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Nonreciprocal surface plasmons in angularly varying magnetized cylindrically rolled graphene
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We analytically and numerically study the nonreciprocal surface waves guided by a magnetized graphene
tube. When applying the magnetic bias perpendicularly to the cylinder axis, the conductivity profile cross
section is nonuniform due to the varying angle between the magnetic bias and the surface-wave guiding tube,
which enables us to obtain pronounced nonreciprocal modes with different field distributions for propagation in
opposite directions due to the coupling between different values of orbital angular momentum. We show that this
property can be leveraged for directional power delivery when changing the source location, and we study the
isolation ratio as a function of different parameters. The dependence of the isolation ratio on the magnetic field
bias allows simple, yet robust, control over the nonreciprocal wave propagation properties.
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I. INTRODUCTION

Cylindrical structures are among the most common waveg-
uide geometries being used. Prominent examples include
coaxial waveguides and hollow metallic tubes [1]. The dis-
persion of guided waves can be controlled by varying the
cylinder size (potentially also the internal cylinder in a coaxial
geometry) and the distribution and properties of the filling
material. These waveguides have many uses, such as com-
munications [1], open-ended aperture antennas [2,3], material
sensing probes, and more.

More recently, incorporating metamaterials and metasur-
faces within a cylindrical geometry was examined as a
platform for various applications. Scattering from cylindrical
metasurface structures was studied in [4] to achieve cloak-
ing, and in [5], the authors showed how to systematically
analyze and synthesize a layered cylindrical structure to
achieve different scattering functionalities. Another venue is
tailoring guided wave properties in cylindrical waveguides
using metasurfaces coating the waveguide walls or serving as
the waveguide themselves. This is a particularly interesting
avenue since cylindrical guided modes exhibit complex po-
larization states, helicity, and spin–orbital angular momentum
(OAM) coupling [6]. This was pioneered in [7], where a
helically slotted perfect electric conducting (PEC) cylinder
was studied. A modal theory for such structures with general
electric impedance walls was formulated in [8]. In [9], a
metamaterial lining was used to control the cutoff and modal
properties, and Ref. [10] showed how general bianisotropic
walls can be used to tailor the modal dispersion, field distribu-
tion, and spin. A step forward was taken in [11], where the
authors discussed an actual implementation and considered
realistic constraints and the arising dispersion effects. Such
structures also appear in more natural systems, where the most
prominent example is carbon nanotubes. The electrodynamics
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of cylindrical graphene-based structures was first studied in
[12], where the appropriate boundary conditions were formu-
lated and the dispersion of guided surface waves was carefully
mapped. In the last decade, several groups have fabricated
and measured artificial cylindrical graphene structures for
enhancing light-matter interaction [13,14], four-wave mixing
[15], and all-optical modulation [16]. Multilayered folding is
shown in [17], and additional applications are reviewed in
[18].

An equally important ingredient of this work is the non-
reciprocal propagation of waves. Nonreciprocal waveguides
have many applications, such as routing and sorting of signals
and serving as building blocks in the design of nonrecipro-
cal components such as isolators and circulators [19,20]. To
obtain significant nonreciprocal behavior, such as different
field distributions for oppositely propagating fields which can
be leveraged for isolation [1] (e.g., asymmetrically ferrite
loaded waveguides) or one-way guiding, one has to incorpo-
rate nonreciprocity with some form of structural asymmetry
[21,22]. In the context of tubelike structures, [23] studied
guided waves in several cylindrical geometries incorporat-
ing graphene, where electrical bias (controlling the chemical
potential μc) and magnetic bias were used as control pa-
rameters to manipulate the wave characteristics. Importantly,
this work also incorporated nonreciprocity since the magnetic
field bias gives rise to an asymmetric conductivity tensor
of the graphene layer. Nevertheless, this nonreciprocity did
not visibly manifest in the modal dispersion or field distri-
bution due to the highly “symmetric” magnetic bias scheme
considered—a radial magnetic field bias.

In this work, we examine the nonreciprocal wave propa-
gation on a magnetized cylindrical impedance surface, such
as graphene. Unlike in other examples, where the structural
asymmetry requires inhomogeneous cross-section materials
or scatterer parameters, here, it stems from the magnetic
biasing scheme itself. By applying a simple magnetic bias
perpendicular to the axis of the guiding cylindrical surface
(represented by a thin impedance sheet, see Fig. 1), an
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FIG. 1. (a) Geometry of a magnetically biased graphene tube.
(b) Graphene conductivity σ under an external magnetic bias of B0 =
1.5 T in the x̂ direction. Transparent lines show the conductivity with
no magnetic bias. (η0σ is plotted, where η0 = √

