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Two-dimensional van der Waals materials have recently been established experimentally as a highly-tunable
condensed matter platform, facilitating the controlled manipulation of band structures and interactions. In several
of these materials, Dirac cones are present in the low-energy regime near the Fermi level. Thus fermionic
excitations emerging in these materials close to the Dirac cones have a linear dispersion relation near the Fermi
surface as massless relativistic Dirac fermions. Here, we study low-energy fermionic excitations of such Dirac
materials in the presence of a mass gap that may be generated by symmetry breaking. Introducing a dynamical
Fermi velocity and/or time-dependent mass gap for the Dirac quasiparticles, we exhibit the emergence of
an analog of cosmological fermion pair production in terms of observables such as the expected occupation
number or two-point correlation functions. We find that it is necessary and sufficient for quasiparticle production
that only the ratio between the mass gap and the Fermi velocity is time-dependent. In this way, we establish
that highly-tunable Dirac materials can serve as analog models for cosmological spacetime geometries, in
particular, for Friedmann-Lemaître-Robertson-Walker expanding cosmologies. We briefly discuss possibilities
for experimental realization.
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I. INTRODUCTION

Condensed matter systems can be used in various scenarios
to emulate and study phenomena from completely different
fields of physics such as elementary particle physics or grav-
ity [1,2]. Such analog condensed matter models provide a
novel perspective to approach questions that are not directly
accessible in the original systems as they can potentially be
realized experimentally in a well-controlled setup. An impor-
tant example for successful condensed matter realizations of
analog gravity scenarios are Bose-Einstein condensates realiz-
ing expanding spacetime geometries by exploiting the highly
tunable environment provided by cold-atom setups [3–12].
Similar studies for the case of fermions are still missing.

Recently, two-dimensional moiré materials, such as twisted
bilayer graphene (TBG), have been established as another
highly tunable condensed matter platform allowing us to ma-
nipulate electronic band structures and interaction effects in a
controlled manner [13–18]. A key feature of moiré materials
is that electron bands near the Fermi level can be tuned to be-
come very narrow. This leads to an enhancement of interaction
effects and tentatively supports the formation of correlated
states, which have been confirmed experimentally, see, e.g.,
Refs. [15–20]. Some moiré materials, including TBG but also
�-valley transition metal dichalcogenide bilayers [21], even
belong to the class of Dirac materials [22,23], i.e., they are
characterized by the presence of fermionic low-energy excita-
tions, described by a quasirelativistic Dirac equation where
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the velocity of light is replaced by the Fermi velocity vF .
Dirac cones are typically protected by symmetries, e.g., time-
reversal and spatial inversion symmetry in the case of TBG
[24–26]. Hence, upon tuning the bandwidth by a symmetry-
compatible moiré potential, the Dirac cones continue to be
present, however, with a modified Fermi velocity, which can
become very small, e.g., close to the magic angle in TBG
[25,27].

Here, we take these developments as a motivation to
theoretically explore an analog gravity scenario for two-
dimensional moiré Dirac materials in which the Fermi
velocity can be tuned dynamically over several orders of mag-
nitude. In a geometric formulation, we show how to obtain an
effectively time-dependent metric for the Dirac fermions. In
addition, we consider the presence of time-dependent Dirac
masses that may originate from symmetry breaking in Dirac
materials and lead to a finite band gap in the energy dispersion
[26,28–32]. These ingredients are relevant traits of highly
tunable moiré Dirac materials, which allow us to construct an
analog model for the phenomenon of cosmological fermion
production in expanding universes, arising due to a time-
dependent metric and conformal symmetry breaking [33–44].

According to the modern understanding of cosmology,
fermionic matter was created mainly during an epoch called
reheating, following the early fast expansion referred to as
inflation [45,46]. All fermionic matter that might have existed
before inflation would be diluted during this rapid expansion
so much that it is believed that the matter existing today
must have been created afterwards. The precise mechanism
for fermionic matter production is at present not known, and it
contains a number of mysteries. In particular, one would like
to understand why more matter than antimatter exists today,
how precisely leptons and baryons have been created, and
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whether any physics beyond the standard model of elementary
particle physics played a role for this.

Unfortunately, it is difficult to clarify these questions from
astrophysical observations alone. Most of the information
about the reheating phase has been lost during the evolution
of the universe and a direct probe of the relevant high energy
physics in laboratories (e.g., with particle colliders) also has
limitations. This motivates us to explore here the possibilities
to do quantum simulations, or analog experiments, with ac-
cessible condensed matter systems.

Producing relativistic fermions (usually as particle-
antiparticle pairs) is possible by different mechanisms. One
possibility would be inelastic collisions or reactions, as one
could also imagine for classical particles in a kinetic descrip-
tion. But there are also other possibilities. For example, a
coupling to an oscillating scalar field would make the effective
Hamiltonian for the fermions time-dependent such that excita-
tions get produced when the time dependence is strong enough
to make the time evolution appreciably nonadiabatic (in the
quantum-mechanical sense) [37–39,41]. Time dependencies
in the Hamiltonian can also appear for different reasons and
another interesting possibility besides a time-dependent mass
term is the time dependence of spacetime metric due to the
cosmological expansion itself [47,48].

On first sight one would think that particle production
is most effective for massless relativistic fermions because
there is then no energy gap to overcome. There is a subtlety
here, however. Noninteracting, massless relativistic fermions
are an example for a conformal quantum field theory, and
such theories cannot be taken out-of-equilibrium by only an
isotropic expansion of space as in an expanding universe.
Only when conformal symmetry is broken, e.g., by a mass
term (or energy gap in condensed matter notation) does the
time-dependent cosmological metric by itself induce particle
production [49,50].

In the condensed matter analogy, the effect of a time-
dependent spacetime metric can be modeled by a time-
dependent Fermi velocity vF . However, by the above argu-
ments, this only induces particle production together with a
nonvanishing energy band gap �. In fact, we find that it is the
time dependence of the ratio �/vF that matters. This implies
that the effect we want to study could be induced either by
a constant energy gap � with time-dependent Fermi velocity
vF , or a time-dependent gap � with constant Fermi velocity,
or a combination thereof. We further exhibit that at nonzero
temperature, when some modes have a thermal occupation,
particle production is suppressed by Pauli blocking. We dis-
cuss different options for realizing time-dependent �/vF in
our conclusion for several material platforms.

Interesting observables to confirm and further investigate
fermionic quasiparticle production in Dirac materials are var-
ious two-point correlation functions. We therefore explore
their time- and wavenumber-dependence in detail and, finally,
we briefly discuss possibilities towards an experimental real-
ization of the proposed quantum simulation.

The remainder of this work is organized as follows.
In Sec. II, we derive the spacetime metric corresponding
to the low-energy fermionic excitations of a general Dirac
material with dynamical Fermi velocity and we make a
one-to-one mapping with an expanding Friedmann-Lemaître-

Robertson-Walker (FLRW) metric. In Sec. III, we discuss the
phenomenon of quasiparticle production through the study
of observables such as the occupation number or two-point
correlation functions. In Sec. IV, we summarize and discuss
further directions.

Notation. We work in SI units. For convenience, we drop
the operator hats. The indices from the beginning of the Greek
alphabet, α, β, correspond to the constant spacetime running
from 0 to 2, while the indices from the end, μ, ν, refer to
the expanding spacetime coordinates t, x. Also, vectors are
denoted by bold symbols and Einstein summation convention
is used.

II. FERMIONIC FIELD IN A SPATIALLY FLAT DIRAC
MATERIAL

The aim of this chapter is to establish the spacetime metric
formulation of a dynamically tunable, two-dimensional, but
spatially flat Dirac material, e.g., twisted bilayer graphene,
and to find a correspondence with the spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric [51–56]. The
FLRW metric provides a mathematical framework for mod-
eling the geometry and dynamics of the universe on cos-
mological scales. It assumes an expanding (or contracting),
homogeneous and isotropic universe, meaning that, on large
scales, the universe appears the same in all directions and at
all points. This is a fundamental assumption in cosmology,
supported by observational evidence, such as the isotropic dis-
tribution of galaxies and the cosmic microwave background
radiation.

