∣∣� in

ds

∣∣2
, (22)

where the superscript {in, di} was used to distinguish from
the previously analyzed case of sole interference. For the case
where both slits radiate in phase, one has that θ1 ≈ θ2 ≈ θ (see

(a) (b) (c)

FIG. 6. Interference patterns of the double-slit system obtained by the dependence of the probability density |� in
ds|2 as a function of the

angular opening θ of the injected beams [Eq. (17)] taking fixed values of α, namely, (a) α = 0 rad, (b) α = −π/4 rad, and (c) α = π/4 rad
(such values are highlighted in Fig. 5 as solid white lines). We assume the same constant values as in Fig. 5.

085424-8



SINGLE- AND DOUBLE-SLIT ELECTRON DIFFRACTION … PHYSICAL REVIEW B 110, 085424 (2024)

(a)

(b) (c)

FIG. 7. Contour plot of the probability density |� in,di
ds |2 as a

function of angles α and θ [Eq. (23)] assuming (a) my = mx , (b)
my = 2mx , and (c) my = 10mx . We take h̄ = 1, d = 12, A = 1, a =
4, C = 1, ε = 1, mx = 1, and θ1 ≈ θ2 ≈ θ . Solid white lines highlight
α values (−π/4 rad, 0.0 rad, and π/4 rad) that will be explored
further.

Appendix C), and then Eq. (22) becomes

∣∣� in,di
ds

∣∣2 = I0 cos2 β
sin2 γ

γ 2
, (23)

where I0 = (2aAC)2.
Figure 7 shows contour plots of the probability density

|� in,di
ds |2, given by Eq. (23), as a function of the angles α and

θ for three different masses ratios my/mx. For the isotropic
case (my/mx = 1) displayed in Fig. 7(a), it is clear to verify
the oscillatory behavior of the type proportional to cos2 β

modulated by an envelope function proportional to sin2 γ /γ 2

for the probability density. Such behavior is typical of the
combined effect of interference and diffraction in an isotropic
double-slit system containing light and dark fringes whose
amplitudes depend on the value of θ . The interference effect
is a consequence of the difference in the path taken by plane
waves in the case of the double slits. The diffraction effect, on
the other hand, is a result of the deflection of such plane waves
as they pass through the individual slits. The pattern projected
on the screen contemplates, therefore, both effects. More-
over, Fig. 7(a) shows the symmetric aspect of the probability
density oscillation with respect to the (θ = 0) axis for the
isotropic case, regardless of the rotation angle α, exhibiting a
central peak of greater magnitude at θ = 0 and adjacent peaks
with intensities that are reduced for larger angular openings θ .
This behavior is well evidenced in the first row of panels in

Fig. 8, which presents horizontal cutting plots of Fig. 7 (solid
white lines) for fixed values of α, namely, α = 0 in Fig. 8(a),
α = π/4 rad in Fig. 8(b), and α = −π/4 rad in Fig. 8(c).

When one analyzes the my/mx �= 0 cases, as shown in
Figs. 7(b) and 7(c), one can see that for small values of α (ap-
proximately in the range −π/4 < α < π/4), the wavelengths
associated with the interference pattern and the envelope
function decrease as the mass ratio my/mx increases (for mx

fixed). This effect shrinks the peaks, focusing them around
a certain θ value. For instance, for α = 0 as emphasized in
Fig. 8(a) by comparing top, middle, and bottom panels for
my/mx = 1, my/mx = 2, and my/mx = 10, respectively, one
notices that the injected beam is collimated to (θ = 0) region.
Similarly to Fig. 2 for the single-slit system, Fig. 7 exhibits
an approximately linear behavior between α and θ for the
intensity in the range −π/4 < α < π/4. This is due to the
fact that Eq. (23) has the |�sl |2 contribution that modulates
the probability density of the double-slit system similarly as
displayed in Fig. 2 for the single-slit system. Furthermore, in
analogy to Fig. 2 for single slit, one also observes in Fig. 7
for an anisotropic double-slit system a shift of the center
of the oscillation. This angular displacement of the central
maximum in the probability density is a consequence of the
anisotropic nature of the investigated systems and is evident
in Figs. 8(b) and 8(c), where the peaks are shifted for positive
(negative) values of θ when analyses fixed α with negative
(positive) value.

