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The electronic band structure of monolayer phosphorene is thoroughly studied by considering the presence of
spin-orbit interaction. We employ a multiorbital Slater-Koster tight-binding approach to derive effective k · p-
type Hamiltonians that describes the dominant spin-orbit coupling (SOC) effects of the Rashba and intrinsic
origin at the high � and S high symmetry points in phosphorene. In the absence of SOC effects a minimal
admixture of pz and py atomic orbitals suffices to reproduce the well-known anisotropy of highest valence and
the lowest conduction bands at the � point, consistent with density functional theory (DFT) and k · p methods.
In contrast, the inclusion of the px and s atomic orbitals are rather crucial for an adequate description of the SOC
effects in phosphorene at low energies, particularly at the S point. We introduce useful analytical expressions
for the Rashba and intrinsic SOC parameters in terms of the relevant Slater-Koster integrals. In addition, we
report simple formulas for the interband dipole strengths, revealing the nature of the strong anisotropic behavior
of its lower bands. Our findings can be useful for further studies of electronic and spin transport properties in
monolayer phosphorene and its nanoribbons.
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I. INTRODUCTION

Single-layer phosphorene has emerged as an appealing and
promising two-dimensional (2D) semiconductor. This is due
to its unique electronic, optic, thermoelectric, and mechan-
ical properties, all exhibiting a highly anisotropic character
[1–6]. Among its prominent optoelectronic features are its
direct energy band gap at the � point close to 2.1 eV [7–11],
its very high p-type mobility (∼103 cm2 V−1 s−1), and its
highly anisotropic band structure near the Fermi energy, the
latter contributing to its large anisotropic interband dipole
couplings [12,13]. In addition, few-layer phosphorene have
shown also a layer-sensitive band gap with an extraordinary
enhanced photoluminescence intensity [12]. All these features
make phosphorene an excellent candidate for applications in
optoelectronic, photonic, and energy-saving two-dimensional
devices [14–20].

Recent studies have also targeted phosphorene as a suit-
able material for spintronics applications owing its relatively
weak spin-orbit coupling of its phosphorous atoms [9,21,22].
High spin lifetime has been measured in phosphorene at
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room temperature (∼0.7 ns) [21], which together with its large
spin diffusion lengths leads to coherent spin-polarized trans-
port covering micrometric distances (∼2.5 µm). Despite the
relatively weak spin-orbit effects, phosphorene experiences
unavoidable spin-scattering events that hinder the control of
coherent spin transport. These events stem from two primary
sources of spin scattering induced by spin-orbit interactions
in phosphorene. They are of intrinsic and extrinsic nature,
leading to the known Elliot-Yafet, and the D’yakonov-Perel’
spin-relaxation mechanisms, respectively. Recent estimates
of the spin-relaxation lifetimes yields strongly anisotropic
relaxing times in the plane of phosphorene, showing field
and carrier dependence for both types of spin relaxation
mechanisms. Moreover, intriguing interplays are anticipated
to emerge under moderate electric fields, though with domi-
nant (strongly anisotropic) D’yakonov-Perel’ spin scattering
at high electric fields [23]. The origin of such anisotropies
was associated to the expected highly anisotropic Rashba
splitting, although no explicit expressions for the anisotropic
Rashba-SOC Hamiltonians was provided. The spin-dependent
electronic properties of phosphorene have been also recently
addressed introducing phenomenological anisotropies of the
Rashba coupling strength weighted by the ratio of the effective
masses along the x and y direction but without further physical
insights [24]. As for the intrinsic type of spin-orbit interaction,
an earlier DFT calculation [23] identified that its dominant
contribution arises at the S high symmetry point within the
Brillouin zone, yielding a uniform band spin splitting of about
17.5 meV at the lowest conduction band. Nevertheless, the
nature of the atomic hybridizations participating in the spin
splitting was not examined.
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Motivated by these studies, our foremost goal is to
construct a minimal multiorbital tight-binding model for two-
dimensional phosphorene valid under spin-orbit effects. This
model will serve as the framework for deriving effective
Hamiltonians that accurately characterize the electronic prop-
erties of phosphorene’s lowest-energy bands. Through this
approach, we aim to deepen our understanding of the inherent
anisotropies within its energy bands and elucidate the inter-
play of SOC effects in single-layer phosphorene.

