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Photonic nanoparticle arrays that exhibit topologically nontrivial phases are often established by arranging
nanoparticles in a lattice configuration in analog to the Su-Schrieffer-Heeger model. This design strategy is
based on the principle that the optical interactions among the nanoparticles are predominantly dictated by the
distances between them. However, these interactions are also significantly shaped by the near-field profiles of
the nanoparticles. As an exemplary case, we examine a zigzag array of metallic ellipsoidal nanoparticles (ENPs)
and illustrate how the topological phase of coupled plasmonic waves in such an array can be manipulated by
controlling the orientation of the ENPs. More intriguingly, the near-field characteristics of the ENPs can be
fine-tuned by the presence of a substrate, suggesting an alternative avenue for modulating the inter-particle
interactions. We further show that topological phase transitions in both one-dimensional (1D) and 2D ENP arrays
can be triggered by introducing a nearby dielectric substrate, while maintaining the original lattice structure
unchanged. Our findings reveal a different mechanism for modulating the topological phases of nanoparticle
arrays and provide a strategy that could be extrapolated to other photonic and classical wave systems, suggesting
possibilities for the design and control of topological states in carefully engineered photonic systems.
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I. INTRODUCTION

Over the past decade, topological photonics has become
one of the most active research areas in optical field because
of the unique properties of photonic topological states, such as
the robustness against disorder, which are beyond the realm of
conventional photonics [1–7]. Plasmonic nanoparticles are an
essential platform for the exploration of topological effects at
the nanoscale [8–21]. Analogous to the tight-binding model,
nanoparticle arrays with topologically nontrivial plasmonic
bands have been successfully realized in a variety of photonic
lattices, such as the celebrated Su-Schrieffer-Heeger (SSH)
model [8–12], the breathing Kagome lattice [13,14], and
breathing honeycomb lattice [16,18,19]. In these studies, the
interactions among the nanoparticles were usually determined
by the distances between them. As a direct consequence, the
topological phase of the nanoparticle arrays was seen to be
almost entirely dependent upon the lattice geometry of the
arrays.

However, the lattice geometry of photonic lattices, par-
ticularly the spatial distance between nanoparticles, is often
difficult to reconfigure. This limitation means that the topo-
logical phase of an array, and the frequency of its topological
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states, are typically fixed following the design and fabrica-
tion stages, presenting a barrier to the flexible application
of topological photonics. This situation prompts a significant
question: Is it possible to manipulate the topological phases
of photonic lattices without altering their geometric config-
uration? Several research endeavors have touched on this
question. For instance, the topological phase of dipolelike ar-
rays can be tuned by adjusting the polarization of the incident
light [22–25] or by structuring the local photonic environment
[15,17,26–28]. Additionally, topological transitions in optical
waveguide arrays have been realized through the combination
of different modes [29,30], topological states can also be
controlled by inducing a dielectric change in the constituent
materials [31].

Approximately, the electromagnetic interactions among
nanoparticles originate from the interplay of their near fields,
which are influenced not only by the distance separating
the particles but also by the near-field profile of individual
nanoparticles [15,21,22,32]. Inspired by this, we propose an
alternative option that does not require complex lattice ge-
ometry but instead relies on asymmetric near-field profile
of nanoparticles to achieve modulation of coupling within
nanoparticle array. As an illustrative example, we consider
a zigzag array of metallic ellipsoidal nanoparticles (ENPs),
wherein the near-field distributions are governed by the ori-
entation of the ENPs. We demonstrate that topological phase
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transitions in the equidistant array can be induced by simply
reorienting the major axis of the ENPs. Furthermore, the near-
field characteristics of nanoparticles can be finely modulated
by the presence of substrates [33–38], providing a practical
avenue to tailor the interactions within nanoparticle arrays.
More crucially, as we prove in this paper, the intracell and
intercell coupling dynamics of a periodic array of ENPs can be
effectively modified by introducing a homogeneous dielectric
substrate. This enables the substrate to dynamically control
the topological phase of coupled waves in nanoparticle arrays,
thereby eliminating the necessity to alter the lattice structure.

While we have focused on 1D chains and 2D kagome ar-
rays of ENPs, the principle of controlling interactions through
the manipulation of near-field profiles is extendable to more
complex nanoparticle arrays [37–39]. Moreover, the phe-
nomenon of substrate influencing local field distributions is
also observed in a range of classical wave systems, such as
optical waveguides [30], dielectric resonators [33,37], atomic
arrays [40,41], and phononic crystals [42]. Therefore, we ex-
pect our proposal could not only provide an alternative way to
induce topological phase transitions in nanoparticle arrays but
also inspire unique methods for controlling topological phases
in other classical wave systems.

