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We study magnon transmission across gate-controlled junctions in the » = 0 manifold of Landau levels in
monolayer graphene in the presence of both spin and valley Zeeman fields. Specifically, we consider the 1| — 1|1
sandwich geometry. The nature of the interfaces between regions of different filling turns out to be crucial for
magnon transmission. Using the Hartree-Fock approximation, we find that either the spin or the valley degrees of
freedom of the occupied one-body states rotate across the interfaces. If the interfaces exhibit spin rotation, then
magnon transmission is suppressed at high energies, while if the interfaces have valley rotation, then magnon
transmission becomes perfect at high energies. The valley Zeeman coupling, which arises from partial alignment
with the encapsulating boron nitride, is independent of perpendicular magnetic field B, while the spin Zeeman
and other anisotropic couplings scale linearly with B. This allows the tuning of the relative strength of the valley
Zeeman coupling in situ by varying B, which can drive phase transitions of the interfaces between spin-rotated
and valley-rotated phases, leading to magnon transmission being either vanishing or perfect at high energies.
Our analysis, along with the experimental measurements, can be used to determine the anisotropic couplings in

the sample.
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I. INTRODUCTION

The quantum Hall effect (QHE), initially discovered in
semiconductor heterostructures [1,2], is the simplest mani-
festation of band topology [3,4]. The kinetic energy in the
strong orbital magnetic field is quenched into a discrete set
of highly degenerate Landau levels. When an integer num-
ber of Landau levels are filled, the system is insulating in
the bulk. The topological nontriviality of the bulk leads to
protected chiral edge modes [5] which carry the charge and
heat currents detected in transport. The absence of kinetic
energy within each Landau level means that the ground
states of electrons in partially filled Landau levels are con-
trolled by interactions, leading to the fractional quantum Hall
effect [6,7].

The dominance of interactions in the quantum Hall regime
is not limited to fractional fillings. If internal degeneracies
such as spin and valley are present, then each orbital Landau
level can be filled by multiple flavors. At integer fillings,
the many-body ground state is selected by the interactions, a
phenomenon known as quantum Hall ferromagnetism [8—11].

The QHE has found a new and remarkable manifestation in
monolayer graphene (MLG) [12-15], an atomically thin two-
dimensional (2D) material with a honeycomb lattice. MLG
shows well-quantized Hall plateaus[15,16] in the presence of
a strong orbital B, field at low temperatures.

The electronic band structure of MLG has two inequivalent
points in the Brillouin zone, the K and K’ valleys, where the
conduction and valence bands touch each other linearly in
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Dirac crossings. The low-energy, long-wavelength features of
MLG are thus dictated by the linear Dirac spectrum close to
the two valleys [15]. At charge neutrality, the chemical poten-
tial lies at the Dirac points. When an orbital B, field is turned
on, the kinetic energy near each Dirac point becomes quan-
tized into a set of particle-hole symmetric Landau levels, with
E, o sgn(n)s/B |n| [15]. The internal (near) degeneracies are
now spin and valley, leading to fourfold, nearly degenerate
Landau levels. Coming to the edge structure, all the n > 0
Landau levels produce chiral modes with a particle-like dis-
persion, and all the n < 0 Landau levels lead to chiral modes
with a holelike dispersion. The n = 0 manifold of Landau
levels is special, in that the wave functions are composed of an
equal superposition of particle-like and holelike momentum
states. Near an edge, because of intervalley scattering, the
orbital K and K’ n = 0 Landau levels combine to produce
one particle-like and one holelike edge mode [17]. Another
special feature of the n =0 LL is that the electronic wave
function in a particular valley is completely localized on a par-
ticular sublattice of the honeycomb lattice (valley-sublattice
locking). Thus, in the zero-energy n = 0 manifold of Landau
levels (called the zero Landau levels or ZLLs), one needs
a four-component spinor to describe the internal spin/valley
degrees of freedom. When none of the ZLLs are filled, the
filling factor v is defined to be v = —2, which is the same as
its Hall conductance in dimensionless units. When a single
ZLL is filled v = —1, and if a single one is empty v = 1. The
charge neutral state with two filled ZLLs and two empty ones
has v = 0.

©2024 American Physical Society
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Let us first consider the one-body terms in the Hamil-
tonian. The Zeeman coupling E; is always present. In
addition, in MLG samples encapsulated with hexagonal
Boron Nitride (HBN), partial alignment of the graphene lat-
tice with that of the HBN produces a sublattice potential
that favors one sublattice over the other [18-21]. In the
ZLLs, this means favoring one valley over the other. For
this reason, we will call this coupling the valley Zeeman
coupling Ey.

The case of v =0 (charge neutrality), though not the
main topic of this work, is the most complex and has led to
the development of many experimental techniques [22-32]
aimed at elucidating its nature. Two of the four ZLLs are
filled. When E7 > 0 and only long-range Coulomb inter-
actions are present, the ground state is a quantum spin
Hall insulator with maximal spin polarization [33,34]. The
two counterpropagating chiral modes have opposite spins,
and ought to produce a two-terminal edge conductance of
2¢2/h. However, experimentally, at a purely perpendicu-
lar field, MLG is a vanilla insulator with no edge modes
[22-25]. In tilted field experiments, when a B as well as
a B, are applied and E; is increased to a large value,
the state does approach the fully polarized spin ferromag-
net, and the expected edge conductance is asymptotically
recovered [25].

In addition to the long-range Coulomb interaction, there
are lattice scale interactions that break the SU(4) symmetry
and compete with the Zeeman and valley Zeeman couplings
in selecting the ground state [17,33,35-38]. It has long been
known that at the four-fermion level, the low-energy effective
theory must conserve the number of electrons in each valley
separately, leading to a U(1), symmetry [35]. In a seminal
work, Kharitonov proposed an ultra-short-range (USR) model
[39.,40] for the residual interactions which has two couplings,
a valley Ising coupling u;, and a valley XY coupling u,,, both
expected to scale linearly with B, . He then solved this model
in the Hartree-Fock (HF) approximation to obtain a phase
diagram in the u; — u,, parameter space. At charge neutrality,
the following quantum Hall phases are seen [39]: A fully
spin-polarized quantum spin Hall insulator, a canted antifer-
romagnet (CAF), a bond-ordered (BO) state, presumably with
a Kekulé distortion (and thus often called KD, though we will
use the notation BO), and a charge density wave (CDW). It
is believed that at a purely perpendicular field, the system is
either in a BO state or a CAF state, and on increasing E it
undergoes a transition to the fully spin-polarized state. More
recently, even more complex phase diagrams have been pro-
posed both for v = 0 [41-44] and v = £1 [45,46] systems by
relaxing the ultra-short-range assumption for the anisotropic
residual couplings.

Many experimental techniques have been used to probe
the v = O state. Apart from transport [22-25], the state has
been probed by scanning tunneling microscopy/spectroscopy
(STM) [30-32] and by the transmission of magnons [26-29].
Magnons are collective excitations which carry spin, and are
always present in systems which have a nonzero spin polariza-
tion. These two techniques probe different order parameters.
While magnon transmission probes whether the state in ques-
tion has any spin polarization, current STM experiments are
not spin resolved. They detect charge density at the atomic

scale, and can thus detect the presence of charge and/or bond
order. STM experiments ubiquitously show bond order and
CDW order [30-32]. As an aside, we note that while bond
order and CAF order do not coexist in Kharitonov’s phase
diagram [39], removing the restriction of ultra-short-range
interactions allows them to coexist [41—-44] at v = 0. Based on
a combination of STM and magnon transmission experiments,
the current consensus is that at low B, the system is a spin
singlet and has bond order. As the field B, increases, the
couplings u and u,, increase, while Ey remains the same. As
detected by magnon transmission [29], the system makes a
transition into a magnetic state, presumably the CAF phase, at
some critical value of B, . Based on Kharitonov’s phase dia-
gram this puts physical systems in the region of the parameter
space where u; > 0 while u,, < 0.

Our goal in this work is to thoroughly examine a much
simpler system, which is a “sandwich” of v =1, v = —1 and
v = 1, denoted as 1| — 1]1. Such a system has been examined
before in the limiting case when Ey = 0 [47]. We study it
in full generality in the neighborhood of the physical region
of the u;, uy, parameter space with nonzero Ez, Ey. Real
samples of graphene are believed to have u, > 0, u,, < 0. We
will examine both u; > |u,,|, which puts the system at E; =
Ey = 0inthe AF phase at v = 0, and u; < |u,,|, for which the
system is in the bond-ordered phase at E; = Ey, = 0atv = 0.
Since Ez, u, uy, all scale linearly with B, while Ey remains
constant, one can access many different regimes simply by
varying B . The first step is to examine the HF ground states
for each of v = £1. It is important to note that for v = %1
ultra-short-range interactions are unable to pick out a unique
bulk ground state if E; = Ey = 0. We will always have both
types of Zeeman fields nonzero in what follows, because in
this situation, the bulk ground states at v = %1 are unique. As
we will show, the ordering of the HF energies in the v = +£1
states, which depends on the coupling constants u;, u,, as
well as Ez, Ey, plays a key role in the nature of the interface
between v = 1 and v = —1. The middle layer of the sandwich
can undergo transitions between different ground states as B |
is varied. Note that magnon scattering in a skyrmion crystal
with a 1|1 & dv|1 sandwich also has been studied earlier [48].

