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The emergence of Majorana bound states in finite length superconductor-semiconductor hybrid systems has
been predicted to occur in the form of oscillatory energy levels with parity crossings around zero energy. Each
zero-energy crossing is expected to produce a quantized zero-bias conductance peak but several studies have
reported conductance peaks pinned at zero energy over a range of Zeeman fields, whose origin, however, is
not clear. In this work, we consider superconducting systems with spin-orbit coupling under a Zeeman field
and demonstrate that non-Hermitian effects, due to coupling to ferromagnet leads, induce zero-energy pinning
of Majorana and trivial Andreev bound states. We find that this zero-energy pinning effect occurs due to
the formation of non-Hermitian spectral degeneracies known as exceptional points, whose emergence can be
controlled by the interplay of non-Hermiticity, the applied Zeeman field, and chemical potentials. Moreover,
depending on the non-Hermitian spatial profile, we find that non-Hermiticity changes the single point Hermitian
topological phase transition into a flattened zero energy line bounded by exceptional points from multiple
low energy levels. This seemingly innocent change notably enables a gap closing well below the Hermitian
topological phase transition, which can be in principle simpler to achieve. Furthermore, we reveal that the
energy gaps separating Majorana and trivial Andreev bound states from the quasicontinuum remain robust for
the values that give rise to the zero-energy pinning effect. While reasonable values of non-Hermiticity can be
indeed beneficial, very strong non-Hermitian effects can be detrimental as it might destroy superconductivity.
Our findings can be therefore useful for understanding the zero-energy pinning of trivial and topological states
in Majorana devices.

DOI: 10.1103/PhysRevB.110.085414

I. INTRODUCTION

The search of Majorana bound states (MBSs) in topolog-
ical superconductors has become one of the central topics in
condensed matter due to their potential for robust quantum
computing [1–4]. While topological superconductivity and
MBSs were initially predicted in intrinsic spin-triplet p-wave
superconductors, their physical realization has been mostly
pursued in superconductor-semiconductor hybrids [5–15]. In
this hybrid setup, an applied magnetic field induces a topo-
logical phase transition, after which MBSs emerge as edge
states with their energies oscillating around zero energy in the
form of parity crossings [16–19]. In sufficiently long systems,
MBSs acquire zero energy, a property that has been explored
in conductance experiments but their Majorana interpretation
is still puzzling [12].

On of the main issues in conductance experiments is that
the reported zero bias conductance peaks (ZBCPs) are of-
ten pinned at zero energy over a range of magnetic fields
[20–23], which, however, do not have a unique explanation,
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see also Refs. [10,12]. In fact, ZBCPs can form due to MBSs
[24–29] but also due to topologically trivial Andreev bound
states (TABSs) [16,30–41], with both types of states suscep-
tible to a zero-energy pinning effect. In the case of MBSs,
it has been shown that electronic interactions [42,43] and
dissipation [44–47] are possible mechanisms for inducing a
zero-energy pinning, while very strong SOC [33,48,49] or
multiple bands [50] are needed for the zero-energy pinning
of TABSs. While disorder and multiple bands are intrinsic
in superconductor-semiconductor system and thus difficult
to control, the fabrication of cleaner and lower dimensional
samples can in principle mitigate these effects. However, the
effect of dissipation, naturally appearing when attaching nor-
mal reservoirs in transport measurements [10,12], cannot be
avoided, thus highlighting its relevance on the formation of
MBSs and TABSs.

The effect of dissipation has also been shown to have
profound consequences beyond its role as a zero-energy pin-
ning mechanism of MBSs. Indeed, dissipation renders the
system non-Hermitian and enables entirely novel topological
phases that do not exist in the Hermitian realm [51,52] as well
as intriguing bulk Fermi arcs [53–58] and unusual transport
properties [44,46,59–65]. These exotic phenomena originate
from the emergence of singular points in parameter space
known as exceptional points (EPs), defined as points where
two or more eigenvalues (and their respective eigenfunc-
tions) coalesce [66–75]. Despite the unavoidable presence of
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FIG. 1. Sketch of the studied non-Hermitian superconducting
systems, where non-Hermiticity appears due to coupling to normal
reservoirs or leads. (a) A Rashba superconductor (S in cyan) is
coupled to three leads in the normal state (green and orange boxes),
which can be ferromagnetic. While the green leads are only coupled
to the left and right sides of S, the orange lead is coupled to the
entire S in an homogeneous fashion. (b) A NS junction with the
entire N and S regions coupled to ferromagnet leads (magenta and
orange boxes).

dissipation in superconductor-semiconductor systems, the
impact of EPs on superconducting systems hosting simulta-
neously TABSs and MBSs still remains an open question.
Specially, superconducting systems with an homogeneous
dissipation in space remain unexplored. By characterizing
the role of dissipation, it would be possible to advance the
understanding of Majorana devices.

