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Localization in the one-dimensional quantum chain with nonreciprocal disorder
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We propose the one-dimensional structure driven by nonreciprocal disorder in the coupling terms of a quantum
chain, probing the properties of localization and the skin effect of the system under the competition between
disorder and nonreciprocal coupling. The results indicate that such disorder has a significant modulating effect
on the energy spectra and localization of the system. To be specific, it induces the pseudo-Hermitian symmetry
phase transition in the system. And when the disorder parameters in the two hopping directions are the same,
some states have opportunities to localize on the left and right sides. The interesting result is that a localization
transition appears at weak disorder strength, and its occurrence is related to the energies of states. Next, when
the disorder parameters in the two hopping directions differ, the energy-dependent non-Hermitian skin effect is
induced, accompanied by the more intricate localization phenomena. We believe that the findings in this work
will enhance the understanding of nonreciprocal disorder effects on one-dimensional quantum systems.
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I. INTRODUCTION

The concept of Anderson localization, first proposed in
disordered solid materials in 1958, suggested that electronic
states could be localized within a certain energy range [1].
The introduction of the theory of Anderson localization led
to widespread discussions on the subject. The development of
the scalar theory by Abrahams et al. in 1979 further deepened
our understanding of localization and the metal-insulator tran-
sition in electronic systems [2]. It has been found that in one-
and two-dimensional systems, electronic states are always
localized as long as there is disorder present. In contrast, for
three-dimensional systems, localized and extended states can
coexist in different energy ranges separated by mobility edges
[2]. Advances in quantum mechanics and condensed-matter
physics led to the fabrication of new materials and systems
for which localization phenomena induced by disorder have
become the hot topic of research. Anderson localization has
also been extended to the fields of condensed matter, light,
and cold atoms [3–7]. In addition, inspired by Anderson local-
ization driven by random disorder, the localization transition
in various quasiperiodic systems has also been reported from
different aspects [8–11].

With the extension of the concept of topology to physics,
topological materials have become attractive. Efforts have
been made to explore topological phases in various topolog-
ical materials with the aim of finding various edge states for
future nanoelectronics and quantum computing. Researchers
have also combined topological materials with the funda-
mentals of Anderson localization, and their in-depth studies
have given it new meaning [12–15]. According to numer-
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ous articles on the study of topological properties [16–20],
we can characterize the existence of a system’s edge states
by using topological invariants. Such topologically protected
edge states are robust to certain types and degrees of dis-
order [16–18]. Because the introduction of disorder could
destroy the periodic boundary condition of the system, it has
been assumed that the presence of disorder tends to suppress
topological properties. However, it has been found that in
topological insulators, disorder can induce a phase transition
from topologically trivial to nontrivial regions [15,21–23].
Subsequently, some groups have demonstrated that disorder
leads to topological phase transitions even in other topological
materials [24,25]. This means that in topological systems, dis-
order plays a special role in modulating the phase transitions
in addition to the conventional localization phenomena. Also,
the interplay between topology and disorder can pave the way
for new areas of research in topological materials.

On the other hand, non-Hermitian systems have been at-
tracting a great deal of interest from both theoretical and
experimental physicists [26–31]. There are currently two main
realizations of non-Hermitian mechanisms. The first is the
gain-loss potentials [32–36]. The best known gain-loss non-
Hermitian systems are parity-time (PT ) symmetric systems
with gain and loss imaginary potentials. As suggested by
Bender and Boettcher in 1998, such systems have the po-
tential to show a completely real energy spectrum [37,38].
Subsequently, the PT symmetric imaginary potential was
combined with topological systems to study the mecha-
nisms of new topological phase transitions and PT -symmetry
shifts appearing in the systems, such as the one-dimensional
Su-Schrieffer-Heeger (SSH) model, the trimer lattice, the two-
dimensional SSH lattice, the Kitaev model, and graphene
[39–47]. In the experiments, PT -symmetric systems can
be achieved in topological circuits [48–50], photonic struc-
tures [51–53], and optics [54–56]. The other non-Hermitian
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mechanism is the nonreciprocal coupling caused by the
asymmetric strength of the hopping amplitudes between
the lattice points, which causes the systems to display the
non-Hermitian skin effect (NHSE) [57–61]. Due to the oc-
currence of the NHSE, the bulk-boundary correspondence
of the system completely collapses [57,62]. Accordingly, the
topological characteristics in nonreciprocal topological struc-
tures have been discussed with the help of concepts such as
the generalized Brillouin zone (GBZ) [57,63–65], non-Bloch
bulk-boundary correspondence [57], and non-Bloch topologi-
cal invariants [57,63].

The theoretical and experimental development of non-
Hermitian systems has encouraged researchers to focus on
the effect of disorder on those systems [66–68]. The most fa-
mous work is the Hatano-Nelson model [69–71], in which the
asymmetric hopping terms induced by imaginary normative
fields lead to the existence of the localization-delocalization
transition and the mobility edge [72]. Since then, more in-
teresting results have been reported by different groups. For
instance, in non-Hermitian Weyl semimetals, disorder could
induce the appearance of a flat band [73]. Stefano proposed
the Hatano-Nelson model with unidirectional hopping under
on-site potential uncorrelated disorder on the complex energy
plane, and predicted rather generally three distinct spectral
phases for the energy spectra under both open and periodic
boundary conditions [74]. In the dimerized Kitaev supercon-
ductor chain, the non-Hermitian disorder-driven topological
transition has been observed, offering a new opportunity for
the realization of a Majorana zero mode [67]. The disorders
have been found to drive the phase transition in the second-
order non-Hermitian skin effect [76]. In disordered systems
with a single non-Hermitian impurity, anomalous skin effects
have been demonstrated [77]. In addition, researchers con-
sidered one-dimensional nonreciprocal systems with random
variations over a continuous time step, and such systems have
been found to display the stochastic skin effect [78].

Based on existing works, one can find that disorder indeed
brings about the nontrivial effect in non-Hermitian systems
by inducing new phase transitions. Meanwhile, the types of
disorder can also determine the variation in the properties of
non-Hermitian systems. In the present work, we would like to
investigate the localization phenomena in a one-dimensional
(1D) quantum chain. These phenomena are driven by one new
type of disorder, i.e., nonreciprocal disorder. The calculation
results show that such disorder plays a special role in cre-
ating the band structure by inducing the pseudo-Hermitian
symmetry phase transition. In addition, such disorder can
adjust the localization of states. Moreover, this type of dis-
order does not localize all eigenstates immediately, and the
localization transition occurs under weak disorder. When the
disorder parameters are adjusted to differ from each other, this
system displays the energy-dependent NHSE and localization
of states, as well as the transition from unidirectional to bidi-
rectional localization. These results can help us to understand
the effects of nonreciprocal disorder on 1D quantum systems.

