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Robust hyperbolic plasmons in a graphene allotrope with dual anisotropic Dirac cones
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Graphene has significantly influenced advanced photonics, due to its exceptional ability to confine light
at atomic scales. However, the presence of isotropic Dirac cones (DCs) in graphene restricts its capability
to support hyperbolic surface plasmon polaritons (SPPs) propagation without specific patterning treatments.
Additionally, the plasmon frequency in graphene is highly sensitive to the Fermi level, making it unstable under
external perturbations. In this study, we present a dual anisotropic Dirac cone (DADC) model that addresses
these limitations. We demonstrate that this DADC exhibits highly in-plane anisotropic plasmons and extensive
hyperbolic regions capable of supporting hyperbolic SPPs. By maintaining the Fermi level between the Dirac
points of the two DCs, we ensure that the plasmon frequency remains independent of Fermi level. Furthermore,
we identify ω-graphene, a graphene allotrope, as a potential material for this model. Our first-principles
calculations revealed that ω-graphene exhibits significantly anisotropic plasmons, with a maximal frequency
of 1.68 eV along the x direction and 0.128 eV along the y direction, accompanied by a low-loss hyperbolic
region spanning from 0.48 to 1.16 eV. Notably, the plasmon frequency remains stable despite variations in Fermi
energy within an experimentally attainable region. The highly directional propagation of SPPs in the hyperbolic
regions was also confirmed using Maxwell’s equations. These findings introduce a compelling candidate for
SPPs devices and open exotic avenues for designing and investigating natural hyperbolic surfaces.
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I. INTRODUCTION

To confine electromagnetic waves to atomic scales [1–3],
highly localized plasmon excitations have been achieved in
engineered metamaterials, such as structured metal surfaces
and doped semiconductors [4]. Furthermore, it is noteworthy
that light-matter coupling can experience significant enhance-
ments in hyperbolic materials (HMs), which are characterized
by opposing signs in the principal components of permit-
tivity [5,6]. Electromagnetic waves traversing through HMs
exhibit hyperbolic dispersion relations, enabling the propa-
gation of highly confined surface plasmon polaritons (SPPs).
These distinctive hyperbolic properties give rise to a plethora
of intriguing phenomena, such as negative refraction [7,8],
negative reflection [9], broadband field canalization [10,11],
and topological transitions at magic angles [12]. These exotic
optical scenarios offer innovative opportunities for designing
advanced optical devices.

The emergence of graphene has paved the way for excit-
ing developments in plasmon devices, owing to its excellent
mechanical properties, high thermal conductivity, and excep-
tional carrier mobility [13–17]. Moreover, when graphene
sheets are precisely patterned into micro- (nano)structures,
they form atomically thin metasurfaces capable of support-
ing the propagation of hyperbolic SPPs [18,19]. However,
graphene-based plasmon devices encounter two significant
limitations: (1) The in-plane optical isotropy inherent in un-
patterned graphene, stemming from its isotropic DCs, restricts
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its ability to provide directional guidance and support the
unidirectional propagation of SPPs. Additionally, patterned
graphene has a limited ceiling for the plasmon wave vector
due to current constraints in nanotechnology. (2) The plas-
mons in charge-doped graphene are sensitive to perturbations
in Fermi level, which can be induced by defects, thermal fluc-
tuations, electric gates, or charge transfer at interfaces [20].
In light of these limitations, substantial endeavors have been
dedicated to achieving resilient plasmonic behavior [20–22].

In this study, we introduce a dual anisotropic Dirac cone
(DADC) model to address the two key limitations. We
demonstrate that the DADC model exhibits highly anisotropic
plasmons, leading to broad hyperbolic regions capable of
supporting hyperbolic SPPs without the need for structural
patterning. A fascinating aspect of our findings is that as
the Fermi level varies between the Dirac points (DPs) of
the two DCs, the plasmon frequency remains independent
of Fermi level. Furthermore, we identify a unique graphene
allotropy named “ω-graphene” [23] as a suitable material for
this model. Through first-principles calculations, we predict
that the pristine ω-graphene boasts low-loss plasmons with
frequency ranging up to 1.68 eV along the x direction, reach-
ing into the visible light spectrum, and up to 0.128 eV along
the y direction. Moreover, the anisotropic response results
in a low-loss hyperbolic region (0.48 − 1.16 eV). Impres-
sively, the plasmon frequency remains nearly unaffected as
the fluctuation amplitude of electron density within −2.89 ×
1013 to 1.95 × 1013 cm−2 (± corresponding to the addition
or removal of electrons from the material). We also con-
duct simulations based on Maxwell’s equations to confirm
the directional propagation of hyperbolic SPPs within the
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hyperbolic region. Our findings not only offer a promising
candidate for plasmon applications but also provide valuable
principles for designing natural hyperbolic surfaces.

