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Josephson junction of minimally twisted bilayer graphene
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We theoretically investigate the transport properties of a Josephson junction composed of
superconductor/minimally twisted bilayer graphene/superconductor structures. In the presence of an
out-of-plane electric field, the low-energy physics is best described by a network of domain-wall states.
Depending on system parameters, they lead to the emergence of zigzag or pseudo-Landau-level modes with
distinct transport characteristics. Specifically, we find zigzag modes feature linear dispersion of Andreev bound
states, resulting in a 4π -periodic Josephson current. In contrast, pseudo-Landau-level modes exhibit flat Andreev
bound states and, consequently, a vanishing bulk Josephson current. Interestingly, edge states can give rise to
4π -periodic Josephson response in the pseudo-Landau-level regime. We also discuss experimental signatures of
such responses.
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I. INTRODUCTION

The discovery of correlated insulating states and unconven-
tional superconductivity in twisted bilayer graphene (TBG)
[1,2] has generated significant interest in moiré materials.
Such systems are often described by a periodic potential
induced by the interference pattern of two rotationally mis-
aligned graphene layers [3]. Moiré materials exist at the
intersection of two paradigms: topological and electronic
correlation physics [4–7]. The coexistence of these effects
promotes novel electronic phases that did not exist in each
of the paradigms individually. For example, around the magic
angle of 1◦, twisted bilayer graphene hosts flat bands, where
electron correlation effects dominate, giving rise to vari-
ous broken-symmetry phases [8–23], whereas away from the
magic angle, band topological properties such as the Chern
number and geometric quantities such as the quantum metric
may play an important role [24–27].

In a minimally twisted (twist angle θ � 1◦) bilayer
graphene (MTBG), lattice relaxations become significant,
leading to the formation of sharply defined triangular domains
of alternating AB and BA Bernal stacked graphene [28,29]
(refer to Fig. 1 of [29] for a visualization of the system
under consideration). The size of these triangular domains is
determined by the moiré length scale, l ∼ a0/θ [rad] (a0 =
2.46 Å is graphene’s lattice constant). As l � a0, the num-
ber of carbon atoms within these domains is of the order of
104(θ◦)−2, making atomistic quantum transport calculations
challenging. However, in the presence of an electrostatic po-
tential bias between the layers, these domains are insulating
at charge neutrality, and nontrivial valley Chern indices result
in domain-wall (DW) modes per spin and valley [30–32].
At small temperatures, the electronic transport properties
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of this system are then described by a network of such
DW modes. A Chalker-Coddington network model [33] cap-
tures the low-energy electronic physics effectively, which is
demonstrated in recent transport studies in MTBG [34,35].
This model successfully explains Aharonov-Bohm oscilla-
tions and incorporates zigzag (ZZ) modes predicted from
microscopic calculations [36,37]. Moreover, under specific
network parameters, it predicts circulating modes, termed
pseudo-Landau-level (PLL) modes. The network becomes
transparent in the presence of zigzag modes, whereas the
pseudo-Landau-level modes render it insulating. Aharonov-
Bohm oscillation in the presence of a magnetic field due to
such a network of domain-wall modes has also been observed
recently [38,39].

Apart from magnetoconductance, it is also important
to study the transport phenomena in MTBG in other
experimental settings and how they arise from and differ
among zigzag or pseudo-Landau-level modes. Such a study
will provide us with additional insight into the microscopic
underpinnings of these systems. In this regard, we choose a
Josephson junction composed of superconductor/minimally
twisted bilayer graphene/superconductor structures.
Josephson junctions have been extensively studied near
the magic angle in TBG [40–43]. Carrier concentration
can be tuned by electrostatic gates in these systems. With
this gate control, it is possible to vary the local filling
factors and have two superconducting regions separated by a
nonsuperconducting regions within a single sample of TBG.

For the MTBG, we adopt a phenomenological Chalker-
Coddington network model from previous transport studies
[34,35] and the superconducting leads are considered to be
s-wave superconductors. Although the microscopic origin
of the network parameters remains unknown, the merit of
the network model lies in the fact that it conforms to the
microscopic symmetry of MTBG. We perform a comprehen-
sive study of Andreev bound states (ABSs) and Josephson
current within this junction for a range of network parame-
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FIG. 1. Schematic representation of minimally twisted bilayer graphene (MTBG) for (a) K and (b) K′ valley. The gray and white triangles
denote AB and BA stacked regions of graphene, respectively. Their boundaries host two domain-wall modes per valley and spin. The velocities
of these states are opposite for K and K′ valleys. The dark circles represent the scattering nodes consisting of AA stacked regions. (c) shows the
geometry considered here for the Josephson junction, composed of two s-wave superconducting leads (gray rectangles) connected by MTBG.
Nodes are indexed by two integers (m, n), which are connected by network links (black lines). We assume a periodic boundary condition in
the transverse direction. The dashed lines encapsulate the unit cell of the network.

ters. We show that zigzag modes yield zero-energy Andreev
bound states and 4π -periodic Josephson current. Conversely,
the pseudo-Landau-level modes host perfectly flat Andreev
bound states and a vanishing Josephson current. By tuning
the network parameter as we tune from zigzag modes to the
pseudo-Landau-level modes, the ABSs gap out by merging
two Dirac cones in the momentum space. For other network
parameters, the Josephson current phase relation is either
2π or 4π periodic, or a combination of both. Furthermore,
we study the effect of edges in the Josephson junction and
find that when pseudo-Landau-level modes are present, the
Josephson current becomes finite and is mediated through the
network’s edges only.

The remaining part of the paper is structured as follows:
In Sec. II, we describe the network model and the Josephson
junction; in Sec. III, we outline the calculation procedure
for Andreev bound states and Josephson current within a
bulk Josephson junction; and in Sec. IV, we present numer-
ical results for the same. In Sec. V, we extend our analysis
to investigate the effects of edges in MTBG on Andreev
bound states and Josephson current. Finally, we conclude with
Sec. VI.