The specific content of this paper is organized as follows:
In Sec. II, we introduce the Hamiltonian and analyze the
symmetry of the system. We also display the expressions of
the disorder-averaged inverse participation ratio (IPR) and
the localization length. In Sec. III, we discuss in detail the

energy spectra and localization properties of the two disorder
configurations H1 and H2 as the disorder strength varies, and
for different random number regimes in terms of the energy
bands, the disorder-averaged probability densities, and the
localization lengths. Section IV provides a summary. Finally,
in the Appendixes, we provide the condition of pseudo-
Hermitian symmetry by using hopping terms and calculating
the real eigenenergy level statistics.

II. MODEL AND THEORY

This work concentrates on a 1D quantum chain affected by
nonreciprocal disorder. In this system, a spinless particle hops
along a 1D chain with finite disorder added to the hopping
terms. The corresponding Hamiltonian is written as

H =
∑

j

(t1, jc
†
j c j+1 + t2, jc

†
j+1c j ). (1)

c†
j (c j) denotes the creation (annihilation) operator on the site

j. The total system has L sites. t1, j and t2, j are the hopping
terms from right to left and from left to right, respectively.
According to the imposition of disorder terms in the Anderson
disorder system, we define t1, j = t + d

2W1, j and t2, j = t −
d
2W2, j , where d describes the strength of disorder, and W1(2), j

is the number drawn at random from a uniform distribution.
Surely, due to the presence of disorder, the random hopping
strengths cause the hopping terms to be spatially uncorrelated
with t1, j �= t2, j . The nonreciprocity property comes up when
there is a difference in hopping between neighboring lattices,
and non-Hermitian mechanisms are introduced in the system.

According to Eq. (1), we are allowed to express the
real-space Hamiltonian in its matrix form based on � =
(ψ1, ψ2, ψ3, . . . , ψL−1, ψL )T , i.e.,

H =

⎡
⎢⎢⎢⎢⎢⎣

0 t1,1 0 · · · 0
t2,1 0 t1,2 · · · 0

0 t2,2 0 . . .
...

...
. . .

. . .
. . . t1,L−1

0 · · · 0 t2,L−1 0

⎤
⎥⎥⎥⎥⎥⎦. (2)

With the help of such a matrix form, we can judge the
symmetry of this system. First, it can be found that this
system has the chiral symmetry �H�−1 = −H , with � =
diag(1,−1, 1,−1, . . . )L×L. Moreover, it also has the pseudo-
Hermitian symmetry (PHS) ηHη−1 = H†, where

η = diag

{
1,

t1,1

t2,1
,

t1,1t1,2

t2,1t2,2
, . . . ,

t1,1t1,2 · · · t1,L−1

t2,1t2,2 · · · t2,L−1

}
.

The existence of PHS signifies that the system could display
purely real energy [79,80]. In the presence of the imaginary
part of the energy, the system will undergo the PHS phase
transition. If all states have their real energies, the system will
be located in the protected PHS phase. Otherwise, the broken
PHS phase comes into being with the finite imaginary part of
the energy.

To present a comprehensive description of the skin effect,
localization, and other features of our considered system, we
would like to carry out discussions by introducing some phys-
ical observables, such as the inverse participation ratio, and
localization lengths.
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A. Disorder-averaged IPR and directional IPR

To begin with, we introduce the disorder-averaged inverse
participation rate (dIPR) [67,75] to characterize the effect of
disorder and to analyze the skin effect and localization of the
wave function. The specific expression of dIPR is written as

dIPRn = 1

M

M∑
m=1

IPRn = 1

M

M∑
m=1

∑
j |ψn, j |4(∑
j |ψn, j |2

)2 . (3)

Here IPRn is the inverse participation ratio, ψn, j is the right
eigenstate component of ψn at site- j under the nth eigenstate,
and ψn satisfies the Schrödinger equation Hψn = Enψn, with
H being the model Hamiltonian and En the nth eigenenergy. In
this expression, M is the number of disordered configurations.
According to Refs. [67,82,83], we know that for the extended
states, IPRn(dIPRn) ∼ 1/L and it tends to be equal to zero
in the case of L → ∞. Alternatively for the localized states,
these two quantities will manifest as nonzero finite values.

According to Refs. [31,81,84], on the basis of the IPR, we
use the directional IPR(χ ) to characterize the localization of
all eigenstates. The specific definition equation can be written
as

χn = sgn

⎡
⎣ L∑

j

(
j − L

2
− β

)
|ψn, j |

⎤
⎦ ∑

j |ψn, j |4( ∑
j |ψn, j |2

)2 . (4)

Here, the definition of ψn, j is consistent with that in the dIPR,
and β is a constant usually determined as 0 < β < 0.5. In
this work, we perform disordered averaging and set β = 0.2.
sgn(x) represents the sign function, in which sgn(x) = −1.0
when x < 0 but sgn(x) = 1.0 if x > 0. By observing the value
of χn to be positive or negative, one can determine whether the
wave function of eigenstate-n has a tendency to be of right or
left localization.

B. Localization length ξ

To describe the localization phenomenon, we should
calculate the localization length ξ to determine the local-
ization effect of our considered system [66,85]. According
to the Schrödinger equation H� = E�, we can obtain the
relationship

t2, j−1ψ j−1 + t1, j+1ψ j+1 = Eψ j . (5)

Such a series of equations allows us to write out the following
expression:[

ψ j−1

ψ j

]
= ML, j

[
ψ j

ψ j+1

]
,

[
ψ j+1

ψ j

]
= MR, j

[
ψ j

ψ j−1

]
. (6)

Based on the result in Eq. (5), we can obtain the concrete form
of the transfer matrix ML, j and MR, j :

ML,n =
[

t−1
2, j−1E −t−1

2, j−1t1, j+1

1 0

]
, (7)

MR,n =
[

t−1
1, j+1E −t−1

1, j+1t2, j−1

1 0

]
. (8)

Thus, we can solve the localization length ξL (R) of the left
(right) direction by calculating the inverse of the small-

FIG. 1. (a) The spectra of χn with the increase of w at d = 1.0.
The purple, yellow, red, and blue lines indicate the energy level index
at n = 100, 1, 40, and 80, respectively. (b)–(f) Disorder-averaged
probability density distributions of the corresponding energy level
for the cases of w = 0, 0.5, 1.0, 1.5, and 2.0. In detail, n = 1 is
the absolute energy maximum |E |max, n = 100 (101) is the absolute
energy minimum |E |min, and n = 40 (80) is the eigenstate between
|E |max and |E |min.

est positive eigenvalue of the 2 × 2 matrix [70,86], i.e.,
(
∏L

j−1 ML(R), j )(
∏L

j−1 ML(R), j )†.