In this work, we consider two one-dimensional (1D) super-
conducting systems with Rashba spin-orbit coupling (SOC)
under a Zeeman field and study the response of their low-
energy spectrum to non-Hermitian effects when coupling to
ferromagnet reservoirs or leads. In particular, we explore fi-
nite length non-Hermitian systems including a superconductor
and a normal-superconductor (NS) junction coupled to fer-
romagnet leads as in Fig. 1, permitting us to inspect MBSs
and TABSs at the same footing. In general we demonstrate
that non-Hermiticity induces a zero-energy pinning of MBSs
and TABSs, an effect that emerges as lines of zero real en-
ergy whose ends mark the formation of exceptional points.
This zero-energy pinning effect can be controlled by the in-
terplay of non-Hermiticity and the system parameters, such
as the Zeeman field and chemical potentials. By increasing
non-Hermiticity, however, the evolution of the zero-energy
pinning effect of TABSs exhibits a different behavior than
that of MBSs. We also discover that an homogeneous non-
Hermiticity in the superconductor transforms the Hermitian
topological phase transition occurring at a single point into
a zero-energy line with exceptional points, which then gives
rise to a gap closing at much lower Zeeman fields. Further-
more, we show that the values of non-Hermiticity causing
the zero-energy pinning effect do not affect the energy gap
separating TABSs and MBSs from the quasicontinuum, re-
vealing the beneficial effect of low dissipation. Very strong
non-Hermiticity, however, can induce a zero-energy pinning
of the energy gaps and also of high energy levels, which can
be detrimental for Majorana applications. Our results there-
fore demonstrate that dissipation-induced non-Hermiticity is
a potential mechanism to produce zero-energy pinning of triv-
ial and topological states in superconductor-semiconductor
systems.

The remainder of this work is organized as follows. In
Sec. II, we discuss the effective non-Hermitian Hamiltonian
for a superconductor with SOC coupled to ferromagnet leads.
In Sec. III, we show the impact of non-Hermiticity on the

low-energy spectrum of a finite length superconductor with
homogeneous pair potential, while in Sec. IV, we address NS
junctions. Finally, in Sec. V, we present our conclusions.

II. EFFECTIVE NON-HERMITIAN MODEL

We are interested in exploring the impact of non-
Hermiticity on trivial and topological zero-energy states in
superconductor-semiconductor hybrids. For this purpose, we
consider a 1D superconductor with Rashba SOC, which cap-
tures the main properties of superconductor-semiconductor
hybrids [15], and coupled it to normal reservoirs such that
the total system is open and described by an effective non-
Hermitian Hamiltonian, see Fig. 1. In particular, the 1D open
system can be modelled by an effective Hamiltonian given by

Heff = HS + �r (ω = 0) , (1)

where HS is the Hermitian Hamiltonian describing the
closed superconductor with SOC, while �r (ω = 0) is the
zero-frequency retarded self-energy that incorporates the non-
Hermitian effects due to coupling to normal reservoirs. Even
though the self-energy is in general frequency dependent, it
can be approximated by its zero-frequency version �r (ω = 0)
in the wide-band limit [76], and its form will be explic-
itly given below. This wide-band limit has also been shown
to induce interesting non-Hermitian effects in bulk setups
[58,77,78].

We consider that the Hermitian superconductor with SOC
is under the presence of a magnetic field since we are
interested in obtaining MBSs [15]. Thus the Hermitian su-
perconductor is modelled by a spinful one-dimensional (1D)
tight-binding chain given by

HS = ε
∑

σn

c†
σncσn −

∑

〈n,n′〉
σ

t c†
σn′cσn − i

∑

〈n,n′〉
σ,σ ′

tSOC
n′−n c†

σ ′n′σ
y
σ ′σ cσn

+
∑

σ,σ ′n

B c†
σ ′nσ

x
σ ′σ cσn +

∑

σn

�n c†
σnc†

σ̄n + H.c. , (2)

where cσn destroys a fermionic state with spin σ at site n
that runs over all the M lattice sites of the system of length
L = Ma, with a being the lattice spacing. Moreover, here ε =
2t − μ is the onsite energy, μ is the chemical potential that
determines the filling, t = h̄2/(2ma2) is the hopping, m is the
effective mass, and 〈n, n′〉 indicates hopping between nearest
neighbor sites. Moreover, tSOC

