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Coherent optical control of quantum Hall edge states
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Current-carrying chiral edge states in quantum Hall systems exhibit fascinating properties typically studied
using electron spectroscopy and interferometry. Here we demonstrate that electron occupation, current, and
coherence in the chiral edge states can be selectively probed and controlled by low-energy electromagnetic
radiation in the microwave to infrared range, without affecting electron states in the bulk or disrupting the
quantum Hall effect conditions within the sample. Both linear and nonlinear optical controls are feasible due
to the inevitable violation of adiabaticity and inversion symmetry breaking for electron states near the edge. This
opens up new pathways for frequency- and polarization-selective spectroscopy and the control of individual edge
states.
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I. INTRODUCTION

The Quantum Hall (QH) effect is one of the most studied
phenomena in condensed matter physics [1], with far-reaching
applications across numerous fields. One of the most im-
portant insights in the QH effect physics is the intricate
relationship between the electron states in the insulating bulk
of the sample and the current-carrying chiral edge states [2,3]
which have been extensively studied with real-space imaging
and momentum-resolved electron spectroscopy [4–9]. Fur-
thermore, the coherence of unidirectional electron transport
in QH edge states has driven a massive amount of research
in QH edge state interferometry. Various types of electron
interferometers have been implemented, both in conventional
semiconductor quantum wells and in graphene samples, and
for both integer and fractional statistics of carriers [10–22].

Microwave and terahertz optical spectroscopy of Landau-
quantized electron states in two-dimensional (2D) electron gas
is yet another vast area of research. However, its application
to probing electron states under QH effect conditions poses
significant challenges. Resonant optical transitions between
bulk Landau levels (LLs) create nonequilibrium carrier pop-
ulation, thereby allowing for nonzero bulk DC conductivity
across the sample. As was argued in Ref. [23], even vacuum
cavity fields under the ultra-strong coupling conditions could
break the topological protection of the integer QH effect and
destroy some of the high quantum number plateaus. Of course
the modification of the magnetotransport in the QH samples
by sufficiently strong resonant microwave or terahertz fields
is an exciting research topic in its own right; see, for example,
extensive work dedicated to microwave-induced resistance
oscillations (MIRO) and associated zero-resistance states

*Contact author: asingh.n19@gmail.com
†Contact author: belyanin@tamu.edu

(ZRS), as reviewed in [24,25] and some of the recent papers
[26,27].

In this paper we demonstrate that optical spectroscopy and
even coherent optical control of the QH edge states are still
possible and can be in fact highly effective without disrupting
the QH effect conditions in the bulk. The key physical reason
behind this lies in the fact that the optical transitions be-
tween electron states near the sample boundary (within a few
magnetic lengths from the edge) have significantly different
transition energies and polarization selection rules compared
to the bulk of the sample. This enables highly selective ex-
citation of a given 1D edge channel with single quasiparticle
sensitivity without disturbing the rest of the sample.

Furthermore, inversion symmetry breaking near the sample
boundary (as illustrated by highly asymmetric wave functions
in the Supplemental Material [28]) enables strong second-
order optical nonlinearity in the electric dipole approximation,
resulting in efficient optical rectification of incident radiation
and direct optical driving of a quasi-DC current in edge states.
These qualitative features are illustrated in Figs. 1 and 2,
with more quantitative discussion provided in the subsequent
sections.

The high spatiotemporal and energy selectivity of optical
excitations of chiral edge states not only makes it a sensi-
tive spectroscopy tool complementary to electron transport
measurements but also enables coherent control of individ-
ual edge channels in QH interferometers, endowing them
with new optoelectronic functionality. Further enhancement
in selectivity could be possible with near-field tip-enhanced
optical microscopy as opposed to the far-field illumination
sketched in Fig. 1. Therefore, we anticipate that our paper will
stimulate further collaboration between optical and QH effect
communities.

In this paper, we focus on the integer QH effect in semi-
conductor quantum well samples with parabolic electron
dispersion. The graphene edge states offer a greater variety
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FIG. 1. (a) Photons interacting with electrons moving near one
of the edges of a sample which is subjected to a quantizing magnetic
field. (b) Near the edge of the sample, energies and wave functions
of the electrons are modified in such a way that new channels open
up for the absorption of photons or nonlinear optical rectification.
Dipole-forbidden (solid green) and Pauli-blocked (solid blue) chan-
nels deep in the bulk become active for electrons moving near the
edge (marked as dashed green and solid red, respectively).

of optical transitions due to two kinds of edge terminations
and will be considered elsewhere, as well as the edge states
with fractional statistics of carriers.

The structure of the paper is as follows: In Sec. II, we
provide both asymptotic and exact numerical solutions for
electron eigenstates and eigenenergies in the presence of an
edge treated as a hard-wall boundary, which maximizes nona-
diabatic effects. We also calculate dipole matrix elements of
the optical transitions between both bulk and edge states.

In Sec. III we compute the single-photon absorption
probability for a quantized optical field and derive the 2D
absorbance spectra which reveal sharp characteristic peaks at
high frequencies that are entirely due to nonadiabatic edge
states. Section IV demonstrates various optical mechanisms
contributing to direct current (DC) generation through non-
linear rectification of incident radiation. We calculate the
second-order nonlinear DC current which exists in the elec-
tric dipole approximation solely due to inversion symmetry
breaking near the edge. We also evaluate the DC current due
to optical rectification beyond the electric dipole approxima-
tion, which exists due to the optical field gradient across the
sample. It is worth noting that one of the theory proposals
to explain MIRO-ZRS phenomena involved a ponderomotive

FIG. 2. (a) The plots of eigenenergies as a function of mo-
mentum k. Electron states in shaded regions contribute to photon
absorption for a given Fermi level shown with a red horizontal line.
(b) The absorbance spectrum. Absorption due to the edge states
appears at frequencies higher than the bulk cyclotron resonance fre-
quency ωc. The shaded colored regions under the black curve show
the contributions of individual transitions between the neighboring
LLs, with matching colors between (a) and (b).

force acting on the edge electrons due to strong optical field
gradients near metallic contacts [29], assuming classical elec-
tron motion and the adiabatic limit.