III. RESULTS AND DISCUSSIONS

Following the theory presented in the preceding section, we
perform numerical calculations to investigate the energy band
structure of our system under an open boundary condition in
order to observe the localized properties in detail. To present
a comprehensive analysis, we take the disorder strength d >

0, and the two kinds of disorder random numbers are set as
W1,n ∈ [−1.0, 1.0] and W2,n ∈ [−w,w] with w ∈ [0, 2.0].

First, we focus on the effect of the variation of random
numbers in terms of disorder. Figure 1 displays the spectra
of χn with w increasing from 0 to 2.0. The purple, yellow,
red, and blue lines in Fig. 1(a) describe the energy level
index at n = 100, 1, 40, and 80, respectively. From Fig. 1(a),
we find that χn=40,80,100 are always greater than zero in the
case of 0 < w < 1.0. Thus, the system tends to be localized
on the right side of the system. With the increase of w,
the value of χn decreases and becomes smaller than zero in
the range of w > 1.0. This suggests that the eigenstates of
this system undergo a right-to-left localization transition. In
Figs. 1(b)–1(f), we present the disorder-averaged probability
density distributions of the corresponding energy levels for
w = 0, 0.5, 1.0, 1.5, and 2.0, respectively. We can observe a
similar phenomenon to Fig. 1(a). In the range of 0 < w < 1.0,
the eigenstates of χn=40,80,100 are localized on the right side
[as shown in Figs. 1(b) and 1(c)]. When w = 1.0, as shown
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FIG. 2. (a)–(c) Real and imaginary energy spectra of (a) (t, L) =
(1.0, 200), (b) (t, L) = (0.5, 200), and (c) (t, L) = (1.0, 500). The
spectra are the average over 100 disorder configurations. (d) The
specific real and imaginary energy spectra in the case of (t, L) =
(1.0, 200) for only one disorder configuration. The yellow and or-
ange colors in these four cases identify the regions of protected and
broken PHS phases, respectively.

in Fig. 1(d), the eigenstates are localized at both ends. In
the range of w ∈ [1.0, 2.0] [see Figs. 1(e) and 1(f)], it can
be observed that the corresponding eigenstates exhibit a clear
localization effect towards the left side of the system. Accord-
ingly, the change of parameters has a significant effect on the
localization properties.

Based on the above results, we next discuss the energy
spectra and localization properties in two different disordered
configurations, i.e., (I) H1 → {W1,n ∈ [−1.0, 1.0],W2,n ∈
[−1.0, 1.0]}; (II) H2 → {W1,n ∈ [−1.0, 1.0],W2,n ∈ [−0.5,

0.5]}.

A. Configuration of H1

We start by discussing the first configuration, which is
described as H1 → {W1,n ∈ [−1.0, 1.0],W2,n ∈ [−1.0, 1.0]}.
First, we would like to consider the short chain and con-
centrate on the band-structure properties by observing the
energy spectra and wave function. Based on previous work
[87], the disorder-averaged eigenenergies are given as En =
1
M

∑M
m=1 E (m)

n .
Figure 2 shows the real and imaginary energy spectra in

different cases, where the left column denotes the real part and

the right is the imaginary part of the energy. From the energy
spectra, we can clearly find the appearance of Im(E ), and
its range becomes wide with an increase of disorder strength
d . This means that in this system, the PHS phase transition
occurs, leading to the presence of two different phase regions,
i.e., the protected PHS phase (yellow region) and the bro-
ken PHS phase (orange region). Specifically, in the case of
t = 1.0 and L = 200 [see Fig. 2(a)], the system undergoes
the PHS phase transition at d = 2.0. When disorder strength
is taken to be 0 < d < 2.0, the eigenenergies are real, since
the system is protected by PHS. In the case of d > 2.0, the
imaginary eigenenergies are not equal to zero anymore with
the occurrence of PHS breaking. When t = 0.5 [see Fig. 2(b)],
the region of 0 < d < 1.0 is manifested as the protected PHS
phase in which the eigenenergies are real. In the region of
d > 1.0, the eigenenergies contribute their imaginary part
and then the system enters the broken PHS phase. Thus,
we can think that the real energy spectra are generated by
the pseudo-Hermitian symmetry. In addition, we increase the
chain length, such as L = 500 at t = 1.0 in Fig. 2(c). It can be
found that the system still undergoes the PHS phase transition
at d = 2.0, and the region of the imaginary part Im(E ) �= 0
is widened. These results are the same as those presented in
Fig. 2(a). The above-mentioned phenomena not only occur
in the energy bands under disorder averaging, but they also
hold for one disordered configuration. For example, Fig. 2(d)
shows the specific real and imaginary energy spectra in the
case of (t, L) = (1, 200) for only one disorder configuration.
We can find that the PHS phase transition occurs at d = 2.0,
which is the same as the results shown in Fig. 2(a). Therefore,
we infer that there is a numerical relationship between the
change in t and the PHS phase-transition conditions. More-
over, the increase in the chain length does not change the
critical phase-transition conditions for the two phases.

To further understand the phenomenon of PHS phase tran-
sitions in our system, we discuss the effects of t, d , and
L in Fig. 3. Here we introduce the imaginary-energy ratio
[83], which can assist in demonstrating the appearance of
complex energy eigenstates. The corresponding expression is
given as

ρ = 1

L

L∑
n=1

ε(|Im(En)|). (9)

In this expression, ε(x) is the step function. When ρ = 0 (1.0),
all the eigenenergies are purely real (imaginary). In the region
of 0 < ρ < 1.0, the system belongs to the mixed phase with
real and imaginary energies.

Figure 3(a) displays the phase diagram for the imaginary-
energy ratio as a function of t and d at L = 200, with the color
corresponding to the value of ρ. Here, we can observe that
when the parameters are located in the range of t > d/2, ρ

is equal to zero. This means that all the eigenenergies are
real, and the system is in the protected PHS phase region.
Alternatively for 0 < t < d/2, ρ > 0. In such a case, the
system is characterized as the broken PHS phase. For ex-
ample, in the cases of t = 0.5, 1.0, and 1.5, as shown in
Fig. 3(b), the conditions for the PHS phase transition in the
three cases are d = 1.0, 2.0, and 3.0, respectively. Such re-
sults are consistent with the spectra in Figs. 2(a) and 2(b).
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FIG. 3. (a) Phase diagram for the imaginary-energy ratio ρ as a
function of t and d at L = 200. (b) The specific results of t = 0.5
(black line), t = 1.0 (blue line), and t = 1.5 (red line) at L = 200.
(c) The phase diagram for IER as a function of d and L at t = 1.0.
(d) L = 200 [black (light-black) line], L = 500 [blue (light-blue)
line], and L = 1000 [red (light-red) line] represent the IER (maxi-
mum value of the imaginary energy), respectively.