Experimentally, magnons can be generated at the the con-
tacts in a v = 1 system [26-29,49,50] by creating a potential
difference between the copropagating edge channels of op-
posite spins at an edge between v = 2 and v = 1. When the
bias voltage between the two channels exceeds the spin flip
energy 2E7, a magnon is created by a spin-flip process, which
can then be transmitted through the 1|v,,|l junction, where
vy, is the filling fraction in the middle region. The magnon
transmission probability through the sandwich is studied as a
function of the incident magnon energy, either by local con-
ductance measurements or non-local voltage measurements.
In an earlier work [26] (believed to be for Ey ~ 0) it was
found that for both configurations 1|11 and 1| — 1|1, the
magnons were largely transmitted, while for 1]0|1, they were
largely reflected for energies near threshold (2E7). Although
this can be understood through kinematic constraints [47],
later experiments [28] show magnons are largely reflected for
1| — 1|1, perhaps because of oblique incidence at the inter-
face. More recent experiments [29] performed in the range
0 < v < 1 of the middle region show that the transmission
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across the junction can be changed by tuning the external
perpendicular magnetic field B, . Thus, even for the simpler
system, the experimental situation is far from clear. This is
a strong motivation for our detailed study including all al-
lowed parameters. Our main result in this paper is to show
that magnon transmission through the 1] — 1|1 sandwich can
detect various phases in the intermediate region as a function
of B 1-

Another important motivation for us is the possibility of
determining all the coupling parameters using magnon trans-
mission across the sandwich. The idea is as follows: The value
of Ey can be determined by zero-B | measurements of the gap
[18]. Using this and the known value of Ez, one is left with the
free parameters u;, uy,. The three parameters Ez, u, u,, all
scale linearly with B, . The Coulomb interaction scales with
/B, whereas Ey is independent of B, . Thus, by varying
B, one is able to vary the ratios of these parameters over a
wide range. The ratios determine the ordering of the one-body
levels, and consequently the structure of the junction, and the
order parameters in the middle region of the sandwich. Of
particular interest are specific ratios of the coupling constants
where phase transitions in the order parameters of the middle
region occur, which are reflected in the magnon transmission
probability. Thus, magnon transmission over a wide range of
B, would ideally allow us to determine u,/B, and u.,/B, for
a given sample.

The rest of the paper is organized as follows. In Sec. II, we
present the Hamiltonian and understand the bulk HF spectrum
for v = £1. It will turn out that the ordering of the levels
in energy plays a key role in the nature of the interface
between v =1 and v = —1, which in turn determines the
transmission/reflection of collective excitations through it.
We will examine how the various parameters of the model
(Ez, Ey and the anisotropic couplings) enter in determining
this ordering of levels. Since all the parameters except Ey
scale linearly with B, we can alter the ordering of lev-
els simply by varying B, . In Sec. III we will present the
full Hamiltonian of the system, including the interfaces, and
apply the HF approximation. Here we will explicitly see
how the bulk ordering of levels is the deciding factor in the
structure of the interface. In Sec. IV we study the collec-
tive excitations via the time-dependent Hartree-Fock (TDHF)
approximation, and introduce the bulk collective excitations
which are the scattering states for the magnon transmission
problem. Following earlier work [47] we also set up the for-
malism to study magnon transmission and reflection through
the 1| — 1|1 junction using the TDHF equations. In Sec. V we
present our results followed by a discussion and conclusion in
Sec. VL.

II. THE BULK HAMILTONIAN AND HARTREE FOCK
GROUND STATE

The Hamiltonian of the N = 0 LLs in MLG, because of
its sublattice and valley locking, can be written using four
levels denoted by their spin(1, |) and valley indices (K, K').
We work in the Landau gauge A = (0, B, x, 0), where B,
is the external magnetic field perpendicular to the sample.
Note that in the following, the magnetic length ¢ is defined

asf = \/h/eB].

The bulk Hamiltonian for the ZLLs in MLG for generic
symmetry-allowed interactions (first proposed by Kharitonov
[39]) is

2 2
bk — ”j Z S D o, ~)) ,—

kik2,q

X |: Z Ve (q) : (Ek:f_qyraé'kl)(Z’k;%raékz) :

a=x,y,z

+ V@ (@) (0,50 : }

— Y Ezgfo8 — Y EvE i, 0

X k
where ¢k, q) = 62(_%rk + %Cquy) and Cp =
(Ckkts Ckky» Ckkts Ckkry)T . The  matrices 7, and oy,

o =0,x,y,z, with 0 denoting the identity matrix, are Pauli
matrices acting in the valley and spin spaces respectively.
More explicitly, 7, = 74 ® 0. Here V(qy, qy) = Ee

is the screened Coulomb interaction. We have used the
USR assumption for the residual anisotropic interactions
[39], implying that v,(g) are independent of momentum;
Vo (q) = 2m0%u,. The valley XY coupling is given by
Uy = Uy = Uy,. As seen in earlier work [41-44], relaxing the
USR assumption does lead to the appearance of new phases
at v = 0. However, as long as Ez, Ey > 0, which we will
assume throughout this work, the USR assumption does not
seem to have a strong effect on the phases of v = %1 in the
physical region of the parameter space [45,46,51], which
is why we continue to use the USR assumption here. We
will keep the Coulomb screening wave vector gy small in
our analysis. Ez is the spin Zeeman term, which denotes the
coupling of the electron spin with the external magnetic field,
Ez & upBy, where u; is the Bohr magneton. Ey is the valley
Zeeman/sublattice potential term, which breaks the valley
degeneracy in MLG and favors the K valley over the K’ valley
in the noninteracting limit. As explained in the introduction,
this term is usually generated from the partial misalignment
of the substrate layer (such as HBN layer) with the graphene
layer [18-21].

At this point, it is useful to look at the symmetries of the
Hamiltonian. For E; = Ey = 0 the Hamiltonian is invariant
under SU(2); ® U(1), ® Z»,, where the subscripts s, v stand
for spin and valley respectively. Once one allows for nonzero
Ez, Ey, the symmetry reduces to U(1), ® U(1),. It is also
worth noting that while the U (1); symmetry holds very gen-
erally, the U(1), symmetry is valid only for interactions at
the four-fermion level [35]. Once one includes six-fermion
interactions, the conservation of momentum up to a reciprocal
lattice vector will reduce the U (1), symmetry to Z3,. This has
the important consequence that when the U (1), symmetry is
spontaneously broken, the would-be Goldstone modes will be
gapped by the reduction of the continuous symmetry U (1), to
the discrete Z3,.

Using the HF approximation and restricting to translational
invariant ground states up to an intervalley coherence, the bulk
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HF Hamiltonian from Eq. (1) can be expressed as

%EILgk = Z |:Z(Vijmn - inmj)Amn - VexAji:| CjCj

i,j m,n
— & '(Ezo: + EvT)C, 2
where Vijmn = Za ua(‘(a)ij(rot)mn and Vi = f ZE_;[ E2d2q

e
e 2

N

Coulomb interaction. The Hamiltonian is written in the basis
&= (chps Chys Chons oy )- A is completely known in terms

is the exchange contribution of the screened

of the one-body expectation values A;; = (HF|ciTc ;IHF) for
the Slater determinant ground state |HF).

Now, let us look at the single-particle HF energies of the
various levels at v = £1. For v = 1 with Ez, Ey > 0, the
electron spin and valley indices are good quantum numbers so
the projector A for the occupied state is diagonal in the basis
(K1, K },K' 1,K |)T.Forbulk v = —1 the occupied level
is K 1, implying A = diag(1, 0, 0, 0), leading to the single-
particle HF energies,

Exy = —Vex — Ev — Ez,

Ex, = —Ey + Ez + u,

Exy = Ey — E7 — u; — 2uy,,

Ex, = Ey +Ez — u,. 3)

For bulk v = 1 the unoccupied state is K’ |, implying A =
diag(1, 1, 1, 0), leading to the single-particle HF energies

Exy = —Vex — Ev — Ez — 2u,,,

Eg, = —Vex — Ey + Ez,

Exy = —Vex + Ey — Ez — 2u; — 2y,

Ex, = Ey + Ez — u; — 2uy,. )

One of the central thrusts of this paper is to examine
magnon transmission as B changes, while maintaining the
filling fractions across the junction. This is very reasonable
experimentally [29]. All the parameters of the Hamiltonian(1)
except Ey change with B, . The couplings in the Hamiltonian
depend on B, as follows [39]:

1
Ec o5 = JVBLE’,

Uy X ZBLMSN

2
E; =B, E), 6))

where B isin tesla and E?, 12, and E? are the strengths of the
parameters at a reference perpendicular field of B‘i =1 tesla.
We keep BY general in what follows to maintain flexibility. As
we will show in the section on results (Sec. V), the magnon
transmission amplitude depends strongly on the structure of
the junctions and the intermediate region, which in turn is
determined by the ordering of single-particle levels in the
three regions. Since this is an important finding of our paper
we will illustrate it here in some detail with examples.