μ0/ε0 is the vacuum
impedance and e jωt is the time conversion is used). (c) Surface
wave dispersion. Blue shows the case with no external magnetic bias
(showing n = 0 and n = ±1 dispersion branches); magenta shows
the case with external magnetic bias (many n’s now contribute to
each dispersion branch due to structural inhomogeneity caused by
the magnetic bias). Both assume conductivity constant at f = 4 THz
in Eqs. (15) and (16); hence, the vertical axis corresponds to varying
R. Green shows the case with external magnetic bias accounting
for the frequency dispersion of graphene conductivity according to
Eqs. (15) and (16), with R = 6 µm. Graphene parameters are given
below Eq. (17).

azimuthally dependent conductivity tensor arises. Therefore,
the external magnetic bias itself provides both the non-
reciprocity and the spatial inhomogeneity. This, in turn,
creates coupling between different values of OAM of the

guided wave components. The nonreciprocity makes this
coupling asymmetric, giving rise to complex nonreciprocal
waves composed of a superposition of different cylin-
drical eigenfunctions (each with its characteristic OAM),
resulting in different field distribution modes propagat-
ing in opposite directions. This will be shown to en-
able directional excitation using simple dipolar sources
as a function of the source location and spin-momentum
coupling.

II. FORMULATION

A. Uniform conductivity

Let us start from the basic formulation of the problem of
waveguiding by thin cylindrical shells. Although the examples
we provide are based on a graphene system, this formula-
tion can be applied to waveguiding by any thin, cylindrical,
conductive sheet (such as cylindrical metasurfaces). Through-
out this paper we use an e jωt time dependence. Since the
waves propagate essentially in free space (with the addition
of the impedance/surface susceptibility boundary condition),
we can represent them as a superposition of the “standard” TE
and TM modes:

Ez =
{

Ai
nIn(αr), r < R

Ao
nKn(αr), r > R

}
e− jβze− jnϕ, (1a)

Hz =
{

Bi
nIn(αr), r < R

Bo
nKn(αr), r > R

}
e− jβze− jnϕ, (1b)

with β2 = α2 + k2
0 , k0 = ω

√
με, and In and Kn being the

modified Bessel functions of the first and second kind. The
other field components can be directly derived from Eqs. (1a)
and (1b) and are given in Appendix A for completeness.

In the present problem, the waves are guided by a tube
of radius R, which satisfies the surface impedance boundary
condition

r̂ × (Hout − H in )r=R = Js = σE tan,r=R, (2)

where σ is the 2 × 2 surface conductivity matrix, which can
be written explicitly as

σ =
[
σϕϕ σϕz

σzϕ σzz

]
, (3)

and E tan is the electric field components tangent to the tube.
In addition to this, since the cylindrical surface hosts only
electric surface currents, the tangential electric fields need to
be continuous,

Ez(R+) = Ez(R−), Eϕ (R+) = Eϕ (R−), (4)

where (·)+ and (·)− indicate sampling of the fields on the
surface of the tube on the outer and inner sides, respec-
tively. Using this condition, the field representation on the
surface of the tube can be reduced to rely on two coefficients
Ai

n, B̄i
n = η0Bi

n, with η0 = √
μ0/ε0 ≈ 377	 being the intrin-

sic impedance of vacuum (see Appendix A). If we now define

Dn =
(

Ai
n

B̄i
n

)
, (5)
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we can represent the operations required for substitution into
Eq. (2) as

Eo
n,tan(r = R) = E i

n,tan(r = R) = M
E ,n

Dn, (6a)

r̂ × (Ho
n − H i

n)(r=R) = M
H,n

Dn, (6b)

with

M
E ,n

=
[

nβ̄

ᾱ2 In − jk̄0

ᾱ
I ′
n

In 0

]
, M

H,n
=

⎡
⎣ 0 − 1

ᾱK ′
n

− jk̄0

ᾱKn

nβ̄

ᾱ3K ′
n

⎤
⎦.

(7)

To shorten the notation, we will omit the argument of the mod-
ified Bessel functions In and Kn and their derivatives I ′

n and K ′
n

when we refer to sampling them on the surface of the tube. In
addition, we have defined ᾱ = αR, β̄ = βR, and k̄0 = k0R.
Now, if we substitute this representation into the boundary
condition given in Eq. (2) and assume the conductivity σ is
independent of ϕ, we obtain the eigenmode equation

(
η0σ M

E ,n
− M

H,n

)
Dn = 0. (8)

For this equation to have a nontrivial solution for the coeffi-
cient vector Dn, the determinant of the bracketed matrix must
vanish, which yields the dispersion relation as a determinant
of a 2 × 2 matrix. For any value of n (the OAM of the mode)
and angular frequency ω we substitute, we will obtain β(ω),
the dispersion relation of the nth mode. Substituting this value
back will yield the modal coefficients Ai

n and B̄i
n, forming a

mixed TE/TM mode, with the amplitude of each constituent
depending on the conductivity.