Therefore, we can conclude that the condition for the system
to undergo the PHS phase transition is exactly expressed as
d = 2t . We can also explain this condition by the hopping
terms (as shown in Appendix A). In addition, Figs. 3(c) and
3(d) show the relationship among ρ, 1/L, and d . According
to the phenomenon in Fig. 3(c), we infer that the length of
the system does not affect the condition of the PHS phase
transition, and the phase-transition condition is maintained
as d = 2t with an increase of length L. Figure 3(d) shows
that the conditions of the three cases are the same as d = 2.0
(see the solid lines). In addition, we introduce the maximum
value of the imaginary part of the energy at L = 200, 500, and
1000, respectively. The maximum value of the imaginary part
Im(E )max also appears in the region of d > 2.0 (see the dashed
lines). Therefore, we can conclude that the chain length does
not change the condition of the PHS phase transition.

Figure 4 displays the dIPR to illustrate the wave-function
localization effect of H1 under a short chain with L = 200.
The x-axis represents the strength of the disorder d , and the y-
axis represents the energy index, where n = 1 and 200 means
the energy band edges −Emax and Emax, respectively, and
n = 100 means the absolute minimum of the energy |E |min.
The color denotes the value of the dIPR, and the change in

FIG. 4. (a) The disorder-averaged inverse participation rate
(dIPR) with the change of d and index of eigenvalues, respectively.
(b) The specific results of d = 0.5 (blue line) and d = 1.0 (red line)
of the protected PHS phase in the left column (i), and the results of
d = 2.3 and 2.5 of the broken PHS phase in the right column (ii).

color to red corresponds to the increase of the dIPR value
and the strengthening of the localization effect in this process.
Figure 2(a) shows that the system comprises two kinds of
phases, namely the protected PHS phase (0 < d < 2) and
the broken PHS phase (d > 2). We can find that they ex-
hibit different results of dIPR for the protected and broken
PHS phases. Specifically, in the protected PHS phase, when
d = 0, dIPR → 0, indicating weak localization. In the case
of small d , the dIPR values for the higher-energy states are
higher than those for the lower-energy states. In particular,
near the edges of the energy band, higher dIPR values can
be observed. For example, in the case of d = 0.5 and 1.0 [as
shown in Fig. 4(b)(i)], the value of dIPR in n = 1 and 200
is larger than the value of n = 100. Thus, the states near the
edges of the band are more prone to be localized than states
near the band center. With the increase of disorder strength,
dIPR of the states near E = 0 is gradually enhanced, such
as the case of d = 1.0 [see Fig. 4(b)(i)]. In the broken PHS
phase, the dIPR of lower-energy states is larger than that of
higher-energy states, such as the cases of d = 2.3 and 2.5 in
Fig. 4(b)(ii). Based on these results, it can be seen that the pro-
tected and broken PHS phases will show different localization
effects, and the energy magnitude has its special influence on
the localization effect of H1.

According to Fig. 1(c), when w = 1.0, the eigenstates
could be localized at both ends. Thus, in this part, we discuss
the wave-function probability density distribution in detail
with the change of disorder strength d . Figure 5 plots the
disorder-averaged probability density spectra to show the lo-
calization phenomena of our system. In the case of d = 0.5,
the lower-energy states tend to be localized at both ends
of the system, especially the states of n = 100 (101). This
trend becomes less pronounced as the absolute value of en-
ergy increases, especially the states of n = 40 (80). For the
higher-energy states (such as n = 1), the disorder-averaged
probability density reaches its extremum at the middle of the
chain. With the increase of d , the trend of localization at both
ends of the system becomes more pronounced. Taking the
case of d = 1.5 as an example, one can see in Fig. 5(b) that
states of n = 100 (101) present better localization than the
case of d = 0.5. When d increases to 2.5, the system begins
to obtain the imaginary part of the energy. From Fig. 5(c), it
is found that the effects of localization at the left and right
sides present themselves in the states with near zero energy,
e.g., n = 107. In addition, the localization effect for n =
100 (101) is not manifest with this trend. For higher-energy
states, the localization effect of the system becomes more
apparent.

To investigate why the disorder-averaged probability den-
sity appears to be localized at the two ends, we plot the wave
function under partial disorder configurations, as shown in
the rightmost column of Figs. 5(a)–5(c)(ii). It is shown that
the localization effects at both ends of the system consist
of the superposition of eigenstates averaged over different
disordered configurations, including eigenstates localized on
the left or right sides (blue or red line) and a small number
of eigenstates localized at the middle of the chain. For n = 1,
the disorder-averaged eigenstates comprise the superposition
of highly localized eigenstates. These probability density dis-
tribution results for the wave functions are quite different
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FIG. 5. (a)–(c) (i) The disorder-averaged probability density spectra of d = 0.5, 1.5, and 2.5, respectively. (ii) The right column shows the
specific results in part of different disorder configurations. In addition, n = 1 is the absolute energy maximum |E |max, n = 100 (101) is the
absolute energy minimum |E |min, and n = 40 (80) is the eigenstate between |E |max and |E |min. The total unit cell L is equal to 200.

from the effect of the NHSE that produces all eigenstates
localized on one side of the system after the introduction of
conventional nonreciprocal coupling [57].

Next, we focus on the long chain L = 10 000. With a
view to better observing the localization effects of the two
regions driven by disorder, we calculate the left and right
localization lengths ξL and ξR. Figures 6(a) and 6(b) show
the variation of the left (right) localization length ξL (ξR) with
the disorder strength and eigenenergies when the chain length
L = 10 000. As is known, for the conventional 1D Anderson
model, disorder leads to direct localization of the eigenstates
[1,88,89]. However, in Fig. 6 it can be seen from the lo-
calization phase diagram that the disorder does not localize
all eigenstates immediately, and the eigenstates close to zero
energy still show the process of localization transition. This is
completely different from the traditional 1D Anderson model.
In addition, this localization transition only occurs in the
protected PHS phase. Specifically, Figs. 6(c)–6(e) show the
results at E = 0.05, 1.0, and 2.0 in the protected PHS phase,
respectively. The lower-energy states and near-zero-energy