±1 = ±αR/(2a) is the SOC hop-
ping, where αR is the SOC strength that defines a SOC length
given by �SOC = h̄2/(mαR), B = gμBB/2 is the Zeeman field
due to an external magnetic field B along the wire and perpen-
dicular to the SOC axis, while g is the g-factor. Furthermore,
�n represents the space dependent proximity-induced spin-
singlet s-wave pair potential from the superconductor into
the semiconductor. When the pair potential is homogenous,
namely, �n = �, then the Hermitian system is a uniform
superconductor. On the contrary, when finite regions have
�n = 0 and �n = �, we refer to such regions as to normal
(N) and superconducting (S) regions, respectively. In this case,
we have a NS junction, which will be also studied here be-
cause these junctions naturally host trivial zero-energy states
[33,37].
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As already mentioned above, the effect of the normal reser-
voirs, here referred to as normal leads, is taken into account
in the form of a zero-frequency retarded self-energy, which
is commonly done for studying transport [76,79]. Motivated
by the fact that distinct normal leads are usually coupled to
superconductor-semiconductor systems for carrying out trans-
port experiments [9,10,12,13], here we consider three distinct
ferromagnet leads as depicted in Fig. 1. Furthermore, we note
that, even though the self-energy has in general real (Re) and
imaginary (Im) parts, only its Im part induces non-Hermitian
effects which will be studied here; its Re part renormalizes
the diagonal entries of HS. Thus the total self-energy can be
written as

�r (ω = 0) = �r
L + �r

R + �r
X , (3)

where

�r
L = −i

∑

σ

	1σ c†
σ1cσ1 ,

�r
R = −i

∑

σ

	Mσ c†
σMcσM ,

�r
X = −i

∑

σn

	nσ c†
σncσn , (4)

model the coupling of the Hermitian system to the left, right,
and middle ferromagnet leads, respectively. See Ref. [77] for
details on the derivation of Eqs (4). Here, �r

L(R) has finite val-
ues at the first (last) site, where 	ασ characterizes the coupling
of the first (α = 1) and last site (α = M) to the leads. Simi-
larly, �r

X is the self-energy due to coupling a lead (or leads)
to the entire system with 	ασ and α ∈ (1, M ), see orange lead
in Fig. 1(a) and also magenta/orange lead in Fig. 1(b). The
couplings can be written as [77] 	ασ = π |τα|2ρσ

α , being τα

the hopping into the lead α = L, R, X from the Hermitian
superconductor and ρσ

α the surface density of states of the lead
α for spin σ =↑,↓.

Before going further we note that both HS and �r in
Eqs. (2) and (3), respectively, are given in terms of cre-
ation and annihilation operators. In this regard, we can write
Eq (1) in Nambu space (cnσ , c†

nσ ), which implies that the non-
Hermitian effective Hamiltonian can be treated as a matrix
in real space whose dimensions are defined by the number
of lattice sites. Moreover, it is worth noting that the effec-
tive Hamiltonian has particle-hole symmetry given by Heff =
−Ĉ−1H∗

effĈ, where Ĉ = σ0τxC and C is the complex conju-
gation operation [44,80–83]; this symmetry dictates that the
eigenvalues of Heff come in pairs as En and −E∗

n . Furthermore,
given that the spectrum of the effective Hamiltonian in Eq (2)
corresponds to the poles of a retarded Green’s function, the
poles (and hence the eigenvalues) reside in thelower complex
energy half-plane. This, combined with the particle-hole sym-
metry imposes a real spectrum that is symmetric around zero,
while an imaginary part that is negative but not symmetric
around zero, as we will see below.