B. Angularly varying conductivity

Based on the previous section, our goal now is to describe
the waves propagating in a system where σ is a function of
the azimuthal angle ϕ, generally expressed as σ(ϕ). We start
by describing all the relevant quantities E, H , and σ using
their Fourier series in ϕ. For each specific mode n we use the

matrices defined in Eqs. (6a), (6b), and (7) to represent the
fields using the corresponding coefficients Dn, yielding(

Ei
ϕ

Ei
z

)
=

∞∑
n=−∞

M
E ,n

Dne− jnϕ, (9a)

r̂ ×
(

Ho
ϕ − Hi

ϕ

Ho
z − Hi

z

)
=

∞∑
n=−∞

M
H,n

Dne− jnϕ, (9b)

and for the conductivity

ησ =
∞∑

m=−∞
Y

m
e− jmϕ. (10)

When σ = σ(ϕ), coupling exists between different compo-
nents with different n, through the additional OAM provided
by the geometrical structure of σ, and we can derive the modal
equation by substituting these expansions into Eq. (2),

∞∑
n=−∞

Y

−n

M
E ,n

Dn − M
H,


D
 = 0 ∀ 
, (11)

where each value of 
 represents a row in a 2 × 2 infinite block
matrix. This can be reformulated into a matrix equation, as
shown in Appendix B.

For this system to have a nontrivial solution, the determi-
nant of the matrix (B1) must vanish, giving the dispersion
equation for the propagating modes. Naturally, since different
values of n are coupled through the angle-dependent con-
ductivity of the tube, the modes will be composed of many
angular harmonics excited and propagating together. This is
in addition to the natural TE/TM coupling in higher-order
modes propagating on impedance cylinders, giving rise to
hybrid-type modes that can yield interesting patterns of spin
and helicity [10].

For the sake of simplicity, we will limit our discussion here
to conductivity matrices of the form

σ(ϕ) = σ
0
+ σ

1
cos ϕ = σ

0
+ 1

2

(
σ

1
e jϕ + σ

1
e− jϕ

)
. (12)

This will allow us to simplify Eq. (11) and its matrix represen-
tation (B1) to a tridiagonal block form. In this case, one could
formally express the dispersion relation in a matrix continued
fraction form in a process similar to the one described in [24],

Y −1
1

[ − Y
0
+ G

n
+ [−Y

0
+ G

n−1
+ [Y

0
+ G

n−2
+ [· · · ]−1]−1]−1]

= [
Y −1

1
Y

0
− Y −1

1
G

n+1
+ [

Y −1
1

Y
0
− Y −1

1
G

n+2
+ [· · · ]−1]−1]−1

, (13)

where G
n

= M
H,n

M−1
E ,n

and we have assumed Y
1

= Y −1
as in

our simplified case.
Since we would like to study nonreciprocal propagation, it

is worth noticing that when the guiding structure is reciprocal
(satisfying σ = σT ), inverting the propagation direction will
result in time-reversed modal fields. For a specific mode,
the modal fields will be transformed as E(−β ) = E(β )∗ and
H (−β ) = −H∗(β ). However, this is no longer the case when
the conductivity tensor does not satisfy reciprocity. In many
cases, merely violating the reciprocity of the guiding structure

is not enough for visible effects of nonreciprocity to manifest
in the guided modes (such as a nonsymmetric dispersion
curve or different field profiles for oppositely propagating
waves). This is one of the reasons that [23] did not observe
any significant nonreciprocal propagation and excitation ef-
fects, despite studying a nonreciprocal structure. However,
we will see that more significant nonreciprocal effects are
possible in our case due to the explicit geometrical asym-
metry arising from the ϕ dependence of the conductivity
matrix.
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C. Transversely magnetized gyrotropic tube

The case we focus on is the one in which the conductivity
of the cylinder can be expressed as

σ(ϕ) = 1

η0

(
jX Xo cos ϕ

−Xo cos ϕ jX

)
. (14)

Although this choice seems quite specific, such a system nat-
urally arises if we envision a graphene tube and magnetize it
perpendicularly to the cylinder axis, as shown in Fig. 1(a) (in a
setup similar to those in [13,25], for instance). When a planar
graphene sheet in the Y Z plane is subject to a static magnetic
field bias B0x̂, its surface conductivity matrix becomes gy-
rotropic and can be calculated using the Kubo formula [26].
Here, to simplify the analysis, we operate in a regime where
we can use a Drude model approximation for the conductivity
[27,28] and obtain

σyy = σzz = σ0
1 + jωτ

(ωcτ )2 + (1 + jωτ )2
, (15)