From the atomistic perspective, we numerically simulate
the double-slit system shown in Fig. 1(b) similarly to that
employed in the single-slit case discussed in Sec. III A.
Figure 9(a) schematically illustrates the simulated double-slit
quantum system, theoretically described here by the tight-
binding model with direction-dependent hopping parameters
(Sec. II B), in which it was assumed a square lattice with
rectangular potential barriers with two narrow channels close
to lead 0 to model the two slits. The onsite energy in Eq. (13)
is non-null for the atomic sites in the gold region in Fig. 9(a).
The slits are 10l wide and 5l long and are separated by a
distance d = 5l . The scattering region is 300l wide and 100l
long. The probability current density is obtained numerically
for different configurations of the mass ratio my/mx and α

values, namely, Fig. 9(b) my/mx = 1; Figs. 9(c), 9(e), 9(g)
my/mx = 2; and Figs. 9(d), 9(f), 9(h) my/mx = 10; setting
α = 0 rad in Figs. 9(c) and 9(d), α = −π/4 rad in Figs. 9(e)
and 9(f), and α = π/4 rad in Figs. 9(g) and 9(h) in order
to compare with the results in Figs. 7 and 8. The isotropic
case shown in Fig. 9(b) has a direct correspondence with the
semiclassical results displayed in Fig. 7(a) and with the upper
row of panels in Fig. 8, in which the typical pattern of a
usual double-slit isotropic system is observed, i.e., a central
maximum and adjacent peaks with decreasing amplitudes.
The effect of reducing the wavelength for regions close to
α = 0 rad, discussed previously for the semiclassical case in
Fig. 8(a), can be verified by comparing Figs. 9(b), 9(c), and
9(d). Note that by increasing the masses ratio, one results in
the convergence of the electron beam around the x̄ axis. The
discrepancy between the semiclassical and quantum results
is due to the size of the scattering region in the latter case,
as can be seen by the probability current density lines that
reach lead 1 in Fig. 9(d), which presents a behavior which is
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(a) (b) (c)

FIG. 8. Diffraction and interference patterns of the double-slit system obtained by the dependence of the probability density |� in,di
ds |2 as a

function of the angular opening θ of the injected beams [Eq. (23)] taking fixed values of α, namely, (a) α = 0 rad, (b) α = −π/4 rad, and (c)
α = π/4 rad (such values are highlighted in Fig. 7 as solid white lines). We assume the same constant values as in Fig. 7 and take θ1 ≈ θ2 ≈ θ .

(a)

(b) (d) (f)

(c) (e)

(h)

(g)

FIG. 9. (a) Schematic illustration of the double-slit system used to numerically simulate the probability current density consisting of a
scattering region based on a square lattice with direction-dependent tx and ty hopping parameters within the tight-binding approximation.
Leads 0 and 1 correspond to the injected and collected leads, respectively. The highlighted region in gold is subjected to infinite electric
potential and acts as a double slit. The system has a width of 300l and a length of 100l , the slits are 10l wide and 5l long, the distance between
the slits is d = 5l , and the electric potential and onsite energy were considered, respectively, ∼ 103 � tx̄ and −4tx̄ . (b)–(h) Represent the
probability current densities for the system shown in (a) assuming (b) my = mx , (c), (e), (g) my = 2mx , and (d), (f), (h) my = 10mx , and rotation
angle α = 0 rad in (c), (d), α = −π/4 rad in (e), (f), and α = π/4 rad in (g), (h). We take h̄ = 1, mx = 1, l = 1, and ε = 2.
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still converging and will therefore present a narrowing of the
injected beam, as expected in the semiclassical case shown in
Fig. 8(a). The beam deflections in Figs. 9(e) and 9(g) are due
to the system finite size along the y direction used here to sim-
ulate the double-slit experiment and owing to a not sufficiently
long distance D between the input and output leads, such
that reflections with the simulation box boundaries are clearly
interfering the central peak of the probability current densities.
However, in general, the tight-binding (Fig. 9) and semiclas-
sical (Fig. 8) results agree well qualitatively, as discussed for
the single slit in Sec. III A and in the present section III B
for the double-slit case. In addition, the effect of shifting the
central maximum is verified by comparing Figs. 9(e) and 9(f)
or Figs. 9(g) and 9(h), where one observes a deviation of the
electron beam in an analogous way to the semiclassical case
previously investigated. Therefore, the quantum simulations
and the semiclassical results show excellent agreement on
the main features of the anisotropic role in the single- and
double-slit systems.