II. TOPOLOGICAL PHASE TRANSITION IN A ZIGZAG
ARRAY OF ELLIPSOIDAL NANOPARTICLES

Throughout this paper, we treat silver ENPs with major
axis length 20 nm and minor axis length 10 nm as the meta
atoms that constitute the array. The ENP supports two distinct
dipole resonance modes: one where the dipole is aligned with
the major axis and another with the minor axis. We only
consider the dipole resonance mode associated with the major
axis, which occurs near f = 690 terahertz (THz), as the minor
axis dipole resonance, occurring near f = 850 THz, is suffi-
ciently frequency separated from the primary mode of interest.
This separation ensures that the two modes can be controlled
and investigated independently. More details regarding the
optical response of an individual silver ENP are provided in
Appendix A.

We now consider a periodic equidistant array as shown
in Fig. 1(a), which is composed of two ENPs within each
unit cell, distinguished as A and B. The centers of A and
B are positioned at equal spacings of 30 nm along the x
axis while having an offset of 10 nm in the y direction. The
major axes of A and B are arranged in the xy plane and make
the same angle of ϕ with respect to the positive direction of
the x axis. Despite the uniform center-to-center distances in
the equidistant array, the couplings between adjacent ENPs
can exhibit distinct characteristics, which can be effectively
modulated by altering ϕ. Figure 1(b) schematically depicts
the near-field distributions of the array for different ϕ, in
which the ENPs are symbolically replaced by red arrows that
represent the equivalent dipoles. When ϕ = 45◦, the overlap
between the near fields of each A with the adjacent B on its left
is distinct from the overlap with the adjacent B on its right, as
illustrated in the first row of Fig. 1(b). The unequal near-field
overlap on either side of each ENP leads to a staggered cou-
pling effect within the equidistant array. This is distinct from
Ref. [21], wherein the ENPs are arranged linearly, and thus the
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FIG. 1. (a) Schematic of the zigzag array of silver ENPs. (b) The
near-field distributions of the array with different ϕ. The darker the
color, the stronger the corresponding field intensity.

coupling between any two adjacent ENPs remains consistent
as long as the orientations of the ENPs within the unit cell
are uniform. In our case, the ENPs form an equispaced zigzag
array. The coupling between any two adjacent ENPs in this
array is identical only when ϕ = 0◦ or 90◦. At the specific
orientations, the overlap of the near fields between any two
adjacent ENPs becomes consistent, as depicted in the second
row of Fig. 1(b). This consistency in near-field overlap ensures
that the nearest-neighbor coupling throughout the array is uni-
form. In addition, when ϕ = 135◦ [the third row in Fig. 1(b)],
the near-field overlap between adjacent ENPs demonstrates a
pattern that is precisely the inverse of the case of ϕ = 45◦.
This reversal in near-field overlap has the potential to induce
a topological phase inversion within the array. Notably, this
phenomenon is observed for any pair of ϕ that are comple-
mentary to each other.

To systematically analyze and quantify the couplings
within the array, we adopt a simplified model by treating the
ENPs as point dipoles. Under this approximation, the optical
responses of such an array can be accurately described by a
set of coupled dipole equations [21,43]

1

α(ω)
pn = E0 + ω2

c2

∑
m �=n

M(xn − xm, ω)pm, (1)

where pn,m and xn,m represent the dipole moments and posi-
tions of the n, mth ENP in the array, respectively. In Eq. (1),
α, ω, c, and E0 are the polarizability of the ENP (see Ap-
pendix A), the angular frequency, the speed of light in free
space, and the external incident field, respectively. Note that
M describes the interaction between the nth and mth ENPs,
and is given by

M(xn − xm, ω) = [
↔
G(xn − xm, ω) · Im]T · In, (2)
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FIG. 2. (a) Real part of MAB and MBA which describe the intra-
and intercoupling of the array, respectively. (b) The absolute value
of real part of MAB and MBA, shown by the blue and yellow lines,
respectively. The gray shaded areas correspond to ϕ ∈ (60.5◦, 90◦) ∪
(119.5◦, 180◦). (c) The winding of H12 with different ϕ.

where In,m = [cosϕ sinϕ 0]T represents the unit vector in the
direction of the major axis of the ENP and T denotes the

transpose operation. Here
↔
G refers to the free space dyadic

Green’s function and is given by

↔
G(r, ω) =eikr

r

[(
1 + i

kr
− 1

k2r2

)↔
I

−
(

1 + 3i

kr
− 3

k2r2

)
n ⊗ n

]
, (3)

where r is the position vector, with r = |r| and n = r/r. Here
↔
I and k = ω/c are the identity matrix and the free space
wave number, respectively. The intracoupling (intercoupling)
of the array can be described by the interaction between A and
adjacent B on its right (left)

MAB =
[↔
G(�x, ω) · IB

]T
· IA

MBA =
[↔
G(�x − d, ω) · IB

]T
· IA, (4)

where IA = IB = [cosϕ sinϕ 0]T , �x is the position vector
between A and B in a unit cell, d is the lattice unit vector.