σyz = −σzy = σ0
ωcτ

(ωcτ )2 + (1 + jωτ )2
, (16)

where σ0 is the DC conductivity of graphene, τ is the scatter-
ing time, and ωc = eB⊥v2

f /μc is the cyclotron frequency (B⊥
is the magnetic bias component perpendicular to the graphene
surface, e is the electron charge, v f is the Fermi velocity, and
μc is the chemical potential). From these expressions we see
that the magnitude of the off-diagonal conductivity term is
proportional to the magnetic field component perpendicular
to the surface. In our case, when the geometry is cylindri-
cal and the external magnetic field is uniform, B = B0x̂, B⊥
will be a function of ϕ, B⊥ = B0 cos ϕ, yielding a ϕ varying
matrix, where the in-plane directions are now ẑ and ϕ̂ [see
Eq. (3)]. Due to the bias magnetic field, the diagonal terms
will also depend slightly on ϕ in addition to the denominators
in Eqs. (16) and (15). However, for magnetic fields up to 1.5T
this “extra” dependence is relatively weak (<10% deviation
from the value without magnetic field). Therefore, we will
neglect this dependence, taking X in Eq. (14) to be inde-
pendent of ϕ and approximating the off-diagonal terms using
only the ϕ dependence of the nominator. This variation can be
accounted for straightforwardly using the same formulation
by simply adjusting the expansion in Eq. (10), but we would
like to keep the analysis as simple as possible. To analyze
this system using the developed formulation, we represent the
conductivity tensor using its ϕ Fourier transform. The matrix
coefficients are

Y
0

=
(

jX 0
0 jX

)
, Y −1

= Y
1

= 1

2

(
0 −Xo

Xo 0

)
. (17)

Once (17) is substituted into Eq. (11) [or (B1)], we obtain a
tridiagonal block system of equations. Although the magnetic
bias makes this system nonreciprocal, we know from previous
works that nonreciprocity can manifest in several ways, which
are often quite subtle.

The conductivity matrix elements for graphene are shown
in Fig. 1(b). The parameters we take are the Fermi veloc-
ity vF = 106 m/s, the chemical potential μc = 0.35 V, and
a biasing magnetic field of B0 = 1.5 T. Since the response
of graphene can be quite lossy in the frequency regions
where the gyrotropic effect is significant (yielding meaningful

off-diagonal conductivity terms), we want to choose our fre-
quency such that the losses are not too significant as to mask
the guided wave propagation. Here, the operation frequency
we choose is 4 THz, corresponding to X ≈ −0.6 j + 0.135
and Xo ≈ −0.093 − 0.043 j.

III. DISPERSION

A. Unmagnetized tube

In the unmagnetized case, the dispersion for each value
of OAM n can be solved separately [corresponding to the
matrix in Eq. (B1) being block diagonal]. Following Eq. (8),
the dispersion equation can be written as

det
[
ησ M

E ,n
− M

H,n

] = 0. (18)

The dispersion curves for this case are shown using thick
dotted blue lines in Fig. 1(c). A degeneracy for positive and
negative values of n exists, and both n = 1 and n = −1 have
the same dispersion. In our case, the unmagnetized tube con-
ductivity is scalar, and therefore, for n = 0 (and only for
this value), Eq. (18) can be completely separated to TE/TM,
where only one of them will constitute the propagating mode
according to the sign of the imaginary value of σ (the sign of
X ). Here, we use Im[σ ] < 0 (an inductive surface), and there-
fore, the n = 0 mode will be a TM mode, with Bi

0 = 0. For
n 	= 0, there is always some “mixing” between the TE and TM
constituents, although a TM component will still dominate the
modes due to the inductive response. The dispersion curve is
symmetric due to reciprocity in this case, and therefore, only
β > 0 is presented.

B. Magnetized tube

When applying the magnetic bias, several effects come into
play. First, σ is no longer uniform and depends on ϕ. This
creates coupling between different values of OAM, so we can
no longer separate the dispersion equations for distinct values
of n. Consequently, each modal field distribution, derived
from the eigenvector of a certain solution of the dispersion
equation, will be composed of contributions from several n’s.
Usually, significant contributions will come from only one
or a few n, but at least theoretically, all of them are a part
of the modal field. For this reason, the magnitude of the
modal field will no longer be uniform across ϕ (as expected
in the unmagnetized case for a simple e jnϕ dependence). It is
worth mentioning that this is not related to the nonreciprocal
response of the magnetized tube but to the cross-sectional
inhomogeneity of the conductivity matrix. However, due to
the nonreciprocity, this is expected to happen in a nonsym-
metric way—propagating modes with β > 0 and β < 0 are
expected to possess differently distributed fields. This opens
the possibility of directional excitation of waves by arbitrary
sources, as will be shown later.

