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Orbital Hall effect and topology on a two-dimensional triangular lattice: From bulk to edge
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We investigate a generalized multiorbital tight-binding model on a triangular lattice, a system prevalent in a
wide range of two-dimensional materials and particularly relevant for simulating transition metal dichalcogenide
monolayers. We show that the interplay between spin-orbit coupling and different symmetry-breaking mecha-
nisms leads to the emergence of four distinct topological phases [Eck et al., Phys. Rev. B 107, 115130 (2023)].
Remarkably, this interplay also triggers the orbital Hall effect with distinguished characteristics. Furthermore,
by employing the Landauer-Büttiker formula, we establish that in the orbital Hall insulating phase, the orbital
angular momentum is carried by edge states present in nanoribbons with specific terminations. We also show that
they do not have the same topological protection against the disorder of the edge states as a first-order topological
insulator.
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I. INTRODUCTION

The past few decades have seen growing interest in ma-
nipulating the quantum degrees of freedom for developing
new quantum devices. The emergence of two-dimensional
materials and the tunability of their properties added to their
capability to sustain highly crystalline interfaces reignited the
excitement in spintronics and provided a platform for tack-
ling long-standing challenges in the field while paving the
way for groundbreaking technological applications like spin-
orbit-based memory systems and ultracompact devices [1–3].
The tunability of the properties of the two-dimensional (2D)
materials also enabled the control of the spin-orbit coupling,
which is essential for electrical manipulation of the spins.
Nonetheless, due to its electrostatic origin, this interaction
tends to appear in heavy metals, which are scarce, and their
usage poses environmental risks.

Recently, researchers have turned their attention to the
manipulation of the orbital degrees of freedom and exploiting
novel phenomena such as the orbital Hall effect [4–14] and the
charge-to-orbital conversion via the orbital Rashba-Edelstein
effect [15–18]. In analogy with their spin counterparts, these
effects enable the electrical manipulation of the orbital de-
grees of freedom without a mediating interaction like the
spin-orbit coupling, opening the possibility of using light el-
ements in novel sustainable devices [19] and reigniting the
interest in orbitronics [20,21]. Novel experimental studies
have demonstrated that the orbital Hall effect (OHE) can arise
in three-dimensional (3D) systems even if the orbital angular
momentum of the system vanishes in equilibrium [22,23] and
the orbital currents may have very large decay lengths [24,25].

*Contact author: anderson.barbosa@ufrpe.br
†Contact author: tgrappoport@fisica.uminho.pt

Furthermore, it has been shown that the OHE can induce
magnetization dynamics via the orbital torque in magnetic
heterobilayers [26–29]. Also, the reciprocal version of this
effect, orbital pumping, in which an oscillating magnetic
moment creates an orbital current, was recently confirmed
[30,31]. In the case of 2D materials, the interplay between
their band structure, their orbital degrees of freedom, and
the presence of sizable Berry curvature pockets in reciprocal
space has garnered significant attention. Theoretical works
have shown that, like their 3D counterparts, multiorbital 2D
materials can host orbital textures that trigger a sizable OHE
[32]. Additionally, several theoretical works predicted that
monolayers [12,33,34] and bilayers [35,36] of transition metal
dichalcogenides (TMDs) exhibit the OHE within their energy
gap and are characterized by an orbital Chern number. Fur-
thermore, these materials exhibit orbital currents that flow
through their edge states, which were previously considered
trivial from the Z2 perspective [37,38].

Recently, a theoretical work by Costa et al. [39] demon-
strated the connection between the orbital Hall insulating
phase of certain transition metal dichalcogenide monolayers
and their high-order topological insulating phases [40–42],
hinting at a connection between the nontopological edge
states and the orbital Hall conductivity plateaus [33–36], and
evinced the existence of the OHE in centrosymmetric systems.
They showed that the accumulation of orbital angular momen-
tum can occur at the edges of ribbons of these materials due
to the presence of metallic states that depend on the ribbon
orientation.

The development of orbitronic devices based on 2D mate-
rials requires a robust criterion to identify orbital-Hall-capable
materials. Recent studies by Han et al. took a significant
step toward this goal [43,44]. The authors conducted a de-
tailed analysis of the microscopic origin of the orbital textures
and uncovered the interplay between crystalline and orbital
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symmetries that promote hybridizations leading to the emer-
gence of these textures. From another perspective, Eck et al.
[45] recently presented the conditions that enable the appear-
ance of 2D high-order topological insulators (HOTIs) on the
triangular lattice from the interplay between the crystalline
and orbital symmetries. Our current study further explores the
correlation between orbital hybridization, orbital symmetries,
and the OHE to gain insights into its connection to various
topological phases.

In this study, we build upon the prior research by Eck et al.
to investigate how symmetry reduction can induce various
spin and orbital topological phases. Specifically, we examine
the dz2 , dxy, and dx2−y2 orbitals within the d subshell on a
triangular lattice. This lattice configuration is commonly used
to model transition metal dichalcogenide monolayers, offer-
ing controllable symmetries by selectively removing certain
hopping elements.