Finally, the Appendix summarizes results for electron
eigenstates in the adiabatic approximation, derives the elec-
tron density flux for an arbitrary electric potential, and gives
the list of second-order nonlinear density matrix elements
contributing to the rectification current.

II. CHIRAL EDGE STATES CLOSE TO THE BOUNDARY

Consider a QH system with electrons constrained to the
x, y plane in a quantizing magnetic field B along z-axis de-
scribed by the vector potential �A = −yBx̂. Near the boundary
in y direction located at y = 0, the electron states experience
the edge potential �(y), so that the Schrödinger equation for
a wave function of the form ψk (x, y) ∼ eikxχ (y) becomes

∂2χ

∂y2
+ 2m

h̄2

[
E + e�(y) − 1

2
mω2

c (y − yk )2

]
χ (y) = 0, (1)

where m is the electron mass, E is the energy eigenvalue, ωc =
eB/(mc) is the cyclotron frequency, yk = k�2

c is the position of
the center of the cyclotron oscillator, and �2

c = ch̄/(eB) is the
magnetic length.

In the adiabatic approximation which is usually invoked
when discussing the edge states (see Appendix A), �(y) is
considered such a slow function of y that its change over
the magnetic length scale is neglected. In this case, while the
energies of the LLs increase towards the edge, the energy sep-
aration between them does not change and the dipole matrix
elements of all transitions between them do not change either.
Furthermore, the drift velocities of electrons in the channels
do not depend on the LL index.

The adiabatic approximation becomes increasingly inad-
equate when the distance to the edge becomes of the order
of a few magnetic lengths. In order to proceed, we need to
specify the shape of the edge potential. It obviously depends
on the details of the interface and is affected by the presence of
the surface states, any space charge accumulation which tends
to further sharpen the potential profile [30], etc. In order to
obtain quantitative results we take the simplest nonadiabatic
potential: the hard wall condition [8,31], or a step in �(y)
at y = 0, which for a high enough potential barrier means
that for a given LL index n and x component of momentum
k, χnk (0) = 0 and χnk (y → ∞) = 0. Although obviously an
idealization of any realistic boundary, the hard wall condi-
tion captures the main physical effects of the nonadiabatic
interface, namely asymmetry of the wave functions near the
boundary (see the Supplemental Material [28]), nonequidis-
tant eigenenergies Enk of the edge states as shown in Fig. 3,
modified polarization selection rules which increasingly favor
y polarization as the states are pressed to the edge, and inver-
sion symmetry breaking which leads to nonzero permanent
dipole moments and modified LL number n selection rules:
the transitions with n changing by 2 become allowed in the
electric dipole approximation. Finally, the electron drift ve-
locity in the state |nk〉, i.e., the diagonal matrix element of
the velocity operator, becomes n and k dependent and has a
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Ẽ2k − Ẽ1k
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Ẽ8k − Ẽ7k
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FIG. 3. (a) Numerically obtained energy eigenvalues (normal-
ized with h̄ωc) from Eq. (1) in the presence of hard wall at y = 0 for
the first 11 eigenvalues corresponding to n = 0, 1...10 respectively,
as a function of the center of cyclotron rotation yk/�c = k�c. (b) Dif-
ference between consecutive energy eigenvalues as a function of k�c.
Here Ẽnk ≡ Enk/h̄ωc.

standard form (see Appendix B for derivation):

〈v̂x〉nk = 1

h̄

∂Enk

∂k
. (2)

Note that this expression does not depend on the specific
form of the eigenstates ψnk (x, y); moreover, Eq. (2) does not
depend on any assumptions about the nonuniformity scale of
the potential �(y) in comparison with the magnetic length �c.

We will consider the observational consequences of these
effects one by one below, keeping the derivation details and
lengthy formulas in the Appendix. Before using a numerical
solution of Eq. (1) with a hard wall potential to calculate
the optical response, we point out two approximate analyti-
cal solutions of Eq. (1) for a hard-wall boundary condition
�(y > 0) = 0 and χnk (0) = 0.

A. Asymptotic solution for n � 1

In this case, analytical solutions can be obtained within the
quasiclassical approximation [32]. For yk >

√
2E/(mω2

c ), the
quasiclassical solution of Eq. (1) corresponds to two turning
points in the region y > 0 (one at y > yk > 0 and another
at yk > y > 0), for which E = mω2

c (y − yk )2/2. In this case
the solution obeys the Bohr-Sommerfeld quantization rule,
which for Eq. (1) corresponds to standard eigenenergies En =
h̄ωc(n + 1/2). For yk <

√
2E/(mω2

c ) there is one turning
point at y > yk > 0 and another one due to reflection from
the wall at y = 0. Denoting the turning point at y 	= 0 as y∗,
we write the quasi-classical solution of Eq. (1) as

χnk (y) = 1

Nnk
√

qnk
cos

(∫ y∗

y
dy qnk (y) − π

4

)
, (3)

where h̄qnk (y) = √
2m[Enk − mω2

c (y − yk )2/2] and qnk (y∗) =
0. Here Nnk is the normalization factor. Taking into account
the boundary condition on the ideally reflecting wall, i.e.,
χnk (0) = 0, we obtain the transcendental equation for the
eigenenergies as

Enk = 2π (n + 3/4)h̄ωc

2βnk − sin(2βnk )
, (4)

with cos(βnk ) = −h̄k/
√

2mEnk . For yk ∝ k > 0 and 1 −
h̄k/

√
2mEnk  1, we have βnk → π , i.e., Enk = (n +

3/4)h̄ωc. As we see, the energy is increased by h̄ωc/4 as
compared to the LL in the bulk. This is the result of changing
boundary conditions from a smooth effective potential to a
hard wall. For yk = 0, βnk = π/2, which gives Enk = (2n +
3/2)h̄ωc. Here the energy is raised by more than a factor of 2
as compared to the LLs in the bulk. For yk < 0, one can find
the asymptotic solution for Enk � nh̄ωc, which corresponds
to the large wave number limit, |k|�c � √

n. In this case we
need to have βnk − sin(2βnk )/2  1, i.e., βnk → 0. Denoting
εk = h̄2k2/(2m), we obtain

Enk ≈ εk +
[

3π

2
h̄ωc

(
n + 3

4

)]2/3

ε
1/3
k , (5)

implying that the energies increase and the distance between
LLs grows non-equidistantly. This already suggests that for
a vertical wall or for any non-adiabatic potential one can re-
alize resonant optical transitions between edge states without
causing resonant absorption between bulk LLs.