Figure 2(a) shows the computed real part of MAB and
MBA. As expected, they are equal only when ϕ = 0◦ or 90◦
(180◦ is equivalent to 0◦). Figure 2(b) presents a plot of the
intracoupling and intercoupling strengths of the array. The
gray shaded areas [ϕ ∈ (60.5◦, 90◦) ∪ (119.5◦, 180◦)], which
can be effectively controlled by the y offset, denote conditions
where the intercoupling is stronger than the intracoupling.

Under the nearest-neighbor approximation [8,18], these gray
shaded areas are associated with the nontrivial topological
phase, while the remaining regions correspond to the trivial
topological phase.

To go beyond the nearest-neighbor approximation, we con-
sider an infinite periodic equidistant array. By applying the
Bloch’s theorem for the infinitely array with zero incident
field, the coupled dipole equations can be converted into the
following eigenequation:[

1

α(ω)

↔
I −

↔
H

]
P = 0, (5)

where P = [pA, pB]T . The 2 × 2 effective Hamiltonian
↔
H has

elements as the following:

H11 = ω2

c2

∑
n∈Z,n �=0

M(nd, ω)eikxnd ,

H12 = ω2

c2

∑
n∈Z

M(nd + �x, ω)eikxnd ,

H21 = ω2

c2

∑
n∈Z

M(nd − �x, ω)eikxnd ,

H22 = ω2

c2

∑
n∈Z,n �=0

M(nd, ω)eikxnd , (6)

where kx is the Bloch momentum. The effective Hamilto-
nian is non-Hermitian due to the prominent radiative and
retardation effects from dipole-dipole interactions within the
plasmonic array [10,11,19]. The topological characteristics of
such a non-Hermitian 1D system are linked to the complex
Zak phase, which can be described by the winding number of
the off-diagonal Hamiltonian elements, H12 or H21, as they en-
circle the origin of the complex plane across the first Brillouin
zone, multiplied by π [11,44]. We have computed the winding
number of H12 at different ϕ. Figure 2(c) presents the results
for several representative cases. It is observed that the winding
number of H12 shifts from zero to one (or one to zero) near
ϕ = 59◦, 90◦, and 121◦, which correspond to the topological
phase transition points illustrated in Fig. 2(b). We note that
they are not completely consistent due to the interactions be-
yond the nearest neighbor. This indicates that the topological
properties of the array can be precisely controlled through the
manipulation of the near-field overlap among nanoparticles,
despite the presence of non-Hermitian effects and long-range
dipolar interactions within the array.

To further verify the topological phase transitions in the
array, we have conducted full-wave simulations using a fi-
nite element method (FEM) solver (COMSOL Multiphysics).
Figure 3(a) shows the simulated eigenmodes of a finite
equidistant array with varying ϕ. As predicted by the wind-
ing number of H12, edge states are present only when ϕ ∈
(59◦, 90◦) ∪ (121◦, 180◦). Figures 3(b) and 3(c) show the
electric field intensity distributions of the double degenerate
edge states of the array for ϕ = 70◦ and 130◦, respectively. We
note that the edge states are not symmetry protected because
the chiral symmetry of the array is broken by the couplings
beyond nearest neighbors.
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FIG. 3. FEM full-wave simulations. (a) eigenmodes of a ten-
unit-cell equidistant array with varying ϕ. Edge states exist when
ϕ ∈ (59◦, 90◦) ∪ (121◦, 180◦). The blue lines are gap boundaries
calculated under the Bloch boundary condition. (b) Electric field
intensity distributions of the degeneracy edge states of the array
with ϕ = 70◦; the frequency is f = 689.0 THz. The white ellipses
represent the positions of ENPs. (c) Same as (b) but with ϕ = 130◦;
the frequency is f = 688.5 THz.

III. SUBSTRATE-INDUCED TOPOLOGICAL PHASE
TRANSITIONS

In this section, we explore how to induce topological phase
transitions in ENP arrays using a dielectric substrate. Prior to
constructing the array, it is necessary to understand how the
substrate affects the near-field of an individual ENP. Due to
the geometric symmetry of the ENP, the near-field distribu-
tion of an ENP in the dipole mode is inherently symmetric
about its center. However, when a substrate is introduced
close to it, the near field produced by the ENP interacts with
the inhomogeneous field reflected from the substrate, which
disrupts the symmetrical nature of the dipole mode profiles.
For illustration, consider an ENP positioned near a dielectric
substrate with its major axis inclined relative to the substrate’s
surface. In this arrangement, the dipole mode profile of the
ENP becomes asymmetric due to the substrate’s influence, as
depicted in Fig. 4(a). The distribution of the asymmetric field
can be precisely adjusted by altering the properties of the sub-
strate, which provides an effective strategy for tailoring ENP
couplings in arrays, eliminating the need to alter interparticle
distances.