states need larger disorder strength to undergo the localization
phase transition compared to the higher-energy states. For
example, in the cases of E = 0.05 in Fig. 6(c), the localization
length ξL = ξR � L when d = 0, so the system appears as
the extended states. When d > 0.2, ξL, ξR < L, the system
begins to exhibit the localization trend. With the increase of
d , the system undergoes the localization transition. For the
case of E = 1.0, the system displays similar phenomena with
E = 0.05. Next, for higher-energy states with E = 2.0, the
system has a weak localization effect at d = 0. This indicates
that the eigenstates close to the band edges are more prone
to localization than those close to the band center. It can also
be observed that both the left and right localization lengths
gradually converge to zero with an increase of disorder, which
indicates that the system undergoes localization in two di-
rections. For the result of the broken PHS phase, ξL and ξR

both satisfy ξL (R) < L, and the left and right directions are
both manifest as the localization effect, in agreement with
the results in Fig. 6(f). We can also observe the localization
transition using level statistics (Appendix B).
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FIG. 6. (a),(b) Spectra of the left and right localization lengths
ξL and ξR of eigenenergy-disorder (E − d ), respectively. (c)–(e) Left
and right localization lengths for L = 10 000 in the protected and
broken PHS phases at energy E = 0.05, 1.0, and 2.0, respectively.
The dotted blue line describes ξL , and the solid red line indicates ξL .
In (c)–(e), the green region means the delocalized states, and purple
regions indicate the states that satisfy bidirectional localization.

Following the above discussion, we would like to sum-
marize the effects of disorder on the band structure and
localization of H1: For the band structures, (I) the increase
of disorder strength d can drive the PHS phase transition at
d = 2t . The disorder leads to the existence of two different
phase regions of the system: one is the protected PHS phase
with real-energy eigenstates, and the other is the broken PHS
phase with nonzero Im(E ). (II) The length of the chain cannot
change the condition of the PHS phase transition.

As for the wave function, nonreciprocal disorder does not
induce the traditional NHSE, but rather a new localization
phenomenon of energy-modulated localization on both sides
of the system. (I) In the protected PHS phase, the lower-
energy states, especially near-zero-energy states, tend to be
localized at the left and right sides of the system. Under the
same disorder condition, the trend of localization on the left
and right sides is weakened with the increase of energy. In ad-
dition, the high-energy states show a tendency to be localized
by the superposition of highly localized eigenstates. (II) In the
broken PHS phase, the localization effect is stronger for the
lower-energy states than the higher-energy states. Although
the tendency of localization at the ends of the system still
exists for the lower-energy states, it does not correspond to
the absolute minimum of energy.

Next, for the localization result, the disorder does not
immediately localize all eigenstates. The disorder leads to a
localization transition that is different from that of the 1D
Anderson model. (I) The localization transition only occurs

FIG. 7. (a),(b) Real and imaginary energy spectra of (a) (t, L) =
(1.0, 200) and (b) (t, L) = (1.5, 200). The color indicates the value
of dIPR.

in the region of protected PHS phase with weak disorder. (II)
When the disorder strength is greater than the critical strength,
all eigenstates, both higher- and lower-energy states, become
localized and exhibit bidirectional (left and right) localization
effects in protected and broken PHS phases.

B. Configuration of H2

The above discussion shows that the nonreciprocal dis-
order not only changes the band-structure properties, but
it also regulates the localization effects at different ener-
gies. In view of this fact, we would like to investigate
the second disorder configuration, in which H2 → {W1,n ∈
[−1.0, 1.0],W2,n ∈ [−0.5, 0.5]}. Our purpose is to clarify the
occurrence of the NHSE.

For the configuration of H2, we also start by focusing on
the properties of the band structure in a short chain, L = 200.
Figures 7(a) and 7(b) show the real and imaginary energy
spectra of t = 1.0 and 1.5 with L = 200. First, it can be found
that the conditions for the PHS phase transition also obey the
relationship d = 2t . The region of the imaginary part of the
energy becomes steadily wider with the increase of d . This
means that the system also has two types of phase regions,
i.e., the protected PHS and broken PHS phases. These results
are similar to the band structure of the configuration of H1.
Similarly, we explain the PHS phase-transition condition for
H2 by hopping terms in Appendix A. From the value of dIPR,
we can get similar results with H1. In the broken PHS phase,
when d is small, the higher-energy states near the edges of the
energy band have greater dIPR values than the lower-energy
states near zero energy. With the increase of d , the value of
dIPR increases near the zero-energy position. In the broken
PHS phase, the localization effect of states near E = 0 is
stronger than that of other states. Therefore, the energy band
results indicate that the configuration of H2 also undergoes the
PHS phase transition, and the two phases also have different
properties.

From Fig. 1(c), we know that the eigenstates could be
localized on the right side. To better understand this pro-
cess, Figs. 8(a)–8(d) show the disorder-averaged probability
density spectra for d = 0.1, 1, 1.5, and 2.5 in L = 200,
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FIG. 8. (a)–(d) The disorder-averaged probability density spectra
of d = 0.1, 1.0, 1.5, and 2.5, respectively. The right column shows
the specific results in each case.

respectively. In the case of d = 0.1, as shown in Fig. 8(a),
most states are not localized at the boundary. Thus the states
are mainly extended, such as the results in the right column.
With the increase of d , e.g., d = 1.0 in Fig. 8(b), we can
clearly observe that in the region where the energy level
index ranges from n = 40 to 80, the wave function tends to
be localized on the right side of the system. And then the
NHSE comes up in the lower-energy region. As the energy
approaches zero, this skin effect becomes more pronounced,
such as n = 100 (101). Such a result is completely different
from H1. The higher-energy states at and near the band edges
exhibit the localization effect distributed throughout the sys-
tem, as shown in the case of n = 1. This effect also leads to
a superposition average of disordered configurations, similar
to H1. Although the system displays the skin effect, it is not
satisfied by all states. Thus, this is different from the tradi-
tional NHSE, so we define it as the energy-dependent NHSE.
When the disorder strength increases to 1.5, the region of the
energy-dependent NHSE is reduced compared to the case of
d = 1. This indicates that the disorder-averaged probability
density of partial eigenstates no longer shows a tendency to
be localized on the right side, such as the eigenstate with
n = 40. In contrast, eigenstates near zero energy still retain

FIG. 9. (a)–(d) The disorder-averaged energy spectra under PBC
and OBC for d = 0, 1.0, 1.5, and 2.5, respectively. The red line
indicates the OBC case, and the green line indicates the PBC case.

the energy-dependent NHSE, such as the state for n = 80.
The energy-dependent NHSE is more pronounced when the
eigenstate energies are close to zero energy [see the states for
n = 100 (101)]. At this point, the wave-function density at the
left end is close to zero, manifested as red in the wave-function
phase diagram. The localization of higher-energy states is
similar to the case of d = 1. In the broken PHS phase, the
region with NHSE is significantly reduced, and the peak is no
longer at n = 100 (101), rather it is at n = 107 (94).