II. RESULTS AND DISCUSSION

A. Plasmons in a dual anisotropic Dirac cone model

1. Plasmons in 2D materials

Under the random-phase approximation [24,25], a col-
lective plasmon mode is determined by the zeros of the
dynamical dielectric function

ε(q, ω) = 1 − V (q)�(q, ω). (1)

For a two-dimensional (2D) system, the Fourier transform
of the Coulomb potential, V (q) can be written as V2D(q) =
2πe2/εrq, with εr being the background dielectric constant.
The intraband and interband transitions of electrons lead to the
Linhard expression of polarization function (electron response
function) �(q, ω) [26,27] (we take e = h̄ = 1 hereafter),

�(q, ω) = gs

(2π )2

∑
l,l ′

∫
d2k

× f (Ek,l ) − f (Ek+q,l ′ )

ω + Ek,l − Ek+q,l ′ + iη
Fl,l ′ (k, q), (2)

with Fl,l ′ (k, q) ≡ |〈l, k|e−iq·r|l ′, k + q〉|2, where gs is the spin
degeneracy, Ek,l and |l, k〉 represent the eigenenergy and elec-
tron wave function of the state at band l and the wave vector
of k, and f (E ) is the Fermi distribution function.

For intraband transitions (l = l ′), we have Fl,l ′ (k, q) = δll ′ .
Consequently, polarization function resulting from intraband
transitions can be written as

�intra (q, ω) = gs

(2π )2

∑
l

∫
d2k

f (Ek,l ) − f (Ek+q,l )

ω + Ek,l − Ek+q,l + iη
.

(3)

In the long-wavelength limit (q → 0), this can be simpli-
fied to the following expression (setting η = 0) [22]:

�intra (q, ω) = 1

π
D(θq)

q2

ω2
, (4)

with the Drude weight of D(θq) = πρ(μ) × (〈υ2
x 〉cos2θq +

〈υ2
y 〉sin2θq). In this expression, 〈υ2

j 〉 = ∑
l

∫
d2kυ2

j δ

(Ek,l − μ)/
∑

l

∫
d2kδ(Ek,l − μ), j = x, y denotes the

averaged square velocity along the x- and y-direction at the
Fermi level μ; υ j = ∂Ek,l/∂k j represents the electron velocity
along the j direction; ρ(μ) = gs

(2π )2

∑
l

∫
d2kδ(εk,l − μ)

represents the electron density of states at the Fermi level μ;
and θq denotes the angle of wave vector q relative to the
x-direction. The polarization function distinctly demonstrates
its reliance on both the wave-vector direction and the electron
density of states at the Fermi level.

For interband transitions (l �= l ′), we have Fl,l ′ (k, q) ≈
|〈l, k|q · r|l ′, k + q〉|2 in the long-wavelength limit. Without
loss of generality, we considered the interband transitions
between two bands, i.e., l, l ′ ∈ (1, 2). The contribution of
the interband transition to the polarization function can be

expressed as

�inter (q, ω) ≈ gs

(2π )2

∫
d2k

ξ (k, θq)

ω2 − 2
12

q2, (5)

with ξ (k, θq ) = 2( f (Ek,2) − f (Ek,1))12|〈1, k|x cos θq

+ y sin θq|2, k〉|2 and 12 = Ek,2 − Ek,1. Assuming 12

is independent of k , the interband transition contribution can
be simplified to a Lorentzian term,

�inter (q, ω) ≈ 1

π

S(θq)

ω2 − ω2
b

q2, (6)

with S(θq) ≈ gs

4π

∫
d2kξ (k, θq ) and ωb = |12|.

The total polarization function is expressed as follows:

�(q, ω) = �intra (q, ω) + �inter (q, ω)

=
(

D(θq)

ω2
+ S(θq)

ω2 − ω2
b

)
q2

π
. (7)

The zeros of the dynamical dielectric function [ε(q, ω) =
0] yield the following dispersion relation of plasmons:

ω±(q) =
√(

κ ±
√

κ2 − 2εrDω2
bq

)/
εr (8)

with κ = ω2
bεr/2 + q(D + S) and ± corresponding to the

high-frequency (low-frequency) branches, respectively. Each
plasmon branch contains the contributions from both intra-
band and interband transition, which are characterized by the
Drude weight (D) and Lorentzian weight (S) within the dis-
persion relations. For q → 0, Eq. (8) is simplified to ω−(q →
0) ≈ (2Dq/εr )1/2 and ω+(q → 0) ≈ ωb, corresponding to
the intraband and interband feature of plasmons, respec-
tively. In large wave-vector limit, q 
 ω2

bεr/2(D + S), the
low-frequency branch attains its maximal value, ω−

max(q) =
ωb/

√
1 + S/D, while the high-frequency branch is simplified

to ω+(q) ≈ (2(D + S)q/εr )1/2. Notably, the dependence of
both the Drude weight (D) and the spectral weight (S) on the
direction of wave vector q demonstrates the anisotropy of
plasmons.