A. Dirac material metric and graphene representation

Generally, the dynamics of Dirac fermions in a two-
dimensional Dirac material can be described by the action
S[�, �̄] = ∫ dt d2x L with Lagrangian density

L[�, �̄] = −�̄[h̄γ 0∂t + h̄vF (t )γ · ∂ + � j (t )� j]�, (1)

where � is a four-component Dirac spinor, describing low-
energy fermionic excitations near the Fermi surface, and
�̄ = i�†γ 0 is the Dirac adjoint. The Fermi velocity vF will
be considered as being time-dependent in the following and
the spatial part of the Lagrangian contains the 4 × 4 matrices
γ = (γ 1, γ 2), which are typically constructed from an under-
lying lattice-hopping model. It is convenient to choose the
basis of the Dirac field as

� =

⎛
⎜⎜⎝

ψ+A

ψ+B

ψ−A

ψ−B

⎞
⎟⎟⎠, (2)

where the superscripts A and B may denote different sublat-
tices of the considered Dirac material and + and − may label
the two points K and K ′ in momentum space where Dirac
cones appear as, e.g., in the case of spinless fermions hopping
on a honeycomb lattice [57–61]. We note that moiré Dirac
materials can also have larger spinors or have components of
a different origin, e.g., from layer, spin, or orbital degrees of
freedom [21,26,62]. Here, we consider the four-component
case as a minimal paradigmatic model and do not further
restrict the microscopic origin of the indices A, B, and ±.
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The gamma matrices generate a Clifford algebra in
Minkowski spacetime, {γ α, γ β} = 2ηαβ , where ηαβ is the
Minkowski metric with signature (−,+,+). The timelike
gamma matrix can be chosen as γ 0 = i I2 ⊗ σ 3 and the space-
like gamma matrices as γ 1 = σ 3 ⊗ σ 2 and γ 2 = −I2 ⊗ σ 1,
with I2 being the 2 × 2 identity matrix and σ the standard
Pauli matrices [59,60]. The physical results do not depend
on the explicit choice of the representation. The two re-
maining anticommuting gamma matrices can be taken as
γ 3 = σ 1 ⊗ σ 2 and γ 5 = iγ 0γ 1γ 2γ 3 = σ 2 ⊗ σ 2. Further, we
also introduce γ 35 = γ 3γ 5 = iσ 3 ⊗ I2. This specific choice
of gamma matrices is often referred to as the graphene
representation.

In addition, we consider energy band gap openings at the
Dirac points of the Dirac material. To this end, a linear su-
perposition of mass terms in the Lagrangian density (1) is
included, where � j represents the amplitude of the mass gap
and can be time-dependent, and the tensor � j depends on the
shape of the gap. Such masses can be caused by symmetry
breaking, e.g., when a sample of TBG is suspended on a sub-
strate of hexagonal boron nitride (h-BN), a band gap is opened
due to breaking of C2 symmetry [63–65]. Another possible
source can be the formation of strongly-correlated states and
spontaneous symmetry breaking [26,28–32,59–61]. Here, we
exclusively examine masses that preserve Lorentz symmetry.
This approach is motivated by our aim to establish a connec-
tion with cosmological scenarios, where Lorentz invariance is
typically realized at the level of the Lagrangian. Therefore,
in a (2 + 1)-dimensional spacetime, the possible masses are
proportional to � j ∈ {I4, iγ 3, iγ 5, iγ 35} and combinations of
them. However, Lorentz breaking gap terms can be interesting
as well from the condensed matter perspective and could be
studied further in the future.

For illustration, we briefly discuss the meaning of the
different mass tensors for the paradigmatic case of Dirac
excitations originating from spinless fermions hopping on
a honeycomb lattice [60]. A mass term proportional to the
identity matrix corresponds to the breaking of spatial inver-
sion symmetry. Mass terms proportional to γ 3 and γ 5 also
break spatial inversion and imply a linear mixing between
the two Lorentz group irreducible representations, cf. Ap-
pendix A for more details. Their combination (γ 3 cos α +
γ 5 sin α) can be understood as a Kekulé modulation of the
nearest neighbor hopping. Finally, a mass term proportional
to γ 35 corresponds to a Haldane mass, preserving handedness
but breaking time-reversal symmetry [58,60]. As a result of
time-reversal symmetry breaking, a quantum Hall effect is
generated without need of an external magnetic field when
this kind of mass term is considered. In the extended context
of moiré Dirac materials, the meaning of the different mass
gap contributions may be changed as compared to the case of
spinless fermions on a honeycomb lattice, due to the different
roles of the spinor components.

The general case allowed by Lorentz symmetry corre-
sponds to a linear superposition of the different gap terms
in Eq. (1). This band gap contribution in the Lagrangian for
the Dirac material is related to a fermionic mass term in
the cosmological Lagrangian density in an FLRW expanding
universe. This contribution is essential for the phenomenon of
particle production.

B. Dirac fermions in curved spacetime

For the following discussion, it is helpful to recall briefly
how Dirac fermion fields are described in general spacetimes,
possibly curved. We concentrate on noninteracting fermions
but allow for a general mass gap.

The Lagrangian density is of the form [49,50,66,67]

LD[�, �̄] = −√
g�̄
[
h̄γ αe μ

α

(
∂μ + μ

)+ mj�
j
]
�. (3)

Different geometric fields enter here besides the actual Dirac
spinor field �(x). One is e μ

α (x), the inverse of the viel-
bein eα

μ(x), which can be seen as a differential one-form,
eα

μ(x)dxμ, labeled by the index α. The vielbein established
a connection between a local orthonormal frame (with metric
ηαβ) and the coordinate frame where the metric is

gμν (x) = eα
μ(x)eβ

ν (x)ηαβ. (4)

The orthonormal frame is where the Clifford algebra with
{γ α, γ β} = 2ηαβ is situated. We also use the abbreviation for
the determinant of the metric g = − det(gμν (x)).

Besides the vielbein field we are also using the spin
connection μ(x) = ωμαβ (x)[γ α, γ β]/8, in the appropriate
representation for Dirac fermions. One can see the spin con-
nection coefficient ωμαβ (x) as a gauge field for local Lorentz
transformations. It can be expressed through

ωμαβ (x) = −ηαγ

[
∂μeγ

ν (x) − �ρ
μν (x)eγ

ρ (x)
]
e ν

β (x), (5)

in terms of the vielbein field and the connection in the metric
frame �ρ

μν (x). The latter is the Levi-Civita connection (see
Appendix B) when torsion and nonmetricity are absent.

The action in (3) is invariant under general coordinate
changes (diffeomorphisms) and local Lorentz transforma-
tions. In addition to this, one can introduce another spacetime
related transformation that will be very useful in the follow-
ing: local Weyl scaling transformations. Here, the Dirac field
transform with their scaling dimension �� = (d − 1)/2 = 1
in d = 1 + 2 spacetime dimensions as

�(x) → e−��ζ (x)�(x),

�̄(x) → e−��ζ (x)�̄(x). (6)

At the same time, the vielbein gets transformed like eα
μ(x) →

eζ (x)eα
μ(x) and the metric in the coordinate frame accordingly

like gμν (x) → g̃μν (x) = e2ζ (x)gμν (x). For the spin connection
one has [50]

ωμαβ → ωμαβ + [eαμe ν

β − eβμe ν
α

]
∂νζ . (7)

Using γα[γ α, γ β] = 2(d − 1)γ β one can see that the La-
grangian in (3) is indeed invariant under local Weyl scaling
transformations in the massless case, mj�

j = 0. If this gap
term is nonvanishing, a Weyl transformation changes effec-
tively

mj�
j → eζ (x)mj�

j . (8)

In other words, a previously constant mass parameter becomes
after the Weyl scaling in general space- and time-dependent.
On the other side, one can use a Weyl scaling to go from a
reference frame where the gap parameter depends in a factor-
izable way on time or space to another reference system where
it is constant. Such a transformation changes the spacetime
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metric gμν (x) and the spin connection μ(x). It is in this
sense that a nontrivial spacetime metric and a time- or space-
dependent gap parameter are two sides of the same coin.

C. From Dirac material to an expanding universe

Low-energy fermionic excitations in Dirac materials in the
vicinity of Dirac cones have the characteristic linear disper-
sion relation of quasirelativistic fermions. These excitations
propagate within the spacetime geometry set by a line element
which is governed by a potentially time-dependent Fermi
velocity.

We can now compare the Lagrangian density in (1) with
time-dependent Fermi velocity vF (t ) and gap parameter � j (t )
to the Lagrangian density for a Dirac field in curved spacetime
in Eq. (3). We find an agreement of the two theories for the
choice (

e μ
α

) = diag(1/vF (t ), 1, 1). (9)

One finds therefore in this frame the effective metric of a Dirac
material to be (gμν ) = diag(−v2

F (t ), 1, 1), with determinant√
g = vF (t ). A small calculation (see Appendix C) reveals

that the spin connection μ indeed vanishes in this case. One
also has to identify

mj = � j (t )/vF (t ). (10)

Let us initially assume that mj is constant. Despite first
appearance, this corresponds to a flat spacetime, as it be-
comes clear when a new time variable η is chosen such that
dη = vF (t )dt , and the invariant spacetime element is simply
ds2 = −dη2 + dx2. Accordingly, in the case that the ratio on
the right-hand side of (10) is independent of time, we do not
expect curved spacetime effects like particle production.

