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Dissipation and dephasing in quantum Hall interferometers
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In recent years, counter-intuitive results have shown that the quantum Hall edge states with topological
protection can be dissipative. In this paper, we point out that the non-equilibrium nature of edge states in quantum
Hall interferometers leads to inevitable dissipation. We consider a graphene interferometer operating in the
integer quantum Hall regime and simulate the inelastic scattering that causes both dissipation and dephasing
in the interferometer using non-equilibrium Green’s function and virtual leads. We describe the dissipation
process with the numerical results of the spatial distribution of heat generation and the evolution of electron
energy distribution. In addition, with the enhancement of dephasing, a competition between Aharonov-Bohm
interference and topologically protected quantized Hall plateaus is observed in the oscillations and fluctuations
of the Hall resistances. At a suitable dephasing strength, quantum Hall plateaus can be promoted by dephasing.
Our results not only give clues for the design of dissipation-free devices but also provide a platform for studying
the non-equilibrium relaxation and the dissipation mechanism of topological states.
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I. INTRODUCTION

In the presence of a strong magnetic field, a two-
dimensional electron system exhibits zero longitudinal re-
sistance and quantized Hall resistance, that is, the quantum
Hall (QH) effect [1]. Due to the strong magnetic field, QH
edge states form close to the edge of the sample, which
are characterized by chirality, no backscattering, and robust-
ness as topologically protected quantum states [2]. QH edge
states have a long coherence length [3], and the external
magnetic field naturally provides electrons with controllable
phase through the Aharonov-Bohm (AB) effect, which inspire
people to design electronic interferometers in QH systems
[4]. Analogous to optical interferometers and with the use
of quantum point contacts (QPCs) as beamsplitters [5], QH
interferometers such as Fabry-Pérot and Mach-Zehnder in-
terferometers are designed theoretically and experimentally
[6–20]. In recent years, QH interferometers have been studied
in two-dimensional electron gas [20,21], monolayer graphene
[22–25], bilayer graphene [26–28], and other systems. These
high-performance QH interferometers have pioneered elec-
tron quantum optics [5,29,30] and have been used for the
observation of fractional statistics [18,21].

Dephasing [31,32] in QH interferometers has attracted
great research interest, since reducing dephasing can improve
the performance of QH interferometers and the latter also pro-
vides a good platform to study dephasing [3,4,30]. Although
identifying all the microscopic mechanisms of dephasing is
difficult, many contributing factors have been found. Within
a single edge state, Coulomb interaction [33] and collec-
tive spin excitations can cause dephasing [34]. The coupling
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between co-propagating edge states [34,35], shot noise
[33,36], and edge reconstruction [36,37] are also important
factors of dephasing. With the existence of these mechanisms,
it is believed that dephasing is widespread in QH edge states,
despite the long coherence length.

Different from dephasing, since the discovery of the QH
effect, it has been widely believed that topologically protected
QH edge states are dissipation-free, and countless studies have
mentioned this [38–47]. Theoretically, however, dissipation
due to the phonon emission is not forbidden in QH edge
states [48], which can be enhanced by the inelastic forward
scattering introduced by defects and impurities [49,50]. In
an experiment in 2019, thermal imaging of graphene using
SQUID-on-tip was performed and heat generation along the
QH edge states was observed, confirming the existence of
dissipative transport in QH edge states [51]. This experiment
is also supported by theoretical researches [50,52,53]. There-
fore, many problems related to QH edge states need to be
reconsidered with the participant of dissipation urgently, such
as the slight deviation between the Hall resistance and the
theoretical value in experiments [54], the “carrier cooling”
problem [55], and the “unknown channel for energy loss”
[56,57]. More importantly, the relationship between dissipa-
tion and topological protection of the QH edge states needs to
be understood again.

In this paper, we theoretically construct a graphene QH
interferometer working in the integer QH regime, with the use
of QPCs. Based on the QH interferometer, we simulate the
dissipation and dephasing of the QH interferometer by using
non-equilibrium Green’s function and Büttiker virtual leads
[58]. On the one hand, we point out that as long as the QH
edge states along the QH interferometer are in thermal non-
equilibrium, the dissipation and heat generation inevitably
occur. To eliminate dissipation, one needs to design a device
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FIG. 1. A schematic diagram of the graphene QH interferometer. The green-filled region represents a zigzag graphene nanoribbon and two
QPCs are defined on it. Lead-1 and lead-5 act as the source and drain. Lead-(2-4) and lead-(6-8) are voltage probes. A QH edge state is shown
by the dark blue arrow. The detailed dimensions of the QH interferometer are presented in Appendix A.

that keeps the QH edge states in equilibrium all along while
working. We also calculate the spatial distribution of the heat
generation and the evolution of electrons energy distribution,
which can describe the dissipation process self-consistently.
On the other hand, by calculating the Hall resistance and its
fluctuation, we observe a competition between AB oscilla-
tions and topologically protected quantized Hall resistance.
When the coherence length Lφ is longer than the perimeter
Lloop of the interference loop, the visibility of the QH interfer-
ometer is high, and the quantized Hall resistance is destroyed
by AB oscillation. With the increase of the dephasing, the co-
herence length Lφ shortens. When Lφ < Lloop, AB oscillations
are suppressed and quantized Hall plateaus appear. As a result,
the dephasing promotes the appearance of the QH plateaus.
Under much stronger dephasing with the Lφ less than the mag-
netic length LB, QH plateaus are destroyed by the broadening
plateau transition region, and the transport behavior tends to
be classical [59]. Our work will contribute to the design of QH
interferometers, and we also provide a platform for studying
the process of non-equilibrium relaxation and the dissipation
mechanism of topological states.