We began our study in the absence of SOC using a mul-
tiorbital tight-binding model consisting of a natural basis of
the admixture of rotated pz- and py-like atomic orbitals. This
allows us to derive an effective Hamiltonian that reproduces
the main characteristics of the anisotropy of its electronic band
structure near the Fermi energy as dictated by DFT calcula-
tions. Analytical expressions of the effective masses in terms
of the Slater and Koster parameters were also derived, offering
further physical insights on the origin of the large anisotropy
of the conduction and valence band effective masses of
phosphorene around the � high symmetry point within the
Brillouin zone. Subsequently, within the same tight-binding
footing, a model that incorporates the s, and {px, py, pz}
atomic orbitals and the effects of the SOC is introduced. Such
model leads to an eight-band effective Hamiltonian that at the
� point describes the predicted anisotropic Rashba coupling
in phosphorene. We were able to quantify the ratio of such
anisotropy. It is shown that at moderate external electric fields
(∼3 V/nm) and typical carrier densities of 1012 cm−2 the
strength of the Rashba parameter along the �-Y direction is
around 20 times smaller than the one of the �-X direction,
and that the range of the induced spin splittings is in the order

of a few μeV. On the other hand, and in contrast with what
it occurs near the � point, the intrinsic type of spin-orbit
coupling is the dominant interaction at the S point, while
the Rashba-type is rather small, in agreement with our DFT
calculations. We also found that an intrinsic SOC-induced
spin splitting is developed at the S point of phosphorene of
about 20.4 meV. Finally, we present simple formulas for the
interband dipole strengths, revealing the origin of the strong
anisotropic behavior of its lower bands.

II. PHOSPHORENE TIGHT-BINDING MODEL
WITHOUT SPIN-ORBIT EFFECTS

We first analyze the tight-binding model for monolayer
phosphorene neglecting the spin-orbit coupling, in a later
stage its effects will be incorporated on equal footing. We start
the model by defining the Hamiltonian operator describing the
kinetic energy of the electrons and the energy potential Vat

produced by the ions of the 2D crystal lattice of phosphorene,

Ĥ0 = − h̄2

2m
∇2 +

∑
i j

Vat(Ri − R j ), (1)

which within the two-center tight-binding (Slater-Koster)
approximation, only involves the atoms i/ j at the vector posi-
tions Ri/R j , as well as its first atomic neighbors. Considering
all the outer shell 3s and 3p orbitals of each phosphorus
atom yields a 16 × 16 Hamiltonian matrix; that is, four atomic
orbitals for each of the four distinct A(A′) and B(B′) atomic
sites in the unit cell [Figs. 1(a) and 1(b)]. We are interested,
however, to set up the minimal multiorbital model, which

FIG. 1. (a) Phosphorene’s crystalline structure showing the rectangular primitive lattice with dimensions a and b, being θ the angle of the
A(A′-B(B′) bond with the y axis. (b) Side view, where the four atoms of the basis labeled as A, A′, B, and B′ are identified. The angle of the ẑ
axis with the A(B)-A′(B′) bond is defined as ϕ. The parameters b1 and b2 are the A(A′)-B(B′) and A(B)-A′(B′) atomic distances, respectively.
(c) Illustration of the band structure of monolayer phosphorene unfolded into the full Brillouin zone obtained by ab initio DFT calculations.
Inset (d), first Brillouin zone of the phosphorene lattice showing its high symmetry points �, X, Y, and S. (e) Projected LDOS for the s, px , py,
and pz orbitals. (f) Depiction of the of p orbitals of phosphorene.
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TABLE I. Some Slater-Koster (SK) hopping integrals definitions
used in this work, with the indices {μ, ν} = {x, y, z}. The cosine
directors are given by nx = sin θ sin ϕ, ny = cos θ sin ϕ, and nz =
cos θ .

