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One-dimensional Dexter-type excitonic topological phase transition
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The concept of the Su-Schrieffer-Heeger model, which was successfully introduced in topological photonics,
can also be applied to the study of topological excitonics. Here we study the topological properties of a
one-dimensional excitonic tight-binding model formed by two-level systems by taking into account the charge
transfer and local excitations. The interactions between the two types of excitons give rise to a rich spectrum of
physics, including the nontrivial topological phase in the uniform chain, unlike the conventional Su-Schrieffer-
Heeger model, the topologically nontrivial flat bands, and, most importantly, the excitonic topological phase
transition assisted by the Dexter electron exchange process. The excitonic topological phase leads to the
development of “chiral superposition.” The topological edge states are robust because they are protected by
the inversion symmetry. Based on our calculations, experiments for observing the edge states optically in a
molecular chain are proposed.
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I. INTRODUCTION

The exciton, a bound state of an electron and a hole, is
an important concept in optics and can be either delocal-
ized (Wannier-Mott exciton) or localized (Frenkel exciton)
[1]. The Frenkel exciton, normally formed in the insulator or
the molecular crystal, migrates by two mechanisms, namely,
Föster coupling and the Dexter electron exchange [2–8].
Föster coupling stems from the excitation energy transfer
between physical entities. The Dexter electron exchange can
be understood as the case in which the electrons on the upper
and the lower levels hop in opposite directions simultaneously,
resulting in the migration of the entire exciton [Fig. 1(a)]. The
excitonic migration from the “antenna” pigment to the chem-
ical reaction center responsible for energy transformation is
of great importance for the photosynthetic process in plants
[9–11]. The electron and hole can live either on the same site
[local excitation (LE)] or on different ones [charge transfer
(CT)]. Especially, the CT process is crucial for both life on
Earth and our modern daily life relying on electricity [12].
Recent research suggested that the CT state could play an
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important role for improving the performance of organic light
emitting diodes, solar cells, and resistive memory devices
[13–15]. CT excited states can also mediate the transition in
the Dexter electron exchange process [16].

Recent topical research on topological photonics (TP) at-
tempted to construct the photonic topological state to control
the flow of light, relying on a specially designed artificial
structure [17–23]. On the other hand, the topological state
could also arise from the natural topology of the interactions
between particles. Studying topological states of this type is
beneficial for deepening the understanding of fundamental
optical phenomena in nature. One-dimensional (1D) chain
structures, which can be formed by atoms, molecules, quan-
tum dots, and semiconductor dopants, among others, recently
attracted much attention due to their interesting topological
properties [24–31]. The Su-Schrieffer-Heeger (SSH) model
is a classic example of the topological phase transition in
one dimension [Fig. 1(b)] [32,33]. The SSH model consists
of two sublattices (L and R) linked by intracell and inter-
cell couplings, whose competition determines the topological
properties of the model. The chiral symmetry of the SSH
model leads to an integer winding number (Z invariant). The
corresponding Zak phase (the Berry phase for one dimension)
can therefore take an integer number of π . The inversion sym-
metry further constrains the Zak phase to be either 0 (trivial)
or π (nontrivial) under an additional mode of 2π [34,35],
rendering a Z2 invariance. A topologically nontrivial phase
with a Zak phase of π appears when the intercell hopping
strength is greater than the intracell one. The SSH model has
also been realized in TP [19]. A fascinating topic for TP in one
dimension is the flat band, which recently stimulated intense
research interest in condensed matter physics, photonics, and
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FIG. 1. (a) The scheme for the Dexter electron exchange.
T (∝ t1t2) is the effective hopping amplitude for the entire singlet
exciton. (b) The SSH model consists of L and R sublattices, intracell
hopping T , and intercell hopping T ′.

metamaterials [36–42]. Moreover, the flat photonic band has
many potential applications such as slow light due to the
vanishing group velocity [36]. Similarly, the rich spectra of
physics can be expected when introducing the idea of the SSH
model to the excitonic systems.