We diverged from the norm by fixing the spin-orbit cou-
pling (SOC) and adjusting the hopping terms, illustrating the
influence of crystal field competition on band inversion and
topological phase transitions, contrary to conventional studies
that typically increase SOC while keeping other terms con-
stant. Using this flexibility, we explore diverse topological
phases and assess them through quantum transport calcula-
tions of both orbital and spin conductivities using Kubo and
Landauer-Büttiker formalisms.

By integrating these methodologies, we examine the in-
teraction between orbital and spin Hall conductivities across
distinct topological phases and their susceptibility to disor-
der. For high-order topological insulators, as referenced in
prior works, we identify characteristic orbital-Hall conductiv-
ity plateaus within the insulating gap.

Additionally, to assess and determine whether the metallic
edge states that emerge within the gap upon specific lattice
terminations can effectively transport orbital angular momen-
tum, we have devised a mesoscopic device connected to four
semi-infinite terminals. Utilizing the Landauer-Büttiker for-
mula, we conduct comprehensive calculations of the orbital
and spin Hall conductivities within this mesoscopic device
featuring zigzag and flat edges to evaluate how disorder in-
fluences the transport of orbital angular momentum in device
configurations.

This article is structured as follows: in Sec. II, we introduce
the three-band model, discuss its symmetry, and establish its
connection to a p orbital model. In Sec. III, we outline four
distinct topological phases along with their primary character-
istics. We also compute the orbital and spin Hall conductivity
of periodic systems using the Kubo formula approach. Finally,
in Sec. IV, we explore mesoscopic devices via Landauer-
Büttiker calculations to investigate the role of edge states in
orbital Hall conductivity and the impact of disorder on the
orbital Hall plateau.

II. THE MODEL

We begin with the three-band tight-binding model, which
is commonly used to describe the low-energy behavior of
H-TMDs. In this model, a triangular lattice accommodates the
dz2 , dxy, and dx2−y2 orbitals. To simplify the analysis, we adopt
the same tight-binding parameters as in Ref. [46] for MoS2,

but with a spin-orbit coupling strength that is 15 times larger
than the original value. This allows us to transition between
different phases of the system by simply removing some of
the original hopping elements, which modifies the symmetries
of the model without altering the values of the other parame-
ters. Using the basis {dz2 , dxy, dx2−y2}, the Hamiltonian of the
system can be written as H = σ0

⊗
H0 + HSOC, where

H0 =
⎡
⎣h0 h1 h2

h∗
1 h11 h12

h∗
2 h∗

12 h22

⎤
⎦, (1)

with

h0 = 2t0(cos 2α + 2 cos α cos β ) + ε1,

h1 = −2
√

3t2 sin α sin β + 2it1(sin 2α + sin α cos β ),

h2 = 2t2(cos 2α − cos α cos β ) + 2
√

3it1 cos α sin β,

h11 = 2t11 cos 2α + (t11 + 3t22) cos α cos β + ε2,

h22 = 2t22 cos 2α + (3t11 + t22) cos α cos β + ε2,

h12 =
√

3(t22 − t11) sin α sin β + 4it12 sin α(cos α − cos β ),

α = 1

2
kxa, β =

√
3

2
kya. (2)

This is a symmetry-based tight-binding Hamiltonian that does
not originate from a Slater-Koster approach, as the hopping
elements between the d orbitals are mediated by the p orbitals
of the chalcogens in 2H-TMDs. By examining the TMD
Hamiltonian, it becomes apparent that, apart from the term
proportional to t2, Eq. (1) is formally equivalent to a Slater-
Koster Hamiltonian utilizing px, py, and pz orbitals with basis
{pz, px, py} in a two-dimensional triangular lattice in which
the inversion and mirror symmetries of the lattice are broken
(see Appendix A).

In this map between the two Hamiltonians, t0, t11, and t22

are Slater-Koster hopping elements for the σ and π bonds
for pz, px, and py orbitals that respect all the symmetries of
a two-dimensional triangular lattice. The terms proportional
to t0, t11, and t22 describe the nearest-neighbor hopping in a
triangular lattice of layer group p6/mmm, which is generated
by a sixfold rotation, three vertical reflection planes σv , three
diagonal reflection planes σd , and one horizontal reflection
plane σh [45].