Matrix element in terms of the SK parameters

〈sA/B|Ĥ0|sA′/B′ 〉 Vssσ

〈sA/B|Ĥ0|pA′/B′
μ 〉 nμVspσ

〈pA/B
μ |Ĥ0|pA′/B′

ν 〉 −nμnν (Vppπ − Vppσ )

〈pA/B
μ |Ĥ0|pA′/B′

μ 〉 n2
μVppσ + (1 − n2

μ)Vppπ

enables us to capture the main features of the lowest-energy
bands at the highest symmetry points. The proper selection of
such atomic orbitals are dictated by the most highly occupied
atomic states at the symmetry points of interest. For this we
rely on our first-principles calculations implemented by DFT
(see Appendix E for details). Figure 1(c) shows the calculated
electronic band dispersion of monolayer phosphorene and
Fig. 1(e) presents the calculated projected local density of
states (LDOS). The projected LDOS shows that the highest
valence and minimum conduction bands near the � point,
for instance, have a strong contribution coming from the pz

orbitals, with a moderate contribution originated by the py

orbitals, and a very weak or negligible presence of the px and
s orbitals [Fig. 1(e)]. Therefore, a reasonable starting point to
construct a minimal tight-binding model near the �-symmetry
point can be chosen with a subspace spanned only by the
pz and py atomic orbitals. This is also consistent with group
theory symmetry arguments, dictating that in nonsymmorphic
group D2h crystals as phosphorene, those states belonging to
the �z− and �y+ character are the only ones that are symmetry
allowed at the � point [25]. Furthermore, given the atomic
spatial configuration of the phosphorous atoms in phospho-
rene [Figs. 1(b) and 1(f)], we find it useful to introduce a basis
set composed of rotated pz and py orbitals defined as,

|φA/A′ 〉 = −mz

∣∣pz
A/A′ 〉 − my

∣∣py
A/A′ 〉

,

|φB/B′ 〉 = −mz

∣∣pz
B/B′ 〉 + my

∣∣py
B/B′ 〉

, (2)

where my = sin(ϕ) and mz = cos(ϕ). Now, since we will
assume electron hoppings occurring only between the first
nearest neighbors for each of the four atoms of the unit cell,
thus solely the Slater-Koster overlapping integrals between
the A − A′, A − B, B − B′, and A′ − B′ atomic sites will
be needed. Next-nearest neighbors and beyond will be ne-
glected as they are expected to decay exponentially with the
interatomic distance [26]. It can be shown that the matrix
elements that govern the electron hopping energy between
φA/B orbitals from the atomic sites A(B) to the φA′/B′

of the
A′(B′) atoms form a σ -type bond, that is, all these matrix
elements reduce to 〈φA/B|Ĥ0|φA′/B′ 〉 = Vppσ with vanishing π

bonding. Here we have used the conventional Slater-Koster
relations 〈pA/B

μ |Ĥ0|pA′/B′
μ 〉 and 〈pA/B

μ |Ĥ0|pA′/B′
ν 〉, as defined in

Table I with the indices {μ, ν} = {x, y, z}.
Therefore, the simplest tight-binding Hamiltonian in the

basis given by {|φ〉} = {|φA〉, |φA′ 〉, |φB〉, |φB′ 〉}, takes the

compact form

Hφ =

⎛⎜⎜⎜⎝
0 Vppσ VAB 0

Vppσ 0 0 VAB

VAB 0 0 Vppσ

0 VAB Vppσ 0

⎞⎟⎟⎟⎠. (3)

Here the on-site energy of the p orbitals of phosphorene
was taken as the reference energy, and set to zero (εp = 0).
Lastly, the matrix element VAB = 〈φA|Ĥ0|φB〉 = VA′B′ , which
in terms of the Slater-Koster parameters reads,

VAB = m2
zVppπ − m2

y

(
n2

yVppσ + (
1 − n2

y

)
Vppπ

)
, (4)

being ny is the cosine director along the y axis as defined in
Table I, among the remaining Slater-Koster integrals.

A. Continuum Hamiltonian and low-energy band structure

Next, by Fourier transform the model of Eq. (3), an ef-
fective low-energy 4 × 4 Hamiltonian in reciprocal space is
obtained,

Hφ (k) =

⎛⎜⎜⎜⎝
0 g(k)Vppσ f (k)VAB 0

g∗(k)Vppσ 0 0 f ∗(k)VAB

f ∗(k)VAB 0 0 g∗(k)Vppσ

0 f (k)VAB g(k)Vppσ 0

⎞⎟⎟⎟⎠,

(5)

where k = kxx̂ + kyŷ is the wave vector lying in the plane
of the phosphorene layer, and we have used the following
definitions for the spectral functions,

f (k) = 2eiyky cos

(
bkx

2

)
, g(k) = e−ikyh, (6)

with b = 2b1 sin θ , y = b1 cos θ , h = b2 sin ϕ, and h + y =
a/2. The Hamiltonian matrix Eq. (5) can be diagonalized
exactly, however, in order to arrive to an effective low-energy
Hamiltonian we find it convenient to rewrite it in the basis
{|φA〉, |φB′ 〉, |φA′ 〉, |φB〉} and perform a similarity transforma-
tion (Appendix C) that leads to a block-diagonal Hamiltonian
composed of two 2 × 2 matrix Hamiltonians H1 and H2

given by,

Hη(k) = (−1)η
(

Re[Vη(k)] i Im[Vη(k)]