The rest of the paper is organized as follows. In Sec. II, we
present a theoretical model of a graphene QH interferometer
and describe the methods and formulas we used. In Sec. III,
we study the dissipation of the QH edge states in the QH
interferometer. The effect of the dephasing on the interference
pattern of resistance and the quantized Hall resistance are
presented in Sec. IV. At last, Sec. V concludes this paper.

II. THEORETICAL MODEL

To realize a QH interferometer, we require the establish-
ment of two QPCs, which work as the beamsplitters [4]. As
shown in Fig. 1, two QPCs are defined on the graphene,
in which two narrow constrictions are introduced and the
graphene becomes a Fabry-Pérot interferometer. Lead-(1-8)
are semi-infinite graphene leads contacted with the QH inter-
ferometer. Lead-1 and lead-5 act as the source and drain, and

the remaining six leads act as voltage probes. With a strong
perpendicular magnetic field, the QH edge states form and the
system becomes a QH interferometer. For example, because
of the narrow constrictions caused by QPCs, one edge state is
partially transmitted and partially reflected at the QPCs. We
show the direction of an edge state in Fig. 1, and a closed
interference loop is formed between the two QPCs.

The QH interferometer, lead-(1-8), and their coupling can
be described together by the graphene Hamiltonian,

HG =
∑

i

εic
†
i ci −

∑
〈i j〉

teiφi j c†
i c j, (1)

where ci (c†
i ) is the annihilation (creation) operator of elec-

trons at i site, t = 2.75 eV is the hopping energy, εi = 0.2t =
0.55 eV is the on-site energy, and the magnetic field is in-
troduced by the Peierls phase φi j = ∫ j

i A · dl/φ0 [60], with
φ0 = h̄/e the flux quantum. We set the Fermi energy EF = 0.
Experimentally, the on-site energy εi can be adjusted by gate
voltages, and the filling factor ν is determined jointly by
EF − εi and the magnetic field. When the Fermi energy lies
in the gaps of the Landau levels, the physics of the edge states
in the QH effect works. For the rest of the paper, we set the
unit of energy to eV.

The dissipation sources (e.g., the electron-phonon interac-
tion and impurities) inevitably exist in real systems and can
also convert the ordered energy of the electron motion into
the disordered heat energy [31,61]. We simulate the dissipa-
tion sources and dephasing by coupling Büttiker virtual leads
[52,58,62–64] to the QH interferometer. We couple virtual
leads randomly to the sites in the green and blue regions in
Fig. 6(a) (see Appendix A). Each site in these regions has
a probability η = 1/4 to be coupled to a virtual lead. Under
a strong magnetic field, Landau levels are formed and the
bulk is usually gapped. Therefore, there are no virtual leads
in the gray regions in the bulk. As a result, electrons in the
QH interferometer can go into and come back from the virtual
leads with a loss of energy and phase memory. Then, the total

085411-2



DISSIPATION AND DEPHASING IN QUANTUM HALL … PHYSICAL REVIEW B 110, 085411 (2024)

Hamiltonian of the system is given by [52]

H = HG +
∑
i,k

εka†
ikaik +

∑
i,k

(
tika†

ikci + H.c.
)
, (2)

where the second and last terms represent the Hamiltonian
of virtual leads and their coupling to the QH interferometer,
respectively. An electron in each virtual lead has a momentum
k and a continuous energy spectrum εk . aik (a†

ik) is the annihi-
lation (creation) operator of electrons in the virtual lead-i that
coupled to site i and tik characterizes the coupling strength.
Here the coupling strength tik is randomly either 0 or tk with
the probability 1 − η and η, respectively. It is worth mention-
ing that here we assume that tik takes only two values 0 or tk . If
tik can take more values or a continuous distribution, the result
remains unchanged, which is discussed in the Supplemental
Material [65]. For convenience, below we relabel all leads by
p ∈ {1, 2, 3, ...}. p � 8 represents real leads [lead-(1-8)], and
p > 8 for virtual leads.

To simulate the Hall effect and heat generation of the
system, we use the Landauer-Büttiker formula to describe the
relationship between the electric current, heat current, voltage,
and temperature of both real and virtual leads [52,62,66],

Ip = 2e

h

∑
q

∫
Tpq(E )[ fp(E ) − fq(E )]dE ,

Qp = −2

h

∑
q

∫
(E − μp)Tpq(E )[ fp(E ) − fq(E )]dE . (3)

Here Ip, Qp, Tp, and fp(E ) = 1/{exp[(E − μp)/(kBTp)] + 1}
represent the electric current from the p-th lead to the QH
interferometer, heat current from the QH interferometer to the
p-th lead (i.e., the heat generation), temperature of the p-th
lead, and Fermi distribution of the p-th lead, respectively. We
set the Fermi energy EF = 0 so that the chemical potential
of the p-th lead is given by its voltage μp = eVp. Besides, a
spin degeneracy is assumed without considering the Zeeman
splitting and spin excitation for simplicity. Tpq(E ) is the trans-
mission coefficient of electrons with energy E from the lead-p
to lead-q.