However, in general, the ratio on the right-hand side of
Eq. (10) is not independent of time. In this case, one can do a
time-dependent Weyl scaling as specified in Eq. (6). With the
choice

eζ (t ) = � j (0)vF (t )

� j (t )vF (0)
, (11)

after the transformation, we find then a constant mass term

eζ (t ) � j (t )� j

vF (t )
= mj�

j . (12)

Note that this assumes that � j (t ) is nonvanishing only for
one index j or, more generally, that the time-dependence
can be factored out. This Weyl scaling has changed the spin
connection, the vielbein fields and the metric,

ds2 = g̃μν (x)dxμdxν

= e2ζ (η)[−dη2 + dx2], (13)

and now they correspond to the case of curved spacetimes, see
Appendix C for further details.

Thus, considering a time-evolving Fermi velocity vF (η)
and gap �(η), one can introduce the time-dependent scale
factor a(η), establishing a connection with cosmology,

a(η) ≡ eζ (η), (14)

and reshape the former Dirac material line element into an
FLRW line element in conformal time η

ds2 = a2(η)[−dη2 + dx2], (15)

with a(η)dη = dt . In a cosmological context, the scale factor
a(η) governs the expansion of an FLRW universe and, hence,
increasing (decreasing) the ratio between the Fermi velocity
and the gap, vF (η)/�(η), corresponds to a Dirac material
analog of an expanding (contracting) universe.

III. PARTICLE PRODUCTION

We now address the phenomenon of fermionic pair produc-
tion, which arises when a band gap in terms of a Dirac mass
is considered and a time-dependent perturbation manifests
through the Fermi velocity and/or the band gap.

A. Dirac equation and mode functions

The generally covariant equation of motion for a Dirac field
� in a spacetime background given by the time-dependent
metric (9) reads

0 =
[

h̄γ 0∂η + h̄γ · ∂ + � j (η)

vF (η)
� j

]
�, (16)

which is the well-known massive Dirac equation.
The Dirac field � obeys the equal-time canonical anticom-

mutation relations. Within the graphene representation, the
Dirac field satisfies

{�a(t, x), �†
b (t, x′)} = δ(2)(x − x′)δab, (17)

where a, b refer to the spinor indices [50], cf. Eq. (B3) in
Appendix B for more details.

In flat space, it is convenient to expand the components of
the Dirac field, cf. Eq. (2), in Fourier modes

ψξλ(η, x) =
∫ � d2q

(2π )2
ψξλ

q (η)eiq·x, (18)

where the subscripts ξ = {+,−} and λ = {A, B} denote the
respective spinor indices. For our theory, we exclusively con-
sider the quasirelativistic linear part of the energy bands, i.e.,
we do not take into account any bending of the bands that
appears at some energy further away from the Fermi level.
Therefore the UV cutoff � should be adapted to the extent
of the Dirac cone, e.g., for moiré Dirac materials � � 1/aM

with aM being the moiré lattice constant. For convenience, we
suppress � in all expressions unless explicitly needed.

The Grassmann fields ψ
ξλ
q may be expanded as [49]

ψξλ
q (η) = uξλ

q (η)cξ
q + v

ξλ
−q(η)dξ†

−q, (19)

where we introduce annihilation (creation) operators for
fermionic cξ (†)

q and antifermionic dξ (†)
q Dirac quasiparticles.

They satisfy the fermionic anticommutation relations{
cξ

q, cξ ′†
q′
} = {dξ

q , dξ ′†
q′
} = (2π )2 δ(2)(q − q′) δξξ ′

, (20)

with all the other anticommutators equal to zero so that
Eq. (17) is satisfied.

In addition, we introduced the mode functions for
fermions, uξλ

q (t ), and antifermions, vξλ
q (t ), which are solutions
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of the Dirac equation (16) and fully contain the time depen-
dence of the Dirac field. They are constrained by the canonical
anticommutation relations of the Dirac field and by charge
conjugation symmetry, as we will discuss in the next section.

B. Symmetry transformations and mode functions

In Dirac materials, including the case of spinless fermions
on a honeycomb lattice and TBG, Dirac cones are typically
protected by time-reversal and spatial inversion symmetry and
they are robust as long as these two fundamental discrete
symmetries are obeyed. For example, for the case of spinless
fermions on a honeycomb lattice, the time-reversal operator
interchanges the Dirac points leaving the sublattices A and B
invariant [24,57]

T ψξλ = ψξ ′λ, (21)

with ξ 	= ξ ′ and T = σ 1 ⊗ I2 = iγ 1γ 5; while the spatial in-
version goes one step further and, apart from reversing the
Dirac points, it also switches the sublattices

Pψξλ = ψξ ′λ′
, (22)

where ξ 	= ξ ′ and λ 	= λ′, and the spatial inversion matrix is
written as P = σ 1 ⊗ σ 1 = γ 0γ 3. For the case of other Dirac
materials, these operators have to be adjusted, accordingly.
Both symmetries can be broken by certain mass terms leading
to the opening of a band gap.

A charge conjugation operator C is a complex linear unitary
operator exchanging fermions with antifermions, satisfying
C−1γ μC = −(γ μ)T and C−1 = CT = C† = −C [68]. Conse-
quently, it depends on the choice of the representation for
the gamma matrices. Within the graphene representation, the
charge conjugation operator can be chosen as C = iγ 0γ 2C =
iI2 ⊗ σ 2C. Here, C transforms annihilation (creation) opera-
tors as

Ccξ (†)
q = dξ (†)

−q , Cdξ (†)
q = cξ (†)

−q . (23)

The charge conjugation operator acts on the field as

C�(η, x) = �∗(η, x), (24)

where the ∗ superscript on a multi-component quantum field
denotes hermitian conjugation of each component of the field,
but without transposing the components.

Charge conjugation invariance implies the following rela-
tions between the fermionic and antifermionic mode functions

vξA
q = uξB∗

−q and vξB
q = −uξA∗

−q , (25)

reducing the number of independent mode functions per field
by half. Additionally, the mode functions are restricted by
the equal-time canonical anticommutation relations of the
Dirac field, Eq. (17), and by the fermionic anticommutation
relations satisfied by the annihilation and creation operators,
Eq. (20). This yields

uξλ
q uξλ′∗

q + vξλ
q vξλ′∗

q = δλλ′
. (26)

By using Eq. (25), Eq. (26) becomes∑
λ

∣∣uξλ
q

∣∣2 = ∣∣uξA
q

∣∣2 + ∣∣uξB
q

∣∣2 = 1, (27)

reducing the number of independent mode functions per Dirac
field to two.

C. Mode equations

In a nonstatic situation, where the Fermi velocity and/or
the gap are not constant, the Dirac field cannot be expanded
in plane waves with respect to time. Instead, we have to
solve the corresponding Dirac equation (16) to find the time
dependence of the mode functions. Importantly, we observe
that Eq. (16) depends only on the ratio � j (η)/vF (η) and only
if this ratio exhibits a time dependence, nontrivial effects like
pair production can appear. In particular, if the gap vanishes,
i.e., � j (η) = 0, a time-dependent Fermi velocity vF would
not influence Eq. (16). This can be interpreted as a conse-
quence of conformal symmetry of massless Dirac fermions.

For mass terms anticommuting with the massless differen-
tial Dirac operator, which includes γ α with α = 0, 1, 2, we
require (� j )2 = −I4. Correspondingly, for commuting mass
terms, we need (� j )2 = I4. Then, applying another Dirac dif-
ferential operator to the Dirac equation (16), with the sign of
the mass term changed only for commuting mass terms, leads
to the second order differential equation

0 =
[
∂2
η −∂2 + �2

j (η)

h̄2v2
F (η)

− 1

h̄
∂η

(
� j (η)

vF (η)

)
γ 0� j

]
�. (28)

Gap terms proportional to block diagonal matrices, e.g., the
identity or γ 35, do not mix the Dirac points. Consequently,
the mode functions of the different valleys can be analyzed
separately. Otherwise, the four components of the field have
to be considered simultaneously.

To solve the Dirac equation (16) we take into account
the mode expansion of the Dirac field, cf. Eq. (19), which
leads to a coupled system of differential equations for the
mode functions. For example, for the band gap proportional
to the identity matrix, we obtain for a specific choice of valley
ξ = ±1,

0 =
(

i∂η + �/(h̄vF ) ξqe−ξ iϕ

−ξqeξ iϕ −i∂η + �/(h̄vF )

)(
uξA

q

uξB
q

)
. (29)

Here, the momentum vector has been rewritten in polar co-
ordinates qx + ξ iqy = qeξ iϕ . Equivalently, Eq. (28) with a
gap proportional to the identity matrix yields the uncoupled
second-order differential equations

0 =
[
∂2
η + ω2

q(η)(+)−
i

h̄
∂η

(
�(η)

vF (η)

)]
uξA(B)

q (η), (30)

where ω2
q(η) = q2 + �2(η)/(h̄vF (η))2 and the sign is fixed

through the diagonal values of γ 0 entering the last term in
Eq. (28).