II. JOSEPHSON JUNCTION

We consider a Josephson junction (JJ) composed of two
s-wave superconducting leads sandwiched by the MTBG. Su-
perconducting order parameters for the left and right leads
are �e±iφ/2, respectively. In this context, � represents the
superconducting gap, while φ refers to the phase. We describe
the MTBG utilizing a phenomenological network model
[34,35,44–46], which is an effective description of two min-
imally twisted (θ � 1◦) layers of graphene in the presence
of an out-of-plane electric field. For such small twist angles,
lattice relaxation leads to the formation of triangular domains
of AB and BA stacked graphene of moiré length scale l =
a0/θ [rad]. Figures 1(a) and 1(b) depict the schematic diagram
of the triangular domains of AB and BA bilayer graphene
for the K and K′ valleys, respectively. In the presence of an
electrostatic potential (U ), the energy spectrum of the bulk of
the domains becomes gapped, leaving ballistic domain-wall
(DW) modes on the domain boundaries. There are two DW

modes per valley per spin, as the change of valley Chern num-
ber across the AB and BA domain is �Cv = ±2 sgn(U/t⊥)
[31,32,47], where ± stands for AB and BA domains, re-
spectively, and t⊥ is the coupling constant between A and
B sublattice of the two layers. The propagation directions of
modes in different valleys are reversed as the time-reversal
symmetry is intact in MTBG. These DW modes form the
links of the network. Electrons propagate freely on the domain
boundaries for a duration of τ = l/vF (vF is the Fermi veloc-
ity of the DW modes) before they all come to AA stacked
regions and scatter among themselves [see Figs. 1(a), 1(b)].
The AA stacked regions, which remain gapless even when an
electric field is applied, are the nodes of the scattering network
[see Fig. 1(c)]. As the scattering regions are smooth with
respect to the atomic scale, scattering between the graphene
valleys can be neglected. Every node has three incoming and
three outgoing channels, where each channel corresponds to
two DW modes per spin and valley. Therefore, the scattering
matrix S of each node is a 6 × 6 unitary matrix. The scattering
matrix acts on incoming modes and returns outgoing modes:
bout = Sain, where ain (bout) is a 6-dimensional column vector
of incoming (outgoing) mode amplitudes at each node. In the
other valley, the incoming and outgoing channels of each node
are swapped [see Fig. 1(b)].

The matrix elements of S are determined by microscopic
symmetries, such as C3z and C2zT symmetry, which preserve
the valley quantum number. Here, C3z and C2z represent three-
fold and twofold rotations about the z axis through the center
of an AA region, respectively, and T represents time-reversal
symmetry:

C3z : S = C3zSC−1
3z , (1)

C2zT : S = C2zT S(C2zT )−1 = St . (2)

Here, St is the transpose of S. These symmetries restrict the
scattering matrix to be of the following form:

S =
(

S1 S2

S†
2 −S†

1

)
, (3)

S1 = eiγ
√

Pd1

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ + eiβI

√
Pf 1, (4)

085422-2



JOSEPHSON JUNCTION OF MINIMALLY TWISTED … PHYSICAL REVIEW B 110, 085422 (2024)

S2 = √
Pd2

⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠ − I

√
Pf 2, (5)

where S1 and S2 incorporate intra-DW-mode and inter-
DW-mode scatterings, respectively. The forward scattering
amplitude is given by Pf = Pf 1 + Pf 2. Since the scattering
matrix S is unitary, the remaining amplitude is deflected onto
the ±120◦ rotated domain walls. The total deflection ampli-
tude is Pd = Pd1 + Pd2. Here, Pf 1 and Pf 2 represent the intra-
and inter-DW-mode forward scattering amplitudes, respec-
tively, while Pd1 and Pd2 denote the intra- and inter-DW-mode
deflection amplitudes. The unitarity of S is ensured if

Pf + 2Pd = 1, (6)

cos(β − γ ) = Pd2 − Pd1

2
√

Pf 1Pd1
∈ [−1, 1]. (7)

We adopt a symmetric choice of parameters [35] as Pf 1 =
Pf2 = Pf /2 and Pd1 = Pd2 = (1 − Pf )/4 (we relax this con-
dition and present some numerical results for Pf 1 
= Pf 2 in
Appendix E). For this choice, β = γ + π/2. This reduces
the number of free parameters in the network to only two:
Pf ∈ [0, 1] and γ ∈ [0, π/2]. In this phenomenological con-
struction based on symmetry restrictions, the scattering matrix
is assumed to be independent of energy.

There are two special points in the network-model param-
eter space with very contrasting transport properties: (i) at
Pf = 0 and γ = 0, the system hosts three independent one-
dimensional zigzag modes, each related by a 120◦ rotation
[36,37], facilitating ballistic transport in MTBG, and (ii) at
Pf = 0 and γ = π/2, where the modes form circulating loops
similar to cyclotron orbits in Landau levels, albeit without
an external magnetic field. The PLL modes render MTBG
insulating [34]. Keeping Pf fixed at 0, by changing γ from 0 to
π/2 one interpolates between the zigzag and pseudo-Landau-
level modes.

The position of the nodes is henceforth denoted with a
superscript (n, m), where n is the position index along the
junction, and m is the position index in the transverse di-
rection, as illustrated in Fig. 1(c). If one imposes a periodic
boundary condition in the transverse direction, the transverse
Bloch momentum becomes a good quantum number. Incor-
porating Bloch’s theorem, we write the scattering matrix of
(n, 2) nodes in the following way:

S (n,2)(k) = U1(k)S (n,1)U2(k), (8)

U1(k) = I2 ⊗ diag(1, 1, e−i
√

3kl ), (9)

U2(k) = I2 ⊗ diag(1, ei
√

3kl , 1). (10)

We refer the reader to Appendix B for the derivation of Eq. (8).
Here, S (n,1) = S, independent of transverse momentum, given
by Eq. (3). I2 is the 2 × 2 identity matrix.

To construct the Josephson junction, we also incorpo-
rate spin σ ∈ {↑,↓}, particle-hole s ∈ {e, h}, and valley ξ ∈
{K, K′} indices. Omitting the spin index, we represent the
scattering matrix with the particle-hole and valley index of

TABLE I. Summary of symmetry operators (denoted by O in the
fifth column) and their action on the scattering matrix (in the last
column). The first column denotes the node index. The columns from
second to fourth represent the particle/hole, valley, and spin flavors,
respectively. We derive the scattering matrix for each flavor by using
the symmetry operation O. Since there is no spin-orbit coupling in
the system, the symmetry operator’s action is identical for the ↑ and
↓ spins. Note that the momentum enters through the S (n,2) matrices
only. For more details about the action of symmetry operators on the
scattering matrix, we refer the reader to Appendix A.

Node PH Valley Spin O OSO−1

(n, 1) e K ↑ / ↓ I S (n,1) ≡ S for (n, 1) nodes
h K ↑ / ↓ C [S (n,1)]∗

e K′ ↑ / ↓ T [S(n,1)]t = S(n,1) [Eq. (2)]
h K′ ↑ / ↓ T C [S (n,1)]† = [S(n,1)]∗ [Eq. (2)]

(n, 2) e K ↑ / ↓ I S (n,2)(k) ≡ S for (n, 2) nodes
h K ↑ / ↓ C [S (n,2)(−k)]∗

e K′ ↑ / ↓ T [S (n,2)(−k)]t

h K′ ↑ / ↓ T C [S (n,2)(k)]†

each node as a direct sum of the block-diagonal matrix in the
following way:

�(n,1)(k) = S (n,1) ⊕ [S (n,1)]∗ ⊕ S (n,1) ⊕ [S (n,1)]∗, (11)

�(n,2)(k) =S (n,2)(k) ⊕ [S (n,2)(−k)]∗

⊕ [S (n,2)(−k)]t ⊕ [S (n,2)(k)]†. (12)

Here, each term in the direct sum (⊕) corresponds to
{(e, K), (h, K), (e, K′), (h, K′)} flavor blocks, respectively.
The transformation between these blocks of the net scattering
matrix can be obtained by the operations of time reversal (T )
and charge conjugation (C), as summarized in Table I. For
more details about the action of symmetry operators on the
scattering matrix, we refer the reader to Appendix A.