Let us focus on the energy differences between the single-
particle energies of the HF levels. For v = 1, the energy

1.0 15 20 25 30 35 40
0
B, /B]

FIG. 1. HF energies of the occupied levels for bulk v =1 as
a function of B, /B with Vox =0, E2 = 0.5, Ey =5, u? =4 and
u), = =3 ie. the case when Ey > (u? — |u),|) > EJ. For B, /B} ~
1, the ordering of the occupied levels is given by Ex, < Egy < Egry.
As we increase B, the energy of the state K’ 1 decreases linearly
while the other energies increase, thus changing the order of the

occupied levels.

differences between the occupied levels are
Exy — Exy = 2(BLul — Ey)
Ex, — Exy = 2(BL[E7 + (u2 — [ul,[)] — Ev)
Ext = Exy = 2B, (|u},] - E7). (6)

Since there are multiple energy scales involved, we will
consider two illustrative cases, leaving the detailed investiga-
tion of all the possibilities to later sections. In both cases we
will look only at what is believed to be the physical region
of anisotropic couplings, given by u; > 0, u,, < 0. In Fig. 1
we focus on the case u; > |u,,|, assuming that the field is
perpendicular and that u? — |u§‘,| > E2. Finally, assuming a
partially aligned HBN substrate, we take Ey > ug — |u8vl. As
seen in Fig. 1, there are three different orderings as a function
of B,. For By < Ey/u? (roughly 1.37 for the parameters
chosen) the ordering of the levels is Ex| < Ex4 < Eks4. For
intermediate values Ez‘br(fo—v—mg\) > B > ’;‘:—X, the ordering be-
comes Ex| < Eg4 < Eky. Finally, for large values of B,
beyond roughly 3.4T for the parameters chosen, the ordering
is EKf¢ < EK,L < EKT'

As a second illustrative example, let us consider a case
where, at E; = Ey = 0, the system would have been in the
BO state in the physical region of anisotropic couplings, that
is, u; < |uyy|. We will consider a sceniario similar to the one
in the previous paragraph, with Ey > (|uf,| — u?) > EJ. Now
there are only two different types of orderings of single-
particle energy levels, as seen in Fig. 2. For B, < Ey /u?
(roughly 2.5 for the parameters chosen) the ordering is Ex| <
Eky < Eg4. For larger B the ordering switches to Ex| <
EKf¢ < EKT'

From these examples it is clear that for fixed Ey and purely
perpendicular field, the ratio of u, and u,, (that is, whether
I:T >1or \:ﬁ < 1) as well as the magnitude of B, control
the energetic ordering of filled levels at v = 1. While any
static ground-state average will not be affected by the ordering
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20 T
— Exy
15 — Em
— Exn

101

Ebulk
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1.0 15 20 25 30 35 40
0
B, /B]

FIG. 2. HF energies of the occupied levels for bulk v =1 as
a function of B, /B with Vox =0, E> = 0.5, Ey =5, u? =2 and
u?, = =3, i.e., the case when Ey > (|u?,| — u?) > E2. For B, /B ~
1, the ordering of the occupied levels are again Ex, < Exy < Eg/y,
but as we increase B, the energies of all the occupied levels increase.
We find that the ordering of the occupied levels changes only once,

in contrast to Fig. 1 where it changes twice.

of the filled levels, we will show that this ordering has drastic
effects on the junctions, and thence on the magnon transmis-
sion.

Thus far we have focused on the bulk. Now we will de-
scribe the full inhomogeneous Hamiltonian of our system with
the v = 1| — 1|1 sandwich and explicitly show how the bulk
energetic ordering of occupied levels in v = 1 and the strength
of B, affect the self-consistent HF results.

III. HAMILTONIAN AND HF APPROXIMATIONS
WITH JUNCTIONS

The Hamiltonian of the system in the presence of v = 1| —
1|1 sandwich is almost identical to Eq. (1), the only difference
being the positive background charges enforcing the different
fillings in the different regions of the sandwich,

2 ,
2y Z”j [ TN kot

kikag a=x.y.2

5

X vy(q) : (Ekl_‘h

TaEkl)(Ek;quaEkz) :

+ Z V(g) : (0(§) — eo(§) (=) — pp(—=§)) : }
q

- ZEZa,jasz - ZEVa,jrzzk, @)
k k

where ¢(k, §) = (*(—q:k + 1q.qy) and p(G) is the Fourier
transform of the electron density po(x, y) = ¥o(x, y) o (x, y)
for the ZLL. p,(§) is the Fourier transform of the positive
background charge density, which we choose to be

3, x<-W/2
(X, y) = Tl 1, —W/2<x<W/2. 3
T 3, x>WJ/2

Note that p, is independent of y. As can be inferred from
Eq. (8), the positive background “tries” to maintain a filling
of v =1 (three of four ZLLs filled) for |x| > W/2, and a
filling of v = —1 (one of four ZLLs filled) for the region
|x| < W/2. The edges are sharp, that is, there is an abrupt
change in the background charge density at =W/2. As we
know from previous work, smooth edge potentials can in-
duce edge reconstructions [52-59], a complication that we
do not want here. The width of the middle region is fixed
by the device geometry, and does not change with B, . At
the reference value BOl =1 tesla, the dimensionless width of
the middle region is given by W° = W/£°. As B, increases
the dimensionless width W = W°,/B increases. This affects
the nature of the interfaces and consequently the amplitude of
magnon transmission through the system.

As with the Hamiltonian of Eq. (1), this Hamiltonian also
has the symmetry group U (1), ® U(1),, with the usual caveat
about would-be valley Goldstone modes becoming gapped
when six-fermion interactions are included.

In the HF approximation, one reduces the two-body in-
teraction terms in the Hamiltonian (7) to one-body terms
generated by taking averages assuming a single Slater deter-
minantal (SSD) state. Each SSD can be uniquely characterized
by all possible one-body averages. In our problem, assuming
that translation invariance in the y direction is not broken
spontaneously, these averages are

(ko) =8 Aij (), ©)

where #, j runs from 1 to 4 and denotes the four possible
nearly degenerate ZLLs. The inhomogeneity in the prob-
lem manifests itself as a nontrivial dependence of the A
matrices on the guiding center index k. We will make use
of the U(1), ® U(1), symmetry to rotate the state in the
spin and valley spaces so as to make the A matrices real.
We get the following HF Hamiltonian in the basis ¢ =

T
(crkt» Crk ) > Ckk'ps Ckky)' @S

Hur :Lﬁy Z Z |:Z (Vijmn(ky — k2)

" kiky i) = mn

— Viumj(ky = k2)) A (k2)c, ity j
+ Vi (ki — k) A jjka)ef icn,i

— Ve(ky — kZ)Aji(kZ)Czlicklj}

- Zng(k)EszE:k - ZEZB,:GZ@ — ZEVBkTTZZk
k k k

(10)
where
2,2
Viimn(k) = V270 e 5 e (2 (T D
o0 2
Vi (k) = / tdgV (g, 0)e % cos(gkt?),
—0Q
g @22
Vi (k) = / tdqV(g, ke 2! (an
—00

085417-5



DE, RAO, AND MURTHY

PHYSICAL REVIEW B 110, 085417 (2024)

and

oo 2 .
Vie(k) = 262 f dqV (g, 0)e I F Re(e™* py(—g)). (12)
0

As usual in applications of HF [47,58,59], one starts with
a “seed” configuration of the A matrices. The HF Hamilto-
nian is diagonalized, states below the chemical potential are
occupied, and the resulting ground state is used to find an
improved set of A matrices. The process is repeated until
self-consistency is achieved, in the sense that the A matrices
on the next step match the A matrices on the previous step
to some desired level of precision. Once self-consistency has
been achieved, the eigenvalues of the A matrix at every k can
only be 0 or 1, representing the occupations of the energy
levels at that k. During the iterative process, the chemical
potential is maintained such that the system is charge neutral
overall.

We will present some HF results here to explicitly
show how the bulk ordering in v = 1, which is dictated
by the ratio of u and u;’y and B, (for fixed Ey, E?), deter-
mines the self-consistent HF state of the junction. In Landau
gauge, the momentum k along the periodic direction y is
related to the guiding center position X; = k¢? along the x
direction. The figures we present in what follows show the
HF single-particle energies and the spin-valley directions of
each HF state as functions of the guiding center position Xj.
Since we have used the U (1), ® U(1), symmetries to make
A real, the averages of T, & lie in the xz plane in each internal
space. We will simply present the directions as arrows with
an 7 representing K in the case of valley, and 1 representing
(0,) = 1 in the case of spin.

First, consider the case where ug > |u2y|, shown in Fig. 3.

We have chosen the parameters B, /B = 4 with the other
parameters identical to those of Fig. 1. The ordering of the
HF levels deep in the bulk of v = 1is Exy < Eg| < Exy <
Eg: |, whereas the filled state for bulk v = —1 is K 1. As
can be seen from the directions of the spin and valley for
each single-particle state, the system prefers to spontaneously
break the U (1), symmetry at each interface, rotating the spins
continuously. However, the valley degree of freedom remains
polarized either at K or K’, keeping the U(l), symmetry
intact. A level crossing occurs at the interface between the
two lowest levels, discontinuously exchanging their valley
polarizations.

Next, let us consider the case u? < |u?

xy
For B, /B(i = 4 with the other parameters being chosen as
in Fig. 2, the ordering of the HF levels in the v = 1 bulk is
Ex, < Egy < Egy < Eg/), whereas the filled state for bulk
v = —11is K 1. Now a spontaneous breaking of the U (1),
symmetry occurs, and there is a continuous rotation of the
valley polarization of each single-particle state. However, the
spin directions remain frozen at either 1 or |, with an abrupt
change occuring at the interfaces via a level crossing between
the two lowest levels.