To calculate the transmission coefficient, we use the non-
equilibrium Green’s function and Tpq(E ) = Tr(�pGr�qGa)
[67]. The retarded Green’s function of the QH interfer-
ometer is Gr (E ) = [Ga(E )]† = (E − HQHI − ∑

p �r
p)−1, and

the linewidth function �p = i[�r
p(E ) − �a

p(E )]. HQHI is the
Hamiltonian of electrons in the green region in Fig. 1, which
is a part of HG in Eq. (1). �r

p(E ) = [�a
p(E )]† is the retarded

self-energy due to the coupling of the p-th leads. For virtual
leads, the self-energy �r

p = −i�d/2 is energy-independent,
with �d = 2πρt2

k and ρ the density of states of virtual leads
[62]. �d represents the strength of dephasing and can be
converted into the coherence length Lφ [see Appendix A and
Fig. 6(b)]. For real leads, we use a numerical method to obtain
its self-energy [68,69]. In addition, with the Green’s function,
we can further calculate the energy distribution of electrons at
i site, which is given by the ratio of local electron density to
the local density of states [52],

Fi(E ) = ni(E )

LDOSi(E )
. (4)

By definition, the electron density is related to the lesser
Green’s function ni(E ) = − i

2π
G<

ii (E ) and the local density of
states is given by LDOSi(E ) = − 1

π
ImGr

ii(E ). And the lesser
Green’s function can be calculated according to the Keldysh
formulation [52,70], G<

ii (E ) = −∑
p fp(E )Gr

ip(E )[�r
p(E ) −

�a
p(E )]Ga

pi(E ).
With the discussion above, we can calculate the heat gener-

ation, resistances, and distribution of electrons once we have
determined the boundary conditions of Eq. (3). For the rest
of the article, we consider that our system has a good heat
exchange with a huge environment, so we set all leads at the
same temperature Tp = T [52]. Then, Eq. (3) can be reduced
with small bias voltages and low temperature [52],

Ip = 2e2

h

∑
q �=p

Tpq(0)(Vp − Vq), (5)

Qp = −2e2

h

∑
q �=p

Tpq(0)

(
VpVq − 1

2
V 2

p − 1

2
V 2

q

)
. (6)

We consider a small bias between lead-1 and lead-5, i.e., V1 =
V0 and V5 = 0. The approximation from Eq. (3) to Eqs. (5)
and (6) works well with (kBT )2 � 	E × eV0 � (	E )2 [52],
where 	E is the gap between the Landau levels that we care
about. We guarantee this condition in all calculations and it
is also accurate in typical experiments [71]. The currents of
other leads are set to be zero Ip�=1,5 = 0, since electrons will
not leave the system in a real dissipation process and lead-
(2-4, 6-8) act as voltage probes. With these conditions, the
voltage Vp in the lead-p can be solved from Eq. (5) directly
because Eq. (5) is a linear equation. Then we can obtain I =
I1 = −I5 and Qp from Eqs. (5) and (6) straightforwardly. At
last, we can obtain resistances Rpq = (Vp − Vq)/I , and the heat
generation of dissipation is given by Qp>8.

III. DISSIPATION OF THE QH EDGE STATES

In this section, we discuss the dissipation of the QH edge
state along the edge of the QH interferometer. For simplicity,
we fix the magnetic field B = 0.03 (in the unit of 4h̄/3

√
3ea2)

to make sure there is only one edge state, where a is the
length of the carbon-carbon bond in graphene. The width of
the QH edge state can be estimated by magnetic length LB =√

h̄/eB ≈ 6.58a. It is close to the width of the constriction
M = 5a introduced by QPCs (see Appendix A), so two QPCs
can work as the beamsplitters. The specific parameters we
used in the calculation are given in Appendix A.

A. Heat generation

With Eqs. (5) and (6) and the boundary conditions, we
can calculate the heat current from the QH interferometer
to each virtual lead, which is the heat generation due to the
dissipation. The power of the heat generation is the magnitude
of the heat current of virtual leads. Here we take an average of
1000 random configurations of virtual leads so that each site
has an average heat generation. The numerical results with
two different strengths �d , are shown in Fig. 2.