We construct the full scattering matrix Snode of the network
with the scattering matrices of all the nodes [48],

Snode(k) = σ0 ⊗
⊕
n,m

�(n,m)(k). (13)

Here, σ0 is the 2 × 2 identity matrix in the spin space and
reflects the fact that the intrinsic system retains spin rotation
symmetry. Snode(k) is a sparse matrix, and for the geome-
try that we consider for the JJ as shown in Fig. 1(c), the
dimension of the matrix is D = (2N − 1) × 23 × 6, where
2N − 1 is the total number of nodes present in the network.
The Snode(k) matrix acts on the incoming modes of the whole
network and returns the outgoing modes of the entire network,
represented by

b = Snode(k) a;

here a and b are column vectors with dimensions D that repre-
sent the incoming and outgoing modes of the entire network,
respectively.

Following each scattering event, the outgoing modes prop-
agate freely for a duration of τ = l/vF before the subsequent
scattering event. During this time, the DW modes acquire
a dynamic phase ξεl/h̄vF , where ε is the energy of the
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propagating modes. The valley index in the dynamical phase
accounts for the DW modes propagating in opposite directions
in different valleys. A recent scanning tunneling microscopy
study [28] has shown that the DW modes are physically sep-
arated by a large length scale compared to the atomic scale.
Hence, we assume that the DW modes are decoupled along the
links of the network. After time τ , the outgoing and incoming
modes between the neighboring nodes are given by

a(n,m;η)
iξ = eiξεl/vF b(n,m;η)

iξ , (14)

where (n, m) is a neighboring node of (m, n), and a(n,m)
iξ and

b(n,m)
iξ represent the amplitudes of incoming and outgoing

modes for these nodes, respectively. The modes are four-
dimensional vectors in the basis of {e, h} ⊗ {↑,↓} for each of
the DW modes. Here, i ∈ {1, 2, 3} refers to the three directions
of the channels, and ξ ∈ {K, K′} denotes the valley index;
η ∈ {1, 2} runs over two DW modes per valley, per spin.

At the superconducting electrodes, an electron of K valley
and ↑ spin is Andreev reflected as a hole of K′ valley with
↓ spin and vice versa. As the links are made from one-
dimensional DW modes, only retro Andreev reflection takes
place, and specular Andreev reflection is suppressed [49]. The
Andreev reflection is incorporated in the left and right lead via
the following matrix [48,50]:

MA(φ) = iα

⎛
⎜⎜⎝

0 0 0 −eiφ

0 0 eiφ 0
0 e−iφ 0 0

−e−iφ 0 0 0

⎞
⎟⎟⎠. (15)

α is defined as

α =
{

i exp[−i cos−1 (ε/�)], for ε � �,

i exp[− cosh−1 (ε/�)], for ε > �,
(16)

where � and φ are the superconducting gap and phase,
respectively. The Andreev reflection connects outgoing and
incoming modes on the left and right superconducting junc-
tion as follows:

a(n,m;η)
iK = MA(φ/2)b(n,m;η)

iK′ , (m, n) ∈ left junction, (17)

a(n,m;η)
iK′ = MA(−φ/2)b(n,m;η)

iK , (m, n) ∈ right junction. (18)

Equation (14) for the MTBG links and Eqs. (17) and (18)
for the left and right superconducting leads and normal MTBG
junction define the bond matrix Sbond that acts on outgoing
modes and returns incoming modes, i.e.,

a = Sbond(ε, φ)b.

For details of the Sbond(ε, φ) matrix we refer the reader to
Appendix C.

III. ANDREEV BOUND STATES
AND JOSEPHSON CURRENT

Modes with energies smaller than the superconducting
gap (|ε| � �) cannot propagate through the superconductor.
Consequently, they undergo multiple Andreev reflections at
the superconducting interfaces, leading to the formation of
bound states known as Andreev bound states (ABSs). To find
the ABS, we first note that Snode(k) and Sbond(ε, φ) matrices

satisfy the equation [I − Snode(k)Sbond(ε, φ)]a = 0. Then, for
a nontrivial solution of a, the following condition must hold:

det[I − Snode(k)Sbond(ε, φ)] = 0. (19)

The above determinantal equation is a transcendental equa-
tion that needs to be solved to find the energy of ABSs (ε) as a
function of the superconducting phase difference φ and Bloch
momentum k. The discrete ABSs of the junction are denoted
by εp(φ, k), where p is the band index for ABSs.

Each of the ABSs at zero temperature (T ) contributes to
the Josephson current by an amount Jp(φ) = 2e

h̄

∫
dk
2π

dεp(φ,k)
dφ

.
Here, we adopt a more general framework [48,50–53] to cal-
culate the Josephson current at a finite temperature that takes
into account the contribution coming from the quasiparticle
continuum into the Josephson current as well. The expression
of Josephson current reads

J (φ) = −kBT
2e

h̄

√
3l

2π

∫ 2π/
√

3l

0
dk

× d

dφ

∞∑
p=0

ln det[1 − Snode(k)Sbond(i�p, φ)], (20)

where the sum is over the fermionic Matsubara frequen-
cies �p = (2p + 1)πkBT . Using Eq. (20), we compute the
Josephson current numerically for different network param-
eters of MTBG. For T → 0, the Matsubara summation
becomes an integration, i.e., kBT

∑
p → ∫

dω
2π

. Equation (20)
is valid under the assumption that the system reaches equi-
librium without restrictions on the fermion parity; therefore,
it holds for timescales that are much longer compared to the
quasiparticle poisoning time [50]. This is the approximation
we adopt in this work to compute the Josephson current. If
this is not the case, corrections for parity conservation will be
necessary [48].

Due to the large moiré length scale (l) for smaller θ , the
MTBG-Josephson junction naturally falls into the category of
a long junction, where the junction length L = Nl greatly ex-
ceeds the coherence length of the superconductor ξ (L � ξ ).
The opposite limit (L � ξ ) is dubbed as a short junction.

IV. NUMERICAL RESULTS

A. Andreev bound state spectrum

In Fig. 2, the ABS is illustrated for several values of
the network parameters and two representative values of
Bloch momentum kl = {−0.5, 0.5}. The time-reversal and
particle-hole symmetry present in the system imposes that
εp(φ, k) = εp(−φ,−k) and εp(φ, k) = −ε−p(φ,−k), respec-
tively. Moreover, the ABS spectrum is independent of Bloch
momentum in the presence of PLL modes, i.e., Pf = 0 and
γ = π/2 [see Fig. 2(d)]. If we keep γ = 0 and increase the
value of Pf [see Figs. 2(a), 2(e), and 2(i)], we find that the
zero-energy crossing at φ = ±π is robust under this change.
On the contrary, with increasing γ , the zero-energy crossing
at φ = ±π becomes fully gapped.