We are interested in exploring the impact of non-
Hermiticity due to normal leads modelled by Eqs (4) on the
emergence of MBSs and TABSs in HS modelled by Eq. (2).
While the formation of MBSs [15] and TABSs [33,35,41]
appear in closes systems and do not require the presence of
leads, having closed systems coupled to leads as in Fig. 1

provides an interesting scenario to explore the impact of non-
Hermiticity due to the leads on MBSs and TABSs. To address
these question, we consider realistic parameters, with αR =
20 meV nm and � = 0.25 meV, according to experimental
values reported for InSb and InAs semiconductor nanowires
and Nb and Al superconductors [9]. Moreover, we take the
lattice spacing of a = 10 nm and analyze systems of realistic
lengths. Taking these realistic parameters, we investigate the
formation of MBSss and TZABSs under non-Hermiticity by
using Eq. (1).

III. NON-HERMITIAN RASHBA SUPERCONDUCTOR

We start by analyzing the impact of non-Hermiticity on
the formation of MBSs in the non-Hermitian superconductor
modelled by Eq. (2), with an homogeneous pair potential
�n = � and a constant self-energy all over the system that
is only given by �X from Eqs. (4). For obvious reasons here
we denote X = S in order to highlight that the lead is coupled
to the entire superconductor S, as indicated by orange lead
in Fig. 1(a). Since the self-energy is taken to be constant
in space all over the superconductor but spin dependent, we
consider that the coupling strengths are given by 	nσ = 	Sσ ,
see Eqs. (4). To investigate the emergence of MBSs under
non-Hermiticity, we calculate the energy spectrum of the
respective effective non-Hermitian given by Eq. (2). Since
the system is non-Hermitian, its spectrum becomes complex:
the real part represents the physical energy of quasiparticles,
while the inverse of the imaginary part determines their life-
times h̄/Im(En), see Ref. [76]. When 	S↑ = 	S↓, we find
that all the eigenvalues acquire the same imaginary part,
whose inverse gives the same lifetime for all the eigenvalues.
The situation is, however, distinct when there is an asymme-
try in the couplings, namely, 	S↑ 	= 	S↓, which we discuss
next.

In Figs. 2(a) and 2(b), we present the complex energy
spectrum as a function of the Zeeman field B for 	S↑ =
0.15 meV and 	S↑ = 0.25 meV, both at 	S↓ = 0 for a finite
non-Hermitian Rashba superconductor with LS = 2 µm. Here,
the real (Re) and imaginary (Im) eigenvalues are depicted in
blue and red, respectively. For completeness, the eigenvalues
in the Hermitian regime, having only Re parts and developing
loops around zero energy with zero-energy parity crossings,
are shown in brown. The overall Zeeman dependence of the
Re part of the non-Hermitian spectrum roughly follows its
Hermitian counterpart, with a symmetric profile around zero
energy due to particle-hole symmetry (Sec. II), but exhibits
some important changes. At very low Zeeman fields, the Re
part of the spectrum is gapped and the positive (negative)
eigenvalues remain degenerate for a short range of Zeeman
fields, which is, however, different for distinct energy levels,
see shaded red region in Figs. 2(a) and 2(b). The ends of such
degenerate Re eigenvalues mark points that are accompanied
by the merging of the spin split Im parts, which signals the
emergence of non-Hermitian degeneracies known as excep-
tional points (EPs); at these EPs we have verified that the
associated eigenvectors coalesce, as expected for EPs [51,84].
Note that having split Im parts means that the associated
lifetimes are distinct; their negative and non symmetric values
around zero stem from particle-hole symmetry and causality
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FIG. 2. [(a) and (b)] Real (blue) and imaginary (red) energy spec-
trum of a finite non-Hermitian Rashba superconductor as a function
of the Zeeman field B at two distinct values of homogeneous non-
Hermiticity 	S↑ = 0.15 and 0.25 meV. Green vertical line marks
the Hermitian topological phase transition at B = Bc, while the yel-
low shaded region indicates its modification due to non-Hermiticity.
Brown curves in (a) and (b) correspond to the eigenvalues without
non-Hermiticity. The insets in (a,b) show zoom-in regions of zero-
energy lines between EPs (magenta marks). [(c) and (d)] Lowest and
first excited real positive energies δ0,1 as a function of the Zeeman
field B and coupling 	S↑, with the blue region indicating their van-
ishing values; note the larger y axis in (d) for δ1. [(e) and (f)] δ0,1 as
a function of 	S↑ for distinct values of the length of the supercon-
ductor LS at B = 2.3Bc of (a) and (b). Parameters: αR = 20 meV nm,
μS = 0.5 meV, LS = 2 µm, and 	S↓ = 0.

discussed in Sec. II. These EPs at finite Re energies have been
shown to appear in bulk Rashba semiconductors as a unique
effect due to the interplay of non-Hermiticity and SOC [78]
but do not depend on superconductivity.