The above two examples show the importance of the ratio
ul/|u),| to the structure of the interface. We will present
many more examples in Sec. V and show how the structure
of the interfaces in turn affects magnon transmission across
the junction. However, we will first examine the collective

|, shown in Fig. 4.
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FIG. 3. HF energies (top panel), spin structure (middle panel),
and valley structure (bottom panel) of each self-consistent HF level
for B, = 4BY. The Hamiltonian parameters are W° = 20, E2 =
30, E) = 0.5, Ey =5.0, u) =4, and u, = —3. The spin and val-
ley structure of each HF level is shown by plotting the vectors
6 = ({oy), (0;))(thin arrows for spin) and T = ((z,), (7;))(thick ar-
rows for valley). (o;) = +1, —1 is identified with 4, | spin and
(t.) = +1, —1 with the valleys K, K’ respectively. The direction of
the arrows of spin and valley represent the orientation of the averages
of 7, & in the xz plane of each internal space. The colors of the ar-
rows are the same as that of the corresponding energy levels. For the
parameters chosen, the bulk v = 1 ordering is Ex/y < Ex| < Egy <
Ex/, and the self-consistent ground state prefers many-body spin
rotation, whereas the valley indices of each level flip discontinuously
across the interfaces.

excitations of the system and review the magnon scattering
formalism [47] using the TDHF method.

IV. COLLECTIVE EXCITATIONS

It has been long known that when one uses the HF approx-
imation for one-body properties, the collective particle-hole
excitations should be treated in the TDHF approximation
[60-63]. Together, they constitute a conserving approximation
[64] in which the approximate correlation functions respect
gauge invariance. In the TDHF approach we start with the
equations of motion of an arbitrary one-body operator

i, P(t) = [H, P()]nr, (13)

where P stands for any c;rc ;. After the commutator is taken,
all four-fermi terms are reduced to two-Fermi terms using the
usual HF rule of considering all possible pairings of operators
that have nonzero expectation values in the given SSD state.
This results in a closed set of equations for one-body oper-
ators. In translation-invariant problems, such as bulk states,
one can further use the conservation of the momentum of the
particle-hole pair to reduce the problem to that of diagonal-
izing a finite-dimensional matrix. We will do this to obtain
the v = 1 bulk modes that are the “in” and “out” states in
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FIG. 4. HF energies (top panel), spin structure (middle panel),
and valley structure (bottom panel) of each self-consistent HF level
for B, = 4BY. The Hamiltonian parameters are W° =20, E2 =
30, ES = 0.5, Ey = 5.0, u? =2, and u?, = —3. We have used the
same convention to plot the spin and valley structure here as in Fig. 3,
with thin arrows for spin and thick arrows for valley. In this case, the
bulk ordering of the energy levels Ex, < Exy < Exy < Egr, is dif-
ferent from the case in Fig. 3. Here, we find self-consistently that the
ground state prefers valley rotation and the spin flips discontinuously
across the interfaces.

our scattering problem. In the inhomogeneous problem we
consider, we will assume translation invariance in the y direc-
tion, leading to a conserved y momentum g, for the collective
excitations.

To make future manipulations convenient, we first write
all one-body operators in the basis that diagonalizes the HF
Hamiltonian. Using the index k to label the y momentum
(the guiding center location is X; = k£?) and the index m =
0, 1, 2, 3 to label the HF levels with increasing single-particle
energy, we obtain, in this basis,

(HF|c] ,cir.n|HF) = 84080 uNp (m, k). (14)

Here Np(m, k) is the occupation of the mth HF level at the
momentum index k. Since we are at 7 = 0 this number can
only be zero or unity. Let us define the particle-hole operator
with momentum labels &, g, as

A _ 7
Ok,q_v,m,n - Ck—qy,mcksn‘ (15)

Operationally, this means the interaction matrix elements
have to be rotated into this basis as follows:

Viim(ki, ko, qy) = Zua[(UT(kl — q,)tU (k)i

x (U (ka + ¢,)7U (k2))im],
VEim(ki, ko, ) = EL(UT (ki — qy)U (k1))
x (U (ky + g,)U (k2))im], (16)

where U (k) is the unitary 4 x 4 matrix that rotates the states
from the original basis to the basis that diagonalizes the HF
Hamiltonian. The TDHF equations now reduce to

A Ko’ A
latok,qy,m,n = Z |}<kymmynn (Qy)ok’,q),,m’,n’~ (17
Km0

We look for eigenmodes to these equations. Assuming that a
particular eigenmode is expressed as

Oa,q}. = Z lIJ}Sim,nO/\k,qy,m,na (18)
k,m,n
we obtain the TDHF equation or generalized RPA equa-
tion [47] in frequency space as
> K (@) (@ @) = 0V, (g 0)  (19)
k',m'.n’
with the kernel
[K]]Z:;zf,,;n, (CIy) = [Em’(k/ - %) — €&y (k/)]8kk’8mm’8nn’

12
+ IT[NF(n/’ k') = Np(m', k' — gy)]
v

X [For(k" =k, g)Vormmn (K" = gy, k, —qy)

+ Fir (K =k, @)V, (K — @y, k. —3y)

— F(qy, k = K Womwn (k' = gy, k, kK — k)

— Fir(Gys k = KWK = gy, b, K = K],
(20)

where the short-range kernel F;, and the long-range kernel F;,
are defined by

3 +3162

er(kla k2) =+2me 2 s

00 O (3+13)12 . )
Pk, ko) = / tdg, Sk L)

—o0 JEC+IBC +q}

and €,(k) is the HF energy of the self-consistent single-
particle state |k, m).

In the next subsection we present the bulk collective excita-
tion for v = 1, and in the following subsection we turn to the
main topic of the paper, the transmission of magnons through
the v = 1| — 1|1 junction.

@D

A. Bulk collective excitations of v = 1

Bulk systems are translation invariant in both directions,
hence the HF states |k, m) = |m), their energies €,,(k) = €,
and the occupation of each HF level Np(m, k) = Np(m) are
all independent of momentum index k. In this case, one can
define an additional conserved momentum g, for the eigen-
operators. The RPA kernel defined in Eq. (20) is made block
diagonal in momentum space § = (¢x, ¢,) by the following
Fourier transformation

M;Zi};n/ (C_j) — Z [Kk’,m’,n’ (qy)e—iquklz, Ak = (k/ —k)

k,m,n
Ak

= [(ew — &) — (Np(n') — N (m'))uc (@18, 8w

+ (NF (I’l/) - NF (m/))f(Q)[Vn’m’mn - me’n’n]

(22)
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with
E.0? 2 e~k e/2 eii(lz'@e2
@) = [ S
T k202 + q(Z)
22

fl@=e"F @
and

‘Z‘jlm = Z ”a(UTTaU)ij(U+TaU)lmv (25)

a

“U” is the unitary matrix that diagonalizes the bulk HF Hamil-
tonian 2.

Thus, for the translational invariant bulk, the TDHF equa-
tion (19) simplifies to

ST KE T (@b (@) = 0@ (@), (26)

m'n

where

1 ik
Pon(@) = T Dy @y @) @)
Yk

are the normalized bulk collective modes of frequency w(q),
having the normalization condition,

> (Np () = Np ()@, @B, (@) =8up.  (28)

mn

Here ¢* represents the complex conjugation of ¢*. We are
interested in the positive frequency w(g) > 0 collective modes
¢mn(q) here, but it can be shown that the collective modes
Gun(q) with frequency —w(q) are related to the positive fre-
quency modes by @ (q) = ¢, (=q).

It is easy to see from the bulk TDHF Eq. (26) that the
collective excitations are superpositions of particle-hole ex-
citations which create a hole in a filled HF level and a particle
in an unfilled HF level. For the v = 1 bulk, the filled states
are K 1, K |, K’ 1 and the unfilled state is K’ |, and as these
states preserve the spin and valley indices the bulk RPA kernel
in Eq. (22) is diagonal in the particle-hole basis made of one
filled and one unfilled v = 1 HF level. We get three orthonor-
mal bulk collective modes [47] for v = 1. (1) The spin wave or
the SpiI:l magnon mode @, = @(x| gy, conserves valley bgt
flips spin. (2) The valley wave ¢,,, = ¢(x| |, conserves spin
but flips the valley. (3) The spin-valley wave ¢, = ¢k| x4
which flips both spin and valley. Their dispersions are [47]

ws(q) =Vex — uc(q) + 2Ez + u[1 — f(q)],
0y (q) =Vex — ue(q) + 2Ey + u:[f(q) — 1]
= 2uy[1 = f(@)]
wso(q) =Vex — uc(q) +2Ez + 2Ey +u[f(q) — 11.  (29)
u:(q), f(q) are defined previously in Egs. (23) and (24).