For the ZZ modes, i.e., when Pf = 0 and γ = 0, the ABS
near zero energy varies linearly as a function of the super-
conducting phase difference, i.e., ε ∼ (π − |φ|), featuring a
zero-energy crossing at φ = ±π . As the ABSs merge into the
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FIG. 2. Andreev bound states (ABSs) with different choice of Pf and γ and for two representative values of transverse momentum kl = 0.5
(red) and kl = −0.5 (blue). The gray regions denote the continuum of states |ε| > �. For (a) Pf = 0, γ = 0, we have the zigzag modes in
the network which has linearly dispersing ABSs near zero energy. (a) is the ABS for zigzag modes hosting zero-energy states at φ = ±π .
The zero-energy ABS persists if we increase Pf , while keeping γ fixed at zero; see (a) → (e) → (i). As we increase γ keeping Pf

constant, the ABS becomes gapped, and the bandwidth decreases, and at Pf = 0, γ = π/2, it becomes perfectly flat for the pseudo-Landau-
level modes. We use θ = 0.1◦, N = 3, � = 1 meV for these numerical plots.

quasiparticle continuum, it becomes curved [see Fig. 2(a)].
Such ABSs have been previously reported for a Josephson
junction on the edge of a quantum spin Hall insulator [50].
With increasing γ while keeping Pf fixed at zero, the ABSs
are no longer linear in the phase difference. At the PLL pa-
rameter regime, i.e., when Pf = 0 and γ = π/2, the MTBG
hosts circulating modes and all the ABSs above and be-
low zero energy coalesce into two perfectly flat bands [see
Fig. 2(d)].

As we move away from the Pf = 0 and γ = 0 line in
the parameter space, many more ABSs appear. For several
network parameters [e.g., see Fig. 2, panels (f), (g), (j), and
(k) and also Fig. 8 in Appendix D], we see that there coexist
zero-energy gapless and fully gapped ABSs. As we discuss
in the following section, this coexistence results in a skewed
Josephson current.

We also investigate the ABSs with respect to Bloch mo-
mentum in Fig. 3. We particularly focus on φ = π , where
the presence of zero-energy ABSs is plausible. For Pf = 0
and for finite γ (see Fig. 3, top panel), the ABS hosts zero-
energy states and forms two Dirac cones in the k − φ space.
As we increase γ while keeping Pf fixed at zero, we see
that the two Dirac cones merge at a certain value of γ and
gap out; further increasing γ makes the ABS flatter as we
approach γ = π/2. This is how the ABS spectrum becomes

gapped as one approaches the PLL limit. This mechanism
leads to a transition from a 4π -periodic Josephson current to a
2π -periodic one. Similarly, if we fix γ to 0 and increase Pf

(see Fig. 3, bottom panel), the ABS always exhibits a zero-
energy state for all values of Pf . This is the zero-energy ABS,
which has a linear dependence on φ as mentioned previously
[see Fig. 2(a)]. Upon increasing Pf , at a certain value of
Pf , the gap between the zero-energy ABS and finite energy
bands closes. However, this gap reappears as Pf is increased
further. During this ABS gap closing, the Josephson current
changes from a sawtooth to a sinusoidal 4π -periodic profile,
as discussed below.

B. Josephson current

For the MTBG network, the Josephson responses have
been summarized in Fig. 4, where we observe that the form of
Josephson current depends strongly on network parameters.
We note that the zero-energy level crossings in ABSs induce
a 4π periodicity of the Josephson current. On the other hand,
gapped ABSs always result in a 2π -periodic Josephson cur-
rent. As shown in Fig. 2, a combination of gapped and gapless
ABSs may also coexist for several network parameters. In
such cases, the Josephson current exhibits a mixed nature,
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FIG. 3. Andreev bound states (ABSs) for φ = π over the first Brillouin zone, kl ∈ [−2π/
√

3, 2π/
√

3), for several values of (Pf , γ ).
(a)–(d) show evolution of the ABS as we change γ keeping Pf = 0; the system evolves from a gapless-ABS spectrum to gapped-ABS state.
The two Dirac cones (indicated by red arrows) in the k-φ plane merge and gap out. (e)–(h) show the evolution of ABS bands when we change
Pf ∈ [0.3, 0.6] keeping γ = 0 fixed. The ABSs always have a momentum-independent zero-energy mode at φ = π which disperses linearly
in the φ direction (see Fig. 2). There is a gap closing that happens at Pf ≈ 0.4. For these numerical plots, we use θ = 0.1◦, N = 3, and
� = 1 meV.

FIG. 4. (a) Josephson current for Pf = 0, and several values of γ . As we change γ to go from the zigzag modes to pseudo-Landau-level
modes, the Josephson current transforms from a 4π -periodic sawtooth current profile to a 2π -periodic sinusoidal current profile. For pseudo-
Landau-level modes (Pf = 0, γ = π/2) the Josephson current becomes zero. (b) Josephson current for γ = 0, and several values of Pf . By
tuning Pf , the Josephson current changes from a sawtooth to a sinusoidal 4π -periodic profile while maintaining the 4π periodicity. (c) Critical
current for all values of (Pf , γ ). The critical current is zero for the pseudo-Landau-level modes (Pf = 0, γ = π/2) and increases monotonically
as we move away from this parameter by decreasing γ and increasing Pf . (d) The Josephson current profile for all values of (Pf , γ ). In the
Josephson junction of MTBG, the current profile resembles one or a combination of the following: (i) 2π -periodic sinusoidal current (J2π ),
(ii) 4π -periodic sinusoidal profile (J4π ), and (iii) 4π -periodic sawtooth profile (Jst) represented by green, red, and blue colors, respectively. The
mixed character of Jst/2π/4π is represented by the appropriate blending of red, green, and blue [see Eq. (24)]. (e) The critical current dependence
on the length (Nl) of the Josephson junction for representative network parameters that show a 4π - and 2π -periodic Josephson current profile.
For these numerical plots we use θ = 0.1◦, � = 1 meV, and T � � = 0.01�. For (a)–(d), we use N = 3.
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comprising 2π - and 4π -periodic components, resulting in a
skewed current phase relationship.