B. Solution for any n but large wave numbers k

Let us denote V (y) = mω2
c (y − yk )2/2. Under the con-

dition V ′(y)|y=y∗ − V ′(y)|y=0  V ′(y)|y=0, where E = V (y∗),
and for ξ = (2|k|/�2

c )1/3(y − (E − εk )/(h̄ωc|k|)), Eq. (1) can
be transformed to

∂2χ

∂ξ 2
− ξχ = 0.

We can choose our solution as the Airy function Ai(ξ ), which
goes to zero for ξ → ∞ and satisfies the boundary condition
χ (y = 0) = 0, with the corresponding eigenenergies

Enk = εk + (h̄ωc)2/3ε
1/3
k |ξn|, (6)

where ξn are zeros of the Airy function, i.e., Ai(ξn) = 0, n =
0, 1, 2.... Here ξ0 is the zero with value closest to ξ = 0, and
their values |ξn| increase with increasing n. One can verify
that Eq. (6) is valid as long as |k|�c � √

n. The eigenfunctions
χnk (y) corresponding to eigenenergies Enk are defined in the
interval 0 � y < ∞ as

χnk (y) = 1

Ñnk
Ai

(
y

(
2|k|
�2

c

)1/3

+ ξn

)
, (7)

with Ñnk being the normalization factor which is given as,

Ñ2
nk =

(
�2

c

2|k|
)1/3 ∫ ∞

ξn

Ai2(ξ )dξ . (8)

The dispersion of eigenenergies (6) has the similar structure to
those in the previous subsection, even though the former does
not rely on n being large.
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FIG. 4. Magnitude of the normalized dipole matrix elements as
a function of the center of the cyclotron rotation yk/�c = k�c for
(a) n → n + 1, (b) n → n + 2, and (c) the difference of intra-LL
dipole elements. Here ỹi j ≡ yik; jk/�c.

C. Exact numerical solution for eigenstates
and dipole matrix elements

Finally, we compute the eigenvalues and the eigenfunctions
for Eq. (1) numerically using Numerov’s algorithm. Fig. 3
shows the eigenenergies for the first 11 LLs as a function
of yk/�c = k�c, and the energy differences between neigh-
boring eigenvalues. It demonstrates not only the bending of
flat LLs of the bulk states near the edge of the sample, but
also the fact that the optical transitions become increasingly
nonequidistant and move to higher energies as compared to
the transitions between bulk LLs. This agrees qualitatively
with photovoltage measurements in terahertz spectroscopy
of edge states [33,34]. It is also worth pointing out strong
inhomogeneous broadening of the inter-LL optical transitions.

The dipole matrix elements and selection rules are modi-
fied drastically in the presence of the boundary, mostly due
to inversion symmetry breaking. In the electric dipole ap-
proximation, the general expression for carrier velocity along
x̂ direction which includes both diagonal (n = m) and off-
diagonal (n 	= m) elements is

〈nk|v̂x|mk′〉 = δkk′ωc(ykδnm − ynk;mk ), (9)

with ynk;mk = 〈nk|y|mk〉. In the bulk, vertical transitions be-
tween mth and nth LLs obey the following selection rule,

ynk;mk

�c
= δn,m+1

√
n

2
. (10)

This simple relation, however, does not hold for edge states.
In Fig. 4, we plot the dipole elements as a function of the
center of the cyclotron rotation yk/�c = k�c for transitions
involving the first several LLs. The panel (a) shows that the
dipole elements deviate from Eq. (10) as yk approaches the

edge. At the same time, previously forbidden transitions n →
n + 2 are activated, as shown in panel (b). Furthermore, the
permanent, intra-LL dipole matrix elements differ from their
bulk values as well (panel (c)), such that their differences be-
tween consecutive LLs change from zero to finite values. Both
effects are a consequence of inversion symmetry breaking and
lead to large second-order nonlinearity in the electric-dipole
approximation, as we will see below.

III. QUANTUM THEORY OF THE PHOTON ABSORPTION

Since one of the most interesting possibilities offered by
the optical field is to excite a single electron into a given edge
state, we need a fully quantized theory of fermions in a QH
sample interacting with a quantized electromagnetic field. We
will derive both the probability of a single photon absorption
and the absorbance of a classical field.

It is convenient to describe the quantum state of elec-
trons in terms of occupation numbers of |nk〉 = χnk (y)eikx

states, for example | · · · 1nk · · · 0n′k′ · · · 〉, where 1nk and
0n′k′ are occupied and unoccupied states. Fermionic an-
nihilation and creation operators are acting on these
states in the usual way: ânk| · · · 1nk · · · 〉 = | · · · 0nk · · · 〉 and
â†

nk| · · · 0nk · · · 〉 = | · · · 1nk · · · 〉. The electron Hamiltonian is
then Ĥe = ∑

n,k Enkâ†
nkânk .

The Hamiltonian and the operator of the vector potential of
the EM field incident on the sample are

Ĥph =
∑
ν,q

h̄ωνq

(
b̂†

νqb̂νq + 1

2

)
, (11)

Â =
∑
ν,q

√
2πc2h̄

V ωq
(eνqb̂νqeiqr + e∗

νqb̂†
νqe−iqr ), (12)

where b̂νq and b̂†
νq are the photon annihilation and creation

operators acting on the photon Fock states |nνq〉, ωq = c|q|, V
is the quantization volume with periodic boundary conditions,
and eνq is the polarization vector such that q · eνq = 0. The
total Hamiltonian is

Ĥ = Ĥe + Ĥph + Ĥint, (13)

where the interaction Hamiltonian Ĥint = − 1
c ĵ · Â and the cur-

rent operator is ĵ = −ev̂. From the general relation vnk;n′k′ =
−iωnk;n′k′rnk;n′k′ , where h̄ωnk;n′k′ = Enk − En′k′ , we can express
the current matrix elements through the dipole matrix ele-
ments discussed in the previous section:

jnk;n′k′ = jnk;n′kδkk′ , (14)

( jx )nk;n′k = eωcynk;n′k, (15)

( jy)nk;n′k = ieωnk;n′kynk;n′k, (16)

which results in the modified polarization selection rules:

( jx )nk;n′k + i
ωc

ωnk;n′k
( jy)nk;n′k = 0. (17)

As follows from Eq. (17) and Fig. 3(b), for electron states
near the edge the transition frequency ωnk;n′k becomes several
times larger than ωc and therefore the y component of the
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current matrix element becomes significantly larger than the
x-component.