IV. CONCLUSION

The diffraction of electrons through single and double
slits was examined, considering that the medium through
which electrons propagate is anisotropic. The influence on
the diffraction patterns due to different orientations of the
diaphragm’s screen, with the single and double slits, with
respect to the anisotropic axis of the system was also ex-
plored. In addition to the diffraction analysis, interference
effects and the conditions for constructive and destruc-
tive interferences were studied for the double-slit case. For
that, two different frameworks were employed: (i) a semi-
classical approach within the effective-mass approximation,
where the anisotropy was incorporated into the system by
assuming direction-dependent effective masses, and (ii) an
atomistic-level approach based on the tight-binding formal-
ism, where the anisotropy was included by taking direction-
dependent hopping energies. In both cases, it was assumed the
Fraunhofer diffraction criteria, in which the characteristic
length of the slit a is much smaller than its distance from the
detection screen D, i.e., the case of the diffraction at infinity
with a � D. Analyzing the intensity of the diffracted wave,
we showed that (i) both models qualitatively predicted similar
results; the anisotropy effect on the diffraction pattern in a
2D system involves two general effects: (ii) modulation in
the wavelength and (iii) apparent deviation of the diffracted
electron beam with respect to the system orientation and
its alignment to the anisotropic axis. Finally, we hope that
our optical analog results will prove helpful for designing
anisotropic semiconductor-based quantum devices owing to
the possibility of controlling the direction of the carriers’
trajectories.
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APPENDIX A: OBTAINING VELOCITY AS A FUNCTION
OF EFFECTIVE MASSES AND ENERGY

Here, we obtain an analytical expression for the system en-
ergy in analogy to the classical kinetic one, e.g., ε = Mθv

2/2,
i.e., in terms of an explicit dependence on the velocity am-
plitude v. In contrast to the semiclassical case, one has a
new definition for the total mass term Mθ ≡ Mθ (θ, α, mx, my)
that shall incorporate the anisotropic features of the system.
Aiming that using the px and py components of momentum p
of Eq. (6), one has that

p2
x = v2

ρ2

[
(μx cos θ )2 +

(
μxμy

μ
sin θ

)2

−2
μ2

xμy

μ
sin θ cos θ

]
, (A1a)

p2
y = v2

ρ2

[
(μy sin θ )2 +

(
μxμy

μ
cos θ

)2

−2
μxμ

2
y

μ
sin θ cos θ

]
, (A1b)

px py = v2

ρ2

[
μxμy sin θ cos θ − μ2

xμy

μ
cos2 θ

−μxμ
2
y

μ
sin2 θ +

(
μxμy

μ

)2

sin θ cos θ

]
. (A1c)

Replacing them into the Hamiltonian (2) and taking the
associated system energy, one obtains

ε = 1
2 Mθv

2, (A2)

where

Mθ ≡ 1

ρ

(
μx cos2 θ + μy sin2 θ − 2μxμy

μ
sin θ cos θ

)
,

(A3)
with ρ = 1 − μxμy/μ

2. Isolating v in Eq. (A2), one gets

v =
√

2ε

Mθ

. (A4)

APPENDIX B: ANALYTICAL EXPRESSION FOR THE
MAXIMUM OF THE CENTRAL PEAK FOR THE

ANISOTROPIC SINGLE-SLIT SETUP

An analytical expression describing the peak position of
the central maximum in θ as a function of α can be derived by
Taylor expanding Eq. (15) and then calculating the gradient
vector of |�sl |2 and equaling it to zero, i.e.,

∇θα|�sl |2 =
(

∂|�sl |2
∂ky

dky

dθ
,
∂|�sl |2

∂ky

dky

dα

)
= (0, 0). (B1)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 10. Probability current densities obtained via the tight-binding model assuming effective masses (a)–(e) my = mx and (f)–(j) my =
10mx , and taking different slit widths: (a), (f) a = 5, (b), (g) a = 10, (c), (h) a = 15, (d), (i) a = 20, and (e), (j) a = 25. We take the same
system parameters as in Fig. 2.

Taking up to the second order on ky in Eq. (15), one obtains

|�sl (D, y)|2 ≈ C2a2

(
1 − a2k2

y

12

)
, (B2)

with ky ≡ ky(θ, α). Replacing Eq. (B2) into (B1), it results in

d|�sl |2
dθ

= −c2a4v2

24h̄2 [(mx + my) cos θ − (mx − my) cos(2α + θ )][(mx + my) sin θ − (mx − my) sin(2α + θ )], (B3a)

d|�sl |2
dα

= c2a4v2

12h̄2 (mx − my) cos(2α + θ )[(mx + my) sin θ − (mx − my) sin(2α + θ )]. (B3b)

Isolating θ as a function of α, one finds

θm(α) = 2 arctan

⎧⎪⎨
⎪⎩

−mx sin2 α − my cos2 α +
√

m2
x sin2 α + m2

y cos2 α

(mx − my) sin α cos α

⎫⎪⎬
⎪⎭. (B4)

A local maximum point can be found by calculating the
Hessian matrix and performing the second derivative test,
such that if the Hessian is negative-definite at the critical
point, then the function attains an isolated local maxi-
mum at the critical point. However, our goal was to derive
an expression that described the tendency of the central
maximum for the single-slit case, as given by Eq. (B4)
and showed by the dashed white curves in Figs. 2(b)
and 2(c).