We now focus on a chain of ENPs positioned near a
dielectric substrate, as shown in Fig. 4(b). The substrate is
sufficiently thick to be regarded as semi-infinite. The chain
consists of two types of ENPs with different orientations,
labeled A and B. The major axes of A and B are oriented at
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FIG. 4. (a) The dipole mode profile of an ENP situated near a
dielectric substrate with the permittivity εsub = 10. The center of
ENP is located 12 nm above the substrate. (b) Schematic of a chain
of ENPs close to the dielectric substrate. (c) The intra- and intercou-
pling of the chain without the substrate. (d) Same as (c) but with the
substrate. (e) The band structures and eigenpolarizability spectrum
of the chain with �x = 30 nm without the substrate. (f) Same as
(e) but with the substrate. (g) Eigenmodes of a finite-sized chain (ten
unit cells) without (states 1–20) and with (states 21–40) the substrate,
respectively. The S in (c)–(g) represents substrate.

135◦ and 45◦, respectively, with respect to the positive x axis.
The particles A and B are uniformly spaced, 12 nm above the
substrate, with a consistent center-to-center distance, �x, be-
tween any two adjacent ENPs along the chain. To incorporate
the effects of the substrate, we employ the reflecting Green’s

function
↔
GR that describes the field reflected by the substrate

[36,40,45]. The explicit expression of
↔
GR is provided in Ap-

pendix B. Consequently, the interaction between the nth and
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m-th ENPs in the chain is adjusted to

M(xn − xm, ω)

= [(
↔
G(xn − xm, ω) +

↔
GR(xn − xm, ω)) · Im]T · In. (7)

The intra- and intercoupling of the chain in the presence of the
substrate have the following form:

MAB = [(
↔
G(�x, ω) +

↔
GR(�x, ω)) · IB]T · IA,

MBA = [(
↔
G(�x − d, ω) +

↔
GR(�x − d, ω)) · IB]T · IA, (8)

where IA = [cos135◦ sin135◦ 0]T , IB = [cos45◦ sin45◦ 0]T ,
and d is the lattice unit vector. The eigenequation of the chain
in the presence of the substrate can be obtained by simply
replacing the interaction terms in the effective Hamiltonian in
Eq. (5) with Eq. (7).

To quantify the influence of the substrate, we have calcu-
lated the intra- and intercoupling of the chain both without
and with a substrate with the permittivity εsub = 10, utilizing
Eqs. (4) and (8), respectively. Figure 4(c) shows the results for
an isolated chain in absence of the substrate, demonstrating
consistent intra- and intercoupling. In contrast, with the sub-
strate in presence, the strength of the intracoupling becomes
weaker than the intercoupling, as illustrated in Fig. 4(d). This
alteration leads to the transformation of the plasmonic band
structures of the chain from being gapless to gapped. The
band structures can be obtained by solving the corresponding
eigenequation as well. The black circles in Figs. 4(e) and 4(f)
show the band structures of the chain with �x = 30 nm in
absence and in presence of the substrate, respectively. The
appearance of a gap when the substrate is present is clearly
observed, which is a direct result of the unequal strength
between the intra-coupling and the intercoupling. We have
also calculated the effective eigenpolarizability [19,46] of the
chain as shown by the contour spectrum in Figs. 4(e) and 4(f),
which verifies our results. Further, we consider a finite-sized
chain. Figure 4(g) shows the eigenmodes of the chain calcu-
lated by the coupled dipole equations. It can be seen that in the
presence of the substrate, the bulk gap is open and two in-gap
states appeared inside, as expected.

Figure 5 presents the FEM simulations of the chain with
�x = 30 nm. The FEM band structures depicted in Fig. 5(a)
agree with our analytical results obtained under the coupled
dipole approximation as shown in Figs. 4(e) and 4(f). Fig-
ure 5(b) shows the simulated eigenmodes of a finite chain. The
emergence of a pair of topological edge states indicates that
the chain has transformed into topologically nontrivial phase
due to the presence of the substrate. The edge states can be
excited by an evanescent plane wave perpendicular to the xy
plane, as illustrated in Fig. 5(c)III.

Since the topological nontrivial phase of such a chain
relies on the substrate’s affection, it is anticipated that the
topological edge states can be controlled by the properties of
the substrate. Figures 5(d) and 5(e) show the dependence of
the band gap and edge states of the ENP chain on the sub-
strate. When the chain-substrate distance �h is large enough
or when εsub approaches the permittivity of the surrounding
environment, the light field reflected by the substrate becomes
extremely weak. Under such conditions, the intracoupling and
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FIG. 5. FEM simulation results of the ENP chain with �x = 30
nm. (a) Band structures. (b) Eigenmodes of a finite-sized chain (ten
unit cells) without and with the substrate, respectively. (c) panels
I and II show the two in-gap states encircled by a dashed oval in
(b). Panel III shows the edge state excited by an evanescent plane
wave perpendicular to the xy plane polarized along the y axis, with
the excitation frequency 678.5 THz. The white lines show the top
boundary of the substrate. (d) The band gap and edge states for
different �h with εsub = 10. (e) The band gap and edge states for
different εsub with �h = 12 nm. The gap boundaries (blue lines) are
calculated under the Bloch boundary condition, and the edge states
are eigenmodes of a ten-unit-cells ENP chain.

the intercoupling in the chain restore to those as in a bare
chain, causing the closing of the band gap. Consequently, the
band gap and frequency of the edge states change with the
substrate configuration as shown in Figs. 5(d) and 5(e).