If inversion symmetry is broken, the sixfold rotation (C6)
reduces to C3, and the Hamiltonian presents the term propor-
tional to t12. On the other hand, if only the mirror symmetry
with respect to the plane is broken, it is possible to have
hybridization between pz and the in-plane orbitals px and py,
which gives rise to the term proportional to t1. The extra term
proportional to t2 is the only one that cannot be mapped into a
Slater-Koster Hamiltonian. It is important to note, however,
that although we can formally map one Hamiltonian into
another, the meaning of the different terms is not the same for
the d orbitals. For instance, t1 hybridizes orbitals belonging
to different irreducible representations, as in the case of the p
orbitals, but does not break the same mirror symmetry, which
is preserved in 2H-TMD monolayers.
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FIG. 1. Bulk energy bands of the four topological phases of the
three-band model for various terms in the Hamiltonian. (a) Phase
I: t1 = t2 = t12 = 0. (b) Phase II: t2 = t12 = 0, t1 �= 0. (c) Phase III:
t1 = t2 = 0, t12 �= 0. (d) Phase IV: t1 �= t2 �= t12 �= 0. The colors in-
dicate the Lz character of each band; for phases I and II, where the
inversion symmetry is preserved, only the energy states correspond-
ing to the Sz =↑ sector are shown.

The spin-orbit coupling is written as

HSOC = σz
λ

2

⎡
⎣0 0 0

0 0 2i
0 −2i 0

⎤
⎦. (3)

Here, λ is the strength of the spin-orbit coupling, and σ0 and
σz are the 2 × 2 identity matrix and the z Pauli matrices,
respectively. To investigate the connection between topology
and the orbital Hall plateau, we analyze four different phases.
To consider the different phases without modifying the spin-
orbit coupling or the strength of the other hoppings, we take
a λ that is 15 times stronger than the SOC of MoS2. The
band structures of the four phases together with their orbital
characters are shown in Fig. 1. The orbital character of the
energy states is computed as 〈Ln,s

z (k)〉 = 〈ψn,s(k)|L̂z|ψn,s(k)〉,
where |ψn,s(k)〉 is the nth energy band with spin s =↑,↓
evaluated at k. For phase I, t1 = t2 = t12 = 0, which, in the
case of p orbitals, is equivalent to a system in which all the
symmetries of the triangular lattices are kept. Figure 1(a)
shows the band structure of the phase with the orbital charac-
ter of the energy states within the Sz =↑ sector. For this case,
the subspace for ml = 0 is separated from the subspace where
ml = ±l . Because of the inversion symmetry, all bands are
spin degenerate. The system has a lower band with ml = 0.
The two other bands that belong to the ml ± l subspace are
split by the spin-orbit coupling. For phase II, in the case of p
orbitals, the mirror symmetry is broken with t1 = t2 = 0 and
t12 �= 0 while preserving the inversion symmetry and, con-
sequently, the spin-degenerate energy bands. However, there
is a finite hybridization between the bands belonging to the
ml = ±l subspace and the one for ml = 0. As a result, the
band structure of Fig. 1(b) presents a gap at the band crossing
of Fig. 1(a).

FIG. 2. (a) Spin and (b) orbital character of the spin-up energy
bands of a nanoribbon with breadth W = 50	a2 for a system in phase
I. (c) Top: Schematic representation of the ribbons used in the cal-
culation of the energy states shown in (a) and (b); the red color
signals the periodic direction of the ribbon. Bottom: Spin (orange)
and orbital (green) Hall conductivities for a system in phase I.

In the case of phase III, the subspaces of ml = ±l and ml =
0 are decoupled, but the inversion symmetry is broken. As
a result, the bands in Fig. 1(c) can present spin and orbital
angular momentum textures. This breaks the spin degeneracy
of the bands belonging to the ml = ±l subspace. Phase IV
presents all the parameters of a three-band model for MoS2

so that all hoppings of the Hamiltonian are finite and a much
stronger spin-orbit coupling produces a large splitting of the
conduction band states, as seen in Fig. 1(d), but still keeps
the spin and orbital character of the TMDs in the vicinity of
the band gap.

III. TOPOLOGY AND THE SPIN AND ORBITAL ANGULAR
MOMENTUM TRANSPORT

To explore the topology of the different phases, we use
a twofold approach: we calculate the band structure of a
nanoribbon (shown in the insets of Figs. 2–5) and ana-
lyze the edge states for the four different phases while
comparing them with the spin and orbital Hall conductiv-
ities of the bulk system. For the computation of the spin
and orbital Hall conductivities, we used the Kubo-Bastin

FIG. 3. (a) Spin and (b) orbital character of the spin-up energy
bands of a nanoribbon with breadth W = 50	a2 for a system in phase
II. (c) Top: Schematic representation of the ribbons used in the
calculation of the energy states shown in (a) and (b); the red color
signals the periodic direction of the ribbon. Bottom: Spin (orange)
and orbital (green) Hall conductivities for a system in phase II.
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FIG. 4. (a) Spin and (b) orbital character of the energy bands of a
nanoribbon with breadth W = 50	a2 for a system in phase III. (c) Top:
Schematic representation of the ribbons used in the calculation of the
energy states shown in (a) and (b); the red color signals the periodic
direction of the ribbon. Bottom: Spin (orange) and orbital (green)
Hall conductivities for a system in phase III.

formula [47–49]:

σO
αβ (μ, T ) = ieh̄

∫ ∞

−∞
dε f (ε, μ, T )

× Im
[
Tr

〈
JO
α δ(ε − H )vβ∂εG+(ε)

〉]
, (4)

where JO
α = 1

2�
{vα,O} is the angular momentum current den-

sity operator, with O being either the Sz spin operator or the
Lz orbital angular momentum operators, where the latter is
evaluated within the atom-centered approximation; vα being
the α component of the velocity operator in vα = − i

h̄ [H, Rα],
where Rα is the projection of along the α direction of the
position operator and H is the Hamiltonian of the system;
and � being the area of the sample. G+(ε) and δ(ε − H )
are the retarded Green’s and spectral functions, respectively.
These are approximated using the kernel-polynomial method
[50,51] as implemented in the LSQUANT tool kit [52]. For
all of our transport calculations, we used 1024 Chebyshev
moments with the Jackson kernel to obtain an energy res-
olution of δ ≈ 3 meV, while assuming periodicity allowed
us to consider a grid of 512 × 512 points in reciprocal
space.

Starting with phase I, Figs. 2(a) and 2(b) show the band
structure of a nanoribbon, with the color codes indicating the

FIG. 5. (a) Spin and (b) orbital character of the energy bands of a
nanoribbon with breadth W = 50	a2 for a system in phase IV. (c) Top:
Schematic representation of the ribbons used in the calculation of the
energy states shown in (a) and (b); the red color signals the periodic
direction of the ribbon. Bottom: Spin (orange) and orbital (green)
conductivity for a system in phase IV.

Sz and Lz projections, respectively. Because of the spin degen-
eracy, we are showing the spin and orbital characters of the
energy states within the Sz =↑ sector. The band structure of
the nanoribbon does not have in-gap edge states, signaling that
the system lies in a topologically trivial state. Additionally,
from the spin and orbital projection of the energy states of
the nanoribbon, it is clear that the vanishing contribution from
hoppings t1, t2, and t12 forbids the hybridization between the
orbitals with dz2 , dx2−y2 , and dxy and makes the system inver-
sion symmetric. Consequently, the SOC enforces the energy
states formed by linear combinations of orbitals dx2−y2 and dxy

to have a well-defined atomic angular momentum character
[see also Fig. 11(a)], thus making the system a trivial SOC
insulator, as negligible orbital and spin Hall conductivities
presented in Fig. 2(c) confirm.

For phase II, the band structure of the nanoribbon in
Figs. 3(a) and 3(b) shows that after enabling the hybridiza-
tion between the orbitals dz2 , dxy, and dx2−y2 through t1 while
maintaining t2 = t12 = 0, the system exhibits inversion sym-
metry with two pairs of in-gap spin-polarized edge states.
Interestingly, the orbital angular momentum character of the
spin-up states [Fig. 3(b)] unveils that the combined action of
the SOC and orbital hybridization results in the mixing of
dz2 states and m−l = 1√

2
(dx2−y2 − idxy) states, which resem-

bles the Bernevig-Hughes-Zhang (BHZ) model of quantum
spin Hall insulators, and consequently, the edge states of this
system carry opposite spin and orbital angular momenta. The
quantized spin Hall conductivity characterizes the topological
insulator, and the opposite bulk spin and orbital Hall conduc-
tivities shown in Fig. 3(c) confirm the relation with the BHZ
model.

To further inquire into the effects of the orbital hybridiza-
tion on the appearance of topologically nontrivial phases, for
phase III, we follow a similar analysis as we did for phase
II. Figures 4(a) and 4(b) show the band structure and the
respective spin and orbital characters of the states of the
nanoribbon. Here, we forbid the hybridization of the orbitals
dz2 with dx2−y2 , dxy by setting the hoppings t1 = t2 = 0, and we
break the inversion symmetry by allowing t12 �= 0. Analyzing
the orbital and spin character of the edge states of the system,
we can see that the dx2−y2 and dxy orbitals are responsible for
the nontrivial topological properties of the system, whereas
the states related to dz2 are effectively decoupled. In contrast
with phase II, the hybridization and the inversion symmetry
breaking favor the appearance of pairs of edge states with
different spin and orbital characters at opposite sides of the
ribbon Brillouin zone, in relation to spin- and orbital-valley
locking. Similarly, as before, these edge states are endowed
with sizable orbital angular momentum, providing these states
with additional topological protection since any backscatter-
ing event would require a change in not only the spin character
but also the orbital part. The spin and orbital Hall conductiv-
ities shown in Fig. 3(c) confirm the topologically nontrivial
nature of this phase, and the spin and orbital Hall plateaus
have the same sign, in contrast to phase II.