As the Zeeman field increases, the lowest part of the Re
spectrum reduces and, notably, develops a flattened gap clos-
ing feature for a range of Zeeman fields around B = Bc, where
Bc =

√
μ2 + �2 marks the Hermitian topological phase tran-

sition (vertical green line) after which MBSs emerge [15], see
yellow shaded region in Figs. 2(a) and 2(b). The closing of
the Re energy gap acquiring zero energy can be estimated
from the bulk Hamiltonian [58], which, at μ = 0, is bounded
by B±

∗ = � ± γ , where γ = (	S↑ − 	S↓)/2: it evident that

non-Hermiticity causes a substantial lower Zeeman field B−
∗

compared to the Hermitian topological phase transition at
Bc = � when μ = 0. The non-Hermitian gap closing is ini-
tially formed by the two lowest energy levels, which, after an
EP transition, stick at zero Re energy for a range of B that is
distinct for each level; the respective Im parts develop loops
within EPs, revealing the acquisition of distinct lifetimes. The
EPs occur here at zero energy between positive and negative
energy levels, which is distinct to the EPs discussed in previ-
ous paragraph happening between positive energy levels with
distinct spin.

The number of energy levels undergoing EP transitions
at distinct B around Bc, which also feature a gap closing,
can increase depending on how strong is non-Hermiticity, see
Figs. 2(a) and 2(b). However, only the lowest (positive and its
negative counterpart) energy level remains at zero Re energy
as B increases above B after the first gap closing. Interestingly,
the Hermitian parity crossings, corresponding to the oscillat-
ing energies of MBSs, become pinned at zero Re energy, see
Figs. 2(a) and 2(b). The ends of the zero Re energies around
the parity crossings mark the emergence of EPs, which then
determine the effect we refer to as zero-energy pinning; the
zero energy Re lines between EPs is more visible in the insets
of Figs. 2(a) and 2(b), where the magneta short lines mark
the EPs. Inside the zero Re energy lines, the Im parts form
loops which coalesce at the EPs: this shows that, in an open
system, MBSs acquire a physical energy equal to zero and
distinct imaginary parts that signal their different lifetimes.
While at weak non-Hermiticity only few parity crossings ex-
hibit the zero-energy pinning effect, large non-Hermiticity can
also induce a zero-energy pinning to the zero-energy loops.
It is worth noting that the parity crossings, as well as the
zero-energy loops, at smaller B are more susceptible to the
impact of non-Hermiticity. Thus non-Hermiticity is able to
reduce the value of Zeeman fields at which the gap closing
occurs and also promotes a zero-energy pinning of MBSs.

To gain further insights on the role of non-Hermiticity
on MBSs and the gap that protects them from the quasi-
continuum, in Figs. 2(c) and 2(d), we plot the lowest and
first excited Re energy levels denoted by δ0,1 in Fig. 2(a)
as a function of the Zeeman field B and coupling 	S↑. For
obvious reasons, the quantities δ0,1 can be interpreted to be
the Majorana energy and the topological gap, respectively.
The blue color in Figs. 2(c) and 2(d) indicates δ0,1 = 0, which
is achieved much faster for the Majorana energy δ0 than for
the topological gap δ1, see that the y axis in (b) runs over
a larger values of 	S↑. It is fair to say, however, that, al-
though non-Hermiticity is indeed beneficial for inducing a
zero-energy pinning of MBSs, very strong non-Hermiticity
here might be detrimental as it destroys the topological gap
[Figs. 2(c) and 2(d)]. The beneficial and detrimental effects of
non-Hermiticity remain even when having longer systems, as
shown in Figs. 2(e) and 2(f) where we plot δ0,1 as a function
of 	S↑ at B = 2.3Bc for distinct LS. Short and long systems
require weak non-Hermiticity to achieve zero-energy MBSs
which, interestingly, are much lower than that needed to de-
stroy the topological gap. Therefore non-Hermiticity due to an
homogeneous coupling to ferromagnet leads can be useful to
engineer zero-energy MBSs with a well-defined topological
gap.