As illustrated in Fig. 4(a) in the zigzag limit (Pf = 0, γ =
0), a sawtooth Josephson current is observed, i.e.,

Jst(φ) ∼ 2e�

h̄
φ, |φ| < π, (21)

with a discontinuity at φ = ±π . Such discontinuity in the
Josephson current is a signature of 4π periodicity. This
Josephson current profile resembles that of a long normal
metallic Josephson junction [54], and a long Josephson junc-
tion at the edge of a quantum spin Hall insulator [50]. This
discontinuity arises from the presence of zero-energy Andreev
bound states, as depicted in Fig. 2(a) and Fig. 3(a) and due
to the assumption that the system equilibrates without any
parity constraint. In this regime, perfect ballistic transmission
is facilitated by the zigzag modes, even when the forward
scattering (Pf ) is zero. Keeping Pf fixed at zero, as we increase
γ , the Josephson current profile changes from sawtooth (Jst)
to a sinusoidal 2π -periodic current, resembling a traditional
Josephson current phase relation:

J2π (φ) ∼ 2e�

h̄
sin(φ). (22)

The 2π -periodic Josephson current indicates that the ABS
spectrum is fully gapped near zero energy. The transition from
Jst to J2π occurs when two Dirac cones of the ABS in the k-φ
space merge and become fully gapped (see Fig. 3, top panel).
Further increasing γ leads to a decrease in the amplitude of
the Josephson current, reaching zero finally at γ = π/2. This
phenomenon can be attributed to the circulating modes for
the PLL network parameters, which do not support transport
through the bulk, as evidenced by the perfectly flat ABS [see
Fig. 2(d)].

On the other hand if we keep γ fixed at 0, and increase Pf ,
the Josephson current profile transforms from a sawtooth to a
sinusoidal 4π -periodic Josephson current:

J4π (φ) ∼ 2e�

h̄
sin(φ/2), |φ| < π. (23)

There are zero-energy Andreev bound states present in the
spectrum that facilitate this J4π periodic Josephson current.
The transformation from Jst to J4π happens at Pf ≈ 0.4, which
coincides with the value of Pf where the gap between the zero-
energy and finite-energy ABS vanishes (see Fig. 3, bottom
panel).

We study the dependence of critical current Jc (=
maxφ |J (φ)|) in Fig. 4(b), on the MTBG network parameters
Pf and γ . As mentioned previously, the critical current van-
ishes for PLL modes, i.e., Pf = 0 and γ = π/2, and increases
monotonically as we move away from that point by decreasing
γ and increasing Pf .

As one deviates from the Pf = 0 and γ = 0 lines in the
parameter space, the Josephson current exhibits a combina-
tion of Jst/2π/4π responses. We devise a method to determine
which of the three responses or combinations thereof the
Josephson current profile closely resembles. First, we nor-
malize J (φ) so that it has the same amplitude as Jst/2π/4π .
Then, the distance between the functions J (φ) and Jst/2π/4π

is calculated. This distance serves as a criterion to determine

which current profile J (φ) resembles closely. The distance
between two functions is formally defined as || f − g|| =√〈 f − g| f − g〉, with the inner product defined as 〈 f |g〉 =∫ 2π

0 dφ f (φ)g(φ)/2π . We construct a 3-tuple from the inverse
distances as

{u1, u2, u3} ∝
{

1

||J − Jst || ,
1

||J − J2π || ,
1

||J − J4π ||
}
, (24)

which is normalized such that
∑

i ui = 1. The 3-tuple
{u1, u2, u3} represents the barycentric coordinates of an equi-
lateral triangle. The coordinates {1, 0, 0}, {0, 1, 0}, {0, 0, 1}
refer to the Josephson current profile of {Jst, J2π , J4π }, re-
spectively. We assign the colors blue, green, and red to these
coordinates, respectively. For any other coordinates, we blend
the colors (blue, green, red) in the ratio {u1, u2, u3}. In this
manner, we can discern which profile closely resembles J (φ).

The classification map of the Josephson current is pre-
sented in Fig. 4(d), across the entire parameter space of
(Pf , γ ). This map correctly captures the transition from Jst

to J4π at Pf ≈ 0.4 and γ = 0. Around the PLL parameters
is a region where the Josephson current resembles J2π . As
Pf reaches 1, irrespective of the values of γ ∈ [0, π/2], the
Josephson current profile becomes Jst again. For most other
regions of the parameter space, a mixed J2π and J4π character
is observed. From Fig. 4(c), we also note that regions with the
J2π Josephson current have a smaller critical current than the
Jst and J4π regions.

In Fig. 4(e), we show the dependence of the critical current
as a function of the network length Nl , for various network pa-
rameters. For parameters resulting in a 4π Josephson current,
we observe that the critical current decays as ∼1/(Nl ). This
behavior has been demonstrated for a long Josephson junction
with normal-metal barriers [54] and the Josephson junction
at the edge of a quantum spin Hall insulator [50]. For some
representative values of parameters, this is shown in Fig. 4(e).
On the other hand, if the current is 2π periodic, the critical
current decreases in a nonmonotonic manner.

V. EFFECT OF EDGES

So far, we imposed periodic boundary conditions in the
transverse direction. In this section, we relax this condition
and examine the impact of physical edges on the ABS and
Josephson current. In general, the geometric form of edges
can be complicated because the relaxation at the boundaries
of the MTBG can be different from that of the bulk. In order
to understand the quantitative structure of the edges, extensive
first-principles studies may be required, which, to the best of
our knowledge, have not yet been documented in the litera-
ture. Following [55], we use a theoretical model of the edges
and assume that the domain-wall modes of the K valley can be
perfectly reflected back to the K′ valley up to a phase and vice
versa at the edges [see Fig. 5(a)]. Such scatterings at the edges
keep the network’s time-reversal symmetry intact. This model
additionally assumes that the truncation of the edges is located
far away from the scattering nodes (i.e., AA regions) of the
network. This is to ensure that the microscopic symmetries
[Eqs. (1) and (2)] of the scattering matrices near the edges are
not destroyed. To this extent, we consider a finite network of
size (Nx, Ny ), as shown in Fig. 5(a).
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FIG. 5. (a) The Josephson junction of a minimally twisted bilayer graphene with open top and bottom edges. At the edges, modes in K
valley are reflected back to K′ valley and vice versa [see Eqs. (27) to (30)]. (b)–(d) Andreev bound states (ABSs) and corresponding Josephson
current (e)–(g) in the presence of open edges in the network. Then ABSs, which arise in the presence of the edges, are annotated and shown in
red. In the presence of pseudo-Landau-level modes, the edges mediate the Josephson current, even if it is zero in the bulk. For the plots we use
θ = 0.1◦, (Nx, Ny ) = (3, 5), � = 1 meV, and T = 0.01�.