B. Magnon scattering setup for v = 1| — 1|1 junction

We will follow the method of Ref. [47], and solve the fol-
lowing elastic scattering problem. A bulk v = 1 spin magnon
is sent in from the asymptotic x - —oo v = 1 region towards
the junction. Given the geometry of our system, we assume
that the y momentum of the magnon g, is conserved. Note

that the Hamiltonian of the system conserves total S,. The
spin magnon and the spin-valley magnon both have S, = —1,
because they both involve one spin-% electron flipping its spin
from 4 to |. The valley magnon does not carry spin. This
means that at the junction, the spin magnon can mix with
other spin magnons and spin-valley magnons with the same
gy, but not with a valley magnon, because the total S; has to
be conserved. The outgoing waves are either reflected or trans-
mitted, and by the above logic, have to be either spin magnons
or spin-valley magnons with the same g, and the same energy
(elastic scattering conserves energy). The outgoing waves are
also assumed to be detected in the asymptotic bulk regions
x — *£o00. The system is divided into three regions: In the
two regions |x| > xo the HF ground state is the bulk state of
v = 1, while for |x| < x¢ the HF state for each guiding center
is obtained by the method described in the previous sections.
Note that the middle region is typically quite a bit bigger
than the size of v = —1 region as defined by the background
potential, Eq. (8), because the one-body density matrix takes
several magnetic lengths to relax to its bulk value, as seen in
Figs. 3 and 4. We will label the guiding centers forming the
region |x| < xo by the guiding centers [X;,i =1, ..., N]. We
study the transmission probability of an incoming collective
mode in X < X; to an outgoing collective mode in X > Xy.
For X < X; we have, very generally,

Vs
rvd)rl;ln e—iqﬁX + rSU¢fr:)n e—iqf(UX (30)

OB Uy '

where ry, r,, and ry, are the reflection coefficients for the
spin wave, valley wave, and spin-valley wave, respectively.
The momentum vector g, for each bulk collective mode is
determined as the positive solution of the equation expressing
the conservation of energy

a)a(qﬁ,qy) = w. (31)

leX,m,n(qyy w) = [etq;X + rse_lq;X]

+

Here v,(qy,qy) = (fqu)‘l, o =s,v,sv are the group ve-
locities of the spin wave, valley wave, and spin-valley
waves, respectively. Recall also that by S, conservation valley
magnons cannot be generated, and thus r, = 0. Similarly for

X > Xy the most general solution is

s v sv
tsd)mn eiin + tv(bmn eiq;'X + t5”¢m" eiq;"X
9

Vs NN VUsy

“I’X,m,n(CIy’ w) =
(32)

where tq, t,, and ¢, are the transmission coefficients for the
spin wave, valley wave, and spin-valley wave, respectively.
The same logic that dictates », = 0 also forces 7, = 0. It is
also possible that Eq. (31) has no real solutions for a particular
mode in a certain range of w, in which case that mode will be
kinematically forbidden.

If the full wave function of the collective excitations is
known, then the reflection coefficients can be obtained at
X =X as [47]

5@ @y) = [NV (DK, mn(qy, @) — 1511145
ry(Qgx, %’) =AUy _:im(Q)\yXl,m,n(%w w)eiq;’Xl
Fso(@rs @y) = Vo (@ Wx, mn(qy, @)X (33)
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FIG. 5. Hartree-Fock energies (first row), spin structure (second row), and valley structure (third row) of each energy level for three
different values of the perpendicular magnetic field BY, 2BY, 4BY. The colors of the arrows for the spin and valley are the same as that of

the corresponding energy levels. At B the Hamiltonian parameters are W° = 20, E = 30, u? = 4.0, u

—3.0,E2 = 0.5, and Ey = 5.0,

identical to Fig. 1. We have chosen the values of B, such that we sample all three different reglons of bulk ordering shown in Fig. 1. For
B, = BY (first column) both the spin and valley indices of each HF level remain a good quantum number but with increasing B, (second and

third columns) the system prefers a spin rotated ground state close to the interfaces while the valley remains a good quantum number.

Similarly, the transmission coefficient can be found from the
wave function at X = Xy as [47]

15(Ges 4y) = VOB (D Wy mn(gy, @)e” 4
tu(qx, q)) = vv(ﬁzm(q)quN,m,n(ny w)e_iq;XN

teo (G @) = N/ Vso B (@ Wty mn(Gy, @)e TX (34)
In writing the above expressions for reflection and trans-
mission coefficients, we have assumed sums over repeated
indices.

The next task is to find Wy, . »(qy, @) and Wy, ;. (qy, @)
for the v = 1| — 1|1 junction. We follow the procedure out-

mogeneous set of equations only for the region X; < X < Xy,

N
S TR (gy) + (S ()

i'=1 m'n
X,
+ (ZR X;qmm,nn (qy) - 608!'!"8mm’5nr1’]\IJX’,'r,m’,n’(q,V, w)
= V)?,»,m,n(Qw w)» 1 < i < N. (35)
Here
Xm0 X; By
" () = IZZ K (@), e %70,

. . . j<l
lined in Ref. [47]. In this approach, we take the full TDHF . X 8
equation, Eq. (19), and use the fact that the form of the solu- (=R X‘n'fn" (gy) =8N ZZ U<X‘l_’7’,':l17,'ln (qy)88,om wHe' ™ X=Xn)
tion is known in the asymptotic regions X < Xj, X > Xy. We j>N B
then integrate out these asymptotic regions to obtain an inho- (36)
(a) By =1BY% (b) By =2B% (c) BL =4B%
o —— Spin wave o —— Spin wave o —— Spin wave
—==" Valley wave -==" Valley wave —==" Valley wave
------ Spin-Valley wave <eee Spin-Valley wave <eee Spin-Valley wave
0.8 0.8 0.8
% 0.6 % 0.6 % 0.6
f 0.4 f 0.4 f 0.4
= = =
0.2 j 0.2 0.2
0.0 i\ l 0.0 l 0.0 | | B W

01 10 20 30 0 2 10

20 30 40 0 4 10 20 30 40 50

FIG. 6. Transmission amplitudes as a function of incoming magnon energy at g, = O(normal incidence) corresponding to the HF state in
Fig. 5. At B} the Hamiltonian parameters are W° = 20, E2 = 30, u? = 4.0, u?, = —3.0, E2 = 0.5, and Ey = 5.0. For this set of parameters,
the transmission amplitude of the spin magnon mode is strongly suppressed at higher energies and consists of some low energy peaks. The
transmission behaviors remain qualitatively the same as B, increases. Both the valley-wave and the spin-valley wave modes remain inactive

throughout.
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FIG. 7. Hartree-Fock energies (first row), spin structure (second row), and valley structure (third row) of each energy level for three
different values of the perpendicular magnetic field B, 2B, 4B/ . At B the Hamiltonian parameters are W° = 20, E2 = 30, u? = 2.0, u_‘x’y =

—3.0, E2 = 0.5, and Ey = 5.0, identical to Fig. 2. For B, = BY, 2B}

(first and second column) the occupied states at v = 1 ordered as K| <

K1 < K'1. While the spin of each HF level flipped across the interface, the valley indices of each level continue across the interface to make
the middle v = —1 region ordered as K1 < K| < K'| < K'1. At By = 4B (last column), the ordering of the occupied v = 1 states changes
to K| < K1 < K%. In this case, the system prefers a valley rotated ground state while the spin of each level remained to be a good quantum

number.

are the self-energy contributions which arise from integrating

out the asymptotic regions. With 8 running over all the indices
(m, n) of the bulk collective modes. [Kﬁ,;"n" (gy) is given in

Eq. (20) with X; = k¢? and X; = k'¢>. The inhomogeneous
source term is given by

1 Xm'
Ve mn(@ @)= —\/v_[KXj,,':f,n" (@) (@)
j<l m'n’ S
x [efiqi(XI-fZX]) _ eiqf(Xj].

(37)

Finally, we solve the inhomogeneous system of matrix equa-
tions (35) to find Wy, ,, , and Wy, ,, , for general g, and w [47]

(a) B, =1BY

(b) By =2B%

from which one can read out the reflection and transmission
coefficients using Eqs. (33) and (34).
Let us now turn to the results.

V. MAGNON TRANSMISSION ACROSS
THE 1| — 1|1 JUNCTION

In view of the large number of parameters in the problem,
Ey, By, ul, ud,, W°, we need to organize the results. The
case Ey = 0 was already addressed in Ref. [47], and hence we
will always take Ey > 0 in what follows. We will focus solely
on the regime of short-range interactions where u? > 0, ugy <

0, believed to be realized in graphene. Here there are two

(c) By =4B9%

——  Spin wave

1.0 1.0

—== Valley wave
------ Spin-Valley wave
0.8 0.8

0.6 0.6

T(w,q, = 0.0)
T(w,q, = 0.0)

—— Spin wave —— Spin wave

1.0

—== Valley wave —== Valley wave

------ Spin-Valley wave sweor Spin-Valley wave
0.8

0.6

0.4

T(w,q, = 0.0)

0.0

0.4 304
02 0.2
A A 0.0 J
1 10 20 :

A b 004 —-—~

20 30 10 4 10 20 30 10 50 60 70

FIG. 8. Transmission amplitudes as a function of incoming magnon energy at g, = 0 (normal incidence) corresponding to the HF states in
Fig. 7. At B, the Hamiltonian parameters are W° = 20, E2 = 30, u® = 2.0, 4%, = —3.0, EJ = 0.5, and Ey = 5.0. For B, = BY, 2B (first and
second column) the transmission amplitude of the spin magnon is strongly suppressed at higher energies, while both the valley and spin-valley
waves are inactive. This is consistent with the previous cases in Fig. 6 where the valley of each HF level remains polarized. For B, = 4B9 (last
column) we find completely different behavior. At high energies the spin magnon is completely transmitted across the junction. We also find
that for B, = 4B°L atw > 11 = 2E; + 2Ey the spin-valley wave is excited.
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FIG. 9. Occupied single-particle HF energies for bulk v =1 as
a function of B, /B with Vox =0, E2 =0.5, Ey = 1, u? =4 and
U, = —3 The parameters are chosen such that it reflects the case
when u > [ud| > Ey > E2. As we can see, for this case the or-
dering of the occupled state is Exy < Ex, < Exy which does not

change with increasing B .

major cases, (i) #; > |uyy| and (i) u; < |uxy|. Our second orga-
nizing principle is to start with small B, and go towards large
B, . At small B, for samples Ey will typically be larger than
the short-range couplings (due to the dependence of ., u, on
B, ), whereas at larger B, the short-range couplings may be of
the same order or even larger than Ey . The relative magnitudes
of the short-range couplings vs Ey have profound effects on
the self-consistent structure of the interfaces, and thus on the
magnon transmission amplitudes across the system. One of
the primary motivations of this work is to use such as study to
constrain the ratio u,/|uy,|.