To further demonstrate that the topological phase of the
plasmonic chain can be manipulated by a substrate, we have
designed a contracted and an expanded ENP chain, as de-
picted in Figs. 6(a) and 6(b), respectively. In the absence of
the substrate, the contracted ENP chain is in a trivial phase, as
the interactions among ENPs are inversely related to the dis-
tance separating them. However, with the substrate present, as
illustrated in Fig. 6(a), the intracoupling is diminished while
the intercoupling is amplified by the substrate, according to
our prior analysis. Clearly, the influence of the substrate on the
chain can be effectively tuned by adjusting its characteristics,
such as the permittivity and the degree of proximity to the
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FIG. 6. Topological phase transitions in an ENP chain induced
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(32.4 nm). (b) An expanded ENP chain with the substrate. The
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row) ENP chain with the substrate.

chain, which allows us to control the topological phase of the
chain.

As depicted in Fig. 6(c), we present the band gap and
eigenmodes of a contracted ENP chain in proximity to a
dielectric substrate. With the increasing of the permittivity of
the substrate, the bulk gap of the chain experiences the process
of opening, closing, and reopening. Meanwhile, a pair of bulk
states (denoted by blue circles) fall into the bulk gap and
gradually evolve to degenerate topological edge states (red cir-
cles). This evolution clearly demonstrates that the contracted
ENP chain undergoes a topological phase transition from
trivial to nontrivial under the influence of the substrate. The
field distributions of the two edge (bulk) states correspond-
ing to the substrate with varying permittivity are provided
in Appendix C. In addition, in Fig. 6(d), we present the op-
posite situation where an expanded ENP chain, as shown in
Fig. 6(b), transforms from a nontrivial phase to trivial phase
as the permittivity of the substrate increases. To conclusively
verify the topological phase transitions, we have performed
calculations of the complex Zak phases for both the contracted

FIG. 7. (a) Schematics of the kagome contracted cell (CC) and
kagome expanded cell (EC). The yellow hexagon represents the
substrate with �h = 14 nm. (b) A kagome array of CCs. The solid
hexagons represent the CCs, the dashed hexagon represent the EC.
d = 70 nm is the lattice constant. (c) The coupling between C1 (C3)
and A1 vary with the permittivity of the substrate. (d) FEM band
structures of the CC with different εsub.

and expanded chains. Figure 6(e) shows the evolution of the
winding number of the two cases with varying permittivity
of the substrate, which are consistent with the topological
properties shown in Figs. 6(c) and 6(d).

IV. HIGHER-ORDER TOPOLOGICAL MODES
INDUCED BY SUBSTRATE

In this section, we show that our proposal can be applied
to induce higher-order topological modes in 2D plasmonic
arrays. We consider kagome arrays composed of ENPs with
a nearby dielectric substrate. Figure 7(a) shows the kagome
unit cells; the contracted cell (CC) consists of three ENPs
with their major axes oriented in spherical coordinates as
(0, 45◦) and (±120◦, 45◦), respectively. The intradistance (in-
terdistance) is 31.5 nm (38.5 nm). For the expanded cell (EC),
the orientations of ENPs are (0,−45◦) and (±120◦,−45◦),
respectively. The intradistance (interdistance) is 38.5 nm
(31.5 nm). This design ensures consistent band gaps between
the CC and EC, even in the presence of the substrate. Fig-
ure 7(b) shows a kagome lattice composed of CCs. The solid
hexagons represent the CCs while the dashed hexagon can
represent the EC. The intracoupling (intercouping) is repre-
sented by the coupling between C1 (C3) and A1, which is
significantly affected by the permittivity of the substrate as
shown in Fig. 7(c). It can be seen that the strength of intra-
coupling is diminished while the intercoupling is amplified by
the substrate. In particular, the intracoupling and intercoupling
are reversed when εsub > 3.6. Consequently, the CC trans-
forms from the topological trivial phase to the topological
nontrivial phase if we introduce the substrate with εsub > 3.6.
Figure 7(d) shows the band structures of the CC with different
εsub. The band gap undergoes a process of opening, closing,
and reopening as the εsub increases. In addition, since the in-
tracoupling and intercoupling of the EC and CC are precisely
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FIG. 8. Frequency evolution of the eigenstates at the K point as
the εsub increases. (a) For the CC; (b) for the EC.

swapped, the topological phase of the EC transforms from the
nontrivial phase to the trivial phase with the increase in εsub.