2. Dual anisotropic Dirac cone model

We start from a 2D system with an anisotropic DC de-
scribed by the Hamiltonian [28]

HDC(k) =
(

μDP υxkx − iυyky

υxkx + iυyky μDP

)
. (9)

Here, kx and ky denote the electron wave vectors relative to
the Dirac point (DP), and μDP is the energy at the DP. Both υx

and υy are positive and independent of electron wave vector.
The anisotropy of the DC can be described by β = υx/υy with
β = 1 representing an isotropic DC as the case of graphene.

For the 2D anisotropic Dirac system, we have the following
relations:

ρ(μ) = gs|μ − μDP|
2πυxυy

,
〈
v2

x

〉 = υ2
x

2
,
〈
v2

y

〉 = υ2
y

2
, (10)

leading to

D(θq) = gs|μ − μDP|
4

(βcos2θq + β−1sin2θq). (11)
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FIG. 1. Schematic representation of dual anisotropic Dirac cones
model. The orange plane signifies the Fermi level’s position which
varies between the two Dirac points. The sections between the Dirac
cones and this plane, indicated by the red ellipses, delineate the Fermi
contours of the model.

Certainly, we have observed a distinctive anisotropic Drude
weight, which is closely linked to the anisotropy (β) of DC. It
is worth highlighting that the dependence of Drude weight (D)
on the Fermi level μ demonstrates the tunability of plasmons
via charge doping, akin to the behavior observed in graphene
plasmons [29].

As shown in Fig. 1, we then examine a 2D Dirac system
involving dual anisotropic DCs, as described by the Hamilto-
nian,

H (k) =
(
HDC1 0

0 HDC2

)
, (12)

with

HDC1 =
(

μDP1 υ1xk1x − iυ1yk1y

υ1xk1x + iυ1yk1y μDP1

)

HDC2 =
(

μDP2 υ2xk2x − iυ2yk2y

υ2xk2x + iυ2yk2y μDP2

)
. (13)

In these expressions, μDP1 and μDP2 (μDP1 > μDP2) repre-
sent the energies of the two DCs, respectively. The definitions
of other parameters are similar to those of Eq. (9). Assuming
that the separation between the two DCs in reciprocal space is
significantly larger than the length of the wave vector of the
plasmons, the contributions of electron transitions between
the two DCs can be neglected. In such instance, the coupling
between the two DCs can be omitted for the sake of simplifi-
cation.

The Hamiltonian gives the electron density of states as

ρ(μ) = ρDC1(μ) + ρDC2(μ)

= gs

2πυ1xυ1y
|μ − μDP1| + gs

2πυ2xυ2y
|μ − μDP2|. (14)

Supposing the two DCs have the same anisotropy (υ1x =
υ2x ≡ υx, υ1y = υ2y ≡ υy), the electron density of states
within the region μDP2 < μ < μDP1 becomes independent of
the Fermi level,

ρ(μ) = gs

2πυxυy
(μDP1 − μDP2). (15)

This phenomenon can be elucidated by the variation in the
Fermi level between the Dirac points of the two DCs, causing
an increase in the electron density of states in one DC and,
inevitably, a simultaneous decrease in the electron density of
states in the other Dirac cone. In this case, we get

D(θq) = gs(μDP1 − μDP2)

4
(βcos2θq + β−1sin2θq). (16)

Therefore, under the long-wavelength approximation q →
0, the Drude weight D becomes insensitive to the Fermi
level, as μDP2 < μ < μDP1. This feature is associated with
the dual DCs, and leads to the electron density of states (ρ)
and anisotropy (β) at the Fermi level being independent of
the Fermi level’s position. Additionally, interband transitions
occurring at high energies are typically less influenced by the
Fermi level’s position compared to intraband transitions. We
therefore assume that shifts in Fermi level between the two
DPs exert a negligible influence on the Lorentzian term (S).
Consequently, the plasmon dispersion described in Eq. (8)
displays a behavior that is independent of the Fermi level.

3. Hyperbolicity of SPPs

The hyperbolicity of SPPs in 2D materials is featured
by conductivities with opposite signs along two orthogo-
nal directions (taken as x- and y directions) within specific
frequency regions (referred to as hyperbolic regions) [11].
The relation between conductivity σ (q, ω) and the polariza-
tion function in the homogeneous and local response limit,
σ (q, ω) = ie2�(q, ω)/q2 [30,31] leads to the expression of
the conductivities along the x- and y directions σ j j as (setting
e = 1)