Now consider the normal incidence of the radiation on the
Hall sample, when q = qz0, and take the field quantization
volume as a ray bundle of volume V = lxlylz. For our purpose
it is sufficient to consider only one spatial mode at frequency
ωq = cq and polarization eq. It is straightforward to generalize
it to a multimode wave-packet. As a result, in the rotating-
wave approximation (RWA) the interaction Hamiltonian
becomes

Ĥint = −
∑

k,n>n′

√
2π h̄

V ωq
(eq · jnk;n′kb̂qâ†

knâkn′ + H.c.).

As an initial state of electrons we take

�e(0) =
∏

{nk}occ

â†
kn|0e〉

where |0e〉 is the vacuum state of the electron system, and
{nk}occ denotes occupied states. The values of n change from
n = 0 to n = nF where nF is the index of the highest occupied
LL in the bulk, whereas the values of k change up to knF ,
for which Enk = EF , where EF is the Fermi energy. An initial
single-photon state of the field is

�ph(0) = b̂†
q|0p〉,

where |0p〉 is the vacuum state of the field. We seek the
solution of the Schrödinger equation as

�(t ) = Cq(t )�ph(0)�e(0)

+
∑

{n′k}occ,n

Cnn′k (t )|0p〉â†
nkân′k�e(0). (18)

This ansatz includes an initial state and all possible states
resulting from the absorption of a single photon, all with their
unknown time-dependent probability amplitudes. In Eq. (18)
the summation is performed only over the indices n, n′ and
k which at the initial moment of time correspond to occupied
states |n′k〉 and empty states |nk〉. At t = 0 we have Cq(0) = 1
and Cnn′k (0) = 0. The Schrödinger equation leads to linear
equations for the complex amplitudes Cq(t ) and Cnn′k (t ), that
are similar to those for a quantum field interacting with an
inhomogeneously broadened ensemble of two-level quantum
emitters [35]. This analogy works because all transitions are
assumed to conserve the electron quasimomentum. We then
proceed to solve the equations for the probability amplitudes
within the stochastic Schrödinger’s equation (SSE) approach
[35], which is equivalent to the master equation approach in
the Lindblad approximation. Solving them, one can obtain
a complete quantum dynamic of light-matter interaction in
our system. In particular, in the perturbative linear regime we
obtain the absorption probability per unit time and per given
transition n′ → n as

An′→n =
∑

k

d

dt
|Cnn′k (t )|2

=
∑

k

4π |jnk;n′k · e∗
q|2

h̄ω(lxlylz )

γ
(
F (0)

n′k − F (0)
nk

)
γ 2 + (ωnk;n′k − ω)2

, (19)

where γ is the homogeneous broadening of inter-LL transi-
tions determined by disorder-induced scattering and F (0)

jk =
(1 + e(Ejk−EF )/(kBT ) )−1 is the Fermi distribution function at
temperature T . For small γ as compared to the inho-
mogeneous broadening of transitions between edge states,
the Lorentzian in Eq. (19) becomes the delta function
πδ(ωnk;n′k − ω) and one recovers the Fermi’s golden rule
expression. In the case of a finite γ , stochastic noise terms
appear in the equations for complex amplitudes according to
the stochastic Schrödinger equation approach [35], but this
will not affect the linear absorption probability.

The summation over k can be replaced by integration,∑
k → gs

Lx
2π

∫
dk, where we also added the spin degeneracy

factor gs. Here Lx is the sample length (quantization length
of electron states) in x-direction along the edge. The total
absorption probability is obtained by adding the contributions
from all LL transitions, Atot = lz

c

∑
n,n′ An′→n. Here we also

converted the probability per unit time into the total dimen-
sionless probability of absorbing a photon by multiplying
the former by the photon pulse duration �t ≈ lz/c. Defined
this way, the photon absorption probability will also describe
the dimensionless absorbance of the classical monochromatic
wave by a 2D system. Here we obviously assumed a rectangu-
lar temporal profile of the pulse for simplicity. Propagation of
single-photon pulses of an arbitrary shape involves a bit more
algebra and can be found, e.g., in Ref. [36].

The resulting expression depends on the geometric param-
eter Lx

lx ly
, which can be written as a dimensionless factor

f = Lx

lx

�c

ly
.

This factor measures the overlap of an incident radiation beam
with electron states in the (x,y) plane, and it was assumed in
the derivation that the area of the photon beam is larger than
the sample area. Therefore, the value of f is expected to be
much smaller than 1, especially due to the ratio �c/ly which is
always small. Indeed, for a GaAs/AlGaAs quantum well with
the conduction band effective mass of 0.067m0 [37] and in
a magnetic field B = 1 T, we have h̄ωc ≈ 1.7 meV and �c ≈
26 nm. If we want to focus incident THz radiation tightly on
one edge of the sample in order to bring the overlap closer
to 1, one should illuminate a metal tip or fabricate a metallic
nanoantenna along the sample edge.