It can be seen that there is significant heat generation along
the QH edge states, including in the whole interference loop,
in the top right corner, and in the bottom left corner. This
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FIG. 2. The averaged dissipative heat generation of different sites. Each site is described by a coordinate (x, y) with the origin located in
the bottom left corner, see Appendix A. We choose a small dissipation strength �d = 0.02 in (a) and a large strength �d = 0.1 in (b). B = 0.03
and other parameters are given in Appendix A. The power of heat generation, i.e., the magnitude of the heat current of the virtual leads, is
indicated in different colors, see the color bar. The black marks in (b) give the positions that we show the energy distribution of the electrons
in Fig. 3.

means that the dissipation occurs when electrons propagate
along the chiral QH edge state. This is contrary to the general
belief that topologically protected edge states are dissipa-
tionless. But this is consistent with the experiment that the
temperature increase caused by dissipation is observed down-
stream along the QH edge state [51]. Although we set V0 is
small, our results show that Qp/V 2

0 will remain constants un-
der a fixed �d , which implies the occurrence of the dissipation
even if for a very small bias V0.

For a small �d = 0.02, as shown in Fig. 2(a), the heat
generation along the QH interferometer loop almost does not
decay with the increase of the propagation distance, which
is consistent with the imaging experiment [51]. For a large
�d = 0.1, as shown in Fig. 2(b), the heat generation near the
QPCs and along the QH edge are both larger than Fig. 2(a).
In the parameters of Fig. 2(b), the Hall resistance R37 =
1.0098(h/2e2) which is well close to the resistance quantize,
which means that topological protection plays its role and
the chiral QH edge state still exists in our system with the
introduction of virtual leads. Therefore, the results in Fig. 2
demonstrate a counter-intuitive fact that topological protec-
tion cannot prevent the dissipation of quantum states. Even if
topological protection exists and backscattering is prohibited,
dissipative heat production of the QH edge state can still
occur.

Next, we focus on the conditions under which dissipation
does not occur. It is not a surprise that the QH bulk has no
dissipative heat generation because it is insulated and does
not participate in transport on the QH plateau regime. The
QH edge state in the top left and bottom right corners of
the QH interferometer does not dissipate as well. In fact, in
the top left (bottom right) corner, electrons on the QH edge
state are directly from the lead-1 (lead-5) and are not affected
by QPCs, so their energy distribution remains an equilibrium
with the chemical potential being the same as that of the lead-1
(lead-5) as shown in Fig. 3(a). This ensures that no matter how
large the �d is, there is also no dissipative heat generation

in the top left and bottom right corners of our system. That
is, the dissipation does not occur only if the electrons are in
equilibrium.
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FIG. 3. The energy distribution F of the electrons at different
positions as marked in Fig. 2(b). (a) The energy distribution of the
electrons in the top left and the bottom right corners of the QH
interferometer, shown as black dots in Fig. 2(b). (b) The energy
distribution of electrons in the top edge of the interference loop,
represented by black stars in Fig. 2(b). (c) The energy distribution
of electrons in the top right corner of the QH interferometer, and
their positions are represented by black squares in Fig. 2(b). We
set a temperature kbT = 0.02eV0, a strong dissipation �d = 0.1, and
B = 0.03. Other parameters are given in Appendix A.
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In addition, the energy conservation in Fig. 2 can be veri-
fied. The total power input to the system is the current flowing
from the source (lead-1) to the drain (lead-5) multiplied by the
bias W = I1V0. And the total power going out of the system
is the sum of dissipative heat generation of the whole QH
interferometer and all contacts, that is, the heat current goes
out of all leads Qtotal = ∑

p Qp (both real and virtual leads).
If the dissipation within the QH interferometer is reduced,
the dissipation at contacts will increase. W = Qtotal holds true
for any �d . The QH interferometer also outputs entropy to
the environment (virtual leads). Since we theoretically set the
temperature of the system to be the same, the entropy gener-
ated by the edge state dissipation per unit time is

∑
p>8 Qp/T

[51], which comes from the relaxation process from the non-
equilibrium distribution to the equilibrium one, as we discuss
in the next subsection.

B. Energy distribution along the QH edge states

The energy distribution of electrons in QH edge states can
be measured by the current tunneling through a quantum dot,
which is a kind of spectroscopy [56,72]. As we discussed in
Sec. II, we can use Eq. (4) to calculate the energy distribu-
tion of electrons. In Fig. 3, we show the numerical results
of the energy distribution at different positions as marked
in Fig. 2(b). The equilibrium energy distribution [Fig. 3(a)]
and the non-equilibrium distribution [Figs. 3(b) and 3(c)] that
gradually evolves with the propagation of the edge state are
clearly shown. When we calculate the energy distribution, we
remove the virtual leads near two QPCs (see Appendix A),
which made the calculation result more elegant on the one
hand. On the other hand, the dissipation sources that enhance
the phonon emission (such as the single atom defect) in the
experiment are usually distributed in the physical edge of
graphene [23,49,51], and there was less near the gate-defined
constrictions.

As shown in Fig. 3(a), in the top left and bottom right
corners of the QH interferometer, electrons in the QH edge
state are in equilibrium Fermi distributions, since electrons
come directly from the lead-1 and lead-5 without the backscat-
tering. The distribution F of electrons in the bottom right
corner is the same as that in lead-5, where F (E ) = f (E ) =
1/[exp(E/kBT ) + 1]. The distribution F in the top left
corner has the same chemical potential as lead-1, so the
distribution function is F (E ) = f (E − eV0). In equilibrium,
low-energy states are fully filled, and due to the Pauli ex-
clusion principle, high-energy electrons cannot lose energy,
even if dissipation sources are present. This is consistent
with the absence of dissipative heat generation near the black
dots in Fig. 2(b), and is also consistent with the prevailing
view [73].