APPENDIX C: FOCAL LENGTH

To demonstrate the focusing effect of the waves transmit-
ted through the single slit on the probability current density,

its connection with slit aperture size, and the role of the
anisotropy in the focal length measured from the slit, we
show in Fig. 10 numerical results obtained by using the
tight-binding framework described in Sec. II B for isotropic
and anisotropic single-slit systems taking different slit widths.
The quantum mechanics’ calculated results in Figs. 10(a)–
10(j) show that the focus point (around the dark red color
region in the contour plots) is pushed further from the slit the
wider the slit, regardless of whether the system is isotropic or
anisotropic, as depicted in Figs. 10(a)–10(e) for my = mx and
in Figs. 10(f)–10(j) for my = 10mx. Moreover, by comparing
the results for a fixed slit width as shown in Figs. 10(a) and
10(f) for a = 5, 10(b) and 10(g) for a = 10, 10(c) and 10(h)
for a = 15, 10(d) and 10(i) for a = 20, and 10(e) and 10(j)
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for a = 25, one can observe that the focal length is larger the
larger the mass ratio my/mx.

Furthermore, as discussed in Sec. III A, the angular width
2θ1 of the first peak of the probability density, i.e., the angle
at which a first minimum is obtained, being equivalent to
considering the prerequisite for dark fringes that must induce
destructive interference, resulting to a path difference λ, is
connected with the slit width a by the relation a sin θ1 = λ =
2π/ky. For small-angles regime, one has sin θ1 ≈ θ1 = λ/a =
2π/(aky). From that, one can note that the angular width of
the fringes in the diffraction pattern collected in the screen
in a single-slit experiment is inversely proportional to the
slit width a, meaning that narrower (wider) slits a produce
wider (narrower) fringes. The reason for that is linked to
the fact that a narrower slit acts as a source of diffraction
that allows it to pass waves over a wider range of angles,
such that these more widely diverging waves then interfere to
form wider-spaced fringes at the collecting screen. Although
the aforementioned discussions are valid for a Fraunhofer
single-slit setup, describing semiclassical diffraction patterns,
one can qualitatively relate them to the opticlike analogy of
atomistic results shown in Fig. 10, which demonstrates such
wider-spaced behavior on the probability current densities the
narrower the slit width.

APPENDIX D: OBTAINING THE ISOTROPIC CASE AS A
LIMIT SITUATION IN THE CASE OF DOUBLE SLIT

Taking θ1 ≈ θ2 ≈ θ in Eqs. (20) and (21), it is easy to
see that in this approximation, the first two terms of these
expressions approach zero. Using the even characteristic of
the cosine function present in Eq. (17), we can write Eqs. (20)

and (21) by omitting the negative sign of the third term so that

fy(θ )d = Nh

√
ρ

2ε
, (D1)

where N = n generates constructive interference and N =
n + 1

2 generates destructive interference. Explicitly, we have

μy sin θ − μxμy

μ
cos θ

√
Mθρ

d = Nh

√
ρ

2ε
. (D2)

Considering the isotropic limiting case, that is, μx = μy =
mx = my = m and μ−1 = 0, we obtain ρ = 1 and Mθ = m,
resulting in the following usual expression:

d sin θ = N
h√
2mε

= Nλ. (D3)

On the other hand, for the anisotropic case (mx �= my) but
also taking μ−1 = 0, we have

μy sin θ√
μx cos2 θ + μy sin2 θ

d = N
h√
2ε

, (D4)

which can be rewritten as

sin θ =
N

(
h

d
√

2ε

)√
μx√

μ2
y − N2

(
h

d
√

2ε

)2
(μy − μx )

, (D5)

and leads to Eq. (D3) for μx = μy = m as expected. The
approximation μ−1 → 0 can be obtained from the following
situations: (i) when the anisotropy is weak, that is, mx ≈ my,
so that we can approximate μ−1 → 0 due to Eq. (4), or (ii)
when regardless of the anisotropy, we are taking rotations with
small angles, where we can make sin θ ≈ θ and cos θ ≈ 1,
resulting again in μ−1 → 0 by Eq. (4).
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