Finally, for phase IV, we allow all the hopping terms, and
essentially, the model reduces to the three-band model for
2H f -TMDs presented by Liu et al. [46], but with enhanced
spin-orbit coupling. By analyzing the spin and orbital charac-
ters of the energy states of the nanoribbon shown in Figs. 5(a)
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and 5(b), respectively, we find that the system presents edge
states within its main energy gap. They are similar to the
edge states presented in MoS2 [33,35] but have large splitting
from the strong spin-orbit coupling. There are four pairs of
edge states, so the system is topologically trivial from the
Z2 classification and exhibits a behavior that is drastically
different from the previous phases. One can notice that the
spin character of the edge states on a single side of the ribbon
Brillouin zone contains opposite spin polarizations, in contrast
to the energy states shown in Fig. 4(a). However, when focus-
ing on the orbital character of the edge states of this system,
we found that they retain a similar orbital character, as shown
in Fig. 4(b). These properties correlate with the absence of
spin Hall conductivity plateaus within the energy gap but the
presence of the orbital Hall insulating phase, as shown in
Fig. 5(c), which is characterized by an orbital Chern number
of 1 [35]. The even number of edge state pairs in the case
of flat termination together with the absence of edge states
for zigzag edges is consistent with a higher-order topological
phase, which is present in this case [53].

Although we do not explore the topological phase tran-
sition between these phases, they occur with the usual band
closing and reopening. The order parameter of phases II and
III is the (Z2) topological invariant [54]. Here, as the spin is a
good quantum number, it translates into a quantized spin Hall
conductivity, and the bulk-edge correspondence can be seen
in the number of edge states crossing the insulating gap in
phases II and III. The HOTI in phase IV can be characterized
by the topological indicator χ (3) and corner charge Q3

c [40].
For noncentrosymmetric materials, the HOTI phase is pro-
tected by Cn rotation symmetry [40,55–57]. This phase can be
identified using the symmetry representations of the occupied
energy bands at specific high-symmetry points in the first
Brillouin zone. For C3 rotation symmetry, we define [K (3)

p ]
as #K (3)

p − #�(3)
p , where #K (3)

p and #�(3)
p denote the number

of occupied bands with symmetry eigenvalue e2π i(p−1)/3 (for
p = 1, 2, 3) at the K and � points, respectively. The topolog-
ical indicator χ (3) and the corresponding corner charge Q(3)

c
are given by

χ (3) = ([
K (3)

1

]
,
[
K (3)

2

])
, Q(3)

c = e

3

[
K (3)

2

]
mod e,

where e is the elementary charge. Since the orbital angu-
lar momentum Lz is the generator of the rotations, one can
see that the rotation eigenvalues e2π i(p−1)/3 (for p = 1, 2, 3)
correspond to the eigenvalues of the operator Lz with mz =
0, 1,−1, respectively. Therefore, analyzing the orbital char-
acter of the valence bands depicted in Fig. 1(d), we find that
the topological indicators and fractional charges are given by
χ (3) = (−1, 2) and Q(3)

c = 2e/3, in agreement with the results
from Ref. [39].

IV. THE ORBITAL HALL CONDUCTIVITY
OF NANORIBBONS: LANDAUER-BüTTIKER

CALCULATIONS

We proceed to further analyze the higher-order topological
phase and check whether the edge states possess the capa-
bility of carrying orbital angular momentum. To accomplish
this, we designed an OHE setup consisting of a mesoscopic
device connected to four semi-infinite terminals subjected to

FIG. 6. (a) Triangular lattice device with flat edges. (b) Triangu-
lar lattice device with flat and zigzag edges. The scattering region
(blue) is connected to four leads semi-infinite leads (red).

voltage biases Vi. In our calculations, we considered two dis-
tinct device geometries. Figure 6(a) showcases a configuration
with all flat edges, whereas Fig. 6(b) presents a conventional
Hall-bar geometry characterized by a combination of flat and
zigzag edges.

In the Landauer-Büttiker formalism, the orbital (spin) pro-
jected current through the ith terminal in the linear regime at
low temperature is given by

IOi,η = e2

h

∑
j

τO
i j,η(Vi − Vj ), (5)

with O being one of the Lz orbital angular momenta or Sz

spin states [� (↑) or � (↓)]. The orbital (spin) transmis-
sion coefficient is calculated from the scattering matrix S =
[Si j]i, j=1,...,4 as

τO
i j,η = Tr

[
(Si j )

†PO
η Si j

]
, (6)

where the matrices PLη

η = 1N ⊗ lη ⊗ σ 0 and PSη

η = 1N ⊗
l0 ⊗ ση are projectors and 1N is an identity matrix with di-
mensions N × N . The dimensionless integer N refers to the
number of propagating wave modes in the terminals, pro-
portional to the terminal width W and the Fermi vector kF ,
computed through the equation N = kFW/π . The matrices lη

and ση, with η = {x, y, z}, are the orbital angular momentum
and spin matrices, respectively, and the cases with η = 0 refer
to the identity matrices in the orbital and spin subspaces. Thus,
by setting either η = 0 or η = {x, y, z}, the charge and orbital
(spin) can be respectively addressed.