We note that Eq. (30) corresponds to a differential har-
monic oscillator equation with complex, time-dependent
frequency. The mode functions uξλ

q can be determined by
solving Eq. (29) for a given set of initial conditions.
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D. Hamiltonian and time segments

The Hamiltonian of the system is given by

H = H0 + H� =
∫

d2x�̄
(
h̄vF γ · ∂ + � j�

j
)
�, (31)

and, for a time-dependent vF and/or �, it depends explicitly
on time. Accordingly, the energy in excitations need not to
be conserved. The kinetic part of the Dirac Hamiltonian in
Eq. (31) in the basis of Eq. (19) reads

H0 = − h̄vF

∫
d2q

(2π )2

∑
ξ

ξq

×
{

2Re
[
e−ξ iϕuξA∗

q uξB
q

](
cξ†

q cξ
q − dξ

q dξ†
q

)
+ [e−ξ iϕ

(
uξB

q

)2 − eξ iϕ
(
uξA

q

)2]
dξ

−qcξ
q

+ [eξ iϕ
(
uξB∗

q

)2 − e−ξ iϕ
(
uξA∗

q

)2]
cξ†

q dξ†
−q

}
. (32)

In the following, we exclusively study a specific mass term for
Eq. (31), i.e., the one proportional to the identity, � j = I4,

H� = �

∫
d2x�̄ �. (33)

Other forms of the mass gap are investigated in Appendix D.
In the basis of Eq. (19), the massive part of Eq. (31) reads

H� = �

∫
d2q

(2π )2

∑
ξ

[(∣∣uξB
q

∣∣2 − ∣∣uξA
q

∣∣2)(cξ†
q cξ

q − dξ
q dξ†

q

)

− 2uξA
q uξB

q dξ
−qcξ

q − 2uξA∗
q uξB∗

q cξ†
q dξ†

−q

]
. (34)

The full Dirac Hamiltonian then reads [36–38]

H =
∫

d2q

2π

∑
ξ

[
E ξ

q (η)
(
cξ†

q cξ
q − dξ

q dξ†
q

)

+ F ξ
q (η)dξ

−qcξ
q + F ξ∗

q (η)cξ†
q dξ†

−q

]
, (35)

where

E ξ
q = −2ξ h̄vF qRe

[
e−ξ iϕuξA∗

q uξB
q

]+ �
(
1 − 2

∣∣uξA
q

∣∣2),
F ξ

q = ξ h̄vF q
[
eξ iϕ
(
uξA

q

)2 − e−ξ iϕ
(
uξB

q

)2]− 2�uξA
q uξB

q , (36)

with (E ξ
q )2 + |F ξ

q |2 = h̄2v2
F ω2

q.
We choose the Hamiltonian to be initially diagonal in terms

of the set of operators cξ (†)
q and dξ (†)

q in a time segment
where the Fermi velocity, vF (η � ηi ) ≡ v0, and the band gap,
�(η � ηi ) ≡ �0, are constant. We refer to this stationary time
segment as region I, cf. Fig. 1. The initial Hamiltonian (35)
becomes diagonal by taking a convenient initial configura-
tion of mode functions corresponding to a no-particle state,
leading to E ξ

q (η � ηi ) = h̄ωI
q and F ξ

q (η � ηi ) = 0. Note that
the last term of Eq. (28) vanishes in stationary regions and
it becomes a massive Klein-Gordon equation. Consequently,
expanding the Dirac field in Fourier modes, the mode func-
tions in this region are solutions of a harmonic oscillator
differential equation and can be taken as standard Minkowski
modes. Accordingly, a possible initial configuration of the
mode functions, diagonalizing the initial Hamiltonian for a

FIG. 1. Time dependence of the ratio �(η)/vF (η) for the three
different temporal regions. In regions I (η � ηi ) and III (η � ηf )
the mass gap and the Fermi velocity are held constant, while in
region II, they become time-dependent. If their time dependence in
region II is canceled out, then no particles will be produced. The time
dependencies shown in the plot are given by Eqs. (39) and (40).

band gap proportional to the identity matrix, is given by

uξA,I
q (η � ηi ) = e−ξ iϕ/2

√
2

√
1 − �0

h̄v0ωI
q

e−iωI
qη,

uξB,I
q (η � ηi ) = −ξ

eξ iϕ/2

√
2

√
1 + �0

h̄v0ωI
q

e−iωI
qη, (37)

with positive frequency ωI
q ≡ ωq(ηi ) =

√
q2 + �2

0/(h̄v0)2 .
With this, the behavior is indeed compatible with the one for
Lorentz transformations, see Appendix E. In a similar way,
one can find for each band gap a set of initial mode func-
tions corresponding to the no-particle state and with an initial
Hamiltonian in the standard diagonal form. The (creation)
annihilation fermionic cξ (†)

q and antifermionic dξ (†)
q operators

associated to the mode functions uξλ
q define an initial “c” and

“d” vacuum state |〉 for such excitations,

cξ
q |〉 = dξ

q |〉 = 0. (38)

Here, the vacuum state |〉 is a free state of excitations, which
describes the ground state for a Fermi system with a filling up
to a certain level. More generally, one can consider a different
initial state with excitations, such as one characterized by a
fixed temperature T .

Now, we assume that at time ηi a dynamical time segment
begins. There, the Fermi velocity vF (η) and/or the band gap
�(η), but in particular their ratio �(η)/vF (η), become time-
dependent up to a time ηf. We refer to this time segment
as region II in the following and the static regime following
region II is region III, cf. Fig. 1. In this region, the mode
functions are obtained by solving Eq. (16) taking into con-
sideration their initial conditions (37). The solution will not
be the simple plane waves of Minkowski space, but a more
involved function of time.

The functional forms of the mass gap �(η) and the Fermi
velocity vF (η) for region II are chosen for simplicity as linear
in the conformal time η,

�(η) = �0 − D(η − ηi ) (39)

085421-6



ANALOG OF COSMOLOGICAL PARTICLE PRODUCTION IN … PHYSICAL REVIEW B 110, 085421 (2024)

FIG. 2. Spectrum of produced particles including thermal Pauli
blocking, cf. the last term of the expected number of quasiparticles
in Eq. (55). The inset shows the expected number of quasiparticles,
Nq, of fermionic excitations in one Dirac point as a function of
momentum q in units of 1/aM . This has been calculated for a band
gap term proportional to the identity matrix starting with an initial
no-particle state with β in

q = 0. The same plot is obtained for the other
nonsymmetric Dirac point. The dynamical process (region II) has
a duration of tf − ti = aM/(5v0). The Fermi velocity vF is changed
here from v0 to vf = 102v0 and the band gap from �0 = 50h̄v0/aM

to �f = h̄v0/aM with the time dependence given in Eqs. (40) and
(39), respectively. The colors correspond to different thermal initial
states with temperature T in units of h̄v0/(kBaM ). The same plot is
obtained for a gap proportional to γ 35 starting with its corresponding
initial no-particle state.

and

vF (η) = v0 + V (η − ηi ), (40)

where V and D are two real, positive, constant factors. Their
ratio is shown in Fig. 1. From the condensed matter point
of view, tuning the ratio of the band gap and Fermi velocity
in a real Dirac material may be achieved by different strate-
gies, depending on the actual material system. For example,
in a correlated moiré Dirac material, increasing the Fermi
velocity, tentatively suppresses the effect of the interactions.
Consequently, a decrease of the band gap can be expected.
In other Dirac materials, it may even be possible to use an
external field to modify the band gap. However, note that the
choice of time dependence is flexible and can be tailored to
suit both experimental feasibility and scientific interest. While
our work presents a specific choice of such time dependencies,
it can be adjusted to align with the constraints of a real exper-
imental setup. Here, we choose their time-dependencies to be
linear in conformal time for illustrative purposes, allowing us
to present results on the characteristic signatures of fermion
production in the Figs. 2–4. From a cosmological point of
view, different time dependencies of the ratio can be chosen
to study different cosmological scenarios, as a(t ) ∝ vF /�.
For instance, vF /� ∝ eHt corresponds to a de Sitter universe,
vF /� ∝ |t − t0|γ with γ = 2/3 to a radiation dominated uni-
verse and with γ = 1 to a matter dominated universe. Other

interesting cosmologies can be studied by choosing a proper
time dependence of this ratio.