085414-4



NON-HERMITIAN ZERO-ENERGY PINNING OF ANDREEV … PHYSICAL REVIEW B 110, 085414 (2024)

FIG. 3. [(a) and (b)] Lowest and first excited positive real ener-
gies δ0,1 of a non-Hermitian Rashba superconductoras a function of
the Zeeman field B and non-Hermiticity only in the first site with
	1↑ = 	1↓. The green vertical line marks the Hermitian topolog-
ical phase transition B = Bc. Parameters: αR = 20 meV nm, μS =
0.5 meV, and LS = 2 µm.

Before going further, we also discuss the impact of non-
Hermiticity on the Re lowest and first excited energies δ0,1

when the Rashba superconductor is only coupled to a normal
lead on the left (or right) side. In this situation, the effective
non-Hermitian Hamiltonian contains a self-energy given by
�L(R) in Eqs. (4), which only adds the negative imaginary
contribution to the first (last) site determined by 	1(N)σ , unlike
the case discussed above for an homogeneous non-Hermitian
profile of the couplings. For simplicity, we consider that only
the left side is coupled to a normal lead such that 	1↑ =
	1↓ and in Figs. 3(a) and 3(b) present δ0,1 as a function of
the Zeeman field B and coupling 	1↑. Here, the blue color
indicates δ0,1 = 0. We first observe that the lowest positive
energy level δ0 does not reach zero value before Bc, even when
non-Hermiticity greatly surpasses the common energy scales
of the system such as pair potential and chemical potential.
For B > Bc, we find that δ0, characterizing the Majorana
energy, becomes zero at finite 	1↑, as a result of the forma-
tion of EPs which then connect zero-energy lines around the
zero-energy parity crossings, in the same fashion as found in
Figs. 3(a)–3(d). This zero-energy pinning of MBSs, however,
is visible when non-Hermiticity 	1σ takes very large values,
see Fig. 3(a). At these large values on non-Hermiticity, the
first excited positive energy δ1 only becomes zero at B = Bc,
signaling a single point gap closing that is different to the
case with homogeneous non-Hermiticity of Fig. 2 but similar
to the Hermitian topological phase transition. Surprisingly,
δ1 maintains a robust finite value in the topological phase
B > Bc, se seen in Fig. 3(b).

We have therefore shown that the effect of non-Hermiticity
can be beneficial for stabilizing MBSs without destroying the
topological gap. Moreover, depending on the non-Hermitian
profile, it is possible to induce a topological phase transition at
much lower Zeeman fields, which could be useful for mitigat-
ing the detrimental effects of magnetism on superconductivity
in Majorana devices.

IV. NON-HERMITIAN RASHBA
NORMAL-SUPERCONDUCTOR JUNCTION

Having discussed the impact of non-Hermiticity on MBSs
emerging in a finite length Rashba superconductor, here we

FIG. 4. [(a) and (b)] Real low energy spectrum as a function of
the Zeeman field for a finite NS Rashba junction with a homogeneous
non-Hermiticity in N characterized by 	N↑ = 0.15 (a) and 0.25 meV
(b). [(c) and (d)] The same as in (a) and (b) but with a homogeneous
non-Hermiticity in S characterized by 	S↑ = 0.1 (c) and 0.25 meV
(d). The brown curves in (a)–(d) correspond to the eigenvalues in
the Hermitian regime, showing trivial ABSs below the Hermitian
topological phase transition at B = Bc. The green vertical line in
(a)–(f) marks B = Bc, while the shaded yellow regions indicate the
Zeeman fields at which trivial ABSs form. [(e) and (f)] Lowest and
first excited real positive energies δ0,1 as a function of 	N↑ and
B. Parameters: αR = 20 meV nm, μN = 0.05 meV, μS = 0.5 meV,
LS = 1 µm, LN = 1 µm, 	N↓ = 0, and 	S↓ = 0.

study how non-Hermiticity affects the low-energy spectrum
of normal-superconductor (NS) junctions with Rashba SOC.
NS junctions in Majorana devices are particularly relevant
because they host trivial Andreev bound states (TABSs) well
below the topological phase transition at B = Bc by deplet-
ing the N region, see Refs. [33,37]. The non-Hermitian NS
junction is modelled by Eq. (2) but with �n = 0 in N and
�n = � in S, which gives N(S) regions of distinct lengths
LN(S). We consider two independent cases of non-Hermiticity
due to homogeneously coupling the entire N or S region to a
ferromagnet lead; the self-energy due to coupling to the lead
is characterized by 	N(S)σ . The Re low-energy spectrum as a
function of the Zeeman field B is presented in Figs. 4(a)–4(d)
for two values of non-Hermiticity in N and S, respectively.
The Im part of the spectrum is not shown because it makes
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more difficult to analyze the already dense panels. For com-
pleteness we also show the Hermitian low-energy spectrum
(brown curves), which exhibits parity crossings with zero-
energy loops well below Bc (green vertical line) and indicated
by the shaded yellow region in Figs. 4(a)–4(d). In Figs. 4(e)
and 4(f), we show the lowest and first excited energy positive
Re levels δ0(1) as a function of B and 	N↑, where the blue color
indicates δ0,1 = 0.