σ j j (ω) = i

π

Dj

ω
+ i

π

S j

ω2 − ω2
b

, j = x, y, (17)

with Dx ≡ D(θq = 0), Dy ≡ D(θq = π/2), Sx ≡ S(θq = 0),
and Sy ≡ S(θq = π/2). This expression corresponds to that
of Ref. [32] without considering damping rates of both intra-
band and interband transitions. The hyperbolic region can be
precisely located by identifying the zero point ( j) with

 j = ωb√
1 + S j/Dj

, (18)

which is highly dependent on the anisotropic electronic struc-
tured characterized by S(θq)/D(θq). More interestingly, the
zero points of conductivities equal the maximal frequencies
of the low-frequency anisotropic plasmons ω−

max(q) expressed
in Eq. (8). Notably, the incorporation of damping rates in
Eq. (17) would lead to a slight derivation of the hyperbolic
region from that predicted by Eq. (18), as illustrated in subse-
quent sections. Nonetheless, the straightforward relationship
between the ω−

max(q) and the boundaries of the hyperbolic
region offers a foundational principle for broadening this re-
gion. Specifically, enhancing the disparity between Sx/Dx and
Sy/Dy can expand the hyperbolic region, which is a valuable
insight for hyperbolic material engineering.

B. Anisotropic plasmons in ω-graphene monolayer

Several graphene allotropies have been predicted to show-
case exceptional plasmonic properties that outperform those
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FIG. 2. Lattice and electronic structures of ω-graphene. (a) Lattice structure and (b) electronic band structure. The enlarged view near the
Fermi level is presented in the left panel. The energy at the Fermi level is set to zero. (c) The Fermi contours and the corresponding Fermi
velocity. (d) The isosurfaces of the charge density of the Kohn-Sham electron wave function for the states near the Fermi level. The arrows
indicate the conducting channels within the compact carbon nanoribbon components.

of traditional graphene [33,34]. In this study, we have
explored a 2D graphene allotropy known as ω-graphene
monolayer [23] to fulfill the objectives outlined above. The
involvement of rectangles and decagons in the ω-graphene
enhances the structural anisotropy, highlighted by the sub-
stantial deviation of the bond angles (87°–152°) from the
standard sp2-hybridized value of 120° in graphene. A closer
look reveals that this structure can be envisioned as an array
of tightly packed carbon nanoribbons, comprising rhombuses
and hexagons, oriented along the x direction. These nanorib-
bons are connected by a sparse density of covalent bonds
along the y direction. This feature can also be visualized
through the spatial distribution of the Kohn-Sham electron
wave function of the states near the Fermi level, as depicted
in Fig. 2(d). The structure parameters and the stability of
ω-graphene are presented in the Supplemental Material [35].
Notably, it is interesting to observe that ω-graphene share the
same structural unit, consisting of two rhombuses connected
by a hexagon, as biphenylene, which has been successfully
synthesized in previous studies [36]. This interesting similar-
ity suggests a potential synthetic pathway for ω-graphene.

While the electronic bands of ω-graphene in proxim-
ity to the Fermi levels are primarily contributed by the
in-plane isotropic pz orbitals of carbon atoms, the evident
anisotropy of these bands is quite pronounced, as illustrated
in Fig. 2(b). Specifically, along the �-X direction (x direction),
a band crossing occurs between the valence- and conduction
bands, displaying the characteristics of a DC. Conversely,
along the �-Y direction (y direction), there exists a gap of

approximately 0.6 eV between the valence band and con-
duction band. Furthermore, another band crossing between
the valence- and conduction bands emerges along the Y-X1

direction. The isoenergy contours of electronic states near
the Fermi level reveal the presence of two anisotropic DCs,
which we shall refer to as DC1 and DC2. The anisotropic
properties of the two DCs are distinctly characterized by
their Fermi velocities, vF = (∂E (k)/∂k)k=kF

. For DC1, the
Fermi velocity reaches 0.51 × 106 m/s along the x direction,
which is markedly higher compared to 0.24 × 105 m/s in the
y direction for DC1. Similarly, DC2 exhibits a pronounced
anisotropy with a Fermi velocity of 0.75 × 106 m/s along the
x direction, which significantly surpasses the 0.93 × 105-m/s
velocity along the y direction. Notably, the DPs of the two
DCs in the pristine ω-graphene monolayer (without charge
doping) do not align precisely with the Fermi level; instead,
they are situated 42/78 meV above/below the Fermi level
for DC1/DC2, respectively. The dual DCs observed in ω-
graphene meet the basic criteria outlined in our DADC model,
despite certain variations in the anisotropy of the two DCs. For
example, the contours of the Fermi surfaces derivate slightly
from the elliptical feature of our model.