After the time-dependent perturbation has ceased, i.e., for
times η > ηf, the Hamiltonian of the system is not diagonal
in the basis cξ (†)

q and dξ (†)
q . Instead, a new set of creation and

annihilation operators c̃ξ (†)
q and d̃ξ (†)

q can be introduced such
that

H = h̄vF

∫
d2q

(2π )2
ωq

∑
ξ

(
c̃ξ†

q c̃ξ
q − d̃ξ

q d̃ξ†
q

)
. (41)

In this stationary region, we assume the Fermi velocity,
vF (η � ηf ) ≡ vf, and the band gap, �(η � ηf ) ≡ �f, to be
constant, again. A set of solutions for the mode functions
can be found in terms of Minkowski modes with positive
frequencies as for region I by solving Eq. (28). For a gap term
proportional to the identity matrix, one can choose

ũξA,III
q (η � ηf ) = e−ξ iϕ/2

√
2

√
1 − �f

h̄vfωIII
q

e−iωIII
q η,

ũξB,III
q (η � ηf ) = −ξ

eξ iϕ/2

√
2

√
1 + �f

h̄vfωIII
q

e−iωIII
q η, (42)

where now ωIII
q ≡ ωq(ηf ) =

√
q2 + �2

f /(h̄vf )2.

E. Bogoliubov transformation

The new set of annihilation (creation) operators c̃ξ (†)
q and

d̃ξ (†)
q associated to the mode functions ũξλ

q that are Minkowski
modes in region III define a new vacuum state |̃〉 for such
excitations,

c̃ξ
q |̃〉 = d̃ξ

q |̃〉 = 0. (43)

The old mode functions uξλ
q can be expressed in terms of the

new set ũξλ
q through the Bogoliubov transformation(

uξA
q

uξB∗
q

)
=
∑

ζ

(
α

ξζ
q −(βξζ

q
)∗

β
ξζ
q

(
α

ξζ
q
)∗
)(

ũζA
q

ũζB∗
q

)
, (44)

which, in region III, corresponds to a linear superposition of
positive and negative frequency-mode solutions, with α

ζξ
q and

β
ζξ
q being complex-valued and time-independent Bogoliubov

coefficients. Here, we have introduced a new superscript ζ for
the new set of operators, which is not equivalent to ξ when the
mass term mixes the Dirac points. Otherwise, when the mass
term is block diagonal as the one studied here, there are only
four nonvanishing Bogoliubov coefficients matrix elements
for ζ = ξ .

Therefore, the Bogoliubov transformation reduces to

uξA
q = αξ

q ũξA
q − βξ∗

q ũξB∗
q ,

uξB
q = αξ

q ũξB
q + βξ∗

q ũξA∗
q , (45)

where the Bogoliubov coefficients are simplified by dropping
one of the superscripts α

ξξ
q ≡ α

ξ
q and β

ξξ
q ≡ β

ξ
q .

Furthermore, one can introduce the general Bogoliubov
transformation that connects the two sets of creation and
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FIG. 3. Equal-time two-point correlation functions of fermionic excitations. From top to bottom: Equal-time two point correlation function
of fermionic excitations in momentum space G̃S

�̄γ 35�
and statistical equal-time two-point correlation function of fermionic excitations (also

known as static structure factor) in momentum space G̃S
�̄�

in units of (aM )2 as a function of momentum q in units of 1/aM . This has been
calculated for a band gap term proportional to the identity matrix. The time dynamical process in region II has a duration of tf − ti = aM/(5v0 ).
The Fermi velocity vF is changed here from v0 to vf = 102v0 and the band gap from �0 = 50h̄v0/aM to �f = h̄v0/aM with a time dependence
given in Eqs. (40) and (39), respectively. In the inset, the dimensionless equal-time two-point correlation functions in position space as a
function of the distance L are shown obtained after a regularization with a Gaussian window function of width w = aM . In the left panels,
the colors correspond to different initial thermal states with temperature T in units of h̄v0/(kBaM ). The two-point correlation functions are
evaluated at final time tf. In the right panels, the initial state is taken to be the vacuum at T = 0 K. The colors correspond to different holding
times after the expansion has ceased with �t = aM/(50v0 ).

annihilation operators(
c̃ζ

q

d̃ζ†
−q

)
=
∑

ξ

(
α

ζξ
q β

ζξ
q

−(βζξ
q
)∗ (

α
ζξ
q
)∗
)(

cξ
q

dξ†
−q

)
, (46)

which for a nonmixing mass term reduces to

c̃ξ
q = αξ

q cξ
q + βξ

q dξ†
−q,

d̃ξ†
−q = −βξ∗

q cξ
q + αξ∗

q dξ†
−q. (47)

The new set of operators also satisfies the canonical anti-
commutation relations in Eq. (20) from which the following

identities for the Bogoliubov coefficients matrix elements can
be derived ∑

ξ

(
αζξ

q αζ ′ξ∗
q + βζξ

q βζ ′ξ∗
q

) ≡ δζζ ′
(48)

and ∑
ξ

(
αζξ

q βζ ′ξ
q − βζξ

q αζ ′ξ
q

) ≡ 0. (49)

Equation (48) guarantees that the space density cannot exceed
unity, as expected from the Pauli exclusion principle [44]. For
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FIG. 4. Equal-time two-point correlation function of fermionic excitations in momentum space G̃�̄γ 35� in units of (aM )2 as a function of
the momentum q in units of 1/aM . This has been calculated for a band gap term proportional to γ 35. The time dynamical process (region II)
has a duration of tf − ti = aM/(5v0 ). The Fermi velocity vF is changed here from v0 to vf = 102v0 and the band gap from �0 = 50h̄v0/aM to
�f = h̄v0/aM with a time dependence given in Eqs. (40) and (39), respectively. In the insets the dimensionless equal-time two-point correlation
functions in position space as a function of the distance L shown obtained after a regularization with a Gaussian window function of width
w = aM . In the left panel, the colors correspond to different initial thermal states with temperature T in units of h̄v0/(kBaM ). The two-point
correlation function is evaluated at final time tf. In the right panel, the initial state is taken to be the vacuum at T = 0 K. The colors correspond
to different holding times after the expansion has ceased with �t = aM/(50v0 ).

a mass that does not mix the Dirac points, the former identity
reduces to |αξ

q |2 + |βξ
q |2 = 1 [35,38].

The Bogoliubov coefficients are obtained from diago-
nalizing the Hamiltonian after the dynamical process by
performing a Bogoliubov transformation (47) such that

β
ξ
q

α
ξ
q

= F ξ∗
q

h̄ωq + E ξ
q

and
∣∣βξ

q

∣∣2 = h̄ωq − E ξ
q

2h̄ωq
. (50)

F. Number of excitations and correlation functions

In this section, we study observables that give signatures
of quasiparticle production. These observables can be investi-
gated starting from an initial vacuum state or from a state in
which there are already fermionic excitations, e.g., a thermal
state.

An initial state at ti with nonvanishing occupation number
leads to an initial fermionic and antifermionic quasiparticle
distribution given by

Nξ

in,c(q) = 〈cξ†
q cξ

q

〉
and Nξ

in,d (q) = 〈dξ†
q dξ

q

〉
, (51)

respectively, and consequently, to Pauli blocking. Therefore
quasiparticle creation will be suppressed, when starting from
an initial state that is different to the vacuum of excitations, as
fermions cannot be created in states that are already occupied.
For instance, one can consider an initial thermal state, in
which the amount of fermions and antifermions is balanced,
i.e., their initial occupation number will be the same, Nξ

in ≡
Nξ

in,c = Nξ

in,d , following the Fermi-Dirac statistics:

Nξ

in(T, q) = 1

eh̄ωI
q/(kBT ) + 1

, (52)

with temperature T and Boltzmann constant kB.

1. Expected number of quasiparticles

To study the occupation number of Dirac fermion-
antifermion pairs created per mode q, we evaluate the number
operator of the new set of (creation) annihilation operators,
i.e., c̃ξ (†)

q , d̃ξ (†)
q , at the initial vacuum state |〉

Nξ
q = 〈| c̃ξ†

q c̃ξ
q |〉 = ∣∣βξ

q

∣∣2(2π )2δ(2)(0), (53)

where the divergent factor δ(2)(0) is a consequence of con-
sidering an infinite spatial volume, which arises from the
anticommutation relation (20) evaluated at equal momentum.
The divergent factor can be substituted by considering a finite
spatial volume V . From now on, we omit the factors of volume
assuming that the number of particles are always referred to a
unit of volume for simplicity of notation [9,69].