The pure orbital Hall conductivity (OHC) and spin Hall
conductivity (SHC) ILz (Sz )

i,z = h̄
e (I�(↑)

i − I�(↓)
i ), i = 3, 4, can

be obtained by assuming that the charge current van-
ishes in the transverse terminals, Ic

i,0 = I�(↑)
i + I�(↓)

i = 0,
but is conserved in the longitudinal terminals, Ic

1,0 = −Ic
2,0 =

Ic [58–60]. By applying these conditions to Eq. (5), we
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FIG. 7. (a) Band structure, (b) charge current, and (c) orbital
and spin Hall current of a mesoscopic device with the dimensions
and design of Fig. 6(a). (d) Band structure, (e) charge current, and
(f) orbital and spin Hall current of a mesoscopic device with the
dimensions and design of Fig. 6(b). (c) and (f) Spin (orange) and
orbital (green) conductance for a MoS2 monolayer, which is in
phase IV.

obtain [10]

IOi,η = e

2π

[(
τO

i2,η − τO
i1,η

)V

2
− τO

i3,ηV3 + τO
i4,ηV4

]
(7)

for i = 3, 4, where V is a constant potential difference
between longitudinal terminals and V3,4 is the transversal ter-
minal voltage.

We begin our investigation by examining the influence
of ribbon termination on the orbital Hall conductance in a
higher-order topological insulator. To facilitate a clearer visu-
alization of the role of in-gap edge states in orbital transport,
we utilize a triangular lattice with parameters akin to MoS2,
which belongs to the same topological phase as phase IV. The
numerical calculations in this section were implemented in the
KWANT software [61].

It is essential to note that to establish a connection between
the edge states of the original honeycomb lattice of MoS2

and the triangular lattice of d orbitals, the zigzag edge of
the honeycomb lattice corresponds to the flat edge of the
triangular lattice, which consists of one of the sublattices.
Simultaneously, the armchair edge of the honeycomb lattice
is associated with the zigzag edge of the triangular lattice.

Figure 7(a) presents the band structure of the type of de-
vice sketched in Fig. 6(a) for the parameters of MoS2. In
that device, all edges break the threefold rotation symmetry
of the triangular lattice. The band structure of the system is

FIG. 8. (a) Band structure, (b) charge current, and (c) orbital
and spin Hall current of a mesoscopic device with the dimensions
and design of Fig. 6(a). (d) Band structure, (e) charge current, and
(f) orbital and spin Hall current of a mesoscopic device with the
dimensions and design of Fig. 6(b). (c) and (f) Spin (orange) and
orbital (green) current, which is in phase II.

very similar to the band structure of a MoS2 nanoribbon in
the three-orbital approximation [39]. Figure 7(b) presents the
longitudinal charge current of the device, where it is clear
that the in-gap edges are metallic and can conduct charge.
Figure 7(c) depicts the transverse spin and orbital currents.
While the spin current is zero inside the gap, we can see
a finite orbital current in the same energy window of the
in-gap edge states. In contrast, if the device also presents
some edges that preserve the threefold rotation symmetry
of the triangular lattice, as sketched in Fig. 6(b), the band
structure remains similar, as shown in Fig. 7(d), but the charge
current is suppressed in a good part of the energy window
inside the gap [Fig. 7(e)], and the system does not present
either spin or orbital currents, as shown in Fig. 7(f).

This behavior can be compared with the characteristics of
a first-order topological insulator, such as the one in phase II.
Figure 8(a) presents the band structure for the device sketched
in Fig. 6(a) for a topological insulator in phase II discussed
previously. Figure 8(b) presents the longitudinal charge cur-
rent of the device, and it is clear that the in-gap edges are
metallic and can conduct charge. Figure 8(c) depicts the trans-
verse spin and orbital currents. Both spin and orbital currents
are finite with opposite signs. While the spin current has a
clear plateau inside the gap, the orbital current does not seem
to have a quantized value. Figures 8(d)–8(f) present the same
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FIG. 9. (a) Band structure and orbital and spin Hall current with
disorder strengths for (b) U = 0, (c) U = 0.1 eV, (d) U = 0.2 eV
for a mesoscopic device of a MoS2 monolayer which is in phase IV
with dimensions 10 times bigger than as shown in Fig. 6(a). (e) Band
structure and orbital and spin Hall current with disorder strengths for
(f) U = 0, (g) U = 0.1 eV, (h) U = 0.2 eV of a mesoscopic device
which is in phase II with dimensions 10 times bigger than as shown
in Fig. 6(a).

results, but for the device sketched in Fig. 6(b). Different from
the previous cases, the results are robust independent of the
type of edges the device presents, underlying the importance
of topological protection by a global symmetry.