In view of these considerations, this section is organized
as follows: In Sec. V A, we examine the case Ey > u |u |
over a range of B . Results for both u, > |u,,| and u, < |ux}|
will be presented. We find that for u, > |uy,| there is no qual-

itative change in the magnon transmission amplitudes as B
increases, while for u, < |uy,| the magnon transmission am-
plitude at high energy changes dramatically as B, increases.
Interestingly, in this latter case, a spin-valley magnon is also
excited. Next, in Sec. V B, we examine the case of interme-
diate Ey, with the same subcases as in Sec. V A. Finally, in
Sec. V C, we consider the case when Ey is the smallest energy
scale in the problem, with the inequalities [u0| > E2 > Ey.

A. Magnon transmission for large Ey

Throughout this section, we assume Ey > |ul| > E2 with
o =Zz,Xy.

Let us start with the case ug > |qu| We choose the
parameters WO =20, Eg = 30, uO =4.0, ux} =—-3.0,E% =
0.5, Ey = 5.0, which are the same parameters that we used
to illustrate the v = 1 bulk ordering in Fig. 1. Now, as seen
in Fig. 1, there are three possible orderings of the ener-
gies of the filled one-body states as a function of B,. To
sample all the orderings we have chosen three values of
B, =BY,2B9%,4B.

The self-consistent HF results are shown in Fig. 5, where it
is seen that the system prefers to rotate the spins through the
interface regions, while the valley degree of freedom remains
polarized. This is to be expected because of the large value
of Ey. Thus there is no qualitative change in the nature of the
interface as B, increases. The transmission amplitudes for the
bulk collective modes for B, = B, 2BY, 4BY are shown in
Fig. 6.

As expected from the adiabatic continuity seen in the HF
configurations, there is no qualitative change in the magnon
transmission amplitudes as B, increases. Furthermore, the
spin magnon coming in from the v = 1 bulk to the left is
excited in the K’ valley, because the only unoccupied state
is K’ |. However, the v = —1 bulk has only K 1 occupied,
hence its spin magnon is excited in the K valley. This in-
compatibility, combined with the fact that the valley is a good
quantum number, leads to very low transmission of magnons
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S—zo .': I', - " lﬂ;
I R Y A N N e\ R R R Y
- - f;\\\ - - trtttana, 2ttt tttttttttttt Xttty
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FIG. 10. Hartree-Fock energies (first row), spin structure (second row), and valley structure (third row) of each energy level for three

different values of the perpendicular magnetic field B}, 2B, 4B . At B} the Hamiltonian parameters are W° = 20, E2 = 30, u? = 4.0, u°

’x)

—3.0, E2 = 0.5, Ey = 1.0, identical to Fig. 9. For the parameters chosen the self-consistent HF states always prefer a spin rotated ground state
close to the v = 1| — 1 interfaces, while the valley remains a good quantum number. This is similar to the case of B, = 4B in Fig. 5.
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FIG. 11. Transmission amplitudes as a function of incoming magnon energy at g, = 0 corresponding to the HF states in Fig. 10. At B
the Hamiltonian parameters are WO = 20, EC = 30, u® = 4.0, u?, = —3.0, EY = 0.5, and Ey = 1.0. As in Fig. 6, we find that the transmission

) Uy
amplitude of the spin mode is strongly suppressed at higher energies.

throughout the energy range. There are a few sharp peaks
which we attribute to resonances between the cavity magnons
inside the v = —1 region and the incoming magnons, medi-
ated by the collective modes at the interface. It is also worth
noting that only the spin-magnon is excited, because the spin-
valley magnon has a very high energy due to the large value
of EV .

We next turn to the case u? < |u?, |. We choose the parame-
ters WO = 20, E = 30, u? = 2.0, ugy = —3.0,E2 =0.5,and
Ey = 5.0, the same as those used in Fig. 2. As shown in
Fig. 2, the ordering of the one-body levels changes once as
B, increases. Ex is always the lowest state. For B, < B, ~
2.6BY we have Exy > Eg4, while for B| > B, ~ 2.6B, we
have Ex4 > Egs4. The HF self-consistent results are shown in
Fig. 7.

For B; < B, both spin and valley are good quantum num-
bers for the one-body levels. The spin of the levels changes
via level crossings while the valley quantum number remains
unaltered. Once again, we expect the incident magnon from
the left to be in the K’ valley, while the bulk magnon of
v = —1 is in the K valley. Thus, we can expect very little
transmission, except at resonances mediated by the collective
modes at the two edges of the v = —1 region.

This is indeed the case, as seen in Figs. 8(a) and 8(b). For
B, > B, however, the valley is no longer a good quantum
number across the system. As can be seen in Fig. 7(c), the spin
remains a good quantum number. Thus, we can expect mixing
between the bulk K’ spin magnon of v = 1 and the bulk K
spin magnon of v = —1. This expectation is indeed borne out
in Fig. 8(c), where we see that at high energies spin magnons
are almost fully transmitted across the system. This almost
perfect transmission at high energies can be understood as
follows: High-energy magnons have a very short wavelength,
much smaller than the length scale over which the valley
superpositions change in Fig. 7. Since the valley is not a good
quantum number, the magnon can “adiabatically” change its
valley components as it traverses the interfaces. Furthermore,
due to the valley rotations at the interfaces and at the high
energy, it now becomes possible to excite the spin-valley
magnon, which are shown in the red traces in Fig. 7(c). Since
the ¢ = 0 energy of the spin-valley magnon is 2E7 4 2Ey, it
occurs only for @ > 11 in our units.

B. Magnon transmission at intermediate Ey

Throughout this subsection, we assume the inequalities
0] > Ey > E2 witha = z, xy.

First, we consider the case where u? > [u?,|. We illustrate
this case with the parameters u? =4, ugy = -3, Ey =1, and
E; = 0.5, for which the one-body energies are shown as a
function of B, in Fig. 9. As can be seen, we always have
Egy < Eg, < Exy < Eg), for v = 1. The occupied state for
v=—lis|K 1).

The self-consistent HF solutions for B, = B9, 2BY,4B9
are shown in Fig. 10. As in the case of large Ey, we find that
for u, > |u,,| the system prefers to undergo spin rotations at
the interfaces, leaving the valley quantum number conserved.
It is therefore not surprising that the transmission amplitudes,
shown in Fig. 11, are very similar to those at large Ey (Fig. 6).
There are sharp peaks at low energies, which we believe rep-
resent coupling to the cavity collective modes in the v = —1
region mediated by the interface collective modes. At high
energies the transmission drops to zero.

20 T
— By
1sf — Ery
— Exy
. 1o ]
3
.
5, 4
0,
s ‘ ‘ . ‘ ‘
1.0 15 20 25 3.0 35 40

B, /B}

FIG. 12. Occupied single-particle HF energies for the bulk v = 1
state as a function of B, /B withVex =0, E2 = 0.5, Ey = 1,u? =2
and 4%, = —3. We have chosen the parameters such that it reflects
the case when [u0,| > u® > Ey > EJ. In this case we find the bulk
ordering is Ex, < Exry < Egy, which does not change with B} .
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FIG. 13. Hartree-Fock energies (top panel), spin structure (middle panel), and valley structure (bottom panel) of each energy level for
three different values of the perpendicular magnetic field BY, 2BY, 4B). At B} the Hamiltonian parameters are W’ = 20, E2 =30, u? =
2.0, u®, = —3.0, E2 = 0.5, and Ey = 1.0, which are the same parameters we chosen in Fig. 12. Here we find initially for B (a), both the spin
and valley of each HF level remain as a good quantum number. With increasing B, in (b) and (c), although the spin of each self-consistent
level continues to behave as a good quantum number, the valley rotates across the interfaces.

Next, we consider the case where u < [, |. We have illus-
trated this case with the following choice of parameters: u‘z) =
2, u), =3, Ey =1, and E; = 0.5. As shown in Fig. 12,
the ordering of the one-body energies does not change as B
increases.