The scattering matrix reads as follows:

�(n,m) = S (n,m) ⊕ [S (n,m)]∗ ⊕ S (n,m) ⊕ [S (n,m)]∗, (25)

Snode = σ0 ⊗
⊕
n,m

�(n,m). (26)

The boundary condition for the domain-wall modes for the
edges reads as follows: For the top edge, we have

a(n,Ny;η)
2K = diag(e−iψ1 , eiψ1 , e−iψ1 , eiψ1 )b(n,Ny;η)

2K′ , (27)

a(n,Ny;η)
3K′ = diag(eiψ1 , e−iψ1 , eiψ1 , e−iψ1 )b(n,Ny;η)

3K . (28)

Similarly, for the bottom edge, we have

a(n,1;η)
2K′ = diag(e−iψ2 , eiψ2 , e−iψ2 , eiψ2 )b(n,1;η)

2K , (29)

a(n,1;η)
3K = diag(eiψ2 , e−iψ2 , eiψ2 , e−iψ2 )b(n,1;η)

3K′ . (30)

Here, i ∈ {1, 2, 3} in the subscript of the modes {iξ} refers
to the three incoming and outgoing channels, ξ ∈ {K, K′} is
the valley index, and η ∈ {1, 2} runs over two DW modes
per valley, per spin. Here, a(n,m;η)

iξ and b(n,m;η)
iξ represent the

amplitudes of the incoming and outgoing modes by four-
dimensional vectors written in the basis of {e, h} ⊗ {↑,↓}. ψ1

and ψ2 are the parameters associated with the reflection at the
top and bottom edges, respectively. The ABS and Josephson
current depend weakly on these parameters, and without loss
of generality, we choose ψ1 = ψ2 = 0 for our calculations.

In addition to Eq. (14), which describes the link connec-
tions in the MTBG, and Eqs. (17) and (18), which describe
the connections between the MTBG network and supercon-
ducting leads, Eqs. (27) and (28) are the newly introduced
equations for the top and bottom edges that are included in
the Sbond matrix. Note that the superconducting leads connect
the K and K′ valleys through Andreev reflection, whereas the
top and bottom edges of the network connect the two valleys
via normal reflection.

We focus on the pseudo-Landau-level regime because,
in this parameter range, the bulk does not allow for any
Josephson current. Instead, the Josephson current is mediated
through the edges of the network created by the domain-wall
modes. We find the ABS by solving Eq. (19) with the mod-
ified Snode and Sbond matrices. The resulting ABS is shown
in Figs. 5(b)–5(d). In Fig. 5(b) for Pf = 0.1, γ = π/2, we
are in the vicinity of the pseudo-Landau-level regime. We see
that apart from two gapped flat ABSs, two additional gapless
(at φ = π ) dispersive ABS levels emerge because of the
edges. In this regime, the level crossings of the flat and
dispersive edges suggest that the bulk and edges of the
network are decoupled. Note that the energy of the flat
ABS is different from that of the bulk [see Fig. 2(d)].
This is a consequence of the finite size of the network in
the transverse direction. As the value of Pf is increased
while keeping γ = π/2 fixed [refer to Figs. 5(b), 5(c)],
new ABSs emerge with a narrow bandwidth [similar to
the bulk ABS spectrum; refer to Figs. 2(h), 2(l)]. How-
ever, the gapless dispersive ABS still persists. These ABSs
arise because of the edges and are responsible for the large
4π -periodic Josephson current, as discussed below.

We compute the amplitude of incoming modes to demon-
strate that the states correspond to gapless dispersive Andreev
bound states localized at the network’s edges. The incoming
mode (a) for an ABS ε at superconducting phase differ-
ence φ belongs to the null space of the operator [I −
SnodeSbond(ε, φ)], i.e.,

[I − SnodeSbond(ε, φ)]a = 0. (31)

From the solution, the amplitude of the incoming mode (An,m)
at the (n, m)th node is given by

An,m =
3∑

i=1

2∑
η=1

∑
ξ∈{K,K′}

[
a(n,m;η)

iξ

]†
a(n,m;η)

iξ . (32)
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FIG. 6. Amplitudes (An,m) of the incoming modes for the disper-
sive ABS shown in Fig. 5(b). (a) shows the amplitudes for ABS
marked by � in Fig. 5(b). The amplitude is localized on the top
edge for this ABS. (b) shows the same for ABS marked by ♦. The
amplitude is localized on the bottom edge. Here we use a network of
size (Nx, Ny ) = (3, 5).

An,m is normalized, i.e.,
∑

n,m An,m = 1. The amplitudes of
the nodes of the network are presented in Fig. 6. For
Pf = 0.1 and γ = π/2 [as illustrated in Fig. 5(b)], we de-
pict the amplitude for the positive and negative gapless
dispersive ABSs in Figs. 6(a) and 6(b), respectively, with
φ = 0. These amplitudes are localized at the top or the bottom
edge of the network and decay in the bulk. This confirms that
these ABSs are indeed edge states.

As there is no additional summation over Bloch momen-
tum, the Josephson current is now computed as

J (φ) = −kBT
2e

h̄

d

dφ

∞∑
p=0

ln det[1 − SnodeSbond(i�p, φ)].

(33)

In Fig. 5(e), we see that near the pseudo-Landau-level for
Pf = 0.1, γ = π/2 in the presence of the top and bottom
edges, the current is finite, where it was vanishingly small for
the bulk Josephson junction [please refer to Fig. 4(a)]. The
Josephson current has a 4π -periodic nature. As we increase
the value of Pf while keeping γ = π/2 in Fig. 5(f), the critical
current increases as a result of increased forward scattering
while retaining the 4π -periodic nature of the Josephson cur-
rent. For larger values of Pf , the Josephson current also attains
a 2π -periodic component, thus making the Josephson current
skewed as a function of φ.

VI. DISCUSSION AND SUMMARY

In this study, we have explored the Josephson junction
comprising a minimally twisted bilayer graphene sandwiched
between two s-wave superconductors. Employing a Chalker-
Coddington network model of the minimally twisted bilayer
graphene, consistent with microscopic symmetries [34], we
investigate the system’s transport phenomena across various
network parameters. Depending on the network parameters
of the minimally twisted bilayer graphene, the system ex-
hibits distinct Andreev bound states and Josephson currents.
Specifically, for zigzag modes, we observe the emergence of
zero-energy Andreev bound states when the superconducting
phase difference is π , leading to a 4π -periodic Josephson

current with a sawtooth profile. Conversely, in the case of
pseudo-Landau-level modes, the Andreev bound states mani-
fests as a perfectly flat spectrum, resulting in the vanishing of
the Josephson current when the periodic boundary condition
is assumed in the transverse direction. However, when edges
are present in the network, the pseudo-Landau-level modes
can mediate a 4π -periodic Josephson current through those
edges even if the Josephson current in the bulk vanishes. This
is similar to a skipping orbit of electrons transporting through
the edge of a 2D electron gas in a magnetic field. Additionally,
depending on the network parameters, the Josephson current
may exhibit 2π periodicity, 4π periodicity, or a combined
character of both.

The 4π -periodic Josephson current has several distinct
experimental signatures. First, under constant DC bias (V ),
the oscillating Josephson current shows a dipolar Josephson
emission at half of the Josephson frequency fJ/2 = eV/h,
typically in the GHz range, which can be measured using
RF techniques [56]. Second, in the presence of an external
microwave excitation at frequency f , Shapiro steps appear
at discrete voltages given by Vn = nh f /2e, where n is an
integer step index. In the presence of a sizable 4π -periodic
Josephson current, only even steps (with missing odd steps)
are expected [57,58]. Additionally, bolometric detection of
Josephson radiation may also reveal this 4π periodicity [59].