To prove the topological phase transitions predicted by
Fig. 7(c), we study the eigenstates of the CC and EC at the
K point in the first Brillouin zone. Figure 8(a) shows the
frequency evolution of the eigenstates of the CC at the K
point as the εsub increases. The eigenstates are represented
by charge density distribution of ENPs within the unit cell.
As the εsub increases, we clearly observe the band inversion
between the second and third bands. Particularly, the band
inversion appears near εsub = 3.6, which is consistent with
our analytical calculations of the topological phase transition
point. Figure 8(b) shows the evolution of the eigenstates of the
EC. It can be observed that the eigenstates of the second and
third bands are reversed for the EC and CC at the same εsub,
which indicates that the topological phases of the EC and CC
are opposite.

To verify the topological phase transitions induced by the
substrate, we now consider finite Kagome arrays composed
of the ENPs with a nearby substrate. Figure 9(a) shows the
eigenspectrum of a finite Kagome array composed of CCs
with εsub = 1. No in-gap states exist because of the trivial
topological phase of the CC. Next, we consider the case when
εsub is increased to 10. To investigate the higher-order topo-
logical modes of this case, we surround the array of CCs with
ECs as shown by the inset of Fig. 9(b). The corresponding
eigenspectrum includes corner and edge states, which indi-
cates that the CC transitions from the topological trivial phase
to the nontrivial phase as εsub is increased.

We note that all the eigenfrequencies presented in this
paper have imaginary components as shown in Appendix D.
For experimental convenience, the ENP array can be em-
bedded in a uniform medium, such as glass [10,47]. In
Appendix E, we discuss the effect of the dielectric constant
of surrounding medium. Moreover, it could be of significance
to explore unconventional substrates such as multilayer film
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FIG. 9. (a) The eigenspectrum of a finite kagome array of CCs
with εsub = 1. (b) The eigenspectrum of a finite kagome array of CCs
surrounded by ECs, with εsub = 10. (c), (d) Electric field distributions
of the in-gap edge and corner states labeled in (b).

[37], parabolic, or hyperbolic metamaterial [48], etc., since
different substrates offer distinct reflective Green’s function.
We anticipate that these variations could lead to a broad range
of complex and intriguing topological transitions.

V. CONCLUSION

In summary, we have shown that interactions among
plasmonic nanoparticles can be controlled by shaping their
near-field profiles. This insight opens a pathway for control-
ling the topological phase of nanoparticle arrays. We have
demonstrated that the topological phase of a zigzag array of
ENPs can be effectively modulated by simply adjusting their
common orientation, which directly governs the near-field
profile of the ENPs. Furthermore, it is particularly fascinating
to observe that the near-field characteristics of ENPs can be
finely tuned by the presence of a nearby substrate. We have
proved that topological phase transitions in an ENP array can
be induced by such a dielectric substrate, bypassing the need
for geometrical or material property alterations to the array
itself. We envision that our approach offers alternatives for
inducing topological phase transitions in topological photonic
systems and may inspire creative methods for manipulating
topological phases in other classical wave systems.
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major axis, respectively.

APPENDIX A: THE OPTICAL RESPONSE
OF AN INDIVIDUAL ENP

Here we give the detailed description of the silver ENP
used in the main text. The dielectric function of silver is given
by the Drude model as

ε(ω) = ε∞ − ω2
p

ω2 + iω/τ
, (A1)

with ε∞ = 5, ωp = 1.36 × 1016rad/s and 1/τ = 5.88 ×
1013rad/s [49]. Here ω and i represent the working frequency
and the imaginary unit, respectively. The polarizability tensor
of the ENP is [21]

↔
α (ω) =

⎡
⎣αa(ω) 0 0

0 αb(ω) 0
0 0 αc(ω)

⎤
⎦, (A2)

where αl (l ∈ [a, b, c]) are the projections of the polarizability
tensor in the directions of the axes of the ENP. Considering
the radiative effects, we employ the modified long-wavelength
approximation to describe αl as [50]

αl (ω) = αs
l (ω)

1 − Dk2

l αs
l (ω) − i 2k3

3 αs
l (ω)

, (A3)

where D, l, k = ω/c0 and c0 are the dynamic geometrical
factor, axis half-length, wave number, and speed of light in
free space. Note that the static polarizabilities αs

l of the ENP
can be written as [21,51]

αs
l (ω) = V

4π

ε(ω) − εb

εb + Ll [ε(ω) − εb]
. (A4)

Here V is the ENP volume and εb = 1 is the background
dielectric constant. In Eq. (A4), Ll is the static geometrical
factor determined by the axis lengths of the ENP [50,51],
with La = 0.1736 for the major axis and Lb(c) = 0.4132 for
the minor axis in our case.

The optical response of the ENP can be characterized by
the extinction cross section, as shown in Fig. 10. Red and
black curves represent the extinction cross section of the
ENP subjected to an external light field polarized parallel
and vertical to the major axis, respectively. It is seen that
the ENP shows obvious resonance near f = 690 THz and
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FIG. 11. (a), (b) The electric field intensity distribution of
the edge (bulk) states represented by the red (blue) circles in
Figs. 6(c) and 6(d), respectively.

f = 850 THz for the parallel and vertical polarized field,
respectively. In particular, the resonance are separated far
enough in the spectrum, which allows one to use αa as the
polarizability of the ENP when the operating frequency is near
f = 690 THz. Therefore, the polarizability of the ENP is set
to α = αa in the main text.