The self-consistent HF solutions for B, = B9, 2BY, 4B
are shown in Fig. 13. For this case, we find that for low B the
HF solution conserves both spin and valley quantum numbers.
However, beyond a certain B, the system prefers to rotate
the valley degree of freedom leaving the spin as a conserved
quantum number. The value of this critical B, at which the
valley ceases to be a good quantum number is not universal,
but depends on the coupling constants as well as on the width
of the v = —1 region.

The corresponding transmission amplitudes are shown in
Fig. 14. For small B, we see the characteristic magnon trans-
mission associated with a conserved valley quantum number

(a) By =1B¢

(b) B. =2B¢

in Fig. 14(a), very similar to those of Fig. 11. However, when
the valley is no longer a good quantum number, we switch
to the other type of magnon transmission spectrum, similar to
that of Fig. 8(c), with the transmission becoming perfect at
high energy, and with spin-valley magnons being excited at
intermediate energies.

C. Magnon transmission at very small Ey

In this subsection we will take Ey to be the smallest energy
scale in the problem, that is, |u0| > E; > Ey.
First, we consider the case where u(z) > |ugy . We illustrate

this case with the parameter choices u) = 4, u‘x)y =-3,E;, =
0.5, and Ey = 0.1. The HF one-body energy in the v = 1
bulk are shown in Fig. 15. As can be seen, the ordering

Exy > Ex| > Eg4 is preserved for all B .

(c) BL =4B%
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FIG. 14. Transmission amplitudes as a function of incoming magnon energy at ¢, = 0 for the HF state in Fig. 13. At B} the Hamiltonian
parameters are W° =20, E2 =30, u? =2.0, ufy = —3.0, E2 =0.5, and Ey = 1.0. The transmission amplitude of the spin wave shows
behavior consistent with Fig. 8, i.e., when the valley remains a good quantum number, as in (a), the transmission goes to zero at larger energies
and when the valley rotates, as in (b) and (c), the transmission goes to unity at high energies. For (b) and (c) at intermediate energies the

spin-valley wave is also excited.
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FIG. 15. Occupied Hartree-Fock single-particle energies for the
bulk v =1 as a function of By /B% with V,x =0, E3 = 0.5, Ey
0.1, u! =4, and u), = —3. The parameters satisfy u > |u) |
Eg > Ey. In this case the ordering of the occupied levels is EK'% <
Ex, < Eg4 which remains unchanged with increasing B .

\

The self-consistent HF solutions for B; = B(j_, ZB(J)_ are
shown in Fig. 16. In this case, the system always conserves
the spin quantum number while spontaneously breaking the
valley U (1) symmetry, rotating the valley degree of freedom
in the interface regions. In our case, because Ey # 0, the
occupied state in the v = —1 region has both valley com-
ponents as opposed to the case Ey = 0 examined by Wei
et al. [47], where the filled state in the v = —1 region is
K’ 1). The magnon transmission amplitudes are shown in
Fig. 17. As can be seen the transmission is nearly perfect at
all energy, barring a few resonant reflections, presumably due
to couplings of cavity modes in the v = —1 region with the
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asymptotic modes. This is very similar to the Ey = 0 case
examined earlier in Ref. [47].

Next we consider the case |ug,| > ul. The ordering of the
HF one-body levels for all B, is Exy > Eg4 > Eg |, as shown
in Fig. 18. The self-consistent HF solutions across the system
are shown in Fig. 19.

We see that in this case the system spontaneously breaks
the valley U (1) symmetries at the interfaces and in the v = —1
region, while preserving the spin symmetry. The correspond-
ing magnon transmission spectrum is shown in Fig. 20. The
magnon transmission now vanishes at low energies, increas-
ing, and becoming nearly perfect at high energies. There are
the usual dips associated with resonant reflections at discrete
energies.

VI. CONCLUSIONS, CAVEATS, AND OPEN QUESTIONS

In this work, we study the transmission of spin magnons
across a graphene 1| — 1|1 system. Our main motivation for
studying this particular setup is to obtain knowledge about the
ratio of lattice-scale, ultra-short-range anisotropic couplings
u; and uy,. Such couplings are unable to pick out unique bulk
ground states at v = %1 in the absence of spin and valley Zee-
man couplings. Hence we assumed in this work that £, Ey >
0, which is realistic for experimentally relevant situations.In
physical graphene samples it is believed that u#, > 0 while
uy, < 0, and that the two have roughly the same magnitude.
Furthermore, their ratio can be altered by Landau-level mixing
[65-68] and the screening environment [69]. Pinning down
this ratio and its evolution with screening and other tuning
parameters would be invaluable in determining the phases of
the v = 0 system, which is yet to be fully understood.
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FIG. 16. Hartree-Fock single-particle energies (top panel), spin structure (middle panel), and valley structure (bottom panel) of each energy
level for two different values of the perpendicular magnetic field B, 2B). At BY the Hamiltonian parameters are W° = 20, E2 = 30, u? =
4.0,u%, = —3.0, E2 = 0.5, and Ey = 0.1 which is same as that of Fig. 15. In this case the self-consistent states preserve the spin quantum

» Txy

number while the valley of each level rotates in the middle v = —1 region. Because of very small but nonzero Ey the occupied state in the

middle region has both valley components.
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FIG. 17. Transmission amplitudes as a function of incoming magnon energy at g, = 0. The parameters correspond to the HF state in
Fig. 16. At B the Hamiltonian parameters are W° = 20, E2 = 30, u° = 4.0, ufy = —3.0, E2 = 0.5, and Ey = 0.1. The spin wave is fully
transmitted across the junction with some transmission dips at smaller energies. The qualitative behavior remains the same as B, increases.

In contrast to v =0, where the nature of the phase is
not fully understood, the ground states at v = %1 in the
physical range of couplings with both spin and valley Zee-
man couplings nonzero are known to be valley-polarized spin
ferromagnets [45,51]. This makes it easier to determine the
values of the couplings themselves. E is known from the total
B field, and in principle, one can determine Ey by measuring
the gap at charge neutrality at B, = 0. A great advantage of
this setup is that the in situ tuning parameter B, allows us to
alter the ratio of Ey with respect to the other couplings.

We used the Hartree-Fock approximation to find the
self-consistent one-body states, and the variant of the time-
dependent Hartree-Fock approximation developed by Wei
et al. [47] to examine the transmission of magnons across
the system. We find that the magnon transmission is quite
sensitive to the structure of the interfaces between v = 1 and
v = —1. This structure in turn is dependent on the precise
ordering of the HF energy levels in bulk v = 1, and on the
width of the intermediate v = —1 region. We find that in
certain cases we can control the ordering of energy levels by
tuning B . Experimentally there is a finite range over which
B, can be varied, bounded at the lower end by disorder, which
destroys the quantum Hall effect at low B, and bounded by a
few tens of tesla at the upper end.

The first important fact to bear in mind in understanding
our results is that for Ey > O the bulk spin magnons have
different valley charactersinv =l and v = —1.In v = 1 the
spin magnon is entirely in the K’ valley, while in v = —1, it
is entirely in the K valley. This mismatch is why the nature
of the interface is so critical to the transmission of magnons
across the system. As a function of the coupling constants and
B, , the system may prefer to keep both spin and valley U (1)
symmetries intact, or spontaneously break either or both of
the U (1) symmetries. In all cases when the valley symmetry
is preserved by the HF ground state, the magnon transmission
drops to zero at high energies because of the mismatch stated
above. If the valley symmetry is spontaneously broken, then
the magnon transmission becomes nearly perfect at high ener-
gies, because the high-energy, short-wavelength magnons can
adiabatically follow the valley rotation across the interfaces.

The second important fact in understanding our results is
that in the physical region of parameters, u, > 0, u,, <0,
when u; > |u,,| the system prefers to break the spin U(1)
symmetry at the interfaces, while in the opposite case u, <
|uyy| the system prefers to break the valley U(1) symmetry
(for some particular B ). Since the interfaces between v = 1
and v = —1 can very roughly be thought of as miniature
regions of v = 0, this is consistent with the fact that in the
corresponding regions the v = 0 bulk ground state breaks
exactly those symmetries.