Topological excitons have been discussed extensively for
two-dimensional materials [43–47]. However, studies of the
excitons in one dimension are still rare. Here we study the
topological properties in the 1D excitonic model formed by
the generic two-level systems coupled through the Dexter
electron exchange, which takes into account the LE and CT
excited states [48]. Both of these excited states are important
for the optical and charge dynamics [49,50].

II. METHODS

Here we map out the six excitonic states, LE1 and 2 and
CT1–CT4, in the unit cell to better illustrate the couplings
between them, as shown in Fig. 2(a). The Hamiltonian reads

Ĥ =
∑

n

t2a†
LE1,naCT1,n + t1a†

LE1,naCT2,n

+ t ′
1a†

LE1,naCT3,n−1 + t ′
2a†

LE1,naCT4,n−1

+ t1a†
LE2,naCT1,n + t2a†

LE2,naCT2,n

+ t ′
2a†

LE2,naCT3,n + t ′
1a†

LE2,naCT4,n

− d

4
a†

LE1,naLE1,n − d

4
a†

LE2,naLE2,n

+ d

4
a†

CT1,naCT1,n + d

4
a†

CT2,naCT2,n

+ d

4
a†

CT3,naCT3,n + d

4
a†

CT4,naCT4,n

+ H.c. (1)

This Hamiltonian can be transformed into the momentum
space as follows:

Ĥk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− d
2 0 t2 t1 t ′

1e−ik t ′
2e−ik

0 − d
2 t1 t2 t ′

2 t ′
1

t2 t1
d
2 0 0 0

t1 t2 0 d
2 0 0

t ′
1eik t ′

2 0 0 d
2 0

t ′
2eik t ′

1 0 0 0 d
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Due to the nature of the exciton, which has to connect two
states, the unit cell of the model is chosen to be consistent
with the following finite chain calculations, but this chosen
unit cell is asymmetric, breaking the inversion symmetry in

FIG. 2. (a) The model diagram in Ref. [48] mapped to a state-based structure with couplings and state labels. (b) An illustration of the two
chiral superpositions (CSs) for t1 = 0, t2 = 1, and t ′

1 = t ′
2 = x �= 0: the left-hand (L) state formed by LE1 and CT1 coupled by t2 (in orange)

and the right-hand (R) state formed by LE2 and CT2 (in blue). The LCS and RCS are decoupled by t1. An illustration of the components in
the eigenvectors for (c) {1, 0, 1, 0} and (d) {0, 1, x, y} with |x2 − y2| = 1. Here we use red (blue) to represent nonzero (zero) hopping. The L
state is in orange, while the R state is in blue.
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general. However, the infinite chain maintains the inversion
symmetry. The couplings t1 and t2 are differentiated from t ′

1
and t ′

2 to account for dimerization. We set d = 0 in most of
the paper because it does not affect the qualitative picture very
much. We adopt the sequence {t1, t2, t ′

1, t ′
2} to describe our

parameter set. Our calculation results not only are consistent
with previous experimental and numerical works [51] but also,
more importantly, can lead to a rich spectrum of physics,
ranging from topologically nontrivial zero-mode flat bands to
excitonic topological phase transitions.

We first solve the eigenvalues and eigenvectors for the
Hamiltonian in the momentum space [Eq. (2)]. As the spec-
trum of the general case (nonzero in {t1, t2, t ′

1, t ′
2}) shows the

energies of the flat bands are always d/2, the Hamiltonian
(2) can be developed into two subspaces. Each subspace
has a symmetric spectrum in the up-and-down direction, so
they both have chiral symmetry. Notice that when d �= 0,
the model becomes similar to the Rice-Mele model [52].
Then we compute the Zak phase by using the analytical
formalism and the numerical methods in Eqs. (3) and (4),
respectively. They have been used extensively in previous
work on the calculations of the topological phases in one
dimension [28,34,53–57].