The dispersion curve for a magnetized cylinder, with
B0 = 1.5 T, is shown by solid magenta lines in Fig. 1(c),
where we have neglected the associated losses to obtain a
clear modal dispersion. Due to the coupling between differ-
ent OAM values and the nonreciprocity, the degeneracy is
now broken, and the n = ±1 branch splits into two separate
branches. The n = 0 branch, which was not degenerate in
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the first place, experiences some frequency shift. For this
calculation, the infinite matrix dispersion equation was trun-
cated at n = ±7, which is enough for the specific modes
in our examples. Higher-order modes might require a dif-
ferent truncation. The dispersion remains symmetric in this
case due to the fact that time-reversal yields the same
structure, rotated 180◦; therefore, we retain only the β > 0
portion.

The calculation of this dispersion assumes that the conduc-
tivity values did not change as a function of k0R. Therefore,
the vertical axis can be seen as a variation of the cylinder
radius, for instance. A variation in the frequency would re-
quire that we also vary the conductivity matrix (both the
diagonal and off-diagonal terms depend on frequency). An
example of the surface wave dispersion when considering this
dependence σ(ω) is shown in green in Fig. 1(c). We see that
qualitatively, the curves are similar, yet there is a difference
in the obtained wave numbers due to the varying conductivity
values for different frequencies. The radius of the tube is taken
to be R = 6 µm here. The dashed black line indicates the
operation frequency for which we later calculate the fields in
different scenarios.

To illustrate the modal fields, we calculate the modal
coefficients. The operation point was chosen to be k0R ≈
0.5, corresponding to a cylinder with radius R = 6 µm in
f = 4 THz. Figure 2 shows the longitudinal fields |Ez| and
|Hz| for the three modes that solve the presented dispersion.
Figures 2(a) and 2(b) show the modes that split from the
n = ±1 branch, presenting a mixed TE/TM nature. The mode
close to the n = 0 branch, shown in Fig. 2(c), is TM domi-
nated (notice the relatively weaker Hz content) since around
this regime, the TE/TM coupling is weaker, a remnant of
the pure TM n = 0 mode in the unmagnetized case. The thin
lines in Fig. 2(c) show the modal fields for β < 0, and we
see a significant difference in the field distribution compared
to β > 0, a clear consequence of the nonreciprocity (in the
reciprocal case, we would expect a simple conjugation op-
eration, which would preserve the profile of |Ez| and |Hz|).
The electric field oscillates “slowly” since the n = 0 coeffi-
cient still dominates it, but the magnetic field oscillates more
rapidly since the magnetic fields are dominated by the n = ±1
coefficients, coupled through the nonuniform conductivity.
This is confirmed in Fig. 2(d), where we see the coefficients
composing the field corresponding to the mode shown in
Fig. 2(c).

IV. EXCITATION OF WAVES

We performed full-wave simulations of different excitation
schemes to illustrate the various aspects of this system using
COMSOL MULTIPHYSICS [29]. Throughout this section, we
use the operation point previously introduced, f = 4 THz,
R = 6 µm, and B0 = 1.5 T, unless explicitly stated otherwise.
The magnetically biased graphene is represented in the
simulation using the surface conductivity boundary condition,
with the explicit coordinate dependence given in Eq. (14). The
length of the simulated tube is L = 150 µm [see the horizontal
axis in Fig. 3(c)], mostly limited by the computational power
available to us.

FIG. 2. Mode field profiles for a magnetized graphene cylinder.
(a) and (b) show the modes that split from the degenerate n = ±1
mode in the unmagnetized case. (c) The perturbed n = 0 mode.
Thin lines show the field profiles for β < 0, displaying significant
asymmetry. (d) The modal coefficients An and Bn for the mode shown
in (c).