From the disorder-averaged wave-function probability
density, it is easy to see that the system exhibits a phe-
nomenon not present in the H1 configuration, namely the
energy-dependent non-Hermitian skin effect. According to
the previous work [74], we can explain this phenomenon
by analyzing the relationship between the periodic boundary
condition (PBC) and the open boundary condition (OBC). The
specific results are shown in Fig. 9. For the case of d = 0,
the system is Hermitian and satisfies the bulk-boundary cor-
respondence, with the OBC and PBC energy spectra being
consistent with each other [see Fig. 9(a)]. However, the system
does not have disorder; most of the eigenstates of the Hermi-
tian case are extended. As the disorder strength d increases,
the PBC energy spectrum gradually deforms. However, as
d further increases, the energy spectra under PBC and OBC
once again coincide near the band-edge states. This progres-
sion signifies a competition between nonreciprocal coupling
and disorder. For instance, in Fig. 9(b), when d = 1.0, the
PBC and OBC energy spectra are no longer perfectly cor-
related. The eigenstates near the band edges of the energy
spectra of the two conditions still coincide, and they are in
the disorder-induced bulk localized phase, while the PBC
energy spectra near the lower-energy states and near zero-
energy states are gradually deformed, presenting a localized
phenomenon similar to the non-Hermitian skin effect, which
we define as the energy-dependent skin effect in Fig. 8. This
indicates that disorder does not entirely affect the nonrecipro-
cal coupling of the system. As the strength of disorder further
increases, such as the case of d = 1.5 in Fig. 9(c), a greater
number of states regain the coincidence of OBC and PBC
energy spectra, and the range of the energy-dependent skin
effect gradually decreases. This phenomenon is also observed
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FIG. 10. (a),(b) The left and right localization lengths (ξL and
ξR) diagram spectra of eigenenergy-disorder (E − d ) respectively.
(c)–(e) The left and right localization lengths for L = 10 000 in the
protected PHS phase and the broken PHS phase at energy E = 0.05,
1.0, and 2.0, respectively. The red solid line indicates ξR, and the blue
dotted line corresponds to ξL . In (c)–(e), the green region means the
delocalized states, the pink region represents the states that satisfy
unidirectional localization, and the purple regions indicate the states
that satisfy bidirectional localization.

in the broken PHS phase, but the region of the energy-
dependent skin effect is smaller compared to the protected
PHS phase. This implies that the disorder-induced localization
effect gradually prevents the skin effect of nonreciprocal cou-
pling. Therefore, we can conclude that the emergence of the
energy-dependent skin effect of the system arises from a com-
petitive action of disorder and nonreciprocal coupling, which
is related to the deformation of the PBC energy spectrum.

Next, we focus on the long chain structure and calculate the
localization lengths of the system at different energies in order
to determine the localization characteristics of this system. In
Figs. 10(a) and 10(b), we plot the diagrams of the left and
right localization lengths ξL and ξR of eigenenergy-disorder
(E − d ), respectively. Unlike H1, which shows a localization
transition only in the protected PHS phase region, in the H2

model, both the protected PHS phase and the broken PHS
phase show a certain phenomenon of localization transition.
Surely, this phenomenon is also different from the conclusion
of 1D Anderson localization.

On the one hand, we discuss the phenomena in the pro-
tected PHS phase, and the specific results are shown in
Figs. 10(c)–10(e). We can find that when disorder is weak,
not all states are localized immediately, and the states close
to the band edges undergo localization first, which is similar
to H1. When the disorder increases, the eigenstates of differ-
ent energies exhibit approximately three different localization

phenomena. The first is relevant to the near-zero-energy states,
such as E = 0.05 in Fig. 10(c). We can see that ξL → ∞ and
ξR → ∞ in the case of 0 < d < 0.13, indicating the delocal-
ized states in the system (green region). With the increase of
d , the right localization length ξR remains finite and tends
to zero following the enhancement of disorder. But at the
same time, the left localization length ξL diverges with the
increase of disorder strength. This suggests that the system
undergoes unidirectional localization characteristics (pink re-
gion). This result is consistent with the energy-dependent
NHSE in Fig. 8. Thus, the system undergoes a transition
from delocalization to unidirectional localization. The second
is for the lower-energy states, e.g., Fig. 10(d) with E = 1.0.
It shows two types of localization processes in the system:
following the increase of d , the system shows a transition from
delocalization to unidirectional localization, which is similar
to E = 0.05. As the disorder strength further increases, the
localization length gradually satisfies ξL < L and tends to
zero. At this stage, ξL and ξR both exhibit localization effects,
which we called bidirectional localization (purple region).
Thus, the effect of unidirectional-to-bidirectional localization
occurs, which is the second transition process. The third is
for the higher-energy states, especially band-edge states. The
disorder conditions for their localization in the left and right
directions tend to be similar. For example, in Fig. 10(e), when
E = 2.0, the system shows localization phenomena in the left
and right directions. Regrading the broken PHS phase, the
localization transition only appears in the region of the near-
zero-energy states, and most of the states present bidirectional
localization.

Based on the above results, we can summarize the con-
formational properties of H2 in terms of localization and
band structure: For the band structure, disorder leads to
the existence of protected and broken PHS phases, and the
pseudo-Hermitian phase transition is bounded by d = 2t .

For these two types of phases, they display different local-
ization phenomena in the wave function: (I) In the protected
PHS phase, the disorder drives the energy-dependent NHSE
in the lower-energy region. With the increase of disorder,
such a skin effect becomes more obvious, while it could
transform into the whole-chain localization similar to that of
the higher-energy states. (II) In the broken PHS phase, the
energy-dependent NHSE can be observed, characterized by
the double peaks near the absolute minimum of energy at
which better localization occurs. Overall, when the left and
right nonreciprocal disorders have different strengths, the skin
effect occurs, but it is different from the traditional NHSE in
which all states are localized on one side. The new NHSEs of
the system are energy-dependent, with their main appearance
at lower and near-zero energies.

Finally, as can be seen from the localization length, the two
types of phases exhibit different localization transitions. The
disorder likewise does not immediately render the localiza-
tion. In addition, the unidirectional localization occurs in the
region near zero energy, and the change from unidirectional
to bidirectional localization is formed near the critical value.
In the higher-energy band, the states still show the bidirec-
tional localization feature. The appearance of the localization
transition indicates that the localization is different from the
traditional 1D Anderson localization.
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TABLE I. Summary of band structures and localizations in the two configurations. In this table, “Condition” refers to the condition
under which the system undergoes the PHS phase transition. “Disorder-averaged probability density” indicates the trend of disorder-averaged
probability density in the short chain, and the left and right sides means the disorder-averaged probability density has a tendency to localize on
the left and right sides of the system. These results correspond with Figs. 5 and 8. “Localization transition” indicates the process of localization
transition in the long chain with the increase of disorder, and these results correspond with Figs. 6 and 10.