As a consequence of charge conjugation symmetry, the
expected occupation number of fermions and antifermions is
the same. Integrating over all momentum modes one gets the
quasiparticle number density

n =
∫

d2q

(2π )2

∑
ξ

Nξ
q . (54)

Taking an initial excited state instead of the vacuum or ground
state, the expected number of quasiparticles is

Nξ
q = 〈c̃ξ†

q c̃ξ
q

〉 = Nξ

in + ∣∣βξ
q

∣∣2(1 − 2Nξ

in

)
, (55)

where the last term corresponds to the Pauli blocking, shown
in Fig. 2 as well as the expected number of quasiparticles for
one Dirac point in the inset. One can observe that the expected
number of quasiparticles saturates at 1/2 for all momentum
modes for higher temperatures, as expected. The higher the
temperature, the higher the initial number of excitations and,
consequently, fewer quasiparticles are produced due to Pauli
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blocking and the main contribution to the expected number of
quasiparticles comes from the initial number of excitations.

2. Two-point correlation functions

Two-point correlation functions are also a good indicator
of particle production. Let us start studying the equal-
time two-point correlation functions in momentum space
〈�̄q(t )γ α�q′ (t )〉 for α = 0, 1, 2. The zero component of this
set of two-point correlation functions corresponds to the elec-
tronic one-particle density matrix ρ, which evaluated at t � tf
is given by

ρ(t, q) = 2, (56)

with ρ(t, q)(2π )2δ(2)(q − q′) = 〈�†
q (t )�q′ (t )〉. For the equal-

time two-point correlation function with α = 1 evaluated at
t � tf

G̃�̄γ 1� (t, q) = − 2
∑

ξ

ξ
(
1 − 2Nξ

in

)

×
{

Re
[
ũξA∗

q ũξB
q

](
2
∣∣βξ

q

∣∣2 − 1
)

+ Re
[((

ũξB
q

)2 − (ũξA
q

)2)
αξ

qβξ
q

]}
, (57)

with G̃�̄γ 1� (t, q)(2π )2δ(2)(q − q′) = i 〈�̄q(t )γ 1�q′ (t )〉 and
for the component α = 2

G̃�̄γ 2� (t, q) = − 2
∑

ξ

(
1 − 2Nξ

in

)

×
{

Im
[
ũξA∗

q ũξB
q

](
2
∣∣βξ

q

∣∣2 − 1
)

+ Im
[((

ũξB
q

)2 + (ũξA
q

)2)
αξ

qβξ
q

]}
, (58)

with G̃�̄γ 2� (t, q)(2π )2δ(2)(q−q′)= i 〈�̄q(t )γ 2�q′ (t )〉. These
two-point correlation functions in real space are related to the
expectation value of the electric (vector) current evaluated at
equal position, Jα

V = −�†γ 0γ α� [50,70], which vanish for
α = 1, 2 as a consequence of rotational symmetry. Another
two-point correlation function we consider is

G̃�̄γ 35� (t, q) = −
∑

ξ

ξ
(
1 − 2Nξ

in

)

×
{(

2
∣∣ũξB

q

∣∣2 − 1
)(

2
∣∣βξ

q

∣∣2 − 1
)

− 4Re
[
ũξA

q ũξB
q αξ

qβξ
q

]}
, (59)

with G̃�̄γ 35� (t, q)(2π )2δ(2)(q − q′) = i 〈�̄q(t )γ 35�q′ (t )〉. We
also study statistical two-point correlation functions at equal
time, e.g.,

G̃S
�̄�

(t, q) =
∑

ξ

(
1 − 2Nξ

in

)

×
{(

2
∣∣ũξB

q

∣∣2 − 1
)(

2
∣∣βξ

q

∣∣2 − 1
)

− 4Re
[
ũξA

q ũξB
q αξ

qβξ
q

]}
, (60)

with G̃S
�̄�

(t, q)(2π )2δ(2)(q − q′) = 1
2

∑
b 〈[�̄b

q (t ), �b
q′ (t )]〉,

where the sum over b indicates a sum over the components of

the Dirac field. For example, for the case of spinless fermions
on a honeycomb lattice, the latter two-point correlation
function provides information about the staggered density
contributions on the sublattices.

The two-point correlation functions related to supercon-
ductivity vanish for all points

〈�̄q(t )�∗
q′ (t )〉 = 0 = 〈�̄∗

q (t )�q′ (t )〉 , (61)

and so do the ones corresponding to anomalous densities

〈�†
q (t )�∗

q′ (t )〉 = 0 = 〈�T
q (t )�q′ (t )

〉
. (62)

Correlation functions in momentum space are regular, but
an ultraviolet regularization is needed to represent them in
position space (otherwise they would be distributions). To this
end, we convolute the Dirac field in position space with a
window function [69]

�W (t, x) ≡
∫

d2x′W (x − x′)�(t, x′). (63)

The window function is chosen as a normalized Gaussian

W (x) = 1

2πw2
exp

(
−|x|2

2w

)
, (64)

with w being the standard deviation or width which we choose
to be w = aM . In Fourier space, the window function acts
as an ultraviolet regulator and it is also of Gaussian form,
W̃ (q) = e−q2w2/2, such as the regularized expression for the
two-point correlation functions becomes

G(t, L) =
∫

d2q

(2π )2
e−iqL cos ϕG̃(t, q)W̃ ∗(q)W̃ (q), (65)

with L = |x − x′| being the comoving distance between the
two spatial positions x and x′. For w → 0 one formally recov-
ers the full form of G(t, L) as a distribution.

In Fig. 3, the equal-time two-point correlation function
G̃�̄γ 35� and the statistical equal-time two-point correlation
function G̃S

�̄�
given in Eqs. (59) and (60) respectively, are

shown for a band gap proportional to the identity after the
time dynamical process. On the left panel, the initial state is
taken as a thermal state for different temperatures and one
can observe again the effect of Pauli blocking. On the right
panel, the time evolution of the statistical equal-time two-
point correlation function at T = 0 K is shown after the time
dynamical process has ceased. Here, one can observe that the
characteristic features of the two-point correlation function
evolve with twice the speed of the final Fermi velocity vf.

In Fig. 4, the two-point correlation functions G̃�̄γ 35� is
shown in momentum space and in real space for different ini-
tial thermal states (left panel) and for different holding times
(right panel) after the time-dependent process has ceased for
a band gap proportional to γ 35 given in Eq. (59). The charac-
teristic features of this two-point correlation function evolve
also with twice the final Fermi velocity. The evaluation of the
statistical two-point correlation function, cf. Eq. (60), for an
initial no-particle state vanishes for all distances for this gap
shape.

The equal-time two-point correlation functions in momen-
tum space G̃�̄γ 1� and G̃�̄γ 2� given in Eqs. (57) and (58)

085421-10



ANALOG OF COSMOLOGICAL PARTICLE PRODUCTION IN … PHYSICAL REVIEW B 110, 085421 (2024)

depend on the direction of momentum in contrast to G̃�̄γ 35�

and G̃S
�̄�

, which depend only on the momentum amplitude.
Therefore they have not been plotted in order to not choose a
specific direction of the momentum.

IV. CONCLUSIONS AND OUTLOOK

In summary, we discussed how a situation analogous to
cosmological particle production in an expanding spacetime
could be realized in highly tunable Dirac materials as they
may be realized in moiré heterostructures. The key ingredient
is a controllable time-dependent ratio of an energy gap and
the Fermi velocity. The energy gap, or mass term in relativis-
tic nomenclature, is important because massless relativistic
fermions are invariant under a scaling symmetry that would
allow to absorb a time-dependent change in the metric scale
factor or Fermi velocity. In the presence of a finite gap, this
changes and a time dependence of the ratio �/vF leads to the
production of quasiparticle excitations.

We have investigated a scenario with unbroken charge
conjugation symmetry and, here, the number of particle and
antiparticle excitations are precisely equal for every momen-
tum mode. At nonzero temperature, when some modes have a
thermal occupation, particle production is suppressed by Pauli
blocking.

Interesting observables to confirm and further investigate
fermionic quasiparticle production are various two-point cor-
relation functions as we exhibited in this contribution, which
depend on the moiré Dirac material chosen as the analog
platform. Their dependence on time as well as wavenumber
contains characteristic information that could be compared
between theory and a possible experiment. It is of particu-
lar interest to reproduce these results experimentally to test
the validity of highly tunable Dirac materials as quantum
simulators.