In order to show universal, geometry-independent ab-
sorbance spectra, we normalize the absorbance by this
geometric overlap factor, namely

A (ω) = Atot

f
= 1

f

lz
c

∑
n,n′

An′→n. (20)

The resulting spectra A (ω) of absorbance (or single-
photon absorption probability) are shown in Figs. 5(a) and
5(c) for the case of y-polarized radiation. The shaded regions
under the black curve show the contributions of individual
transitions between neighboring LLs; the range of these tran-
sitions in momentum space is shown in the insets, with colors
matching the shaded regions in the main figure. The salient
feature of the total absorbance spectra is the existence of the
sharp peaks at frequencies where the contributions from two
different transitions overlap. The overlaps exist in the region
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FIG. 5. Normalized absorbance spectra given by Eq. (20) (solid black line) of ŷ-polarized photons for (a) Fermi energy above the fifth LL
and (c) Fermi energy above the tenth LL. (b) and (d) show the difference between the absorbance of ŷ and x̂ polarization for the same Fermi
levels (x-polarized absorbance subtracted from y polarized one). The shaded colored regions under the black curves show the contributions of
individual transitions between the neighboring LLs. The insets in (a) and (c) show the regions of phase space which contribute to the absorption
of photons for each pair of neighboring LLs. The colors of shades in the inset match those in the main figure for each panel. Other parameters
are γ = 0.02 ωc and temperature T = 0.

of momenta k > 0 and frequencies ωc < ω < 2ωc, as one can
also see from the spread of transition energies in Fig. 3(b). For
higher frequencies and for the states closer to the edge (k < 0)
the overlaps disappear and the peaks in Fig. 5 turn into dips,
as is also clear from Fig. 3(b) where the order of transition
energies between neighboring LLs gets inverted upon crossing
k = 0. These peaks and dips provide a clear spectroscopic
signature of individual edge states. Moreover, they also pro-
vide an opportunity of exciting nonequilibrium carriers into a
given edge state and then observe a corresponding change in
the edge-state interferometry. Due to a large spectral detuning
from the bulk transitions at ω = ωc this is possible without
destroying the QH effect conditions in the bulk of the sample.

One detrimental factor that could possibly affect the
edge state spectroscopy, especially with broadband pulses, is
the presence of a strong peak at ω = ωc due to the bulk state
transition nF → nF + 1. However, this peak can be subtracted
out in the measurements of difference between absorbance
in x- and y-polarizations, as shown in Figs. 5(b) and 5(d).
Here we make use of the fact that near the edge the x- and
y-components of transition matrix elements become increas-
ingly different, with a much stronger y-component, as follows
from Eq. (17). Thus, difference measurements will get rid of
the bulk peak and may result in easier observable peaks and
dips for edge states.

As one can see from Fig. 5, the magnitude of absorbance
peaks normalized by the geometric factor f is of the order
of 1-3. Therefore, the fraction of light absorbed in individual
peaks is essentially the above factor f measuring the overlap
of the incident radiation with the sample. While there is no
doubt that f  1, one needs to keep it large enough to ensure
that the absorption is detectable. As an example, consider a
QH sample of size Lx ∼ Ly ∼ 10 µm. If the incident radiation

is focused on the whole area of the sample, e.g., by a mask
or a metallic antenna, then lx,y ∼ Lx,y ∼ 10 µm and f ∼ 2.6 ×
10−3, where we took the value of �c ≈ 26 nm in GaAs for B =
1 T. So, the photon absorption probability, or two-dimensional
absorbance, will be around 3 f ∼ 0.8 % at the highest peak
position which has the value around A (ω) � 3 according to
Fig. 5(c). This is a small but measurable value.

One can get higher absorbances by focusing incident ra-
diation into a smaller area with a nanotip or a nanoantenna.
For lx < Lx the absorption probability becomes independent
on Lx and the geometric factor in Eq. (20) is simply f = �c/ly.
By focusing into the spot size of ∼30 nm, one can get an
absorption probability approaching 1.

One can also estimate the magnitude of absorbance analyt-
ically by taking the limit γ → 0 which converts Eq. (19) into
the one given the Fermi’s Golden Rule, with the delta-function
in the integrand describing energy conservation. Performing
integration in k, we obtain

lz
c
An′→n = f

2π |jnk;n′k · e∗
q|2

h̄ωc�c∂kωnk;n′k

∣∣∣∣∣
ωnk;n′k=ω

, (21)

where we also took the population difference equal to 1. Using
the expression for energy dispersion provided in the Eq. (5) (or
Eq. (6)), we find ∂kωnk;n′k = 2ωnk;n′k/(3k). For a y-polarized
field we have |jnk;n′k · e∗

q|2 = e2ω2
nk;n′k|ynk;n′k|2. This gives

lz
c
An′→n = f

3πα

�c
|ynk;n′k|2k

∣∣
ωnk;n′k=ω

, (22)

where α is the fine structure constant, k scales as ω
3/2
nk;n′k ,

and the momentum dependence of |ynk;n′k|2 can be extracted
from Fig. 4. For example, if we take the wavenumber of
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the initial state at the Fermi level, k ≈ kF ≈ 1
�c

√
2nF + 1, the

absorbance due to the transition between these LLs is

lz
c
An′→n ≈ f 3πα

√
2nF + 1

|ynkF ;n′kF |2
�2

c

. (23)

IV. GENERATION OF DC CURRENT
BY OPTICAL RECTIFICATION

The DC current carried by chiral edge states in QH effect
experiments is proportional to the diagonal elements of the
density matrix,

J0 = − e

Lx

∑
n,k

(vx )nk;nkρ
(0)
nk;nk . (24)

The net current from both edges is zero, but it becomes
nonzero if a DC voltage �V is applied. Indeed, using Eq. (24)
together with Eq. (2), one can find out that in equilibrium, the
difference between the currents along opposite edges �J0 =
e2nF
2π h̄ �V , where nF is the number of filled LLs in the bulk.

However, inversion symmetry breaking for edge states
gives rise to the possibility of generating the DC or quasi-DC
current by an optical field through the second-order process of
the optical rectification, which becomes allowed in the electric
dipole approximation. In order to support the net current only
one edge needs to be illuminated; otherwise the contributions
of two opposite edges will still cancel each other.

This optically driven DC current is due to the off-diagonal
elements of the density matrix,

Jdc = e2B

Lxmc

∑
n 	=m

∑
k

ynk;mkρmk;nk . (25)

The density matrix elements are found by solving the master
equation,

∂ρnm

∂t
+ i

h̄

∑
ν

(Hnνρνm − ρnνHνm) = 0, (26)

to which we will add phenomenological relaxation terms
γ ρnm. Here Hαβ = δαβEα + Vαβ (t ) and α, β represent the
quantum state comprising the Landau level index and the
momentum. The light-matter interaction Hamiltonian in
electric-dipole approximation is V̂ (t ) = ey(Ee−iωt + E∗eiωt ),
where we assume the field to be classical in this section. Since
all optical transitions are vertical in the electric-dipole approx-
imation, we suppressed the momentum index for simplicity,
such that yik; jk → yi j and ρik; jk → ρi j . The momentum index
has to be restored when integrating over k in Eq. (25).