The first observation is that in the two situations, with
non-Hermiticity in N or S, a zero-energy pinning of both
TABSs and MBSs occurs, with similarities but also with some
slight differences, see Figs. 4(a)–4(d) and also Figs. 4(e) and
4(f). Among the similarities is that the zero-energy pinning
occurs between EP transitions: the ends of the zero-energy
lines mark the formation of EPs. We have verified that the Im
parts form loops between EPs as those seen in Figs. 2(a) and
2(b), while they and the associated wavefunctions coalesce
at EPs as expected at EPs. Another similarity is that increas-
ing the strength of non-Hermiticity favors the appearance of
longer zero-energy lines between EPs, which corresponds to a
zero-energy pinning effect for a larger range of Zeeman fields,
as seen by comparing Figs. 4(a) and 4(b) or Figs. 4(c) and
4(d).

Among the differences between non-Hermiticity in N and
S, we find distinct impact of non-Hermiticity on the lowest
energy levels and also on the excited energies. For instance,
the zero-energy crossings in the trivial phase (B < Bc) and
topological phase (B > Bc) are more susceptible to non-
Hermiticity in S than in N. This is seen in Figs. 4(a) and
4(c) by noting that even a smaller value of non-Hermiticity
in S produces a stronger zero-energy pinning in the trivial
phase, see Fig. 4(c). The different response remains even
when the strength of non-Hermiticity in N and S are the same,
as seen the larger zero-energy lines in Fig. 4(d) as compared
to Fig. 4(b). Of course that stronger values of non-Hermiticity
in N have the potential to produce larger regions with zero-
energy pinning but then MBSs acquire zero energy faster than
TABSs, see Fig. 4(e). Another difference is that the excited
spectrum remains largely unaffected for reasonable values of
non-Hermiticity in N while the same is not true when non-
Hermiticity is in S, see, e.g., Figs. 4(a) and 4(c). As a result,
having non-Hermiticity in N leads to a gap closing feature
occurring at a single point at B = Bc and not accompanied
by additional states [Figs. 4(a) and 4(b)]. In contrast, for non-
Hermiticity in S, the gap closing can occur at a continuous set
of points as a flattened zero-energy line whose ends mark the
formation of EPs [Fig. 4(d)]; this is similar to what we saw
in Figs. 2(a) and 2(b) for the gap closing. It is also important
to say that stronger non-Hermiticity in N can also affect δ1,
inducing it to even vanish either for B < Bc or B > Bc, as
seen in Fig. 4(f). In this case, however, in the topological
phase δ1 vanishes but at stronger non-Hermiticity values than
in the trivial phase. Despite the differences, it is clear that
non-Hermiticity induces a zero-energy pinning in both MBSs
and TABSs.

To gain further understanding on the impact of non-
Hermiticity on the TABSs and MBSs, in Figs. 5(a) and 5(b),
we plot the Re low-energy spectrum as a function of the chem-
ical potential in N μN at B < Bc and B > Bc. In Figs. 5(c) and
5(d), we plot the lowest Re positive energy δ0 as a function

FIG. 5. [(a) and (b)] Real low-energy spectrum for a finite NS
Rashba junction as a function of the chemical potential in N μN at B
in the trivial (a) and topological (b) regimes. Here, non-Hermiticity is
finite and homogeneous in N and characterized by 	N↑ = 0.15 meV.
[(c) and (d)] Lowest positive real energy δ0 as a function of μN

and 	N↑. [(e) and (f)] The same as in (c) and (d) but for the first
excited positive real energy δ1. Parameters: αR = 20 meV nm, μS =
0.5 meV, LS = 1 µm, LN = 1 µm, and 	N↓ = 0.