A. Excitation centered around a specific OAM

We start by inspecting the fields excited by a source cen-
tered on a specific value of n. To this end, we used a ring
surrounding the magnetized tube, with a radius of 1.1R, as
shown in Fig. 3(a). On this ring, we applied a surface cur-
rent Js = ẑe− jnϕ and examined the excited fields. Figure 3(b)
shows the profile of Ez and Hz, similar to Fig. 2. The dashed
line shows the distribution obtained from the full-wave sim-
ulation, and the solid line shows the analytical result for
comparison. We see a good match between the field profiles
since the analytically obtained electric field mainly comprises
the n = 0 component. It is worth mentioning that while the
field distributions along ϕ are very similar, they are not iden-
tical (in terms of the ratio between the field magnitudes, for
instance). This is because we cannot excite a single mode
this way, and the propagating fields contain at least some
contribution from other modes. In Fig. 3(c), we see how prop-
agation to the +ẑ direction has fields that are most dominant
on the upper side (corresponding to ϕ = π/2), whereas in
propagation to −ẑ the lower side is more dominant. This is,
again, a direct consequence of the system nonreciprocity and
would not occur if the system response were reciprocal (even
if it were strongly dependent on ϕ or even anisotropic). From
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FIG. 3. (a) The surface current source is placed on the yellow
ring around the cylinder. (b) Dashed lines show the simulated ẑ
component of the propagating fields excited by the source with n = 0
as a function of ϕ, measured on a circle in the XY plane with radius
1.1R, placed L/3 from the source along the +ẑ axis. Solid lines show
the analytical field distribution of the n = 0 mode. (c) Distribution
of the excited electric field longitudinal component Ez. The guiding
cylinder is between the dashed lines. (d) The ẑ component of the
Poynting vector Pz on a logarithmic scale. The sign was added to
indicate the direction of power flow.

Fig. 3(c) we are also able to approximate the wavelength of the
propagating wave, and it corresponds to βR ≈ 1.6, which is
close to the value we extract from the analytical formulation,
βR ≈ 1.7. The inaccuracy is caused by the coupling of various
modes in the numerical simulation. Figure 3(d) confirms the
power flow also obtains the same asymmetric pattern—the
flow towards the right (left) is on the upper (lower) side of
the tube.

B. Excitation by a point source

Next, we would like to understand how the modal proper-
ties manifest when exciting the system with a point source.
When using a point source, in principle, a superposition of all
possible wave species is excited, each with a different ampli-
tude. With such excitation, we can feel the system properties
as a whole, essentially “probing” the Green’s function. We
would like to examine the asymmetric excitation of waves
as a demonstration for nonreciprocity. Reciprocal structures,
such as bianisotropic metamaterials, can also be excited in a
directional way. In reciprocal systems where this is possible,
it would always require excitation by a source that is not
time reversal symmetric (for instance, circularly polarized
dipoles [30–32] or combinations of electric and magnetic
dipoles [33]). Due to the nonreciprocity in our case, we get
pronounced asymmetry in the propagation of power even with
simple sources (which are time reversal symmetric) since
the field distributions of the modes that propagate in oppo-
site directions are significantly different. We simulated the
fields excited by a dipole source p = pẑ in different loca-
tions [xs, ys] around the center of the cylindrical waveguide,

FIG. 4. (a) Ratio between the total power passing through the
tube cross section in the +z and −z directions as a function of the
location of the dipole source around the cylinder [xs, ys]. (b) Ez for
φs = π/2; the source dipole is shown in magenta. The asymmetry
is visible. (c) Total power flow to ±ẑ vs distance from the source
(φs = π/2). (d) Same as (b), but for φs = 3π/2. (e) Same as (c), but
for φs = 3π/2. (f) Ez for a smaller cylinder, with k0R ≈ 0.25.

xs = 1.1R cos ϕs and ys = 1.1R sin ϕs, with zs being in the
central plane, zs = L/2. We then calculated the total power
flowing through two cross sections at z = L/4 and z = 3L/4.
Figure 4(a) shows the ratio between the power that propagates
in the +z and −z directions—the isolation ratio—as a function
of the source location angle ϕs for different values of the
magnetic bias. Significant nonreciprocity is present, with φs =
π/2, 3π/2 having the strongest asymmetry in power propa-
gation. In Fig. 4(b) [Fig. 4(d)] we see the propagating fields
for φs = π/2 (φs = 3π/2). The asymmetry is visible, and it is
worth mentioning that this propagating power is not a result of
a single propagating mode but all of the possible ones (three in
this case). Evidence of this can be seen from the “inconsistent”
wave fronts in both panels since the excited modes also have
different attenuation and propagation constants. In Figs. 4(c)
and 4(e) we see the total power propagating towards ±ẑ as
a function of the cross-section distance from the source. The
initially launched power is visibly asymmetric, and we also
notice the different decay rates due to the different mixture of
modes, which also favors the “allowed” propagation direction.
Examining the dispersion, we see that for k0R < 0.3 we can
obtain a “single-mode” operation regime. Figure 4(f) shows
the propagating fields for this case when the source is placed
at φs = π/2, and we can see the much more uniform wave
fronts. Although the asymmetry in the field picture might
not seem as pronounced, calculating the +z to −z propagat-
ing power reveals a similar picture, as shown by the dashed
green line in Fig. 4(a). This demonstrates that isolation is a
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FIG. 5. (a) Surface wave dispersion when the graphene sheet is wrapped around a dielectric core for εr,core = [2, 3, 10]. (b) Modal TE/TM
composition for three modes (out of five seen on the dispersion curve) when εr = 3. (c) The maximal isolation ratio (essentially, the isolation
ratio for φs = π/2) vs εr of the core and the radius of the tube. For each R (a horizontal cross section) there is an optimal εr which delivers the
best isolation.

fundamental phenomenon here and is not dependent the
“mixed” excitation of modes.