The anisotropy observed in the electronic bands stems from
the anisotropic nature of the atomic arrangement. Specifically,
in the x direction, the interactions of the pz orbitals lead to the
formation of densely packed π -conjugated states within the
compact carbon nanoribbon components, facilitating electron
motion. Conversely, in the y direction, electron motion is
impeded due to the parse density of covalent bonds. These
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FIG. 3. Plasmonic properties of ω-graphene. (a) Electron energy-loss spectra (EELS) along the x- and y directions. The peaks of the EELS
indicate the dispersion relations of plasmons. The green lines denote the fitting data given by using Eq. (8) with the maximal frequencies
of ω−

max(q) that delineate the hyperbolic region. The shadow region indicates the low-loss hyperbolic region (HR) with γ −1 � 25. The black
dashed lines indicate the boundaries of single-particle excitation (SPE) region for intraband transitions. (b) The dielectric function along the x
direction and EELS at qx = 0.024 Å−1. (c) The dielectric function along the y direction and EELS at qy = 0.012 Å−1. The red circles indicate
the frequencies of low-loss plasmons.

features can also be visualized through the spatial distribu-
tion of the Kohn-Sham electron wave function of the states
near the Fermi level, as depicted in Fig. 2(d). Moreover, the
anisotropy of the electronic structure of ω-graphene can be
confirmed from the Fermi contours, as illustrated in Fig. 2(c).
In contrast to the circular Fermi contours of graphene, ω-
graphene exhibits elliptical-like Fermi contours, leading to
distinct electron velocities along the x- and y directions. The
Fermi velocity can reach up to ∼106 m/s, which is compara-
ble to that in graphene.

We then calculated the dynamical dielectric function of
pristine ω graphene using Eqs. (1) and (2) and the elec-
tron energy-loss spectrum (EELS) defined as L(q, ω) =
−Im[1/ε(q, ω)]. Both Ek,l and |l, k〉 are precisely generated
through first-principles calculations. The EELS in the region
of 0–2 eV along the x- and the y directions are plotted in
Fig. 3(a). By extracting the local peaks of EELS, we ob-
tained distinct dispersions along the two directions. In the x
direction, we observed the low-loss plasmons with frequen-
cies reaching up to 1.68 eV, extending into the visible light
regimes. This extensive frequency range can be attributed to
the high electron velocity along this direction. Conversely,
along the y direction, the low-loss plasmon frequency is con-
fined to a range up to 0.128 eV. This disparity in plasmon
behavior between the x- and y directions highlights the signif-
icant anisotropy of plasmons in ω-graphene monolayer. This
observation aligns with the anisotropic plasmon dispersions
expressed by Eq. (8), where the dependence of both the Drude
weight (D) and the spectral weight (S) on the direction of wave
vector q shows anisotropy.

The presence of low-loss plasmons is further confirmed
through the analysis of the dielectric function ε(q, ω)

calculated using Eqs. (1) and (2) at qx = 0.024 Å−1 and qy =
0.012 Å−1, as illustrated in Fig. 3(b) and Fig. 3(c). Specially,
the real parts of dielectric function (Reε) exhibit zero-crossing
points that align with the peaks observed in EELS data. To
classify a collective excitation as a nearly undamped plasmon
at a given energy, it is imperative that the dielectric func-
tion satisfies Reε = 0 while ∂Reε/∂ω > 0 at the peak of the
loss function. When Im(ε) approaches zero at this energy, it
signifies a nearly undamped plasmonic mode [29]. At qx =
0.024 Å−1 and qy = 0.012 Å−1, the condition Imε → 0 is met
at zero-crossing points corresponding to the frequency of 1.26
and 0.095 eV in the real parts of permittivities, unequivo-
cally indicating the presence of nearly undamped plasmonic
modes.

The anisotropic plasmon dispersions along the x- and y
directions can be fitted using the low-frequency branch of
Eq. (8). The fitting data are represented by the green lines,
as shown in Fig. 3(a), with the fitting parameters of Dx =
42 eV2 Å, Sx = 28 eV2 Å, and ωb = 2.75 eV for the x direc-
tion, and Dy = 0.5 eV2 Å, Sy = 81 eV2 Å, and ωb = 2.75 eV
for the y direction. The high-frequency branch is damped and
thus absent in the EELS. It is noteworthy that as the frequency
approaches the edges of the hyperbolic region, there is a sub-
stantial increase in plasmon damping, which can be attributed
to the enhanced interband transitions.

We proceeded to assess the stability of anisotropic plas-
mons in ω-graphene in response to the fluctuation of the Fermi
level (equivalently electron density). We varied the Fermi
level in the range of −/+ 50 meV relative to that of the pristine
ω-graphene, by removing or adding electrons to ω-graphene.
This range corresponds to an electron density-fluctuation am-
plitude spanning from −2.89 × 1013 to 1.95 × 1013 cm−2,
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FIG. 4. Plasmonic properties of charge-doped ω-graphene. (a), (b) the EELS as a function of frequency (ω) and Fermi energy (μ) relative
to that (μ0) of pristine ω-graphene at qx = 0.01 Å−1 and qy = 0.01 Å−1, respectively. (c) The variation of Drude weight (D) along the �-X and
�-Y direction of charge-doped ω-graphene as a function of energy relative to the Fermi level is shown by orange and blue lines, respectively.
The Drude weight (D) of graphene as a function of Fermi energy is depicted by the gray lines.