γn = i
∫ π

−π

dk〈un(k)|∂k|un(k)〉. (3)

Here un(k) is the Bloch wave function. We can still use Eq. (3)
to compute the Zak phase analytically if there are fewer than
four nonzero hopping parameters. However, for models with
four nonzero parameters, we need to use the following numer-
ical formalism:

γn = Mod

(
i ln

[
M∏

s=1

〈un(ks)|un(ks+1)〉
]
, 2π

)
. (4)

Here un(ks) is the eigenvector of the Hamiltonian at ks, n labels
the band, and ks runs from −π to π . We tested the numerical
robustness of our computational methods by using a series of
different numbers of discretized points up to 1×106. We found
that 1×105 points are sufficient for the accuracy.

We carried out calculations for finite chains with an even
(100) and odd (101) number of sites to illustrate the nature of
the topological edge states related to the periodic-structure re-
sults presented in the previous sections. For the even chain, we
cut off CT3 and CT4 in the rightmost cell, whereas for the odd
chain, we cut off the LE2 and CT1–CT4. The amplitudes for
the individual sites in the eigenvectors are computed using the
populations on the LE state on that site and half of those on the
CT states linked to the LE state, i.e., Pi = PLE

i + 1
2 (

∑
j PCT

j ),
where i labels the site, j labels the states linked to the ith LE
state, and PLE and PCT are the square coefficients of the LE
and CT states, respectively.

When producing the absorption spectra, we followed the
methods detailed in Ref. [48]. We assumed the oscillator
strengths for LE and CT are 1 and 0.1, respectively. We used
a Gaussian-type broadening of 0.1t1. As the model takes into
account only the relative energy difference between the LE
and CT states, we also included a rigid energy shift of 2t1 in
the calculations of the absorption spectra.

III. RESULTS AND DISCUSSION

A. Topological phase induced by decoupling
and the chiral superposition

When turning on only intercell coupling t ′
1 or t ′

2, we can
obtain the topologically nontrivial state with a mathemati-
cal structure similar to that in the SSH model, as shown in
Sec. I of the Supplemental Material (SM) [58]. When turning
on two hopping parameters (at least one intercell), we can
see the interference between the topological states, and the
Zak phase of the flat bands is qualitatively consistent with
previous work [51], as shown in Sec. I of the SM. Because
the flat bands are doubly degenerate (orthogonalized through
the Gram-Schmidt method [59]), the total Berry phase for the
degenerate multiband case can be computed [60].

We compute all 12 combinations for the parameter set
t1, t2, t ′

1, t ′
2 ∈ {0, 1, x, y} (x and y are nonzero) and tabu-

late the analytical formulas for the computed Zak phases
in Sec. II of the SM. In this case, all the bands are flat
owing to the decoupling (one of the hopping parameters is
zero). We show here a typical example for t1 = 0, t2 = 1,

t ′
1 = x, and t ′

2 = y in Table I. When x = y (x = −y), the
Zak phases of the third and fourth (fifth and sixth) bands
are π ; the opposite energies of these bands show that they
contain chiral symmetry. This is also true for zero-mode
flat bands. For x = y, the two associated eigenvectors are
v3 = 1

2 [e−ik (|LE1〉 − |CT1〉) − (|LE2〉 − |CT2〉)] and v4 =
1
2 [−e−ik (|LE1〉 + |CT1〉) + (|LE2〉 + |CT2〉)]. The groups of
exciton components {|LE1〉, |CT1〉} and {|LE2〉, |CT2〉} can
be defined as a “chiral superposition” (CS), which is named
after the chiral symmetry found in those states, as shown in
Fig. 2(b). The left-hand (L) CS (color-coded in orange) is
therefore formed by LE1 and CT1 coupled by t2, while the
right-hand (R) CS (color-coded in blue) is formed by LE2 and
CT2. These two CSs are decoupled by t1, which is the key
to resuming chiral symmetry and rendering the topologically
nontrivial band. In Fig. S2 of the SM, we show more examples
of the scenarios with a Zak phase of π , which have similar
features.