Case Condition Phase Energy region Disorder-averaged
probability density

Localization
(d increases)

H1

[Ranges of W1 and W2

are same]

d=2t

PPHS

[Im(E)=0]

higher-energy middle delocalized→bidirectional
bidirectional (band edge state )

lower-energy weak left and right sides
delocalized→bidirectional

near zero energy left and right sides

BPHS

[Im(E)≠0]

higher-energy middle

bidirectionallower-energy middle

near zero energy weak left and right ends

H2

[Ranges of W1 and W2

are different]

d=2t

PPHS

[Im(E)=0]

higher-energy middle delocalized→bidirectional
bidirectional (band edge state )

lower-energy energy-dependent NHSE→middle delocalized→unidirectional→bidirectional

near zero energy energy-dependent NHSE delocalized→unidirectional

BPHS

[Im(E)≠0]

higher-energy middle bidirectional

lower-energy energy-dependent NHSE→middle unidirectional→bidirectional

near zero energy energy-dependent NHSE→middle unidirectional→bidirectional

IV. SUMMARY

To summarize, in this work we have investigated the lo-
calization phenomena in a 1D quantum chain that are driven
by nonreciprocal disorder. We discuss in detail the impact
of competing interactions between disorder and nonrecipro-
cal coupling on the system’s localization transition and skin
effect. We found that such disorder plays a special role in
driving the NHSE and state localization of this system. When
the disorder strength is the same in the two hopping di-
rections, the average probability densities of disorder in the
low-energy and near-zero-energy states show a tendency to
localize on both the left and right sides of the system in both
the protected and broken PHS phases. More interestingly, the
localization transition also appears in the case of weak dis-
order, with features related to the energy of the states. When
the parameters of disorder in the two hopping directions are
different, the energy-dependent NHSE is induced, which is
a different localization phenomenon from the conventional
NHSE. Moreover, the localization phenomenon becomes
intricate with the emergence of a variety of localization
transitions, such as delocalization-unidirectional-bidirectional
localization. Table I presents the dominant phenomena in
these structures in order to facilitate an understanding of the
obtained results. The goal of our work is to present the inter-
action between nonreciprocity and disorder, and to enhance
the understanding of the nonreciprocal disorder effect on 1D
quantum systems.

In addition to the interesting results of our considered sys-
tem, we would like to highlight its experimental achievement.
In experiment, nonreciprocal coupling systems can now be
realized using topological circuits [90–92]. By combining
a capacitor and a negative impedance converter with cur-
rent inversion or an operational amplifier, a nonreciprocal
hopping term between the nearest sites is achieved [93,94].
The system’s energy spectrum structure and local phenom-
ena can be seen by examining the physical quantities of the
circuits, such as the conductivity spectrum and the nonlocal
voltage response. In addition, the desired disorder can be
directly achieved by introducing some impurities at random
and artificially during the fabrication of circuit boards [95].
Furthermore, the non-Hermitian topological Anderson insula-
tor is simulated by using disordered photonic quantum walks,
and its localization and topological properties are character-
ized [96]. The disordered non-Hermitian SSH model can be
realized using photons in coupled microring cavities [97–99].
Therefore, our model can be realized in realistic experimental
systems.
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APPENDIX A: EXPLANATION ON THE CONDITION
OF d = 2t IN H1 AND H2

From the energy band spectra (Figs. 2, 3, and 7), we can
conclude that the boundary between the protected and broken
PHS phases is d = 2t . For this underlying reason, we would
like to present our explanation from the standpoint of the left
and right hopping terms.

For the configuration of H1, according to Eq. (2), the
system Hamiltonian can be expressed as a non-Hermitian
tridiagonal matrix in an open boundary condition, and the
upper and lower subdiagonal elements are not equal to zero.
Based on previous works [80], all eigenvalues of H are real if
all the products of the upper and lower diagonal elements are
positive for the tridiagonal form matrix H , i.e., bncn > 0. In
the configuration of H1, bn ≡ t + d

2W1,n and cn ≡ t − d
2W2,n

with W1,n,W2,n ∈ [−1.0, 1.0]. Thus, we can obtain the expres-
sion (t + d/2)(t − d/2) > 0, with the solution being −2t <

d < 2t . Since we set the disorder strength d to be larger than
zero, the condition that satisfies this theorem for H1 is 0 <

d < 2t . Therefore, the condition for the PHS phase transition
is exactly defined as d = 2t in H1.

With a similar method, we can explain the PHS phase-
transition condition in H2. In such a case, bn ≡ t +
d
2W1,n, cn ≡ t − d

2W2,n, and W1,n ∈ [−1.0, 1.0] and W1,n ∈
[−0.5, 0.5]. We can obtain two relational equations, i.e.,
(t + d/2)(t − d/4) > 0 and (t − d/2)(t + d/4) > 0. The so-
lutions are given as −2t < d < 4t and < −4t < d < 2t ,
respectively. By defining the disorder strength to be greater
than zero, we also obtain the condition 0 < d < 2t , which
is the same as H1. Thus, for the configuration of H2, the
condition of the PHS phase transition is also described as
d = 2t .

APPENDIX B: LEVEL STATISTICS s

From Fig. 6, we know that the system H1 can display
localization effects. According to the random matrix theory,
delocalization and localization states can be characterized by
energy level statistics [100,101]. In the non-Hermitian case,
we can calculate the level statistics of real eigenvalues [66] to
verify the localization of the system under different disorder
strengths. The calculated expression for energy level statistics

FIG. 11. (a),(b) Spectra of the density of states for d = 0.1 and
1.5. (i),(ii) Energy level statistics of real eigenvalues for E = 0.2 and
2.0.

can be given as

s = S

〈S〉 = En+1 − En

〈En+1 − En〉 . (B1)

The average value 〈· · · 〉 in the denominator represents the
overall average value, and En are real eigenvalues. In Fig. 11,
we verify the localization effects of our system by studying
the energy level statistics. The density of states and level
histograms are plotted in Figs. 11(a) and 11(b) with d = 0.1
and 1.5. When d = 0.1 [shown in Fig. 11(a)], it can be found
from the density of states that all the eigenvalues are mainly
concentrated within the limit of |E | = 2.0, while their densi-
ties are lower at the center. In the case of d = 1.5, as shown
in Fig. 11(b), the eigenvalues are localized near E = 0 in
addition to the localization in the high-energy regions. To be
specific, in Fig. 11(a)(i), the histograms are close to the Gaus-
sian orthogonal ensemble, i.e., p(s) = (π/2)s exp[−(π/4)s2].
This means that the eigenstates are delocalized states. With an
increase of d , such as d = 1.5 [see Fig. 11(b)(i)], the eigen-
states are trended to show a Poisson distribution, i.e., p(s) =
exp(−s), implying that the states are localized. Therefore, we
find that the system undergoes a localization transition with an
increase of d . For states close to the band edges, e.g., E = 2.0
in Figs. 11(a)(iii) and 11(b)(iii), whether d = 0.1 or 1.5, the
energy level statistics satisfies the Poisson distribution. It is
shown that the band-edge states are more likely to be local-
ized compared to lower energy states. These results can be
consistent with the results of the localization length.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[3] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287

(1985).
[4] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,

D. Cèment, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature (London) 453, 891 (2008).

[5] M. Segev, Y. Silberberg, and D. N. Christodoulides, Nat.
Photon. 7, 197 (2013).