We proceed by expanding the elements of the density ma-
trix in the perturbative series with respect to the interaction
Hamiltonian,

∂ρ
( j+1)
nm

∂t
= −iωnmρ ( j+1)

nm − i

h̄

∑
ν

(
Vnνρ

( j)
νm − ρ ( j)

nν Vνm
)
, (27)

with n and m denoting the quantum states corresponding to
Landau level indices n and m respectively. We are only inter-
ested in the terms up to the second order in the optical field.

The linear in E term yields

ρ
(1)
βα = − e

h̄

yβα

(
ρ (0)

αα − ρ
(0)
ββ

)
ωβα − ω − iγ

Ee−iωt , (28)

where ρ
(1)
αβ = (ρ (1)

βα )∗.
From Eq. (25) and taking into account the structure of the

perturbative solution, it is clear that there are two types of con-
tributions to the DC current at zero frequency, i.e., ∝ |E |2. One
type of the terms in Eq. (25) scales as yn;(n+2)ρ

(2)
(n+2);n. They

are enabled by nonzero dipole matrix elements yn;(n+2) of the
transitions which change the LL index by 2, i.e., n → n + 2.
The second group of the terms scales as yn;(n+1)ρ

(2)
(n+1);n where

ρ
(2)
(n+1);n ∝ (y(n+1);(n+1) − yn;n). As one can see from Fig. 4,

both yn;(n+2) and (y(n+1);(n+1) − yn;n) are only nonzero for elec-
tron states close to the edge, when the center of the cyclotron
rotation yk is within several magnetic lengths �c from the edge.

The second-order nonlinear density matrix elements con-
tributing to the DC current satisfy the equations of motion

∂ρ
(2)
n;(n−1)

∂t
+ iωn;(n−1)ρ

(2)
n;(n−1)

= − ie

h̄
F (t )

[
yn;(n−2)ρ

(1)
(n−2);(n−1) − y(n−2);(n−1)ρ

(1)
n;(n−2)

+ yn;(n+1)ρ
(1)
(n+1);(n−1) − y(n+1);(n−1)ρ

(1)
n;(n+1)

+ (yn;n − y(n−1);(n−1))ρ
(1)
n;(n−1)

]
, (29)

∂ρ
(2)
(n+1);(n−1)

∂t
+ iω(n+1);(n−1)ρ

(2)
(n+1);(n−1)

= − ie

h̄
F (t )

[
y(n+1);nρ

(1)
n;(n−1) − yn;(n−1)ρ

(1)
(n+1);n

+ (y(n+1);(n+1) − y(n−1);(n−1))ρ
(1)
(n+1);(n−1)

]
, (30)

where we have defined F (t ) = Ee−iωt + E∗eiωt . Time-
independent solution to these equations under illumination
with a monochromatic field gives rise to a large number of
terms contributing to the DC current, which grows rapidly
with increasing doping. For convenience, in Appendix C be-
low we list the density matrix elements that contribute to the
rectification current for the Fermi level EF = 3h̄ωc between
n = 2 and n = 3 bulk LLs, chosen to make plots in Fig. 6. In
Fig. 6 the red curve shows the rectification current normalized
by the conventional “diagonal” DC current (24) and by the
dimensionless factor

ζ = e2|E |2�2
c

h̄2ω2
c

(31)

as a function of the optical field frequency. The current is a
sum of the above two contributions, J (I )

dc and J (II )
dc , given by

J (I/II )
dc = e2B

mc

∫
dk

2π
J (I/II ), (32)

where

J (I ) = y01ρ
(2)
10 + y12ρ

(2)
21 + y23ρ

(2)
32 + c.c., (33)

J (II ) = y02ρ
(2)
20 + y13ρ

(2)
31 + y24ρ

(2)
42 + c.c. (34)
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FIG. 6. Nonlinear DC current resulting from second-order opti-
cal rectification process, as a function of the normalized optical field
frequency. The calculations included the first five Landau levels for
chemical potential EF = 3h̄ωc. Red curve: The electric dipole contri-

bution to the nonlinear current from Eq. (32),
J (I )

dc +J (II )
dc

ζJ0
, normalized

by the “diagonal” DC current J0 from Eq. (24) and factor ζ from
Eq. (31). Blue dashed curve: Beyond electric-dipole contribution to

the nonlinear current,
J (III )

dc +J (IV )
dc

ζgradJ0
, normalized by J0 and factor ζgrad

from Eq. (35).

The expressions for the second-order density matrix elements
are given in Appendix C.

The main peak at the cyclotron frequency in Fig. 6 is due
to the n = 2 → n = 3 transition near the edge. With increas-
ing optical frequency, the term (E3k − E2k )/h̄ − ω flips sign
and consequently we observe a negative peak in the plot.
Additional kinks are due to activation/deactivation of various
transitions. They are going to be smeared by finite temperature
effects and/or increased scattering.

Since the normalized nonlinear current in Fig. 6 is of the
order of 1, the dimensional current magnitude is a fraction ζ

of the conventional edge current (24). The factor ζ is essen-
tially the Rabi frequency squared of incident light normalized
to the cyclotron frequency squared. When ζ becomes of
the order of 1, population transfer effects between the LLs
in the bulk become important even despite the detuning
from the bulk inter-LL resonance. This could create bulk
conductance across the sample and destroy the QH effect.
Therefore, to maintain the QH effect conditions in the bulk,
it is desirable to keep ζ  1. The optimal situation to observe
or utilize the nonlinear rectification current would be to illu-
minate one edge of the sample under zero DC bias conditions,
when the net conventional current is zero.

A. Beyond electric-dipole approximation

Yet another second-order nonlinear optical contribution to
the rectified DC current originates from the spatial nonuni-
formity of the electric field of the incident radiation, i.e.,
beyond the electric-dipole approximation. In the lowest order,
the light-matter interaction Hamiltonian becomes

V̂ (t ) = e

[(
yE + y2

2
∂yE

)
e−iωt +

(
yE + y2

2
∂yE

)∗
eiωt

]
.