Finally, to study the robustness of the orbital and spin Hall
currents against scalar disorder, we included an Anderson
disorder term that varies randomly from site to site according
to a uniform distribution in the interval (−U/2,U/2), with U
being the disorder strength. Figures 9(b)–9(d) present both the
orbital and spin Hall currents of MoS2 for U = 0, U = 0.1 eV,
and U = 0.2 eV, respectively. From these plots, one can notice
that the orbital Hall currents are not protected against disorder.
Although the plateau observed in bulk calculations survives
with increasing disorder [13], our results show a decrease
in the orbital Hall current. For the case of the topological
insulator of phase II, Figs. 9(f)–9(h) show that the spin cur-
rents are not affected by the increment of the disorder, as one
would expect for topologically protected states. In contrast,
the orbital Hall currents are affected by the disorder.

V. CONCLUSION

To summarize, our study focused on a generalized multior-
bital tight-binding model on a triangular lattice. This system
was recently used to obtain higher-order topological phases
in two-dimensional materials but also is especially relevant
for modeling transition metal dichalcogenide monolayers. By
modifying the hopping terms of the model, we changed the
hybridization between orbitals and uncovered the intricate
interplay between spin-orbit coupling and various symmetry-
breaking mechanisms, which led to the identification of four
distinct topological phases [45]. Notably, this interplay also
resulted in the emergence of an orbital Hall effect with unique
characteristics. For the two first-order topological phases,
the quantized spin Hall conductivity is accompanied by a
nonquantized orbital Hall plateau, while the higher-order

topological phase presents the orbital Hall effect in the ab-
sence of the spin Hall effect.

Furthermore, we applied the Landauer-Büttiker formula to
establish that in the orbital Hall insulating phase, the orbital
angular momentum is carried by edge states that exist in
nanoribbons with flat terminations. Importantly, we demon-
strated that these edge states lack the topological protection
against disorder observed in the edge states associated with a
first-order topological insulator. These findings provide valu-
able insights into the behavior of edge states in systems with
higher-order topology and their role in the onset of the orbital
Hall effect in these systems.
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APPENDIX A: SLATER-KOSTER APPROACH FOR p
ORBITALS IN A TRIANGULAR LATTICE

To calculate the first-neighbor hoppings of a Hamiltonian
of p orbitals in a triangular lattice, we define nz = cos θ , nx =
cos φ sin θ , and ny = sin φ sin θ .

For the hopping between p orbitals one has

tpi,pi = n2
i Vppσ + (

1 − n2
i

)
Vppπ , (A1)

tpi,p j = nin j (Vppσ − Vppπ ), (A2)

with i = x, y, z and i �= j.
For the two-dimensional lattice, we define nz =

cos θ = 0 = 1, nx = cos φ, and ny = sin φ and tpz,pz =
n2

i V z
ppσ . Using cos(π/3) = cos(−π/3) = − cos(2π/3) =

− cos(−2π/3) = 1
2 , sin(π/3) = − cos(−π/3) =

sin(2π/3) = − sin(−2π/3) =
√

3
2 , cos(0) = − cos(π ) = 1,

and sin 0 = sin(π ) = 0, one can construct the hopping
elements that preserve all the symmetries of the lattice:

hpx,px (kx, ky) = 1
4 (Vppσ + 3Vppπ )

(
ei(α+β ) + e−i(α+β )a

+ ei(α−β ) + e−i(α−β )
)

+ Vppσ (e2iα + e−2iα ), (A3)
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FIG. 10. Band structure of the three-band low-energy model for
the parameters of the three-band model of MoS2 in the vicinity of
Dirac points (a) K and (b) K ′. (c) and (d) The band structures for the
parameters of phase IV.

hpx,px (kx, ky) = (Vppσ + 3Vppπ ) cos α cos β + 2Vppσ cos 2α,

(A4)

hpy,py (kx, ky ) = (3Vppσ + Vppπ ) cos α cos β + 2Vppπ cos 2α.

(A5)

Using the expressions above, one has cos(π/3) sin(π/3) =
− cos(−π / 3) sin(−π /3) = cos(−2π / 3) sin(−2π / 3) =
− cos(2π/3) sin(2π/3) =

√
3

4 and cos(0) sin(0) = cos(π )
sin(π ) = 0, and

hpx,py (kx, ky) =
√

3

4
(Vppσ − Vppπ )(ei(α+β ) + e−i(α+β )

− ei(α−β ) − e−i(α−β ) ), (A6)

hpx,py (kx, ky) = −
√

3(Vppσ − Vppπ ) sin α sin β. (A7)

As can be seen, if all the symmetries are preserved, the sub-
space of the pz orbital is separated from the subspace of the px

and py orbitals. However, if the vertical reflection symmetry is
broken, it allows for hybridization between them, which can
be given by tpi pz = λhni = −tpz pi ,

hpx,pz (kx, ky) = 1
2λh

(
ei(α+β ) − e−i(α+β ) + ei(α−β )

− e−i(α−β ) + 2e2iα − 2e−2iα
)
, (A8)

hpx,pz (kx, ky ) = − 2iλh(sin 2α + sin α cos β ), (A9)

hpy,pz (kx, ky) =
√

3

2
λh

(
ei(α+β ) − e−i(α+β ) − ei(α−β )+e−i(α−β )