[6] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature
(London) 453, 895 (2008).

[7] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355
(2008).

[8] Y. Liu, Q. Zhou, and S. Chen, Phys. Rev. B 104, 024201
(2021).

[9] S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 133 (1980).
[10] J. Biddle, B. Wang, D. J. Priour, Jr., and S. Das Sarma, Phys.

Rev. A 80, 021603(R) (2009).

085409-11

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nature07071
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevB.104.024201
https://doi.org/10.1103/PhysRevA.80.021603


LI, ZHANG, ZHANG, AND GONG PHYSICAL REVIEW B 110, 085409 (2024)

[11] H. P. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia,
X. Li, S. DasSarma, and I. Bloch, Phys. Rev. Lett. 120, 160404
(2018).

[12] H. M. Guo, G. Rosenberg, G. Refael, and M. Franz, Phys. Rev.
Lett. 105, 216601 (2010).

[13] J. H. Zheng, T. Qin, and W. Hofstetter, Phys. Rev. B 99,
125138 (2019).

[14] R. Chen, D. H. Xu, and B. Zhou, Phys. Rev. B 100, 115311
(2019).

[15] J. Li, R.-L. Chu, J. K. Jain, and S. Q. Shen, Phys. Rev. Lett.
102, 136806 (2009).

[16] R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, Phys.
Rev. B 90, 014505 (2014).

[17] E. Prodan and H. Schulz-Baldes, Mathematical Physics Stud-
ies (Springer, New York, 2016).

[18] V. M. Martinez Alvarez and M. D. Coutinho-Filho, Phys. Rev.
A 99, 013833 (2019).

[19] J. K. Asbóth, L. Oroszlány, and A. Pályi, Lecture Notes in
Physics (Springer, New York, 2016).

[20] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev.
Mod. Phys. 88, 035005 (2016).

[21] H. Jiang, L. Wang, Q.-F. Sun, and X. C. Xie, Phys. Rev. B 80,
165316 (2009).

[22] J. Song and E. Prodan, Phys. Rev. B 89, 224203 (2014).
[23] X. Shi, I. Kiorpelidis, R. Chaunsali, V. Achilleos, G.

Theocharis, and J. Yang, Phys. Rev. Res. 3, 033012 (2021).
[24] C.-B. Hua, R. Chen, D.-H. Xu, and B. Zhou, Phys. Rev. B 100,

205302 (2019).
[25] J. He, J.-R. Li, L. L. Zhang, S.-F. Zhang, and W.-J. Gong, Eur.

Phys. J. Plus 137, 935 (2022).
[26] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett.

89, 270401 (2002).
[27] V. V. Konotop, J. Yang, and D. A. Zezyulin, Rev. Mod. Phys.

88, 035002 (2016).
[28] Y. Ashida, Z. Gong, and M. Ueda, Adv. Phys. 69, 249

(2020).
[29] S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Nat. Mater. 18,

783 (2019).
[30] C. Wu, N. Liu, G. Chen, and S. Jia, Phys. Rev. A 106, 012211

(2022).
[31] W.-J. Geng, Y.-J. Wang, Z.-X. Zhang, J. Cao, W.-X. Cui, and

H.-F. Wang, Phys. Rev. B 108, 144109 (2023).
[32] L. Jin, P. Wang, and Z. Song, Sci. Rep. 7, 5903 (2017).
[33] S. Garmon and K. Noba, Phys. Rev. A 104, 062215 (2021).
[34] A. F. Tzortzakakis, A. Katsaris, N. E. Palaiodimopoulos, P. A.

Kalozoumis, G. Theocharis, F. K. Diakonos, and D. Petrosyan,
Phys. Rev. A 106, 023513 (2022).

[35] A. Yoshida, Y. Otaki, R. Otaki, and T. Fukui, Phys. Rev. B 100,
125125 (2019).

[36] Y. Zhang and S. Chen, Phys. Rev. B 107, 224306 (2023).
[37] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243

(1998).
[38] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[39] Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang,

A. D. Zhu, and S. Zhang, Phys. Rev. A 96, 043810 (2017).
[40] J.-R. Li, Z.-A. Wang, T.-T. Xu, L.-L. Zhang, and W.-J. Gong,

Prog. Theor. Exp. Phys. 2023, 023I01 (2023).
[41] L. Jin, Phys. Rev. A 96, 032103 (2017).
[42] K. Kawabata, Y. Ashida, H. Katsura, and M. Ueda, Phys. Rev.

B 98, 085116 (2018).

[43] X. S. Li, Z. Z. Li, L. L. Zhang, and W. J. Gong, J. Phys.:
Condens. Matter 32, 165401 (2020).

[44] L. L. Zhang, J. R. Li, D. Zhang, T. T. Xu, W. B. Cui, and W. J.
Gong, Results Phys. 34, 105274 (2022).

[45] X. M. Zhao, C. X. Guo, S. P. Kou, L. Zhuang, and W. M. Liu,
Phys. Rev. B 104, 205131 (2021).

[46] C. Yuce and H. Ramezani, Phys. Rev. A 100, 032102 (2019).
[47] J.-R. Li, L.-L. Zhang, W.-B. Cui, and W.-J. Gong, Phys. Rev.

Res. 4, 023009 (2022).
[48] A. Stegmaier, S. Imhof, T. Helbig, T. Hofmann, C. H. Lee,

M. Kremer, A. Fritzsche et al., Phys. Rev. Lett. 126, 215302
(2021).

[49] Z. Lin, J. Schindler, F. M. Ellis, and T. Kottos, Phys. Rev. A
85, 050101(R) (2012).

[50] L. Su, H. Jiang, Z. Wang, S. Chen, and D. Zheng, Phys. Rev.
B 107, 184108 (2023).

[51] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon. 8,
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