of the chemical potential μN and the coupling 	N↑, while
in Figs. 5(e) and 5(f), we do the same for the first excited
positive Re energy level δ1. As we have done before, in
brown color we also show the Hermitian energy levels, which
form loops around zero-energy with parity crossings. These
oscillatory zero-energy loops reflect the formation of MBSs
and TABSs in the topological and trivial phases, respectively,
see Ref. [33]. The first feature we observe is that the parity
crossings transform into zero-energy lines with their ends
marking EPs, reflecting that the zero-energy pinning of MBSs
and TABSs can be controlled by μN, see Figs. 5(a) and 5(b).
Although the zero-energy pinning effect is similar in the trivial
and topological phases, the impact of non-Hermiticity on the
parity crossings in the topological phase are more likely to
give rise to larger zero-energy lines [Figs. 5(a) and 5(b)]. In
fact, by increasing non-Hermiticity via 	N↑, the trivial parity
crossings exhibit a zero-energy pinning but not all of them
form zero-energy lines at the same value of non-Hermiticity
[Fig. 5(c)]. This is in contrast to what occurs for the par-
ity crossings in the topological phase, where all of them
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simultaneously feel the impact of non-Hermiticity and exhibit
a zero-energy pinning [Fig. 5(d)]. Furthermore, the energy gap
separating the TABSs and MBSs from the quasicontinuum
(δ1) is approximately robust for small values of 	N↑, but can
undergo EP transitions at zero energy when such 	N↑ is rather
strong, as seen in Figs. 5(e) and 5(f).

Non-Hermiticity is, therefore, able to stabilize both MBSs
and TABSs at zero-energy, a zero-energy pinning effect that
can be controlled by the Zeeman field or chemical potential
of the normal region.1 While zero-energy pinning can be
beneficial, it could also bring difficulties because it will be
more challenging to identify the origin of such stable zero-
energy states. Moreover, even though reasonable values of
non-Hermiticity do not considerably affect the energy gap
separating MBSs or TABSs from the quasicontinuum, strong
non-Hermiticity can be detrimental.

V. CONCLUSIONS

In conclusion, we have investigated the impact of non-
Hermiticity on the low-energy spectrum of finite super-
conducting systems with Rashba spin-orbit coupling, where
non-Hermitian effects arise due to coupling to normal or fer-
romagnet leads. We have demonstrated that non-Hermiticity
transforms the Hermitian parity crossings of the oscillatory
Majorana energies into lines of zero real energy whose ends
mark the formation of exceptional points. We have also
found that non-Hermiticity induces a similar zero-energy pin-
ning effect of trivial Andreev bound states, which appear
well below the topological phase transition in the Hermitian
regime. However, we obtained that Majorana bound states can

1Non-Hermiticity, however, cannot help distinguishing between
zero-energy TABSs and zero-energy MBSs. Nevertheless, the dis-
tinct features of the spectrum in the trivial (with TABSs) and
topological (with MBSs) phases presented in Figs. 4 and 5 shows
that being able to control the amount of non-Hermiticity can be
useful to distinguish between TABSs and MBSs. However, this task
is challenging because it involves to have good control over the
coupling to reservoirs.

be more susceptible to non-Hermiticity than trivial Andreev
bound states, specially when non-Hermiticity is present all
over the superconductor of normal-superconductor junctions.
Moreover, we have shown that the values of non-Hermiticity
inducing the zero-energy pinning effect do not damage the
energy gap that separates the Majorana or Andreev bound
states from the quasicontinuum, thus highlighting the bene-
ficial effect of non-Hermiticity. We found that the zero-energy
pinning effect can be highly controllable by the interplay of
non-Hermiticity and the system parameters, such as Zeeman
field and chemical potentials.

We have also revealed that non-Hermiticity has an impor-
tant effect on the Hermitian topological phase transition when
its profile is homogeneous all over the superconductor. In this
case we have discovered that the energy gap undergoes a zero-
energy pinning effect due to exceptional points, leading to a
flattened gap closing feature unlike the single point Hermitian
topological phase transition. This effect suggests that it is
possible to achieve a topological phase transition at Zeeman
fields much lower than in the Hermitian regime, which is
important because strong Zeeman fields are often seen as
detrimental for superconductivity. However, good control over
the non-Hermitian mechanism is needed because very strong
non-Hermiticity not only has the potential to induce large
zero-energy pinning ranges but it can also destroy the energy
gap. Given that Majorana devices are often coupled to normal
leads, where non-Hermitian effects are intrinsic, our results
can be helpful for understanding the possible mechanisms
giving rise to zero-energy states.
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