V. A MAGNETIZED TUBE WRAPPED AROUND
A DIELECTRIC CORE

When the conductive sheet is wrapped around a dielectric
core, the value of α in Eqs. (1a) and (1b) differs between the
inner and outer parts, which we will term αi,o. If the core has
a dielectric constant of εr , we will have β2 = α2

i + εrk2
0 and

β2 = α2
o + k2

0 . Substituting these into the same equations and
performing manipulations similar to the ones shown in Ap-
pendix A yield the same infinite matrix relation shown in
Appendix B, with the reformulated building blocks

M
E ,n

=
[

nβ̄

ᾱ2
i
In − jk̄0

√
εr

ᾱi
I ′
n

In 0

]
, M

H,n
= Mo

H,n
− Mi

H,n
,

(19)

where

Mi
H,n

= 1

η0

⎡
⎣ 0 −In

√
εr

jk̄0
√

εr

ᾱi
I ′
n

nβ̄
√

εr

ᾱ2 In

⎤
⎦ (20)

and

Mo
H,n

= 1

η0

⎡
⎣ Kn

K ′
n

nβ̄ᾱo

jk̄0
In� −√

εr
αo
αi

I ′
nKn

K ′
n

jk̄0

ᾱo

InK ′
n

Kn
− (nβ̄ )2

jk̄0η0ᾱo

KnIn
K ′

n
�

nβ̄
√

εr

ᾱoᾱi

I ′
nKn

K ′
n

⎤
⎦. (21)

Here, � = ( 1
ᾱ2

i
− 1

ᾱ2
o
), which is indicative of the ma-

terial contrast between the core and the surroundings,
In = In(αiR), Kn = Kn(αoR) and I ′

n = dIn(x)/dx|x=αiR, K ′
n =

dKn(x)/dx|x=αoR. The parameters η and k are the intrinsic
impedance and wave number of the dielectric medium, and
k0 and η0 are those of vacuum. One can see that when substi-
tuting εr = 1, we get αi = αo and η = η0, and we revert back
to Eqs. (7). The solutions are obtained in the same way as in
the previous case by substituting the graphene conductivity
and M

E ,n
and M

H,n
into Eq. (B1).

Figure 5(a) shows the dispersion relation for a dielectric
core with εr = [2, 3, 10]. The first difference we notice with

respect to the all-vacuum case is that new modes emerge
that did not exist previously. These modes are much less
confined to the tube located in the shaded region in the top
left corner of the dispersion plot. We see almost no “split”
in their wave number since the split is induced by the prop-
erties of the angularly varying conductivity, and being less
confined, their interaction with the graphene shell is much
weaker. As expected, increasing the dielectric constant of
the core gives larger values of α and shorter wavelengths
of the guided waves. In Fig. 5(b), we see the contribution
of the different angular components. On the top, we see
the new low-confinement mode. Due to its weak interaction
with the graphene layer, there is much less coupling between
different values of n (we see mainly the ±1 components),
and the mode is much more balanced in the TE/TM sense.
In the more confined modes [bottom two panels in Fig. 5(b)],
the interaction with the graphene is stronger, which leads to a
more pronounced TM nature and stronger coupling between
different n.

The core dielectric constant also affects the isolation ratio.
We examine it in a manner similar to the way we examined
Fig. 4(a), additionally considering the εr degree of freedom.
The dynamics of the isolation ratio as a function of the source
angle ϕs (or, equivalently, the magnetic field direction in the
XY plane) is qualitatively the same as Fig. 4(a), and there-
fore, we focus on the maximal isolation ratio, obtained for
ϕs = π/2. Figure 5(c) shows the maximal isolation in the
[εr, k0R] plane. Interestingly, we see that for a certain value
of k0R there is an optimal choice for εr which yields the best
isolation. This is caused by the fact that increasing εr causes
several competing effects. It increases the field confinement
(by increasing β), which enhances the interaction of waves
with the nonreciprocal graphene, boosting the nonreciprocal
effect. On the other hand, the same increased interaction
makes the propagating waves more prone to losses, increasing
decay of the fields and altering the spectral mixture of the
propagating waves. It is also important to note that the details
of this “map” depend on other parameters such as the choice
of planes where we integrate the power [as can be seen in
Figs. 4(c) and 4(e)] and the distance of the source from the
tube.
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VI. CONCLUSIONS