In the present paper, we have not discussed the possibil-
ities for experimental realizations of our proposal in much
detail. However, we believe that moiré materials are partic-
ularly interesting in this regard. A notorious example of moiré
Dirac materials is twisted bilayer graphene, whose low energy
fermionic excitations at charge neutrality have a Fermi veloc-
ity vF (θ ) which is a function of the twist angle θ originating
from the interlayer coupling. Generically, the interlayer cou-
pling in this van-der-Waals structure can be considered weak.
However, it turns out that near the magic angle θM ∼ 1.1◦,
the Fermi velocity vF (θ ) is strongly modified and approaches
zero [14,15,27]. The magic angle itself is determined by the
interlayer coupling, which can be increased by applying pres-
sure δp to the system [19,71], i.e., θM = θM (δp). Hence, even
at a fixed angle near θM , the Fermi velocity of the system can
be strongly modified by an external perturbation, since it is
very sensitive to any change in the system. In other words,
around the magic angle, the Fermi velocity of TBG’s Dirac
excitations can be tuned over a wide range of values, poten-
tially covering more than an order of magnitude. This may be
experimentally achieved in a TBG system with a twist close
to a magic angle θM by different methods, e.g., (1) by varying
the hydrostatic pressure δp(t ) with respect to time; (2) by
applying ultrafast (noninteracting) light pulses, which produce

the same mechanical effect as hydrostatic pressure; and (3)
by performing continuous rotation, which has been achieved
at room temperature [72], but work is currently underway to
achieve this at low temperatures. We think that the second one
can be performed in the right time frame to bring the system
out of equilibrium. Another interesting material system could
be the case of Bernal-stacked bilayer graphene, which hosts
Dirac cones due to trigonal warping [73]. Experimentally, the
Dirac cones can be gapped out in a controlled way [74], which
could possibly realize a scenario where the Fermi velocity
is fixed and the gap is time-dependent. An alternative to
choosing bilayer graphene to perform the experiment could
be to design a honeycomb optical lattice to trap cold atoms.
Time dependencies could be introduced into the system by
modifying the potential depths in the sublattices, leading to a
modification of the band gap. Therefore, in this case, all the
time dependence would be contained in the mass term, but
as demonstrated in the paper, we only need a time-dependent
ratio between the mass and the Fermi velocity, so that would
be enough to produce particles.

For future work, many extensions of the present setup
are conceivable. One can add electromagnetic fields to study
electromagnetic response and correlation functions in more
detail. This would allow us to study the analog of Schwinger
effect, for example. Further, it would be interesting to study
also spatial curvature, which may be realized by making the
Fermi velocity space dependent, or through inhomogeneous
lattice configurations. Also, it would be highly interesting to
investigate whether an analog to the production of the baryon-
antibaryon asymmetry in the early universe could be realized
in Dirac materials. In analogy to the famous Sakharov con-
ditions this would likely need an explicit breaking of charge
conjugation symmetry as well as time-reversal. Finally, it
would be nice to study dynamically evolving spacetime ge-
ometries in Dirac materials and a possible interplay between
the geometric and electronic degrees of freedom.
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APPENDIX A: GRAPHENE REPRESENTATION
AND REDUCIBILITY

The set of time- and spacelike gamma matrices (γ α with
α = 0, 1, 2) in the graphene representation are block diago-
nal, but the two blocks differ in γ 1. This shows that it is a
reducible representation from the point of view of the Lorentz
group and it is composed out of an irreducible representation
with the two-component spinor (ψ+A, ψ+B)

T
and a second

irreducible representation that differs by a parity transform
x1 → −x1. It is possible to perform a similarity transform in
the Clifford algebra to make the reducibility manifest. Define
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the transformation matrix

γ̂± =
(

I2 0
0 ±σ2

)
with (γ̂±)2 = I4, (A1)

and introduce the transformed representation of the Clifford
algebra

γ̃ μ = γ̂−γ μγ̂+, (A2)

which is concretely γ̃ 0 = I2 ⊗ iσ 3, γ̃ 1 = I2 ⊗ iσ 2, and γ̃ 2 =
I2 ⊗ (−σ 1). The transformed spinors can be taken as

�̃ = γ̂+�,

¯̃� = �̄γ̂− = i�†γ 0γ̂− = i(γ̂+� )†γ 0. (A3)

The Dirac-like action is invariant under the transformation. It
becomes now clear that the transformed spinor

�̃ =

⎛
⎜⎜⎜⎝

ψ+A

ψ+B

−iψ−B

+iψ−A

⎞
⎟⎟⎟⎠ (A4)

can be seen as two copies, or families, of Lorentz group
irreducible two-component spinors. It becomes sensible to
organize the spinors as

�ξ =
(

ψ̃ξA

ψ̃ξB

)
, (A5)

where ξ is the additional family index.

APPENDIX B: DIRAC FIELD, DIRAC MATTER METRIC
AND ENERGY-MOMENTUM TENSOR

The Dirac field � can be quantized by introducing the
equal-time anticommutation relations [50]

{�a(t, x), πb(t, x′)} = ih̄δ(2)(x − x′)δab, (B1)

where a, b refer to the spinor indices and the conjugate mo-
mentum density π (t, x) is given by

π (t, x) = ∂L[�, �̄]

∂ (∂t� )
= −√

gh̄�̄(t, x)γ 0e t
0 (t, x). (B2)

Therefore the anticommutator (B1) can be written as

{�a(t, x), �̄b(t, x′)} = − i√
g
δ(2)(x − x′)

[
γ 0e t

0 (t, x)
]−1

ab .

(B3)
The energy-momentum tensor for a Dirac field is obtained

by the variation of the action with respect to the spacetime
metric [49]

T μν = 2√
g

δS

δgμν

. (B4)

For an action corresponding to the one studied here, cf.
Eq. (9), it reads

T μν = − �̄ h̄γ αe μ
α (∂ν + ν )�

+ gμν�̄
(
h̄γ αe σ

α ∂σ + � j�
j
)
�, (B5)

with the diagonal components being (no sum implied)

T α
α = �̄(h̄vF γ α∂α + � j�

j )�. (B6)

In particular, the time-time component of the energy-
momentum tensor leads to the Dirac Hamiltonian density,
which in our case is given by

T η
η ≡ H = �̄(h̄vF γ · ∂ + � j�

j )�. (B7)

APPENDIX C: VIELBEIN, METRIC, AND CONNECTIONS

We investigate here a vielbein field eα
μ(x) with the

nonvanishing temporal component e0
0(t ) = eζ (t )vF (t ), spa-

tial component e1
1(t ) = e2

2(t ) = eζ (t ), and all nondiagonal
components vanishing. Here vF (t ) is the Fermi velocity,
and eζ (t ) is a scaling factor factor that we keep unspeci-
fied for the time being. The corresponding spacetime metric
gμν (x) = eα

μ(x)eβ

ν (x)ηαβ has the nonvanishing components
g00(t ) = −e2ζ (t )v2

F (t ) and g11(t ) = g22(t ) = e2ζ (t ).
For this metric with eζ (t ) = 1, i.e., Eq. (9), one can deter-

mine the nonvanishing Christoffel symbol

�t
tt = v̇F (t )

vF (t )
, (C1)

with dot notation indicating a partial derivative respect to real
time. All spin connection components vanish. Thus this metric
corresponds to a Minkowski spacetime with time-dependent
Fermi velocity leading to a zero Ricci curvature.

For this metric with eζ (t ) = � j (0)vF (t )
� j (t )vF (0) , i.e., Eq. (13), one can

obtain the nonvanishing Christoffel symbols

�t
xx = 1

v2
F (t )

(
v̇F (t )

vF (t )
− �̇ j (t )

� j (t )

)
= �t

yy,

�x
tx = v̇F (t )

vF (t )
− �̇ j (t )

� j (t )
= �x

xt = �
y
yt = �

y
yt ,

�t
tt = 2

v̇F (t )

vF (t )
− �̇ j (t )

� j (t )
. (C2)

Therefore the nonvanishing spin connection coefficients are

ωx01 = 1

vF (t )

(
�̇ j (t )

� j (t )
− v̇F (t )

vF (t )

)
= ωy02 (C3)

and their respective antisymmetric components. Thus the
nonzero components of the spin connection are given by

x = 1

2vF (t )

(
�̇ j (t )

� j (t )
− v̇F (t )

vF (t )

)
γ 0γ 1,

y = 1

2vF (t )

(
�̇ j (t )

� j (t )
− v̇F (t )

vF (t )

)
γ 0γ 2. (C4)

The Ricci curvature, R = gμνRμν , is given by

R=2
v2

F (0)�2
j (t )

v2
F (t )�2

j (0)

[
− 3

v̇2
F (t )

v2
F (t )

+ �̇2
j (t )

�2
j (t )

− 2
�̈ j (t )

� j (t )
+ 2

v̈F (t )

vF (t )

]
,

(C5)

which indicates a curvature deviation from an Euclidean
spacetime when there is a band gap and a time dependence
on the band gap and/or the Fermi velocity.
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APPENDIX D: GENERAL BAND GAP

1. Mode equations and Hamiltonians

Let us introduce the corresponding mode equations and
Hamiltonians for different tensor shapes of the gap.

a. Haldane mass

Mass terms proportional to γ 35 are block diagonal and,
consequently, do not mix the Dirac points, such that one can
study the mode equations for the different valleys indepen-
dently, as we did previously with a mass term proportional to
the identity matrix.