In our study, we have adopted a phenomenological ap-
proach, as the microscopic origins of Pf and γ remain
unknown. In general, it may depend on the particulars of
device fabrication, the value of the electric field, the twist
angle, substrate potential, and other factors. From a physical
perspective, besides the interlayer bias, the presence of a pe-
riodic potential, applied to the scattering nodes, can induce
repulsion for the propagating domain-wall electrons, thereby
effectively reducing the amplitude of forward scattering Pf .
Tuning γ is more challenging to achieve. One could apply a
staggered magnetic field to append an additional phase to the
domain-wall modes, thus altering γ while maintaining time-
reversal symmetry in the system. Achieving such control in
practice would enable tuning of Pf and γ , thereby allowing us
to modify the character of the Josephson junction and produce
2π - and 4π -periodic Josephson currents on demand, in situ.

Our study can also be adapted to recently discovered
moiré systems, such as helical trilayer graphene [60]. Like the
minimally twisted bilayer graphene, this system also forms
triangular domains due to lattice relaxation. In contrast to the
minimally twisted bilayer graphene, helical trilayer graphene
domains do not demonstrate AB/BA Bernal stacking; rather,
each domain possesses a single-moiré periodic structure that
is connected via C2z symmetry. If these domains can be
gapped, electronic transport is primarily governed by domain-
wall modes.
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APPENDIX A: SYMMETRY CONSTRAINTS ON
SCATTERING MATRIX

Following Ref. [61], we derive the action of symmetry
operations on the scattering matrix. Below we only assume
spinless symmetries as minimally twisted bilayer graphene
has spin-rotation symmetry intact.

1. Time-reversal operation

In the spinless case, the time-reversal operation is simply
complex conjugation: T = K, where K denotes complex con-
jugation. Time reversal also interchanges the incoming and
outgoing modes, with the action given by

T bout = a∗
in, T ain = b∗

out, (A1)

where bout (ain) is the vector consisting of outgoing (incoming)
modes.

Let S+ and S− denote the scattering matrices for the
time-forward and time-reversed processes, related by the T
operator as

S− = T S+T −1. (A2)

For S+, we have

bout = S+ain. (A3)

Acting the time-reversal operation on this equation, we obtain

T bout = T S+T −1T ain (A4)

⇒ a∗
in = S−b∗

out (A5)

⇒ bout = St
−ain. (A6)

Here, St
− denotes the transpose of S−. To arrive at Eq. (A6),

we utilize Eqs. (A1) and (A2).
Thus, for time-reversal-invariant systems, if we know the

time-forward scattering matrix S+, then S− = St
+.

Moreover, if the scattering matrix is energy and mo-
mentum dependent, after time reversal, the energy argument
remains the same while the momentum changes sign. Hence,
S−(E , k) = St

+(E ,−k).

2. Charge conjugation operation

Charge conjugation interchanges particles and holes with a
conjugation, i.e., C = τxK; here, τx is the Pauli matrix acting
on the particle-hole index. The action of charge conjugation
operation on incoming and outgoing modes is given by

Cbout = τxb∗
out, Cain = τxa∗

in. (A7)

Let the scattering matrix of particle and hole sectors be de-
noted by Sp and Sh, respectively. They are related by the
charge conjugation operator:

Sh = CSpC−1. (A8)

FIG. 7. (a) The geometry considered here for the Josephson
junction, composed of two s-wave superconducting leads (gray rect-
angles) connected by MTBG. Nodes are indexed by two integers
(m, n), which are connected by network links (black lines). We
assume a periodic boundary condition in the transverse direction.
The dashed lines encapsulate the unit cell of the network. (b) The
indexing of modes for a node with index (n, 1). (c) The indexing of
modes for a node with index (n, 2) used to derive Eqs. (B3) to (B6).
(b) and (c) are for K valley. For K′ valley the directions of the modes
are interchanged, i.e., a ↔ b.

For Sp we have

bout = Spain. (A9)

Upon applying charge conjugation to both sides of Eq. (A9),
we obtain

Cbout = CSpC−1Cain (A10)

⇒ τxb∗
out = Shτxa∗

in (A11)

⇒ bout = τxS∗
hτxain. (A12)

Together Eqs. (A9) and (A12) imply Sh = τxS∗
pτx. For the

case studied in the main text, the scattering matrix is for
a normal-metallic region diagonal in the particle-hole in-
dex. So, for that case, charge conjugation symmetry implies
Sh = S∗

p.
In the case of an energy- and momentum-dependent scat-

tering matrix, charge conjugation flips the sign of both energy
and momentum, yielding Sh(E , k) = S∗

p(−E ,−k).

APPENDIX B: DERIVATION OF EQUATION (8)

In this section we show the derivation of Eq. (8). For
this purpose we only consider the node indices and drop all
other indices, as the following identities hold for all the flavor
indices. The scattering matrix acts on incoming modes and
returns the outgoing modes at each index.
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FIG. 8. Extended Fig. 2 of main text. Andreev bound states (ABSs) with different choice of Pf and γ and for two representative values
of transverse momentum kl = 0.5 (red) and kl = −0.5 (blue). The gray regions denote the continuum of states |ε| > �. We use θ = 0.1◦,
N = 3, � = 1 meV for these numerical plots.

For the nodes with index (n, 1), we have

(b1, b2, b3, b′
1, b′

2, b′
3)T = S(a1, a2, a3, a′

1, a′
2, a′

3)T . (B1)

S is defined in Eq. (3) of the main text.
Special care has to be taken to write down similar relations

for the nodes (n, 2) as the network model enjoys periodicity
in the transverse direction and modes are not independent at
the top and bottom of the unit cell [see Fig. 7(c)]:

(b1, b2, b̄3, b′
1, b′

2, b̄′
3)T = S(a1, ā2, a3, a′

1, ā′
2, a′

3)T . (B2)

Here, ā2, ā′
2 and b̄3, b̄′

3 denote inter-unit-cell incoming modes,
and outgoing modes at the top edge of the unit cell, respec-
tively. The subscript indicate the direction of the modes as
shown in Fig. 7. Now, we invoke the Bloch theorem [see
Fig. 7(c)]:

b̄3 = ei
√

3klb3, (B3)

b̄′
3 = ei

√
3klb′

3, (B4)

ā2 = ei
√

3kla2, (B5)

ā′
2 = ei

√
3kla′

2. (B6)

Here k ∈ [0, 2π/
√

3l ). This results in

(b1, b2, ei
√

3klb3, b′
1, b′

2, ei
√

3kl b′
3)T

= S(a1, ei
√

3kl a2, a3, a′
1, ei

√
3kla′

2, a′
3)T (B7)

⇒ U1(k)−1(b1, b2, b3, b′
1, b′

2, b′
3)T

= SU2(k)(a1, a2, a3, a′
1, a′

2, a′
3)T (B8)

⇒ (b1, b2, b3, b′
1, b′

2, b′
3)T

= U1(k)SU2(k)(a1, a2, a3, a′
1, a′

2, a′
3)T , (B9)

where U1(k) = I2 ⊗ diag(1, 1, e−i
√

3kl ) and U2(k) = I2 ⊗
diag(1, ei

√
3kl , 1). This proves Eq. (8) of the main text.