The zero-mode flat bands have a Zak phase of π when
|x2 − y2| = 1, which has symmetry with t ′

1 ⇔ t ′
2. We ana-

lyze and compare the associated eigenvectors for two cases,
(1) {1, 0, 1, 0} and (2) {0, 1, x, y}, with |x2 − y2| = 1, in
Figs. 2(c) and 2(d), respectively. In both scenarios, the sum of
the phases for the flat bands is π . These flat bands are formed
by the four CT excitons. We can also apply the concept of CS
to form the L and R states. For {1, 0, 1, 0}, the LCS and RCS
are decoupled by t2 [Fig. 2(c)]. As shown in Fig. 2(d), the
LCS is formed by CT2–CT4 (coupled by t ′

1, t2, and t ′
2), and

the RCS is formed by CT1; the two are decoupled by t1. In
summary, we can see that (1) when we can clearly decouple
the groups of states within a cell, we will have a phase of
π , assisted by the symmetry of the hopping parameters, and
(2) once the symmetry of the hopping parameters is broken,
a fractional phase will appear. For the first scenario, we have
t1 = t ′

1 and t2 = t ′
2. For the second scenario, we can break the

symmetry of swapping: t ′
1 ⇔ t ′

2. We find that the eigenvectors
of the states with fractional phases have unequal distributions
of population in the basis states, while those with π phases
have equal distributions. About the fractional phase, we have
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TABLE I. The calculated Zak phases for t1 = 0, t2 = 1, t ′
1 = x, and t ′

2 = y.

Eigenvalues 0 (2) −√
x2 − 2xy + y2 + 1

√
x2 − 2xy + y2 + 1 −√

x2 + 2xy + y2 + 1
√

x2 + 2xy + y2 + 1
Zak phase γ1 + γ2 γ3 γ4 γ5 γ6

π
(

2 − 1
(x+y)2+1

− 1
(x−y)2+1

)
π (x2−2xy+y2+2)
2(x2−2xy+y2+1)

π (x2−2xy+y2+2)
2(x2−2xy+y2+1)

π (x2+2xy+y2+2)
2(x2+2xy+y2+1)

π (x2+2xy+y2+2)
2(x2+2xy+y2+1)

following speculations: (1) the corresponding physical quan-
tity that can be fractionalized could be the photocurrent related
to the excitons, and (2) the π/2 phase may be considered to
be the consequence of the quantum interference. However,
these speculations need further theoretical or experimental
works to validate. In addition, compared with the partons in
the fractional quantum Hall effect, the states with fractional
phases are similar to the partons carrying fractional charge
because the linear combination of these states can offer an
integer phase.

B. Topologically nontrivial zero-mode flat bands
for uniform chains

For uniform chains, we have t1 = t ′
1 = 1 and t2 = t ′

2 = x.
The Zak phases for the bottom two bands are π when x 	
±(

√
2 − 1), as shown in Fig. 3(a). It is unexpected that we can

have a topologically nontrivial band even for a uniform chain
in this model. For x 	 √

2 − 1, we analyze the eigenvectors at
the � point, for which the coefficients for the individual exci-
ton states in the eigenvector with a Zak phase of π are shown
in Fig. 3(c). The CSs can be formed by the states in orange (L)
and in blue (R); their coefficients have opposite signs with the
same magnitude. In this case, we have chiral-symmetry swap-
ping, LE1 ⇔ LE2, CT1 ⇔ CT3, and CT2 ⇔ CT4, which is
a translational operation and symmetric for the Hamiltonian
of a uniform chain. In addition, when t2 and t ′

2 approach
zero (but are still nonzero), the sum of the phases for the
bottom two degenerate bands is 5