Taking the mass gap tensor as � j = iγ 35, the coupled sys-
tem of first order differential equations (16) for a Dirac field
expanded in the basis (19) becomes

0 =
(

i∂η − ξ �
h̄vF

ξqe−ξ iϕ

−ξqeξ iϕ −i∂η − ξ �
h̄vF

)(
uξA

q

uξB
q

)
. (D1)

Equivalently, the second order differential equation (28) for
this kind of mass term yields

0 =
[
∂2
η + ω2

q(η) +
(−) ξ

i

h̄
∂η

(
�(η)

vF (η)

)]
uξA(B)

q (η), (D2)

which again corresponds to a harmonic oscillator differential
equation with complex and time-dependent frequency.

For this kind of band gap, the massive part of the Hamil-
tonian, which corresponds to the Haldane mass in the case of
spinless fermions on a honeycomb lattice, is given by

HHald. = i�
∫

d2x �̄ γ 35� = −�

∫
d2q

(2π )2

∑
ξ

ξ

× [(∣∣uξB
q

∣∣2 − ∣∣uξA
q

∣∣2)(cξ†
q cξ

q − dξ
q dξ†

q

)
− 2uξA

q uξB
q dξ

−qcξ
q − 2uξA∗

q uξB∗
q cξ†

q dξ†
−q

]
, (D3)

where the Dirac field has been expanded again in the basis of
Eq. (19). Thus the Hamiltonian of the system reads

H =
∫

d2q

(2π )2

∑
ξ

[
E ξ

q (η)
(
cξ†

q cξ
q − dξ

q dξ†
q

)

+ F ξ
q (η)dξ

−qcξ
q + F ξ∗

q (η)cξ†
q dξ†

−q

]
, (D4)

where now the functions E ξ
q and F ξ

q are given by

E ξ
q = − 2ξ h̄vF qRe

[
e−ξ iϕuξA∗

q uξB
q

]− ξ�
(
1 − 2

∣∣uξA
q

∣∣2),
F ξ

q =ξ h̄vF q
[
eξ iϕ
(
uξA

q

)2 − e−ξ iϕ
(
uξB

q

)2]+ 2ξ�uξA
q uξB

q . (D5)

The Bogoliubov coefficients are obtained by diagonalizing
the Hamiltonian of the system through the Bogoliubov trans-
formation (47) after the dynamical process has ceased. As
this kind of mass gap is block diagonal, the Bogoliubov co-
efficients are also given by Eqs. (50) for the corresponding
functions (D5).

A possible initial configuration of the mode functions lead-
ing to the no-particle initial state, i.e., an initial diagonal

Hamiltonian, for this kind of gap term is given by

uξA,I
q (η � ηi ) = e−ξ iϕ/2

√
2

√
1 + ξ

�0

h̄v0ωI
q

e−iωI
qη,

uξB,I
q (η � ηi ) = −ξ

eξ iϕ/2

√
2

√
1 − ξ

�0

h̄v0ωI
q

e−iωI
qη. (D6)

In region III, the set of mode functions associated to
the creation and annihilation operators that diagonalize the
Hamiltonian is given by

ũξA,III
q (η � ηf ) = e−ξ iϕ/2

√
2

√
1 + ξ

�f

h̄vfωIII
q

e−iωIII
q η,

ũξB,III
q (η � ηf ) = −ξ

eξ iϕ/2

√
2

√
1 − ξ

�f

h̄vfωIII
q

e−iωIII
q η. (D7)

b. Kekulé modulation of the nearest neighbor hopping

A mass term i�(γ 3 cos θ + γ 5 sin θ ), with real amplitude
� and phase θ , mixes the Dirac points and the sublattices in
the case of spinless fermions on a honeycomb lattice. Con-
sequently, the mode functions for the different Dirac points
cannot be studied independently as in the previous Sec. III C
and Appendix D 1 a.

For a band gap proportional to i(γ 3 cos θ + γ 5 sin θ ) and
taking into consideration the expansion of the Dirac field in
Fourier modes (19), the mode equation is

0 =

⎛
⎜⎜⎜⎜⎜⎝

i∂η qe−iϕ 0 �̄∗
h̄vF

−qeiϕ −i∂η − �̄∗
h̄vF

0

0 �̄
h̄vF

i∂η −qeiϕ

− �̄
h̄vF

0 qe−iϕ −i∂η

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u+A
q

u+B
q

u−A
q

u−B
q

⎞
⎟⎟⎟⎟⎠, (D8)

with �̄ = �eiθ and, equivalently, Eq. (28)

0 = [∂2
η + ω2

q(η)
]
u+λ

q (η) + i

h̄
∂η

(
�̄∗(η)

vF (η)

)
u−λ′

q (η),

0 = [∂2
η + ω2

q(η)
]
u−λ

q (η) + i

h̄
∂η

(
�̄(η)

vF (η)

)
u+λ′

q (η), (D9)

where the superindex λ 	= λ′.
The corresponding massive part of the Hamiltonian is

given

HKekulé = i
∫

d2x �†

(
0 �̄∗σ 1

�̄σ 1 0

)
�. (D10)

Therefore, the Hamiltonian of the system

H =
∫

d2q

(2π )2

{∑
ξ

[
E (0)ξ

q

(
cξ†

q cξ
q − dξ

q dξ†
q

)

+ F (0)ξ
q dξ

−qcξ
q + F (0)ξ∗

q cξ†
q dξ†

−q

]
+
[
Jq
(
c−†

q c+
q − d+

−qd−†
−q

)

+ Gq
(
d−

−qc+
q + d+

−qc−
q

)+ H.c.
]}

, (D11)
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with

E (0)ξ
q = −2ξ h̄vF qRe

[
e−ξ iϕuξA∗

q uξB
q

]
,

F (0)ξ
q = ξ h̄vF q

[
eξ iϕ
(
uξA

q

)2 − e−ξ iϕ
(
uξB

q

)2]
,

Jq = i�̄
(
u−A∗

q u+B
q + u−B∗

q u+A
q

)
,

Gq = i�̄
(
u+B

q u−B
q − u+A

q u−A
q

)
, (D12)

is diagonalized by using the general Bogoliubov transforma-
tions given in Eq. (46).

APPENDIX E: DIRAC SPINOR AND LORENTZ
TRANSFORMATIONS

The generators of the Lorentz group are identified as

Sμν = i

4
[γ μ, γ ν]. (E1)

In a (2 + 1) dimensional spacetime this can be decomposed
into a single spatial-spatial generator corresponding to a
unique rotation

S12 = i

2
γ 1γ 2, (E2)

and into two spatial-temporal generators corresponding to
boosts

S01 = i

2
γ 0γ 1 and S02 = i

2
γ 0γ 2. (E3)

In the graphene representation, S12 = −σ 3 ⊗ σ 3/2 is diago-
nal, while S01 = iσ 3 ⊗ σ 1/2 and S02 = iσ 0 ⊗ σ 2/2.

A Dirac spinor transforms under Lorentz transformations
as

�(x) → � ′(x′) = S[�]�(�−1x) (E4)

and

�̄(x) → �̄ ′(x′) = �̄(�−1x)S−1[�], (E5)

with S[�] being the exponentiation of the Lorentz generators

S[�] = exp

(
i

2
μνSμν

)
, (E6)

where μν are six antisymmetric numbers which define the
angle of rotation and the rapidity for the boosts.

APPENDIX F: PARAMETER VALUES

The plots shown in Sec. III F are computed for the
following experimental parameters. The moiré lattice con-
stant is given by aM = a0/[2 sin(θ/2)], where a0 is taken
as the graphene lattice constant a0 � 2.46 Å and for
the reported narrow bands the twist angle is taken to
be θ � 1.1◦, which leads to the moiré lattice constant
aM � a0/θ � 15 nm [75]. The Fermi velocity is changed
from v0 = c/105 to vf = c/103, where c denotes the speed of
light, while the mass gap from �0 = 50h̄v0/aM � 16.9 meV
to �f = h̄v0/aM � 0.3 meV. The time dynamical process has
a duration of tf − ti = aM/(5v0) = 10−12 s and the holding
time steps �t = aM/(50v0) = 10−13 s. The initial tempera-
tures T are taken from 0 K to h̄v0/(kBaM ) � 1.5 K. The
window function for the regularization of the correlation
functions in position space has Gaussian form with a width
w = aM .
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