APPENDIX B: EXPRESSION FOR THE REFLECTING
GREEN’S FUNCTION

The reflecting Green’s function can be expressed as 1D
integrations in kρ space as [40,52]

↔
GR(r, ω) =

∫ ∞

0

ikρ

ky

(
↔
G

S

R − k2
y

k2

↔
G

P

R

)
dkρ, (B1)

where kρ is the component of the wave vector parallel to the

substrate, ky =
√

k2 − k2
ρ . Here r = (x,y,z) is the position vec-

tor between the dipole and observation point. In Eq. (B1),
↔
G

S

R

and
↔
G

P

R are the terms involving the s and p waves, respectively.

In Cartesian coordinates, the components of
↔
G

S

R and
↔
G

P

R are
defined as

GS,xx
R = RS

2
[J0(kρρ) + J2(kρρ)cos(2φ)],

GS,xz
R = GS,zx

R = −RS

2
J2(kρρ)sin(2φ),

GS,zz
R = RS

2
[J0(kρρ) − J2(kρρ)cos(2φ)],

GS,xy
R = GS,yz

R = GS,yx
R = GS,zy

R = GS,yy
R = 0,

GP,xx
R = RP

2
[J0(kρρ) − J2(kρρ)cos(2φ)],
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FIG. 12. Imaginary components of the band structures in Fig. 5(a).

GP,xz
R = GP,zx

R = RP

2
J2(kρρ)sin(2φ),

GP,xy
R = ikρ
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FIG. 13. FEM simulation results of the ENP chain embedded in
a glass medium. (a) Band structures. (b) Eigenmodes of a finite-sized
chain (ten unit cells) with and without the substrate, respectively.
(c) The electric field intensity distribution of the two in-gap states
encircled by the dashed oval in (b).

where

RS = ky − ksub
y

ky + ksub
y

eiky (2�h+y),

RP = εsubky − ksub
y

εsubky + ksub
y

eiky (2�h+y),

ρ =
√

x2 + z2,

φ = arccos(x/ρ), (B3)

with ksub
y =

√
εsubk2 − k2

ρ , �h is the gap between the substrate

and the ideal point dipole, and Jn(K) is the Bessel function
of order n. The integral method and computation of Eq. (B2)
follows Ref. [45].

APPENDIX C: ELECTRIC FIELD DISTRIBUTION
OF EDGE (BULK) STATES IN FIG. 6

Figures 11(a) and 11(b) show the electric field intensity
distribution of the edge (bulk) states represented by the red
(blue) circles in Figs. 6(c) and 6(d) in the main text, respec-
tively. The bulk states in Fig. 11(a) transform into the edge
states when the permittivity of the substrate increases from
εsub = 1 to εsub = 6.25. On the contrary, the edge states in
Fig. 11(b) transform into the bulk states. It is worth noting
that the edge states tend to be degenerated and become in-
creasingly asymmetric as εsub moves away from the phase
transition point.

APPENDIX D: IMAGINARY COMPONENTS
OF THE EIGENFREQUENCIES

Due to the retardation and radiative effects in the plasmonic
system, all the eigenfrequencies presented in this paper have
imaginary components. The imaginary parts are sufficiently
small, and thus do not affect the emergence of topological
states. As an example, Fig. 12 shows the imaginary parts of
the eigenfrequencies, which correspond to the band structures
shown in Fig. 5(a). These imaginary parts are less than 1% of
the real parts of the eigenfrequencies. It is worth noting that
the introduction of the substrate has led to a reduction of the
imaginary components of the band structure.

APPENDIX E: THE INFLUENCE OF
SURROUNDING MEDIUM

To experimentally realize the proposed system, one might
consider using a surrounding medium other than air. The po-
larizability of the ENP is affected by the surrounding medium,
as described by Eq. (A4). Consequently, the resonance fre-
quency of the ENP varies depending on the surrounding
medium. However, the coupling modulation effect among
ENPs remains essentially the same whether in air or another
isotropic surrounding medium. This is due to the asymmetric
near-field profile of the ENPs, which is caused by their tilting
towards the substrate and is unaffected by the surrounding
medium. For instance, we consider embedding the ENP chain
in a glass medium with the dielectric constant εb = 2.25.
The geometrical configurations of the chain and substrate are
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consistent with those in Figs. 5(a)–5(c). Figure 13 shows the
simulation results of the chain. The simulation clearly shows
the band gap and in-gap edge states that appear in the presence

of the substrate, similar to the results in air as shown in Fig. 5,
except for a frequency shift from approximately 680 THz to
530 THz.

[1] F. D. M. Haldane and S. Raghu, Possible realization of di-
rectional optical waveguides in photonic crystals with broken
time-reversal symmetry, Phys. Rev. Lett. 100, 013904 (2008).