2π (equivalently, 1
2π ), which

is different from the model with t1 = t ′
1 = 1 and t2 = t ′

2 = 0
( 3

2π ), indicating a phase transition due to the decoupling (t2 =
t ′
2 = 0). As illustrated in Figs. 3(b) and 3(c), the coupling

map changes from stripes (t2 = t ′
2 = 0) to cross nets (all the

couplings are turned on). Most importantly, we find the Zak
phase of the zero-mode (or the middle two bands for nonzero
d) flat bands is always equal to π for the uniform chain
with any energy gap d according to our calculations with
d �= 0, whose Hamiltonian is shown in Sec. VI of the SM.
The eigenvector of the flat band for the uniform chain with
any d reads vk = A− 1

2 [0,−eikt1 − t2, t1 + e−ikt2], where A =
2[t2

1 + t2
2 + 2t1t2 cos(k)]. Then the Zak phase of this state can

be computed analytically as z = i
∫ π

−π
v∗

k ∂kvkdk = −π . This
can also be interpreted as the inversion-symmetry-protected
topological phase. Moreover, when x → ∞, the phases for
the bottom two bands with negative energies will approach 1

4π

asymptotically, leading to a phase sum of 1
2π , which is consis-

tent with the uniform-chain calculation shown in the Sec. VI
of the SM. This is different from the case for t1 = t ′

1 = 0 and
t2 = t ′

2 = 1 (the Zak phase is 3
2π ) due to the symmetry and

quantum interference.

C. The Dexter-type topological phase transition

We have studied the scenario where t1 = t2 = 1 and t ′
1 = x

and t ′
2 = y �= x for topological phase transitions. The Zak

phases for the bottom two bands as a function of x and y are
shown in Figs. 4(a) and 4(b). When |t ′

1t ′
2| = 1, there is a phase

transition, as suggested by the Zak phase between −π
2 and

π
2 when tuning the hopping parameter continuously, which
is more remarkable when compared with the aforementioned
decoupling mechanism. This topological phase transition is
due to the Dexter-type excitonic hopping effect [61] between
LE1 and LE2 in which the effective hopping strengths for
the entire exciton are T = 2t1t2 and T ′ = 2t ′

1t ′
2 (T and T ′ are

(a) (c)

(b)

FIG. 3. (a) The Zak phases for the bottom two bands (the lowest band in blue) as a function of t2 = t ′
2 = x for a uniform chain (t1 = t ′

1 = 1).
The phases down to t2 = −0.01 (t2 = 0.01) from the left-hand side (right-hand side) are plotted. Notice that the phase could be π even for a
uniform chain at t2 = t ′

2 	 ±(
√

2 − 1). The red points indicate the phase of 3
2 π for the case with t1 = t ′

1 = 1 and t2 = t ′
2 = 0. Therefore, there

is a phase transition at x = 0, changing from 1
2 π to 3

2 π . On the other hand, when x goes to infinity, the phases will approach 1
4 π asymptotically.

The coupling maps are shown when t2 = t ′
2 = 0 in (b) and t2 = t ′

2 �= 0 in (c), with t1 = t ′
1 = 1. The coefficients are shown for the eigenvector

with a Zak phase of π for t1 = t ′
1 = 1 and t2 = t ′

2 	 ±(
√

2 − 1). The coefficients have opposite signs for the member states in the LCS and
RCS, as shown in (c).
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(a) (b)

(f)

(g)

(c) (d)

(e)

FIG. 4. The Zak phases (in units of π ) for the bottom two bands computed for (a) and (b) t1 = t2 = 1 as a function of t ′
1 and t ′

2 and (c) and
(d) t1 = t ′

1 = 1 as a function of t2 and t ′
2. (e) The phase transition mechanism. (f) The color-coded band structures and (g) corresponding

absorption spectra for the parameters at the blue (t ′
1 = 1, t ′

2 = 2), black dashed (t ′
1 = 1, t ′

2 = 1), and red (t ′
1 = 1, t ′

2 = 1
2 ) points indicated in (a).