which is comparable to the highest order of magnitude of
experimentally realized doping concentrations via different
approaches [37–41]. The EELSs along the x- and y direc-
tion at wave vector qx = qy = 0.01 Å−1 within this range of
Fermi level are plotted in Figs. 4(a) and 4(b). The plasmonic
dispersions of the charge-doped ω-graphene monolayers are
presented in the Supplemental Material [35]. Remarkably, the
plasmon frequency demonstrates robustness, exhibiting fluc-
tuation of less than 5% (along the x direction) and 2% (along
the y direction). The Drude weights Dx and Dy, as a function of
Fermi level, depicted in Fig. 4(c), also confirm the robustness
of the plasmon frequency in ω-graphene against Fermi-level
variations.

We should stress that the electronic band structure of
ω-graphene does not entirely conform to the requirements
outlined in our DADC model. Specifically, the two DCs
in ω-graphene exhibit distinct anisotropy, leading to small
fluctuation in plasmons frequency as the Fermi level varies
between the two Dirac points. Additionally, the Dirac cone
approximation is effective only within a limited energy re-
gion of ∼0.3 eV, making it unsuitable for describing the
high-frequency plasmons observed in first-principles calcu-
lations. Our DADC model, however, presents a promising
strategy for stabilizing plasmon frequency against variations
in the Fermi level. This strategy based on the observation that
changes in the Fermi energy, resulting in an increase in carrier
density in one Dirac cone, inevitably leads to a decrease in
carrier density in the other Dirac cone simultaneously. The
high-frequency plasmons in ω-graphene unveiled from first-
principles calculations are primarily driven by the electron
transitions between the two flatbands along the S-X and X1-
S directions, which surpasses the capability of the DADC
model. These transitions can be represented by a Lorentz term
with ωb = 2.75 eV. Nevertheless, the synthesis of ω-graphene
would offer an enticing avenue for the development of a 2D
material capable of sustaining robust anisotropic plasmons

against fluctuations of electron density caused by external
disturbances and internal inhomogeneities.

C. Directional SPPs on ω-graphene monolayer

The directional propagation behaviors of SPPs on 2D ma-
terials can be simulated using a complete electromagnetic
approach based on Maxwell’s electromagnetic field theory
[22,33,34,42,43]. SPPs emerge from the coupling between
the intrinsic plasmons and the electromagnetic field of the
incident light. When considering the eigenmodes confined
within the ω-graphene monolayer (x-y plane) characterized by
ei(qxx+qyy)e−pz (for z > 0) and ei(qxx+qyy)epz for (z < 0), we can
derive the dispersion relations of the SPPs as [42]

(
q2

x − k2
0

)
σxx + (

q2
y − k2

0

)
σyy = 2ipω

(
ε0 + μ0σxxσyy

4

)
.

(19)

Here, ε0, μ0, and k0 = ω
√

ε0μ0 represent the permit-
tivity, permeability, and wave number in vacuum, p =√

q2
x + q2

y−k2
0 . For Imσ 
 Reσ , Eq.(19) reduces to

(
q̃2

x − 1
) + ζ

(
q̃2

y − 1
) = κ

(
q̃2

x + q̃2
y − 1

)1/2
, (20)

with q̃x = qx/k0, and q̃y = qy/k0. The values of ζ and κ

are derived from the optical conductivities of ω-graphene
monolayer:ζ = Imσyy/Imσxx and κ = (2ε0/(μ0Imσxx ×
Imσyy) − 1/2)Imσyy(ε0/μ0)−1/2. For ζ < 0, Eq. (20) exhibits
two asymptotic lines given by q2

x + ζq2
y = 0 for q̃x 
 1

and q̃y 
 1. This observation implies that the direction
of propagation for SPPs beams, which is determined by the
group velocity normal to the contour line, can be characterized
by an angle of ϕ = ±tan−1|ζ |1/2 relative to the x direction.
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FIG. 5. Hyperbolicity and SPPs in ω-graphene. (a) Imaginary and (b) real parts of the conductivity of ω-graphene. The hyperbolic regimes
with Imσxx > 0, Imσyy < 0 are indicated by the shadow areas. The low-loss hyperbolic region (HR) is determined by γ −1 � 25. The angle of
the surface plasmons relative to the x direction is plotted by the purple dotted line. The spatial distribution of the electric field of the surface
plasmons on ω-graphene at (c) ω = 0.45 eV, (d) ω = 0.85 eV, and (e) ω = 2.35 eV. (f) The topologies of the isofrequency contours at the three
selected frequencies.