When the equilibrium electrons propagating along the QH
edge state in the top left corner entering from lead-1 en-
counter the left QPC, transmission and reflection occur with
noninteger probabilities. This results in a highly nonequi-
librium double-step distribution of the transmitted electrons
with F (E ) ≈ f (E ) + T [ f (E − eV0) − f (E )] [52,66,72,73],
where T = 0.5378 is the transmission coefficient of a sin-
gle QPC we applied. Of course, the reflected electrons are
also in a nonequilibrium double-step distribution. As the

nonequilibrium electrons propagate forward along the QH
edge state in the interferometer, high-energy electrons can lose
energy through all kinds of dissipation mechanisms simulated
by virtual leads. Because the low-energy state is not fully
filled, nothing can stop the relaxation process which causes
the dissipative heat generation and entropy increase. Even
with the topological protection, as electrons along the edge
state propagate forward, the high-energy electrons gradually
decrease and the low-energy electrons gradually increase. As
shown in Figs. 3(b) and 3(c), the energy distribution of elec-
trons gradually evolves from nonequilibrium to equilibrium
as some triple steps. In this process, the energy lost by the
electrons flows into the environment in the form of a dissi-
pative heat generation [50,51], which is what we observe in
Fig. 2. It can be seen that less heat is generated at (160,58) of
Fig. 2(b) than at the four black stars on the left because the
high-energy electrons decrease with the energy relaxation, as
shown in Fig. 3(b).

Many previous experiments may have implied the dissipa-
tion caused by such nonequilibrium relaxation. One of them
observed that the electron-electron interaction between differ-
ent QH edge states can cause the relaxation of nonequilibrium
edge states. But after the relaxation, an electron temperature
lower than theoretically expected was observed, indicating an
unknown channel for energy loss [56,57]. Another experiment
observed that the thermoelectric signal of hot electrons is
observed to decay with distance from a constriction, indicat-
ing part of the heat is transferred out of the edge channel
[55]. When interpreting these experiments, it was generally
believed that the dissipative mechanisms such as phonon
emission were weak enough to be ignored. However, both the
thermal imaging experiment [51] and our numerical results
suggest that dissipation is also an important energy destination
for nonequilibrium relaxation.

In addition, the energy distributions in Figs. 3(b) and 3(c)
do not show the expected double-step type, even around
QPCs. This is caused by multiple reflections of electrons
that have not fully relaxed to equilibrium in the loop of the
Fabry-Pérot interferometer. In experiments, the edge states
that a few micrometers downstream of the QPCs still remain
nonequilibrium [56], so it is reasonable that the distribution at
all positions in Figs. 4(b) and 4(c) remains nonequilibrium. It
is also worth mentioning that the integral of the distribution
function in Fig. 3(b) is equal at different positions due to
the conservation of particle numbers during the propagation
without the backscattering, and so is the integral in Fig. 3(c).
This indicates that backscattering indeed does not occur, but
there exists still dissipation when electrons propagate along
the QH edge state.

As a brief summary of Sec. III, we point out that even in
the case of topological protection, nonequilibrium QH edge
states will dissipate, which is the result of inevitable relaxation
and entropy increase. Dissipated heat generation is prohibited
only when the electrons in the edge state are in an equilib-
rium Fermi distribution. The coupling between the edge states
(e.g., by edge reconstruction [51] and constrictions [50,52])
will lead to a non-equilibrium, resulting in dissipation at the
coupling position and downstream of the coupling position.
Therefore, if one expects to obtain a nondissipative device,
ensuring that no coupling between chiral edge states flowing
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FIG. 4. (a)–(c) Hall resistances R28, R37, and R46 versus the magnetic field B at three different dephasing strengths �d = 0.05, 0.2, and
0.5eV. (d) R37 versus B at three different dephasing strengths �d = 0.5, 1, and 1.5eV. (e) R37 versus the magnetic field 0.03 � B � 0.04 at
three different dephasing strengths. (f) Two-terminal resistance R15 versus the magnetic field B at two different dephasing strengths. Each
point is only averaged by 50 random configurations because of the small fluctuation shown in Fig. 5. The parameters we use here are given in
Appendix A.

from different electrodes with different chemical potentials is
needed.

IV. THE EFFECT OF DEPHASING
IN THE QH INTERFEROMETERS

As an interferometer, the most important part is the oscilla-
tion curve of the resistance with the magnetic field (or the gate
voltage in experiments). In this section, we use Eq. (5) and
its boundary conditions to simulate the periodic oscillation of
the resistances due to the AB effect at different dephasing
strengths. The results show a competition between the AB
interference and the QH plateau, as well as a proper dephasing
strength can promote the appearance of the QH plateau. The
ideal case where �d = 0, whose coherence length is infinite, is
discussed in Appendix B, in which the periodic oscillation of
resistance occurs well and the quantized plateaus of the Hall
resistance R37 disappear completely.