In this work, we analyzed the wave propagation and the
nonreciprocal characteristics of surface waves guided by a
cylindrically rolled graphene tube. The tube is biased by a
uniform magnetic field, perpendicular to the cylinder axis.
The used magnetic biasing scheme is a realistic one, and it
results in a system with a nonuniform cross-section conduc-
tivity. The resulting propagating modes form a mixture of
TE/TM components and several dominant values of OAM.
The geometrical asymmetry yields pronounced nonrecipro-
cal effects—a different cross-sectional field distribution for
oppositely propagating modes. These were leveraged for a
directional excitation of waves using a simple dipole source as
a function of the source placement around the tube. General-
izing the analysis for a graphene sheet wrapped on a dielectric
core, we saw new modes emerge, poorly confined and weakly
interacting with the graphene sheet, in addition to the highly
confined surface waves. When exciting the waves with a
point source, the dielectric core can yield more pronounced
isolation, with demonstrated ratios of around ≈3. This can
be further improved by adding additional elements, such as
an inhomogeneous core or structuring of the graphene layer,
which is left for future work. The continuous dependence of
the isolation ratio on the direction of the magnetic bias (if
we consider the source at a constant position and “rotate”
the magnetic bias in the XY plane) lets us tailor the power
propagation properties using the magnetic bias direction as
an easy control knob without needing to solve for a different
bias intensity or redesign the geometry and materials. This
component could have several applications, such as acting
as a building block for miniature isolators and circulators in
the terahertz range, controlling signal flow, enhancing light-
matter interaction in graphene-wrapped microfiber systems
[18], and acting as a nonreciprocal antenna [23].
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APPENDIX A: MODAL FIELD DERIVATION

Given the ẑ components of the electric and magnetic fields
in the TM and TE components, respectively, we can use the
following equations to derive the rest of the field components
in cylindrical coordinates [1]:

Er = j

α2

(
β

∂Ez

∂r
+ ωμ

r

∂Hz

∂ϕ

)
, (A1)

Eϕ = j

α2

(
β

r

∂Ez

∂ϕ
− ωμ

∂Hz

∂r

)
, (A2)

Hr = − j

α2

(
ωε

r

∂Ez

∂ϕ
− β

∂Hz

∂r

)
, (A3)

Hϕ = j

α2

(
ωε

∂Ez

∂r
+ β

r

∂Hz

∂ϕ

)
. (A4)

Substituting Eqs. (1a) and (1b) into these relations and apply-
ing the continuity boundary condition in Eq. (4) yield

InAi
n = KnAo

n. (A5)

The continuity of Eϕ gives

nβ

α2R

[
InAi

n − KnAo
n

] − jk0

α

[
I ′
nBi

n − K ′
nBo

n

] = 0, (A6)

from which we get

I ′
nBi

n = K ′
nBo

n. (A7)

In Eq. (5), we defined a truncated coefficient column vector
Dn. Using these relations, the representation of the guided
wave fields can be written as

Ei
z (r = R) = Eo

z (r = R) = [In, 0]Dne− jnϕe− jβz, (A8a)

Ei
ϕ (r = R) = Eo

ϕ (r = R) =
[

nβ

α2R
,− jk0

α
I ′
n

]
Dne− jnϕe− jβz,

(A8b)

Hi
z (r = R) =

[
0,

1

η0
In

]
Dne− jnϕe− jβz, (A8c)

Ho
z (r = R) =

[
0,

1

η0

I ′
n

K ′
n

Kn

]
Dne− jnϕe− jβz, (A8d)

Hi
ϕ (r = R) =

[
jk0

αη0
I ′
n,

βn

α2Rη0
In

]
Dne− jnϕe− jβz, (A8e)

Ho
ϕ (r = R) =

[
jk0

αη0

In

Kn
K ′

n,
βn

α2Rη0

I ′
n

K ′
n

Kn

]
Dne− jnϕe− jβz.

(A8f)

These relations can be transformed into a matrix representa-
tion which will be instrumental to the convenient analysis of
the guided modes, and using the Wronskian identity

I ′
n(x)Kn(x) − K ′

n(x)In(x) = 1

x
, (A9)

one can arrive at the definitions given in Eq. (7).

APPENDIX B: INFINITE MATRIX
EIGENMODE EQUATION

Equation (11) can be written in an infinite matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

. . .

. . . Y
0
M

E ,−1
− M

H,−1
Y −1

M
E ,0

Y −2
M

E ,1
. . .

. . . Y
1
M

E ,−1
Y

0
M

E ,0
− M

H,0
Y −1

M
E ,1

. . .

. . . Y
2
M

E ,−1
Y

1
M

E ,0
Y

0
M

E ,1
− M

H,1
. . .

. . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

D−2

D−1

D0

D1

D2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (B1)

When conductivity of the form given in Eq. (12) is used, this matrix reduces to a tridiagonal block matrix.
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