This gives rise to the following additional matrix elements
contributing to the rectification current,

V(n+2);n = e

2
(y2)(n+2);n(∂yEe−iωt + ∂yE∗eiωt ),

V(n+1);n = e

2
(y2)(n+1);n(∂yEe−iωt + ∂yE∗eiωt ).

Solving the density matrix equations in the second order of
the field as in the previous subsection, we obtain additional
contributions to the density matrix elements. For example,
the factor y12y20E∗E in the first term in ρ

(2)
10 in Appendix C

is modified as y12y20E∗E + y12y2
20E∗∂yE/2 + y2

12y20E∂yE∗/2,
and similarly for other terms.

We denote the resulting contributions as JIII and JIV in
the spirit of Eq. (33) and Eq. (34), respectively, and calculate
the resulting rectification current J (III )

dc + J (IV )
dc similarly to

Eq. (32). It is shown as a blue dashed curve in Fig. 6. The cur-
rent is normalized by the conventional “diagonal” DC current
(24) and by the factor

ζgrad = e2�3
c∂y|E |2
h̄2ω2

c

(35)

proportional to the gradient of the optical field intensity. With
this normalization, the optical rectification current is close
in magnitude to the one obtained in electric dipole approx-
imation and shown as a red curve. Note, however, that the
normalization factor in the denominator contains the optical
field intensity gradient �c∂y|E |2 which is much smaller than
|E |2, unless the optical field is focused to the size of the order
of �c, i.e., tens of nm, by using a nanotip or nanoantenna at the
sample edge as sketched in the inset to Fig. 6. Without nanofo-
cusing, the electric-dipole current is greater in magnitude by
the factor ∼ |E|2

�c∂y|E|2 .
As was pointed out in [29], the ponderomotive force pro-

portional to the gradient of the optical field intensity can
modify the transport and lead to MIRO-ZRS like phenomena
even in the limit of classical electron motion and neglecting
any nonadiabaticity near the edge. The interplay between
edge-induced classical magnetoplasmon effects and quan-
tum nonadiabaticity will make an interesting topic for future
studies.

V. CONCLUSIONS

In conclusion, we have demonstrated the feasibility of op-
tical spectroscopy and selective coherent optical control of
chiral edge state populations and currents under the conditions
of the integer QH effect. The physical mechanism enabling
this selective control involves inversion symmetry breaking
and violation of adiabaticity for electron states near the edge.
As a result, optical transitions between edge states have signif-
icantly different transition energies and polarization selection
rules as compared to the bulk of the sample. This enables
selective excitation of a specific edge channel with single
quasiparticle sensitivity without disturbing the rest of the
sample.

The 2D absorbance reveals characteristic peaks corre-
sponding to various edge state resonances at frequencies
significantly higher than the bulk cyclotron transition. A large
fraction of incident light within the illuminated area of the
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sample can be absorbed. The overall absorption probability of
single photons depends on their spatial overlap with the edge
state area which can be enhanced through nanofocusing with
a tip or nanoantenna.

Furthermore, inversion symmetry breaking near the sample
boundary enables strong second-order optical nonlinearity in
the electric dipole approximation, resulting in efficient optical
rectification of incident radiation and direct optical driving of
a quasi-DC current in edge states. The predicted optical effects
can be used to study or control edge currents by optical means
and to control the interference pattern in QH interference
experiments.

While the calculations in this paper were performed for
nonrelativistic electron dispersion in semiconductor quantum
wells, one should expect a qualitatively similar strategy of
selective optical spectroscopy of edge states to be applicable
to graphene samples. The quantitative results will be different
due to the presence of two types of terminations in graphene.
The results will be reported elsewhere.

Another natural extension of this work is to investigate the
optical control of edge currents under fractional QH effect
conditions. We anticipate that this study will attract attention
of both the QH and optical communities, fostering interesting
collaborative experiments.
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APPENDIX A: ELECTRON STATES
IN ADIABATIC APPROXIMATION

For the reader’s convenience, here we summarize the re-
sults for electron states in the adiabatic approximation, when
the electric potential �(y) varies much slower than the mag-
netic length. For a magnetic field, �B = Bẑ we choose the
vector potential of the form �A = −yBx̂, which yields the
single-electron Hamiltonian

H = 1

2m

(
px − eBy

c

)2

+ p2
y

2m
− e�, (A1)

where m is the electron mass. Since there is no explicit x
dependence, we can seek the wavefunction as

ψ (x, y) = eikxχ (y), (A2)

for which the Schrödinger equation yields

∂2χ

∂y2
+ 2m

h̄2

[
E + e�(y) − 1

2
mω2

c (y − yk )2

]
χ (y) = 0. (A3)

where we have defined the cyclotron frequency, ωc =
eB/(mc), the position of the center of the cyclotron rotation
yk = k�2

c , and the magnetic length �c = √
ch̄/(eB).

In the adiabatic approximation, the potential �(y) is
varying slowly near the edge, �(y) ≈ �(yk ) + (y − yk )

(∂y�(y)|y=yk ). The particle energies are

Enk =
(

n + 1

2

)
h̄ωc − e�

(
yk + c∂y�(y)|y=yk

ωcB

)

+ m

2

(
c∂y�(y)|y=yk

B

)2

. (A4)

The term
c∂y�(y)|y=yk

ωcB in the right-hand side of Eq. (A4) is
the shift of the center of the cyclotron rotation with respect
to the initial point yk under the action of the electric field
Ey ≈ −∂y�(y)|y=yk . The last term on the right-hand side of
Eq. (A4) is the kinetic energy of the drift motion in crossed E
and B fields.