A. The interference of resistances

As mentioned above, QH edge states will be reflected
and transmitted by noninteger probability at QPCs, which
is similar to the beamsplitters in optics. With good coher-
ence, after reflections, the electrons accumulate a phase 
 =

B + 
d each time they go around the interference loop,
where 
B and 
d are the magnetic phase and dynamical
phase, respectively. In general, the magnetic phase is related

to the charge carried by the quasiparticles, which leads to
the application of QH interferometers in the measurement of
fractional charges [4]. However, we do not add the interaction
directly to the calculation, so the magnetic phase gives a
periodic 	B = 2πφ0/S, where S is the area of the interference
loop [7,63]. A more detailed discussion about periods is in
Appendix B.

As shown in Fig. 4, both the two-terminal resistance R15

and the Hall resistance R37 do oscillate with the magnetic
field B as expected. While Hall resistance R28 (R46) does
not oscillate with B, since there is no closed interference
loop connect lead-2 (lead-4) and lead-8 (lead-6). When the
dephasing strength is small (�d = 0.05), a violent oscillating
R37 is observed as shown in Figs. 4(a) and 4(e). In this case,
the coherence length Lφ is longer than the perimeter of the
interference loop Lloop and the interference visibility is high,
resulting in a high-performance QH interferometer. As the
dephasing strength increases, as shown in Figs. 4(a)–4(c), the
amplitude of the R37 oscillation is obviously suppressed. In
Fig. 4(e), it can be seen more clearly that the interference
visibility decays with the increase of the dephasing strength,
while the period of the oscillation remains constant. This is
due to the breakdown of the interference loop when the coher-
ence length Lφ of the electrons is no longer much larger than
Lloop, which is desired to avoid in experimental QH interfer-
ometers. For example, the presence of a single atomic defect
on the physical edge of graphene can cause inelastic scattering
leading to dephasing, which is similar to the virtual leads we
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introduced. So moving the edge states away from the physi-
cal edge of graphene may improve the interference visibility
of the QH interferometer, and some experiments have noted
this [23].

Naively, as a quantum effect, the QH plateau of the Hall
resistance should be destroyed by dephasing. However, as
shown in Fig. 4, QH plateaus appear gradually with the en-
hancement of dephasing. Under a small dephasing strength
�d = 0.05, the Hall resistance R37 is not quantized. But under
a strong dephasing strength �d = 0.5, R37 reaches the resis-
tance quantum h/2e2 precisely and the resistance plateaus
appear. This is the result of a competition between the AB
interference and the quantized Hall plateau, which can be
understood with the relationship between the perimeter of
the interference loop Lloop, the coherence length Lφ , and the
magnetic length LB. When LB � Lloop � Lφ , the whole in-
terference loop maintains good coherence, i.e., electrons can
be scattered coherently between lead-3 and lead-7 along the
interference loop. As a result, the topological protection is
broken and the potential QH plateaus of R37 are destroyed
by AB oscillations. With the enhancement of dephasing, Lφ

decreases gradually. When LB � Lφ � Lloop, the interference
loop can no longer realize a visible AB oscillation, so the
amplitude of the oscillation of R37 is suppressed. However,
quantized Hall plateaus appear. Here, the Hall resistance is
defined as R28, R37, or R46. Resistances across one or two
QPCs, such as R38, are not quantized. Also, if one mea-
sures the longitudinal resistance and two electrodes across
(not across) a QPC are used to measure the longitudinal
voltage, the result will be nonzero (zero). This is due to the
unique geometry of the interferometer, which is different from
the conventional Hall bar. In this parameter regime, the phase
memory of electrons in edge states will be rapidly lost during
their propagation along the interference loop, resulting in the
absence of coherent scattering between lead-3 and lead-7. At
the same time, the strong magnetic field makes the chiral edge
state not affected by the local perturbations. Therefore, quan-
tized resistance plateaus of R37 appear like the topological
protected QH effect.

It is worth noting that with a sufficiently strong dephasing,
Lφ � LB � Lloop, the QH effect can be destroyed again. As a
result, the transition regions between QH plateaus are broad-
ened and QH plateaus are narrowed. As shown in Fig. 4(d),
the second QH plateau R37 = h/4e2 is almost completely de-
stroyed at �d = 1.5. Meanwhile, a characteristic of classical
Hall resistance that varies linearly with the magnetic field
appears at the low magnetic field as shown in Fig. 4(d). This
shows the transition from a quantum insulator to a classical
metal caused by strong dephasing, which is consistent with
previous theories [59].

Besides, the interference signal can also be read through
the two-terminal resistance R15, and it also exhibits periodic
oscillations when the filling factor |ν| < 1, shown in Fig. 4(f).
The oscillations of R15 and R37 are synchronized, which is
clearly shown in Fig. 6(e) and can be understood by a ballistic
transport picture [63]. With the increase of dephasing strength,
the interference visibility of R15 decreases for the same reason
with R37. However, due to the presence of backscattering at
QPCs, R15 will not return to a quantized value after dephasing.