We calculated the on-diagonal elements of conductivity
σ j j (ω), j = x, y using the expression [41,44,45]

σ j j (ω) = i

(ω + iη)

∑
k,l

(
∂Ek,l

∂k j

)2(
−∂ f (Ek,l )

∂Ek,l

)

+ i
∑

k,l �=l ′

f (Ek,l ′ ) − f (Ek,l )

(Ek,l ′ − Ek,l ) − (ω + iη)

× 1

Ek,l ′ − Ek,l
|〈l, k|υ̂ j |l ′, k〉|2. (21)

In this expression, υ̂ j represents the velocity operator along
the j direction, with other symbols defined in the same man-
ner as in Eq. (2). The two terms represent the contributions
from intraband and interband transitions, respectively. The
imaginary and real parts of the conductivity of ω-graphene
are shown in Fig. 5(a) and 5(b). There is a board region of
Imσxx > 0, Imσyy < 0 spanning from 0.20 to 2.37 eV, which
can be correlated to the significantly anisotropic plasmons
along the x- and y directions.

The real component of conductivity (Reσ ) signifies the
energy loss. A substantial energy loss, as indicated by an el-
evated Reσ value, leads to a diminished propagation distance
for plasmons. Therefore, for the practical implementation of
hyperbolic behaviors, it is essential to minimize the Reσ value
within hyperbolic regions. As depicted in Fig. 5(b), one can
find ω-graphene has low energy loss within the energy range
of 0.5 − 1.5 eV, but experiences significant energy dissipa-
tion between 1.5 and 2.37 eV. The effect of energy loss on
plasmonic properties can be quantified by the figures of merit,
γ = Im q /Re q , as proposed in prior studies [46]. The inverse
of γ (γ −1/2π ) reflects the number of oscillation cycles that

SPPs can sustain before their amplitude diminishes by a factor
of 1/e. Previous research has shown that hBN-encapsulated
graphene can reach a γ −1 value of approximately 25 [47],
while unencapsulated graphene on a silicon dioxide substrate
achieves a lower γ −1 value of around 5 [48,49]. The γ −1 val-
ues of ω-graphene obtained from our calculations are plotted
in Fig. S4 in the Supplemental Material [35]. Notably, within
the energy region of 0.48–1.16 eV, ω-graphene demonstrates
γ −1 > 25, reaching a peak value of approximately 50 at
0.88 eV, surpassing that of hBN-encapsulated graphene [47].
This specific range is hence referred to as low-loss hyperbolic
region of ω-graphene, as denoted in Fig. 3(a) and Fig. 5(a).

To further visualize this fascinating scenario, we con-
ducted numerical simulations of the propagation of SPPs on
the ω-graphene surface, based on Maxwell’s equations. We
considered a single layer of ω-graphene with a radius of
100 nm and a thickness of 1 nm surrounded by a vacuum.
A z-direction polarized dipole is placed 1 nm above the sheet
to excite the surface wave. We numerically solved Maxwell’s
equations for the system using a commercial finite-difference
time-domain method from COMSOL [50]. This approach al-
lowed us to determine the dispersion relation and spatial
distribution of the surface plasma electric field. We selected
three frequencies ω = 0.45, ω = 0.85, and ω = 2.35 eV.
The conductivities of the ω-graphene sheet adopted in these
simulations are obtained from the first-principles calculations.
The spatial distribution of the electric field on the sheet con-
firms the directional propagation characteristic of the SPPs in
ω-graphene, as the energy of the SPPs is directed into narrow
beams, as illustrated in Figs. 5(c)–5(e). For ω = 0.85 and ω =
2.35 eV, the beams exhibit angles of 2ϕ = 47.76 ◦ and 156.61°
between them, respectively, consistent with Eq. (19). Remark-
ably, we have observed a pronounced directional propagation
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of SPPs at a frequency of 0.45 eV, as illustrated in Fig. 5(c).
This remarkable phenomenon can be attributed to the ultra-
high anisotropy of the conductivities, with the conductivity
along the x direction being nearly two orders of magnitude
larger than that along the y direction, resulting in ϕ ≈ 0◦.
The isofrequency contours of the SPPs corresponding to these
three frequencies are depicted in Fig. 5(f), displaying hyper-
bolic characteristics. These results confirm that ω-graphene
has the potential to guide anisotropic plasmons, highlighting
their potential applications in nanophotonics and plasmonics.

III. CONCLUSIONS

In summary, the dual anisotropic Dirac cone (DADC)
model proposed in this study addresses the two key limita-
tions of graphene plasmons. First, the DADC exhibits highly
anisotropic plasmons along the x- and y directions, leading
to broad hyperbolic regions that facilitate the support of hy-
perbolic surface plasmon polaritons, eliminating the need for
intricate structural patterning treatments. Second, the plasmon
frequency predicted by the DADC model remains unaffected
by the Fermi level, as the Fermi level fluctuates between the
Dirac points of the two DCs. This robust characteristic makes
it resilient to perturbation in electron density in complex envi-
ronments.