illustrated in Fig. 1). Here the condition for the phase transi-
tion is that |T | = |T ′|, which is similar to the situation when
the cross-cell hopping is equal to the intracell hopping in the
SSH model, as shown in Fig. 4(e). This phase transition is also
consistent with previous work on the measurement of phase
difference [62]. However, the carriers for the phase transition
change to excitons, which is entirely different from the con-
ventional SSH and Rice-Mele models. This phase transition is
further supported by our calculations for t1 = t ′

1 = 1 and t2 =
x and t ′

2 = y [Figs. 4(c) and 4(d)], showing a linear relation-
ship between t2 and t ′

2 at the phase transition. In Figs. 4(f) and
4(g), the band structures and corresponding normalized opti-
cal absorption spectra at the red (t1 = t2 = 1, t ′

1 = 1, t ′
2 = 1

2 ),
black (t1 = t2 = 1, t ′

1 = 1, t ′
2 = 1), and blue (t1 = t2 = 1, t ′

1 =
1, t ′

2 = 2) points in Fig. 4(a) are shown to demonstrate the
phase transition. From the band structures, we can see the
band gap closing at k = 0 and k = ±π , which implies that
these two phases are disconnected adiabatically.

Further calculations show that this type of phase transition
can survive from the nonzero energy gap d , suggesting its
robustness against perturbations and further broadening the
applicability of our model. This type of phase transition was
reported previously [62] within the Rice-Mele model realized
in the optical lattice. In relation to that, LE1 and LE2 are
coupled by the CT states, which will open a gap between
them, corresponding to the on-site energy offset between the
neighboring sites in the Rice-Mele model. Notice that we also
have another transition when |t ′

1| = |t ′
2| owing to a change in

the symmetry, which is fundamentally different. We show the
results for this situation in Fig. S3 in the SM. The products of

the hopping integrals were also recently explored to identify
the number of edge states in a four-band SSH model [63].

Moreover, as the zero-mode flat bands are of great interest,
we also studied the phase sum for the scenario of {x, y, 1, 1},
where, generally, x �= y. Then the phase sum is equal to
π |x2 − y2|, which is π when |x2 − y2| = 1. We also derived
the Zak phase formalism for the general scenario {1, x, y, z},
as shown in Sec. IV of the SM, where, in general, x, y, and
z are nonzero and unequal to each other. Here we need to
point out that the twofold degeneracy of the flat bands is robust
against any perturbation including nonzero d , which implies
the existence of the topological edge states [64].

D. The edge states in the finite chains

The finite chain calculations with 100 sites were performed
for the even chain using the four parameter sets discussed in
the previous sections, i.e., {1, 0, t ′

1 = x, 0}, {1, t2, 1, t ′
2 = t2},

{0, 1, t ′
1,

√
1 + t ′2

1 }, and {1, 1, t ′
1, t ′

1 + 1}, as shown in Fig. 5.
Here we compute the eigenvalues as a function of t ′

1 or t2
in Figs. 5(a), 5(d), 5(g), and 5(j) and the site-dependent am-
plitude distributions for (1) the edge states in the zero-mode
flat bands in Figs. 5(b), 5(e) 5(h), and 5(k) and (2) the ad-
ditional interesting quasiedge states in Figs. 5(c), 5(f), 5(i),
and 5(l). Because there are more than two states with zero
energy, we call the edge states “zero-mode edge states” here
to distinguish them. As shown in the second row of Fig. 5,
each zero-mode edge state is localized on only one end of
the chain, and two zero-mode edge states will not appear on
the same side (one end has only one state, which is consis-
tent with the symmetric nature of the even chain model). By
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FIG. 5. (a), (d), (g), and (j) The eigenvalues and (b), (c), (e), (f), (h), (i), (k), and (l) the cell amplitudes of a finite chain with 100 sites
for different parameter sets. The second row of plots shows the amplitudes of the eigenvectors for the edge states of the zero-mode flat
bands. The red arrows point to the edge states chosen for the plots of amplitudes in the third row. The parameter sets are {1, 0, t ′