B. The fluctuation of resistances

Since there are random 1/4 sites coupled to virtual leads
in the numerical calculation, it is worth studying how much
the random configurations of virtual leads affect the results of
resistance.

As shown in Fig. 5, we analyze the fluctuation of re-
sistances by calculating the deviation from the mean value
and the standard deviation of the resistances. For the Hall
resistance R37, the normalized count in the histogram shows
the form of a Gaussian distribution, and there is a resistance
fluctuation σ (R37) ≈ 3 × 10−3(h/2e2) when the dephasing
strength is weak �d = 0.02, as shown in Fig. 5(a). When
the strength of dephasing increases, fluctuations caused by
random configurations are significantly suppressed, as shown
in Figs. 5(b)–5(d). The Hall resistance then enters a plateau of
zero fluctuations, with standard deviation σ (R37) = 0 [around
10−5 ∼ 10−6(h/2e2)], as shown in the shadow region of
Fig. 5(e). This indicates that the dephasing can promote the
appearance of the QH effect.

These results provide another way to understand the com-
petition between AB interference and topologically protected
QH resistance. When the dephasing strength is weak, the
coherence length is much larger than the size of the QH inter-
ferometer with LB � Lloop � Lφ , AB interference dominates
the transport process, as shown in Fig. 4. The top and bottom
QH edge states can be connected by backscattering at two
QPCs forming a coherent quantum state along the interfer-
ence loop, which causes the breakdown of the topological
protection. Therefore, there is a strong resistance fluctuation.
On the contrary, when the dephasing effect is strong, the
coherence length Lφ is much smaller than the perimeter of
the interference loop with LB � Lφ � Lloop. Coherent scat-
terings of electrons between lead-3 and lead-7 disappear. On
the one hand, this is accompanied by the appearance of the
quantized Hall plateau, as we discussed above [see Fig. 4(e)].
On the other hand, the robustness of topological protection to
perturbations is also shown, and the Hall resistance fluctuation
σ (R37) is limited to 0, as shown in Figs. 5(d) and 5(e). There-
fore, we also see that the QH effect is promoted by proper
dephasing from the fluctuation of resistance.

As the dephasing effect continues to increase and the co-
herence length Lφ decreases to nearly the same order of the
magnetic length (i.e., Lφ � LB � Lloop), the topological pro-
tection is broken by dephasing and the QH effect no longer
occurs, as we discussed above. This causes the fluctuation
of the Hall resistance R37 at the right of the shaded region
in Fig. 5(e) to increase again. For the two-terminal resis-
tance R15, without the topological protection, its fluctuation
increases monotonically with the increase of the dephasing
strength.

V. CONCLUSION

It is usually assumed that QH edge states do not dissipate,
but recent theoretical and experimental works have challenged
this stereotype. According to numerical calculations in the
QH interferometer, inevitable dissipation will occur in the QH
edge states, accompanied by heat and entropy generation. By
calculating the energy distribution of electrons, we find that
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FIG. 5. (a)–(d) The histogram of frequency distribution of R37 − 〈R37〉 at four different dephasing strength �d = 0.02, 0.1, 0.2 and 0.5eV
with 1000 random configurations. (e) The standard deviation σ (R) =

√
〈R2〉 − 〈R〉2 of R15 and R37 vs. dephasing strength �d . The unit of the

standard deviation is set to be h/2e2. Each point is calculated by 1000 random configurations. The shadow marks the area where the Hall
resistance R37 has a fluctuation close to 0. B = 0.03 and other parameters we use here are given in Appendix A.

this dissipation comes from the relaxation of the edge state
from nonequilibrium to equilibrium. Only equilibrium, not
topological protection, can prevent dissipation.

Furthermore, our numerical results also simulate the
dephasing process of QH interferometers from complete co-
herence. The amplitude of resistance oscillation caused by AB
interference decreases with the increase of dephasing strength
and proper dephasing strength promotes the appearance of
the QH plateaus. The competitive process of the quantum
oscillation and topologically protected QH plateaus is shown
in terms of resistances and the fluctuation of resistances. We
explained it clearly with the relationship between the coher-
ence length Lφ and the perimeter Lloop of the interference loop.

In general, our work contributes in two ways. (1) In the
design of the nondissipative device, we need to keep the
QH edge states of the device at equilibrium all along while
working. (2) We point out that the QH interferometer is a
promising platform for studying the relaxation processes from
nonequilibrium to equilibrium and the relationship between
dissipation and the topological protection.
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APPENDIX A: THE PARAMETERS WE USE

In this Appendix, we give all the parameters used in the
calculations.