[2] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, Ob-
servation of unidirectional backscattering-immune topological
electromagnetic states, Nature (London) 461, 772 (2009).

[3] L. Lu, J. D. Joannopoulos, and M. Soljacic, Topological pho-
tonics, Nat. Photon 8, 821 (2014).

[4] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I.
Carusotto, Topological photonics, Rev. Mod. Phys. 91, 015006
(2019).

[5] Z. Liu, G. Wei, and J.-J. Xiao, Geometric anisotropy induced
higher-order topological insulators in nonsymmorphic photonic
crystals, Phys. Rev. B 106, 085415 (2022).

[6] G. Wei, Z. Liu, L. Wang, J. Song, and J.-J. Xiao, Coexisting
valley and pseudo-spin topological edge states in photonic topo-
logical insulators made of distorted Kekule lattices, Photonics
Res. 10, 999 (2022).

[7] Z. Liu, G. Wei, H. Wu, and J.-J. Xiao, Mobius edge band and
Weyl-like semimetal flat-band in topological photonic waveg-
uide array by synthetic gauge flux, Nanophotonics 12, 3481
(2023).

[8] C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung,
Topological edge plasmon modes between diatomic chains of
plasmonic nanoparticles, Opt. Express 23, 2021 (2015).

[9] C. A. Downing and G. Weick, Topological collective plasmons
in bipartite chains of metallic nanoparticles, Phys. Rev. B 95,
125426 (2017).

[10] S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, Topo-
logical plasmonic chain with retardation and radiative effects,
ACS Photonics 5, 2271 (2018).

[11] B. X. Wang and C. Y. Zhao, Topological phonon polaritons
in one-dimensional non-Hermitian silicon carbide nanoparticle
chains, Phys. Rev. B 98, 165435 (2018).

[12] Q. Yan, E. Cao, Q. Sun, Y. Ao, X. Hu, X. Shi, Q. Gong, and
H. Misawa, Near-field imaging and time-domain dynamics of
photonic topological edge states in plasmonic nanochains, Nano
Lett. 21, 9270 (2021).

[13] Y. Zhang, R. P. H. Wu, L. Shi, and K. H. Fung, Second-order
topological photonic modes in dipolar arrays, ACS Photonics 7,
2002 (2020).

[14] M. Proctor, M. Blanco de Paz, D. Bercioux, A. Garcia-Etxarri,
and P. A. Huidobro, Higher-order topology in plasmonic
Kagome lattices, Appl. Phys. Lett. 118, 091105 (2021).

[15] C.-R. Mann and E. Mariani, Topological transitions in arrays
of dipoles coupled to a cavity waveguide, Phys. Rev. Res. 4,
013078 (2022).

[16] L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W.
Wen, The existence of topological edge states in honeycomb
plasmonic lattices, New J. Phys. 18, 103029 (2016).

[17] C.-R. Mann, T. J. Sturges, G. Weick, W. L. Barnes, and E.
Mariani, Manipulating type-I and type-II dirac polaritons in

cavity-embedded honeycomb metasurfaces, Nat. Commun. 9,
2194 (2018).

[18] M. Honari-Latifpour and L. Yousefi, Topological plasmonic
edge states in a planar array of metallic nanoparticles,
Nanophotonics 8, 799 (2019).

[19] M. Proctor, R. V. Craster, S. A. Maier, V. Giannini,
and P. A. Huidobro, Exciting pseudospin-dependent edge
states in plasmonic metasurfaces, ACS Photonics 6, 2985
(2019).

[20] M. S. Rider, A. Buendia, D. R. Abujetas, P. A. Huidobro,
J. A. Sanchez-Gil, and V. Giannini, Advances and prospects
in topological nanoparticle photonics, ACS Photonics 9, 1483
(2022).

[21] Á. Buendía, J. A. Sanchez-Gil, and V. Giannini, Exploiting
oriented field projectors to open topological gaps in plasmonic
nanoparticle arrays, ACS Photonics 10, 464 (2023).

[22] A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y.
Kivshar, Topological Majorana states in zigzag chains of plas-
monic nanoparticles, ACS Photonics 1, 101 (2014).

[23] A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko,
P. A. Belov, and Y. S. Kivshar, Subwavelength topological edge
states in optically resonant dielectric structures, Phys. Rev. Lett.
114, 123901 (2015).

[24] L. Lin, S. Kruk, Y. Ke, C. Lee, and Y. Kivshar, Topological
states in disordered arrays of dielectric nanoparticles, Phys.
Rev. Res. 2, 043233 (2020).

[25] L. Zhang, X.-M. Wang, X.-M. Qiu, Z. Wang, and J.-Y. Yan,
Light controlled topological plasmonics in a graphene lattice
arrayed by metal nanoparticles, Phys. Rev. B 108, 085402
(2023).

[26] C. A. Downing, T. J. Sturges, G. Weick, M. Stobińska, and L.
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