Based on first-principles calculations, our study identifies
ω-graphene as a potential material for the DADC model. Our
computations demonstrate that ω-graphene exhibits signifi-
cantly anisotropic plasmons, with a maximal frequency of
1.68 eV along the x direction and 0.128 eV along the y direc-
tion, accompanied by a low-loss hyperbolic region spanning
from 0.48 to 1.16 eV. Furthermore, the plasmon frequency
remains insensitive to fluctuation in electron density, ranging
from −2.89 × 1013 to 1.95 × 1013 cm−2. This manifests the
robustness of plasmons in ω-graphene to external disturbances
such as temperature, thermal perturbations, electrical bias,

as well as internal defects and charge inhomogeneities. Our
numerical simulations, based on Maxwell’s equations, con-
firm that ω-graphene is capable of supporting the directional
propagation of hyperbolic SPPs in the hyperbolic range. These
findings open up exciting possibilities in the field of advanced
optics and offer a promising strategy for designing natural
hyperbolic surfaces.
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APPENDIX: METHOD AND COMPUTATIONAL DETAILS

Our first-principles calculations are performed using the
Vienna Ab initio simulation package (VASP) [51]. The ion-
electron interaction is described by the projector augmented-
wave method [52] with an energy cutoff of 500 eV. The
exchange-correlation function is treated self-consistently with
a generalized gradient approximation (GGA) in the form of
Perdew-Burke-Ernzerhof [53]. A vacuum space with 20-Å
thickness is applied along the z direction to exclude the inter-
action between neighboring images. A 12 × 10 × 1 k-point
mesh was employed to sample the Brillouin zone during the
structure relaxation and electronic property calculations. The
lattice constants and atomic positions are fully relaxed until
the atomic force on the atoms is less than 0.01 eV/Å and the
total energy change is less than 10−5 eV. In the calculations
of both dynamical dielectric function and conductivity, we
considered ten bands around the Fermi level. A dense k-point
grid of 1000 × 1000 was employed to sample the Brillouin
zone. The broadening parameter was set to η = 0.05 eV.
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Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P.
Godignon, A. Z. Elorza, N. Camara, F. Javier García de Abajo,
R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging
of gate-tunable graphene plasmons, Nature (London) 487, 77
(2012).

[50] www.comsol.com.
[51] G. Kresse and J. Furthmüller, Efficient iterative schemes for

ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[52] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[53] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gra-
dient approximation made simple, Phys. Rev. Lett. 77, 3865
(1996).

085415-9

https://doi.org/10.1038/ncomms8082
https://doi.org/10.1038/srep24301
https://doi.org/10.1021/nn406627u
https://doi.org/10.1002/adom.201800537
https://doi.org/10.1021/ph500366z
https://doi.org/10.1073/pnas.2023029118
https://doi.org/10.1039/D0NA00759E
https://doi.org/10.1038/s42005-023-01456-x
https://doi.org/10.1002/adts.202300059
https://doi.org/10.1103/PhysRevLett.102.206412
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1016/j.chphma.2022.04.009
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1038/s41467-020-15001-9
https://doi.org/10.1126/science.aag1992
https://doi.org/10.1016/j.carbon.2023.118307
https://doi.org/10.1016/j.carbon.2021.03.040
http://link.aps.org/supplemental/10.1103/PhysRevB.110.085415
https://doi.org/10.1126/science.abg4509
https://doi.org/10.1126/science.1102896
https://doi.org/10.1021/ph400147y
https://doi.org/10.1021/nl503614v
https://doi.org/10.1016/j.synthmet.2018.07.001
https://doi.org/10.1103/PhysRevLett.96.256802
https://doi.org/10.1103/PhysRevLett.99.016803
https://doi.org/10.1103/PhysRevB.109.195401
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1140/epjb/e2007-00142-3
https://doi.org/10.1038/nmat4792
https://doi.org/10.1038/nmat4169
https://doi.org/10.1038/nature11253
https://doi.org/10.1038/nature11254
http://www.comsol.com
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevLett.77.3865


WANG, FAN, MA, DING, SUN, LI, AND ZHAO PHYSICAL REVIEW B 110, 085415 (2024)

[54] G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of
graphdiyne nanoscale films, Chem. Commun. 46, 3256 (2010).

[55] A. W. H. Prinzbach, P. Landenberger, F. Wahl, J. Wörth,
L. T. Scott, M. Gelmont, D. Olevano, and B. v. Issendorff,
Gas-phase production and photoelectron spectroscopy of the
smallest fullerene, C20, Nature (London) 407, 60 (2000).

[56] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. O. Jones, and Y. Ando,
Smallest carbon nanotube is 3 Å in diameter, Phys. Rev. Lett.
92, 125502 (2004).

[57] Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne
monolayers: A first-principles study, Phys. Chem. Chem. Phys.
14, 13385 (2012).

085415-10

https://doi.org/10.1039/b922733d
https://doi.org/10.1038/35024037
https://doi.org/10.1103/PhysRevLett.92.125502
https://doi.org/10.1039/c2cp42387a