1, 0} for (a),
{1, 0, 1, 0} for (b) and (c), {1, t2, 1, t ′

2 = t2} for (d), {1,
√

2 − 1, 1,
√

2 − 1} for (e) and (f), {0, 1, t ′
1,

√
1 + t ′2

1 } for (g), {0, 1, 1,
√

2} for (h) and
(i), {1, 1, t ′

1, t ′
1 + 1} for (j), and {1, 1, 2, 3} for (k) and (l). Note that the zoom-in spectra are plotted for (l) to illustrate the edge state which is

far off from the bulk states. We can see the edge modes for these scenarios for the zero-mode flat bands, especially for the uniform chain in
(d)–(f).

comparing these results with the infinite chain results, it can
be seen that each zero mode in the infinite chain corresponds
to one zero-mode edge state in the even chain. This corre-
spondence will help us in the odd chain calculations later.
Recalling the Zak phase results for the relevant edge states
in the infinite chain calculations, it can be seen that these
edge states are topologically nontrivial and protected by the
inversion symmetry. In particular, the edge state in the zero-
mode flat bands further confirms the topologically nontrivial
bands for the uniform chain [Fig. 5(e)]. We also find that the
edge mode for a uniform chain will be more localized as we
increase the strength of t2 (or t ′

2). Apart from the zero-mode
edge states, we use red arrows to label the eigenvalues for
these quasiedge states in Fig. 5. As shown in Figs. 5(a), 5(g),
and 5(j), the edge states are the flat bands pointed to by the
red arrows for the cases {1, 0, t ′

1, 0} and {0, 1, t ′
1,

√
1 + t ′2

1 },
whereas the edge states appear off from the bulk states for
{1, t2, 1, t2} (the uniform chain). For the case with {0, 1, 2, 2},
we find the bands with an energy of 1 are topological, which
is consistent with the corresponding infinite chain calcula-
tions (see Table I). The amplitude distributions of the edge
states in the four parameter sets, computed for {1, 0, 1, 0},
{1,

√
2 − 1, 1,

√
2 − 1}, {0, 1, 1,

√
2}, and {1, 1, 2, 3}, show a

consistent trend. For the {1, 0, 1, 0} case, the edge states are
concentrated on both of the edge sites, with four associated
quasiedge states (bonding/antibonding on each end). For the

other three cases, the amplitudes decay exponentially from the
edge towards the center of the chain.

For an odd number of sites, we find that the edge state
can be asymmetric (as it concentrates on only one end) for
nonuniform chains, which is apparently due to the asymmetric
structure of the odd-number chain. Here we define that the
odd chain labeled by the parameters {t1, t2, t ′

1, t ′
2} has a left

end starting with t1 and t2 and a right end starting with t ′
1 and

t ′
2. It is convenient to compare the state localized at the right

end of an odd chain with {t1, t2, t ′
1, t ′

2} with the state localized
at the right end of an even chain with {t ′

1, t ′
2, t1, t2}. Here we

take an interesting case in which the even chain cases with
{1,

√
2, 0, 1} and {0, 1, 1,

√
2} both have topological nontriv-

ial zero modes as an example. It can be seen that there are two
different edge states localized at the two ends of the odd chain
for {1,

√
2, 0, 1} in Fig. 6(b). By comparing the odd chain

result in Fig. 6(b) with relevant even chain cases [Figs. 5(h)
and 6(a)], it can be seen that each zero-mode edge state in
the odd chain case shares the exact same eigenvector with one
of the zero-mode edge states in the relevant even chain case.
Considering that each zero-mode edge state in the even chain
cases is localized at only one end and corresponds to one of
the zero-mode flat bands in the infinite chain calculations, we
can take two states from each of the corresponding infinite
chain calculations to calculate the Zak phase in the odd chain
cases. The results show that the sum of the Zak phases of the
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FIG. 6. The amplitudes of the sites for finite chains with an (a) even and (b) odd number of sites: (a) 100 sites for {1,
√

2, 0, 1} and (b) 101
sites for {1,

√
2, 0, 1}. Notice that the amplitudes become asymmetric for the odd chains.

chosen states is always zero for the finite chain. This means
that, although the eigenvectors of the edge states are the same,
the edge states are trivial states for the odd chain cases because
the inversion symmetry is broken.