First, the geometric details of the QH interferometer are
shown in Fig. 6(a), where N = 89, N2 = 3

√
3, M = 5, L =

20
√

3, and L0 = LM = 5
√

3 in the unit of the length of
carbon-carbon bond a = 0.142 nm. In the problem we dis-
cussed, the transport is carried by the QH edge state while the
bulk is insulated. So we only couple virtual leads in the green
and blue regions of the device, leaving an area of width D =
31. In real calculations, we use L = 40

√
3, L0 = LM = 10

√
3,

and other parameters are same with those in Fig. 6(a). The
perimeter of the interference loop Lloop ≈ 2N + 4L + 4L0 +
2N2. In the calculation of the whole paper, unless specifically
mentioned, we do not change these size parameters. Besides,
a coordinate is established to describe all sites [52]. The origin
point is located in the bottom left corner and the QH interfer-
ometer is in the xOy plane, as shown in Fig. 6(a). Virtual leads
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QPCs and the absence of dephasing. The parameters we used in (b)–(d) are given in Appendix A.

are coupled to the QH interferometer randomly. When we
calculate the heat generation (Fig. 2), the interference (Fig. 4),
and the fluctuation (Fig. 5) of resistances, we randomly couple
virtual leads to some sites in the green and blue regions in
Fig. 6(a). However, when we calculate the energy distribution
of electrons (Fig. 3), virtual leads are coupled only in the green
regions. Each site in the selected regions has a probability
η = 1/4 to couple a virtual lead. Our results are averaged
under a number of random configurations of virtual leads.

Second, considering a magnetic field B perpendicular to
the paper facing outward, we give the gauge conventions
used in calculations. In principle, choosing different gauges
does not affect the calculation result. Whatever gauge is cho-
sen, each hexagonal unit should have a magnetic flux 2φ =
3
√

3a2B/2φ0, where φ0 = h̄/e is the flux quantum, and the
unit of the magnetic field is given by 4h̄/3

√
3ea2. But to obey

the translation symmetry of leads, we choose A = (−By, 0, 0)
in the QH interferometer, lead-1, and lead-5. For lead-(2-
4) and lead-(6-8) we choose A = (0, Bx, 0) [52]. With this

gauge convention, the Peierls phase φi j in Eq. (1) can be
calculated [52,60].

At last, we convert the dephasing strength �d into the
coherence length Lφ , which is an observable [3]. We use a
zigzag graphene nanoribbon perfectly contacted with two real
left and right leads (labeled by L and R) [62,63]. This nanorib-
bon has a y-direction width N = 89, B = 0.03 (the same
parameters as our QH interferometer), and is also coupled
by virtual leads (labeled by ν = 1, 2, 3, . . . ) with η = 1/4.
The transmission coefficients from lead-p to lead-q Tpq(E =
0) can be calculated with the same method we described in
Sec. II. Here, p and q can be both real leads and virtual leads
(p, q = L, R, 1, 2, 3, . . . ). For example, TLν is the transmis-
sion coefficient from the real left lead to the ν-th virtual lead.
It is clear that all these transmission coefficients are func-
tions of the nanoribbon length in x-direction Lx and �d [Tpq =
Tpq(Lx, �d )]. TLR represents the probability that electrons go
through the nanoribbon without dephasing by virtual leads.
The summation of transmission coefficients from the real
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left lead to all the virtual leads
∑

v=1,2,3,... TLv represents the
probability that electrons lose their phase information. If we
fix Lx and increase �d , TLR will decrease and

∑
v TLv will

increase. When TLR(Lx, �d ) = ∑
v TLv (Lx, �d ), which means

the probability of an electron from the left lead losing and
keeping phase information are both 50%, Lx = Lφ . There-
fore, the conversion relationship between Lφ and �d is given
by TLR(Lφ, �d ) = ∑

v TLv (Lφ, �d ), which can be numerically
calculated as shown in Fig. 6(b).

APPENDIX B: THE CASE WITH INFINITE
COHERENCE LENGTH

With Eq. (5) and the boundary conditions we set in Sec. II,
we can calculate resistances without the presence of virtual
leads �d = 0. In other words, we can consider the ideal case
where the coherence length of the system is infinite.

First, we calculate the resistances without the presence
of QPCs, i.e., M = N = 89. As shown in Fig. 6(c), the
two-terminal resistance R15 and the Hall resistance R37 are

quantized precisely as h
2e2 × (1, 1

3 , 1
5 ), which is consistent

with the QH effect of graphene [74]. The number of Hall
plateaus depends on the on-site energy εi and the width N .

Further, with two QPCs, the Hall bar becomes a Fabry-
Pérot QH interferometer finally. The absence of dephasing
results in an infinitely long coherence length. As a result, both
R15 and R37 oscillate violently, and the QH plateaus disappear,
as shown in Fig. 6(d). When B < 0.0116, the interference
between different edge states leads to a random oscillation
[63]. When B > 0.0116, there is only one edge state, showing
periodic oscillations of R15 and R37 in Fig. 6(d), which is
nothing but the period of the Fabry-Pérot interference [4].
As we mentioned in Sec. IV, the period of the oscillation
is given by 	B = 2πφ0/S. If we estimate S as the total
area of cells between two QPCs, the theoretical period is
	B = 2πφ0

(3
√

3a2/2)×(30×103+29×102)
= 5.19 × 10−4, in the unit of

4h̄/3
√

3ea2. We can also use FFT to extract the period from
the oscillations, 	B = 6.09 × 10−4, which is slightly larger
than the theoretical one. This is because the area of the inter-
ference loop is smaller than the area between the two QPCs.
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