The eigenfunctions become

χnk (y) = e−(y−yk−c∂y�(y)|y=yk /(ωcB))2
/(

√
2�c )2√

2nn!
√

π�c

×Hn

(
y

�c
− yk

�c
− c

�c

∂y�(y)|y=yk

ωcB

)
, (A5)

where n is the LL index and Hn is a Hermite polynomial. In
this case, while the energies of the LLs increase towards the
edge, the energy separation between them does not change as
compared to the bulk states, and the dipole matrix elements
of all transitions between them do not change either. Further-
more, the drift velocity of electrons along the edge does not
depend on the LL index:

〈v̂x〉k = − c

B
∂y�(y)|y=yk . (A6)

APPENDIX B: ELECTRON DENSITY FLUX
FOR AN ARBITRARY POTENTIAL

It is interesting that the electron density flux and drift
velocity can be found for an arbitrary potential �(y), pro-
vided Eq. (1) allows a finite solution corresponding to a
certain discrete spectrum of Enk and a set of eigenfunctions
of the form ψnk (x, y) = eikxχnk (y), where χnk (y)|y→±∞ → 0,∫

dxdy ψ∗
nk (x, y)ψmk′ (x, y) = δnmδkk′ . To prove this, we intro-

duce the operator of two-dimensional electron density for
the nth LL, N̂n(x, y) = �̂†(x, y)�̂(x, y) where the field op-
erators are given in the second-quantized form: �̂(x, y) =∑

k ψnk (x, y)ânk, �̂
† = ∑

k ψ∗
nk (x, y)â†

nk with the annihilation
and creation operators as ânk and â†

nk respectively. The opera-
tor of two-dimensional spatial electron density is then

N̂n(x, y) =
∑
k,k′

χ∗
nk′ (y)χnk (y)ei(k−k′ )xρ̂nk;nk′ , (B1)

where ρ̂nk;nk′ = â†
nkânk′ . The same result can be obtained by

using the transition operator ρ̂nk;nk′ = |nk〉〈nk′|. The operator
ρ̂nk;nk′ obeys the Heisenberg equation,

∂ρ̂nk;nk′

∂t
= − i

h̄
(Enk − Enk′ )ρ̂nk;nk′ . (B2)

If the fermions are interacting with classical electromagnetic
fields, the Heisenberg operator ρ̂nk;nk′ , after averaging over
the initial state of the system, becomes the matrix element of
a standard density matrix ρnk;nk′ . The general expression for
the probability flux of the electron density can be expressed
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through the Wigner function, defined as

Ŵn(x, y, K ) =
∑

κ

ψ∗
n(K−κ/2)(x, y)ψn(K+κ/2)(x, y)

× ρ̂n(K+κ/2);n(K−κ/2),

where k − k′ = κ , (k + k′)/2 = K . The Wigner function
Ŵn(x, y, K ) determines both the operator of spatial density,∑

K

Ŵn(x, y, K ) = N̂n(x, y), (B3)

and the distribution over momenta,∫
dxdy Ŵn(x, y, K )|K=k = ρ̂nk;nk . (B4)

It follows from Eq. (B2) that

∂ρ̂n(K+κ/2);n(K−κ/2)

∂t
= − i

h̄
(En(K+κ/2) − En(K−κ/2))

× ρ̂n(K+κ/2);n(K−κ/2). (B5)

Suppose that we have a well-localized state in k so that
δk  k (a narrow spectrum in k means narrow localization
along y near the edge). In this case we have En(K+κ/2) −

En(K−κ/2) ≈ κ∂kEnk|k=K . Then from Eq. (B5) and taking into
account Eqs. (B3) and (B4) one can obtain

∂Ŵn(x, y, K )

∂t
+ 1

h̄

∂Enk

∂k

∣∣∣∣
k=K

∂Ŵn(x, y, K )

∂x
= 0. (B6)

For a quadratic spectrum of the type Enk = En0 + αnk2

Eq. (B6) is exact and does not require a narrow spectrum.
Using Eqs. (B6) and (B3), one can obtain

∂N̂n(x, y)

∂t
+ 1

h̄

∂Enk

∂k

∂N̂n(x, y)

∂x
= 0 (B7)

where k is the central value of the given narrow spectrum.
From Eq. (B7) one obtains the expression for the observed
particle velocity in the state |nk〉, i.e., the diagonal matrix
element of the velocity operator, which has a standard form:

〈v̂x〉nk = 1

h̄

∂Enk

∂k
. (B8)

Note that this expression coincides with the one obtained from
the solution (A5) for a uniform electric field but it does not
depend on the specific form of the eigenstates ψnk (x, y); fur-
thermore, Eq. (B8) does not depend on any assumptions about
the nonuniformity scale of the potential �(y) in comparison
with the magnetic length �c.

APPENDIX C: SECOND-ORDER NONLINEAR DENSITY MATRIX ELEMENTS

For the reader’s convenience, we provide below the list of second-order nonlinear density matrix elements that contribute to
the optical rectification current in the electric-dipole approximation for our chosen value of the Fermi level, EF = 3h̄ωc:

ρ
(2)
10

e2|E |2/h̄2 = y12y20�ρ
(0)
02

ω10(�20 − iγ )
− y20y12�ρ

(0)
12

ω10(�21 + iγ )
− (y00 − y11)y10�ρ

(0)
01

ω10(�10 − iγ )
,

ρ
(2)
21

e2|E |2/h̄2 = y20y01�ρ
(0)
01

ω21(�10 + iγ )
− y01y20�ρ

(0)
02

ω21(�20 − iγ )
+ y23y31�ρ

(0)
13

ω21(�31 − iγ )
− y31y23�ρ

(0)
23

ω21(�32 + iγ )
− (y11 − y22)y21�ρ

(0)
12

ω21(�21 − iγ )
,

ρ
(2)
32

e2|E |2/h̄2 = y31y12�ρ
(0)
12

ω32(�21 + iγ )
− y12y31�ρ

(0)
13

ω32(�31 − iγ )
+ y34y42�ρ

(0)
24

ω32(�42 − iγ )
− y42y34�ρ

(0)
34

ω32(�43 + iγ )
− (y22 − y33)y32�ρ

(0)
23

ω32(�32 − iγ )
,

ρ
(2)
43

e2|E |2/h̄2 = y42y23�ρ
(0)
23

ω43(�32 + iγ )
− y23y42�ρ

(0)
24

ω43(�42 − iγ )
,

ρ
(2)
20

e2|E |2/h̄2 = y21y10�ρ
(0)
01

ω20(�10 − iγ )
− y10y21�ρ

(0)
12

ω20(�21 − iγ )
− (y00 − y22)y20�ρ

(0)
02

ω20(�20 − iγ )
,

ρ
(2)
31

e2|E |2/h̄2 = y32y21�ρ
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(0)
ββ ) is the equilibrium population difference and �αβ = ωαβ − ω.
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