E. Experimental design for the observation
of excitonic edge states

Our model strongly indicates that there could be either
edge states in the zero-mode flat bands or quasiedge states
in the bands split off from the main bands. It could therefore
be straightforward to observe the topological edge states in
the following experimental setup. The most convenient exper-
imental materials platform could be the molecular chains in
nanowires [28,65]. In particular, the highest occupied molec-
ular orbitals (HOMOs) and the lowest unoccupied molecular
orbitals (LUMOs) are well separated in porphyrinlike molec-
ular chains, such as copper phthalocyanine (CuPc) [65–69].
Although the LUMO states are doubly degenerate (egx and egy

under D4h symmetry), they can be decoupled approximately
by symmetry. In addition, the HOMO (a1u state) is almost de-
coupled from the rest of the orbitals. Moreover, the interchain
coupling can be neglected as shown in previous work [48].
To observe the topological edge states, we first synthesize
the CuPc molecular nanowires, which are then diluted such
that we can separate individual nanowires. After this, the
diluted nanowire sample can be deposited on the quartz or
Perylenetetracarboxylic dianhydride through annealing [28].
We then shed the laser at the wavelengths near the two peaks
of the Q bands [65,66] because the middle of the two peaks for
the Q band corresponds to the zero mode and the two peaks
correspond to the band edges in the exciton band structure,
supposing the LE and CT states are almost degenerate. The
hopping integrals are on the order of 0.1 eV, following [48].
To observe the edge states in Fig. 5(f), we need to focus the
light wavelength to ∼ ± t near the zero mode [as shown by
the split-off energy levels in Figs. 5(d), 5(g), and 5(j)], which
is between 635 and 710 nm if the zero mode corresponds to
670 nm (the pink region in Fig. 7). Through photolumines-
cence spectroscopy we expect to observe the light emission
concentrated on both ends of the chain, as shown in Fig. 7. To
observe the topological phase transition assisted by the Dexter
process, we need to be able to tune the interaction, which
can be realized in the optical lattice [70,71]. Alternatively,
the dimerization between molecules can be realized through
ligand engineering.

IV. CONCLUSIONS

In summary, we studied the excitonic topological proper-
ties of a one-dimensional model that takes into account the
dimerization and the LE and CT excited states. We found
(1) a topological phase transition assisted by the Dexter
electron exchange for the excitonic hopping and (2) the topo-
logically nontrivial phase of π for the zero-mode flat bands
can exist even for a uniform chain with any energy gap d ,
especially the robustness of the degeneracy for the zero-mode
flat bands. In addition, we developed the concept of chiral
superposition to understand the topological phase. Our finite
chain calculations further confirmed our periodic-structure
calculations: the zero-mode edge states in the even chain cases
are topologically nontrivial, which is protected by the inver-
sion symmetry; these states will become trivial states in the
odd chain cases as the inversion symmetry is broken. Based
on the studies of the topological edge states in one dimension,
we designed an experiment to observe them optically in the
molecular chains in the UV-visible spectral region.

All the computer codes and data that support the findings
of this study are available from the corresponding author upon
reasonable request.

FIG. 7. The proposed experiment to observe the edge states using
molecular nanowires. The diluted nanowires are deposited on the
surface. By shedding the CW laser, we could observe the photolu-
minescence from both chain ends. One of the potential candidates is
a CuPc nanowire, in which there are well-defined two-level systems,
as illustrated in the zoom. The wavelength of the laser used should be
situated between the two peaks of the so-called Q band of the CuPc
nanowire, as illustrated in the pink area in the UV-Vis spectra.
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