)
,

(A10)

hpy,pz (kx, ky) =2
√

3iλh cos α sin β. (A11)

We can also break inversion symmetry by breaking σv

while still respecting the threefold rotation symmetry. For
this purpose, we can introduce a hopping given by tv

py,px
=

λv cos(3φ) = −tv
px,py

, so that

hv
px,py

(kx, ky) = λv

( − ei(α+β ) + e−i(α+β ) − ei(α−β ) + e−i(α−β )

+ e2iα − e−2iα
)
, (A12)

hv
px,py

(kx, ky) = λv (2i sin 2α − 4i sin α cos β ), (A13)

hv
px,py

(kx, ky) = 4iλv sin α(cos α − cos β ). (A14)

APPENDIX B: LOW-ENERGY HAMILTONIAN

To better understand how phase IV is related to the appear-
ance of an orbital Hall plateau in the absence of spin Hall
conductivity, it is helpful to look at a simplified low-energy
Hamiltonian. Since the original Hamiltonian, H0, is written
in a basis that spans states with orbital angular momentum
quantum numbers ml of −l , 0, and l , we can map it to a
basis of p orbitals and rewrite it in terms of the orbital angular
momentum operators Lx, Ly, and Lz. We can then expand this
Hamiltonian around the Dirac points, which is relevant for
phase IV.

The Hamiltonian for each valley HK (K ′ )(qx, qy), with 	q =
	k − 	K ( 	K ′), reads

HK (qx, qy) =
(

−3

2
(t11 + t22) + ε2

)
L2

z − 3
√

3t12τzLz + λszLz

+ (−3t0 + ε1)

(
L2

l (l + 1)
− L2

z

)

+ 3
√

3

2
t2τz(qxLx − qyLy)

+ 3

2
t1{Lz, (qxLx − qyLy)} − 3

√
3

4
(t11 − t22)

× [Lx(qxLx + qyLy) + Ly(qxLy − qyLx )],
(B1)

where τz = ±1 represents the different valleys and sz is the
spin operator. From the equation above, it is clear that up
to first order in qx and qy the spin-orbit coupling does not
produce any spin texture. On the other hand, the last term
of the Hamiltonian, proportional to the difference t11 − t22,
is connected to an orbital Rashba coupling while the terms
proportional to t1 and t2 incorporate an orbital Dresselhaus
coupling. Furthermore, t12 is responsible for a strong orbital-
valley locking when it dominates over other contributions. It
becomes clear that the spin-valley coupling that is seen in
TMDs is mediated by an orbital-valley coupling.

To test the new low-energy Hamiltonian, we first present
the band structure for the parameters of the three-band model
of MoS2 in Fig. 10 in the vicinity of the K [Fig. 10(a)] and
K ′ [Fig. 10(b)] Dirac points. The band structure is consistent
with both the tight-binding and two-band low-energy models,
keeping the spin character of the bands in the two Dirac points
while explicitly taking into account the orbital characters of
the three states in K and K ′. Figures 10(c) and 10(d) show the
band structures for the parameters used in phase IV and also
provide a consistent description of the bands.
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APPENDIX C: SPIN PROJECTION OF THE ENERGY
STATES FOR THE FOUR PHASES

To complement the analyses from Fig. 1, we also computed
the spin character of the energy bands for the four phases.
As before, only one spin sector is shown for phases I and II,
which are inversion symmetric. Comparing Fig. 11(a) with
Fig. 1(a), it is clear that phase I does not possess any band
inversion, which confirms its topologically trivial character.
Figure 11(b) evinces that the nontrivial topology arises from
the band inversion between the states with mz = ±2 and mz =
0, as shown in Fig. 1, evincing the role of the orbital degrees
of freedom in the design of topological phases. Moreover,
the data from Figs. 11(c) and 1(c) add to this interpretation
since the quantum spin Hall insulating state arises in phase
III from the band inversion between states with mz = ±1. On
the other hand, the states with mz = 0 do not hybridize and
are insensitive to the SOC. Furthermore, for phase IV, the
hybridization between states with mz = ±1 and mz = 0 pro-
motes the occurrence of an additional band inversion, driving
the system to a topologically trivial state from the Z2 classifi-
cation. Nevertheless, it still exhibits an orbital Hall insulating
phase.

FIG. 11. Bulk energy bands of the four topological phases of the
three-band model for various terms in the Hamiltonian. (a) Phase
I: t1 = t2 = t12 = 0. (b) Phase II: t2 = t12 = 0, t1 �= 0. (c) Phase III:
t1 = t2 = 0, t12 �= 0. (d) Phase IV: t1 �= t2 �= t12 �= 0. The colors indi-
cate the Sz character of each band, and for phases I and II, only the
energy states corresponding to the Sz =↑ sector are shown.
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