APPENDIX C: DETAILS OF THE Sbond MATRIX

This section details the construction of the Snode matrix.
Following each scattering event, the outgoing modes propa-
gate freely for a duration of τ = l/vF (l is the moiré length
scale and vF is the velocity of DW modes), before the sub-
sequent scattering event. During this time, the DW modes
acquire a dynamic phase ξεl/h̄vF , where ε is the energy of
the propagating modes. The valley index (ξ ) in the dynamical
phase accounts for the DW modes propagating in opposite
directions in different valleys. After time τ , we write down
all the connections between the outgoing and incoming modes
between the neighboring nodes. For the K valley, we have

a(n,2;η)
3K = eiεl/vF b(n,1;η)

3K , (C1)

a(n+1,1;η)
2K = eiεl/vF b(n,2;η)

2K , (C2)
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FIG. 9. (a)–(d) show the ABSs with Pf 1 
= Pf 2 and Pd1 = Pd2 for representative network parameter values. The blue circles represent Bloch
momentum kl = 0.5, and the red disks represent kl = −0.5. Panel (e) shows the corresponding Josephson current. For these numerical plots,
we use θ = 0.1◦, N = 3, � = 1 meV, and T = 0.01�. The numerical plots are qualitatively similar to Fig. 2 and Figs. 4(a) and 4(b) for
symmetric choice of parameters Pf 1 = Pf 2.

a(n,1;η)
1K = eiεl/vF b(n+1,1;η)

1K , (C3)

a(n,2;η)
1K = eiεl/vF b(n+1,2;η)

1K , (C4)

a(n+1,1;η)
3K = eiεl/vF b(n,2;η)

3K , (C5)

a(n,2;η)
2K = eiεl/vF b(n,1;η)

2K . (C6)

Here, i ∈ {1, 2, 3} in the subscript of the modes {iξ} refers
to the three incoming and outgoing channels, η ∈ {1, 2} runs
over two DW modes per valley, per spin. Here, a(n,m;η)

iξ and

b(n,m;η)
iξ represent the amplitudes of the incoming and outgoing

modes by four-dimensional vectors written in the basis of
{e, h} ⊗ {↑,↓}. For the K′ valley, the modes traverse in the
opposite direction, resulting in a change in the sign of velocity
(v → −v). In other words, the incoming and outgoing modes
interchange (a ↔ b) on the K′ valley. The connections be-
tween outgoing and incoming modes between the neighboring
nodes in the K′ valley can be expressed as follows:

a(n,1;η)
3K′ = eiεl/vF b(n,2;η)

3K′ , (C7)

a(n,2;η)
2K′ = eiεl/vF b(n+1,1;η)

2K′ , (C8)

a(n+1,1;η)
1K′ = eiεl/vF b(n,1;η)

1K′ , (C9)

a(n+1,2;η)
1K′ = eiεl/vF b(n,2;η)

1K′ , (C10)

a(n,2;η)
3K′ = eiεl/vF b(n+1,1;η)

3K′ , (C11)

a(n,1;η)
2K′ = eiεl/vF b(n,2;η)

2K′ . (C12)

At the superconducting electrodes, an electron of the K
valley and ↑ spin is Andreev reflected as a hole of the K′
valley with ↓ spin and vice versa. As the links are made from
one-dimensional DW modes, only retro Andreev reflection
takes place, and specular Andreev reflection is suppressed
[49]. The Andreev reflection is incorporated in the left and
right lead via the following matrix:

MA(φ) = iα

⎛
⎜⎜⎝

0 0 0 −eiφ

0 0 eiφ 0
0 e−iφ 0 0

−e−iφ 0 0 0

⎞
⎟⎟⎠. (C13)

α is defined as

α =
{

i exp[−i cos−1 (ε/�)], for ε � �,

i exp[− cosh−1 (ε/�)], for ε > �,
(C14)

where � and φ are the superconducting gap and phase,
respectively. The Andreev reflection connects outgoing and
incoming modes on the left superconducting junction as
follows:

a(1,2;η)
1K = MA(φ/2)b(1,2;η)

1K′ , (C15)

a(1,1;η)
2K′ = MA(φ/2)b(1,1;η)

2K , (C16)
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a(1,1;η)
1K = MA(φ/2)b(1,1;η)

1K′ , (C17)

a(1,1;η)
3K′ = MA(φ/2)b(1,1;η)

3K . (C18)

Similarly, the connections at the right superconducting lead
are given by

a(N−1,2;η)
1K′ = MA(−φ/2)b(N−1,2;η)

1K , (C19)

a(N,1;η)
2K = MA(−φ/2)b(N,1;η)

2K′ , (C20)

a(N,1;η)
1K′ = MA(−φ/2)b(N,1;η)

1K , (C21)

a(N,1;η)
3K = MA(−φ/2)b(N,1;η)

3K′ . (C22)

The equations (C1)–(C12) for the MTBG links and (C15)–
(C22) for the superconducting leads and normal MTBG
junction define the bond matrix Sbond that acts on outgoing
modes and returns incoming modes, i.e.,

a = Sbondb.

APPENDIX D: EXTENDED DATA FOR ANDREEV
BOUND STATES

In this section, we present Fig. 8, extended data of the
Andreev bound state shown in the Fig. 2 for other values of
network parameters.

APPENDIX E: ASYMMETRIC CHOICE OF PARAMETERS

Throughout the main text we have assumed the symmetric
choice of network parameters for simplicity, i.e., Pf 1 = Pf 2

and Pd1 = Pd2. Here, we present some results when Pf 1 
= Pf 2

and retain Pd1 = Pd1. Figure 9 summarizes the numerical re-
sults of the ABS and Josephson current for such choice of
parameters.

Near the zigzag mode parameters with this asymmetry, i.e.,
Pf 1 = 0.1, Pf 2 = 0, γ = 0 as shown in Fig. 9(a), the ABS is
qualitatively similar to those of the symmetric parameters [see
Fig. 2(a)]. Near the PLL modes, i.e., Pf 1 = 0.1, Pf 2 = 0, γ =
π/2, as shown in Fig. 9(b), the ABS becomes nearly flat [as
seen for symmetric parameters in Fig. 2(d)]. We show results
for two more values of network parameters in Figs. 9(c)
and 9(d). The corresponding Josephson current is shown in
Fig. 9(e).
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