Keeping these two facts in mind, we can easily understand
the cases that we considered in Sec. V with u; > |u,,|. There
is no valley rotation in these cases, and thus the magnon
transmission drops to zero at high energy. For instance, Fig. 5
shows the HF interface structure for the case u) = 4, ugy =
—3 and Ey = 5. One can see that there is no valley rotation
for any value of B . The corresponding magnon transmission
is shown in Fig. 6, with the transmission dropping to zero at

Ebulk

10 15 20 25 30 35 40
0
B, /B]

FIG. 18. Occupied Hartree-Fock single-particle energies for the
bulk v = 1 as a function of B, /B% with Vox =0, ES = 0.5, Ey =
0.1, u? =2, and u?, = —3. The parameters satisfy [u),| > u? >
EY > Ey. For this case the ordering of the occupied states is Ex, <
Exy < Egy which does not change with increasing B .
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FIG. 19. Hartree-Fock single-particle energies (top panel), spin structure (middle panel), and valley structure (bottom panel) of each energy
level for two different values of the perpendicular magnetic field B}, 2BY. At B} the Hamiltonian parameters are W° = 20, E2 = 30, u(z) =
2.0,u°, = —3.0, E2 = 0.5, and Ey = 0.1, same as that in Fig. 18. For this case we find the spin of each HF level flips across the interface and

s Uyy

the valley rotates continuously across the junction. The occupied state in the v = —1 region has both valley components.

high energies. Similarly for Ey = 1 the HF structure of the
interfaces is shown in Fig. 10, with no valley rotation for
any B, . The corresponding magnon transmission is shown in
Fig. 11, and shows vanishing transmission at high energies.
The more interesting case is u; < |uy,|, believed to occur for
unscreened or lightly screened samples [69]. Here a crucial
role is played by the valley Zeeman field Ey. For vanishing
Ey — 0, the physics of magnon transmission was analyzed
by Wei et al. [47], and it was found that there is nearly
perfect transmission at high energy. Focusing on Ey moderate
to large, at small B, Ey > |u,|, E,, the configurations at
the interfaces do not break any symmetries, and the magnon
transmission vanishes at high energies. This is illustrated in
Figs. 7(a) and 7(b). The corresponding magnon transmission

(a) By =1B%

/T'w-r#’_—

—— Spin wave

===+ Valley wave
------ Spin-Valley wave
0.8

0.6

0.4

T(w,q, = 0.0)

vs energy is shown in Figs. 8(a) and 8(b). However, there is
a threshold B at which the couplings u, become dominant
over Ey, beyond which the interfaces break the valley U (1)
symmetry [Fig. 7(c)], restoring nearly perfect transmission
at high energies as shown in Fig. 8(c). This threshold B
depends not only on the couplings, but also on the width
of the intermediate v = —1 region, and can be estimated in
our model given the sample geometry. This is one of the
main results of our work, because this threshold field provides
quantitative information about the coupling constants.

In this context, the earlier experiments discussed in the
introduction on 1| — 1|1, are not exactly in the regime we
study, and so it would be very helpful to have detailed ex-
perimental studies at varying B, and varying sizes of the

(b) BL =2BY
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FIG. 20. Transmission amplitudes as a function of incoming magnon energy at g, = 0 for the HF states in Fig. 19. At B} the Hamiltonian
parameters are WO = 20, Eg =30, u? =2.0,u’ = -3.0, Eg = 0.5, and Ey = 0.1. As in previous cases where the valley of each HF level

xy

rotates, we find the spin waves are transmitted perfectly at large energies.

085417-16



MAGNON TRANSMISSION ACROSS v = 1| — 1|1 ...

PHYSICAL REVIEW B 110, 085417 (2024)

L —— Spin wave
===+ Valley wave
...... Spin-Valley wave
0.8
)
=06
Il
=)
S
3 04
&~
0.2
0.0 _-_U_J_u A .
' 2 30 10 50

w

FIG. 21. Transmission amplitudes as a function of incoming
magnon energy at g, = 0.3 and B, = 4B9. At B} the Hamiltonian
parameters are W° = 20, E2 = 30, u° = 4.0, u), =—3.0,E) =0.5,
and Ey = 5.0 and the corresponding HF state is shown in Fig. 5(c).
As in the case g, = 0, we find that the transmission of the spin-wave
is strongly suppressed at most energies, apart from a few isolated
resonances.

intermediate region for the 1| — 1|1 system. So far, the most
recent investigation has been restricted to fillings 0 < v < 1
for the intermediate region [29], which, while physically very
interesting, is much more complicated than the 1| — 1|1 sys-
tem that we analyze.

Let us turn to some of the assumptions that underlie
our approach. We have assumed ultra-short-range interac-
tions throughout. Consequently, to choose unique bulk ground
states at v = £1, we assumed nonzero spin and valley Zee-
man couplings. Relaxing the ultra-short-range assumption in
the physical region of parameters u, > 0, u,, < 0 does not
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FIG. 22. Transmission amplitudes for the collective modes as a
function of the incoming magnon energy at g, = 0.3 and B, = 4B9.
At BY. The Hamiltonian parameters are W° =20, E2 = 30, u? =
2.0,u’, = —3.0,E2 = 0.5, and Ey = 5.0, with the corresponding
HF state being shown in Fig. 7(c). As in the case g, = 0 [Fig. 8(c)],
we find that the transmission of the spin wave mode goes to unity at
higher energies.
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FIG. 23. Transmission amplitudes as a function of incoming
magnon energy at g, = 0.3 and B, = 4B9. At B} the Hamiltonian
parameters are W° = 20, E2 = 30, u° = 4.0, ul, =—=3.0,E) =0.5,
and Ey = 1.0 and the corresponding HF state is shown in Fig. 10(c).
We see qualitatively similar behavior to the g, = 0 results shown in
Fig. 11(c).

change the phases of v = x1. However, introducing inter-
actions beyond ultra-short-range does produce new phases
at v =0. Because of our sharp interfaces, the v =0 re-
gions here are fairly narrow, and we believe interactions
beyond USR will not have any qualitative effect on our re-
sults. Second, we have focused on incident magnons with
gy = 0. In Appendix, we show some results for incident
magnons with g, # 0, which look qualitatively similar to our
results in Sec. V. Third, we have ignored disorder and finite
temperature effects. Disorder can induce the magnons to scat-
ter elastically, thereby reducing the transmission. At 7' # 0,
thermally generated collective modes will be present in the
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FIG. 24. Transmission amplitudes as a function of incoming
magnon energy at g, = 0.3 and B, = 4B9. At B} the Hamiltonian
parameters are W° = 20, E2 = 30, u? = 2.0, ul, =—3.0,E) =0.5,
and Ey = 1.0 and the corresponding HF state is shown in Fig. 13(c).
Once again, we see qualitatively similar behavior to the g, = 0 re-
sults shown in Fig. 14(c).
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FIG. 25. Transmission amplitudes for all the collective modes
as a function of incoming magnon energy at g, = 0.3 and B, =
BY. At BY the Hamiltonian parameters are W° = 20, E2 = 30, u? =
4.0, u;’y =-3.0, Eg = 0.5, and Ey = 0.1 and the corresponding HF
state is shown in Fig. 16(a). We can see qualitatively similar behavior
to the g, = 0 results shown in Fig. 17(a).

system, and could scatter the electrically generated magnons
inelastically.

There are many open questions that could in principle be
addressed by a detailed analysis of magnon transmission. The
most important is the v = 0 state, which is yet to be com-
pletely understood. It is believed that Landau level mixing
leads to the interactions acquiring a range of the magnetic
length ¢ [41,42,69]. Introducing such interactions leads to the
appearance of new phases which manifest the coexistence of
CAF and bond order, and are separated from the bond-ordered
and CAF states by second-order phase transitions [41,42,44].
It should be possible to vary the screening to make the sys-
tem traverse this coexistence phase. Presumably, the magnon
transmission properties of this phase differ from that of the
standard CAF phase. Furthermore, fractional quantum Hall
phases near v = 0 also display a rich variety of phases in
the physical regime of parameters, which could be explored
via magnon transmission [29]. Another interesting future di-
rection could be exploring shot noise related measurements
[70-74] for the magnon transmission, which could help to
reveal the topological orders of the underlying fractional
quantum hall systems. We hope to address these and other
such questions in the near future.
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FIG. 26. Magnon transmission amplitudes for all the collective
modes as a function of incoming magnon energy at g, = 0.3 and
B, = BY. At B% the Hamiltonian parameters are WO = 20, EX =
30, uO =2.0, qu =-3.0, Eg =0.5, and Ey = 0.1 and the corre-
sponding HF state is shown in Fig. 19(a). Once again, the behavior
is qualitatively similar behavior to the g, =0 results shown in
Fig. 20(a).

APPENDIX: MAGNON TRANSMISSION AT FINITE ¢,

All the results presented in the main text are for g, = 0.
In this Appendix, we examine magnon transmission when
the y momentum is nonzero. Although we show the results
for a particular choice of g, = 0.3, this illustrates the general
behavior of the transmission results for any finite g,. We find
that the magnon transmission results are qualitatively similar
to the results for g, = 0.

We organize the results in the same way as in Sec. V,
considering three different values of the valley potential Ey .

First, we consider Ey > |ud| > E) with o =z, xy.
Magnon transmission for u, > |u,,| at B; = 4BY is shown in
Fig. 21. We find that the magnon transmission is strongly sup-
pressed, apart from the resonant peaks similar to the g, = 0
case.

Still staying with Ey > [u2| > E2, we now consider the
case u; < |uy,| at By = 4BOL. The magnon transmission re-
sults are shown in Fig. 22. Here we find that the magnon
transmission is small at lower energies and increases with the
magnon energy eventually leading to complete transmission at
higher energies. The behavior is very similar to that at g, = 0.

Next, we consider intermediate values of Ey such that
|u2| > Ey > Eg with @ = z,xy. The case of u; > |uy| is
shown in Fig. 23, while the case with |u,,| > u; is shown
in Fig. 24. Both the results are for B; = 4BY. Here too, the
results are qualitatively similar to the g, = O results.

Finally, we consider the case when the valley Zeeman
coupling is the smallest scale, i.e., [u)| > EY > Ey. The case
withu, > |u,|is shown in Fig. 25 and the case with |u,,| > u;
is shown in Fig. 26. Both the results are shownat B, = B‘i. As
one can see, for u; > |uy,|, the magnon transmission remains
almost unity apart from the resonant dips similar to the results
at g, =0 in Fig. 17. For |u,y| > u,, on the other hand, as
seen before in Fig. 20, the magnon transmission increases with
energy and eventually saturates to unity.
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