−i Im[Vμ(k)] −Re[Vη(k)]

)
, (7)

where Vη(k) = VAB f (k) + (−1)η+1Vppσ g(k), and η = 1, 2.
The lowest-energy bands dispersion will correspond to the
eigenvalues of (7) with η = 1,

E±= ±
√

V 2
ppσ+4VABVppσ cos(kxc) cos(kyd )+4V 2

AB cos(kxc)2,

(8)

where the ± sign refers here to the electron/hole bands, being
c = b/2 and d = a/2. The anisotropy of the generic bands is
already evident within this model. Note also that the energy
gap Eg at the � point, is simply given by E+(0) − E−(0) =
2|Vppσ + 2VAB|.

As for the Slater-Koster parameters, they are extracted
either by fitting numerically the electronic band structure
obtained by DFT calculations or by a subsequent step of
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TABLE II. Numerical values of some Slater and Koster param-
eters for phosphorene (in eV) without spin-orbit coupling, with the
exception of those from Ref. [23] where SOC was taken into account.
The parameter VAB was calculated using Eq. (4). Note that in all cases
Vppπ � VAB.

Vppσ Vppπ VAB

DFT+W90 3.85 −0.99 −1.02
Ref. [23]a 3.15 −1.04 −1.01
DFTb 3.30 −1.19 −1.14
Ref. [26] 4.03 −1.14 −1.15

aFitted to Eq. (8) with DFT data of Ref. [23].
bBest fit to Eq. (8) using our DFT raw data.

the DFT process by mapping the electronic structure to a
maximally localized Wannier basis of atomic orbitals using
WANNIER90 (DFT + W90) [27]. The values obtained here are
listed in Table II together with these fitted to the DFT data of
Ref. [23] and SK parameters reported in Ref. [26] for sake of
comparison.

Starting from Eq. (5), we now focus on the resulting low-
energy k · p-type effective Hamiltonian and its corresponding
eigenvalues near the �-symmetry point. The expansion of the
matrix elements around k = 0 of H±(k) up to quadratic terms
in kx and ky leads to the simplified continuum Hamiltonian,

H� (k) = (
αk2

x + βk2
y − 

)
τz − vykyτy, (9)

where the coefficients in terms of the Slater-Koster parameters
(using the result VAB � Vppπ ), are

vy = hVppσ − 2yVppπ , (in units of h̄)

β = h2

2
Vppσ + y2Vppπ ,

α = b2

4
Vppπ , (10)

with  = Eg/2, and τy, τz are the y and z Pauli matrices
written in the electron-hole basis. The eigenvalues of Eq. (9)
produce the simplified formulas for the anisotropic dispersion
of the conduction/valence bands,

E�± = ±
√(

αk2
x + βk2

y − 
)2 + v2

y k2
y . (11)

Next, we present useful simplified expressions for the low-
energy bands, as well as for the effective masses that are
determined directly from Eq. (11). They are up to second
order in kx and ky,

E (0)
�± (k) = h̄2

2

(
1

m∗
±,�X

k2
x + 1

m∗
±,�Y

k2
y

)
± , (12)

in which the Slater-Koster-dependent effective masses along
the �-X and �-Y path are given by

1

m∗
±,�X

= ± b2

2h̄2

(|VppπVppσ | − 2V 2
ppπ

)
,

1

m∗
±,�Y

= ± a2

2h̄2
|VppπVppσ |. (13)

TABLE III. List of the anisotropic conduction and hole effective
masses for phosphorene monolayer (in units of the free electron
mass) along the �-X and �-Y directions.

m∗
+,�X m∗

+,�Y m∗
−,�X m∗

−,�Y

DFT+W90 1.13 0.23 −3.08 −0.20
Ref. [28] 1.16 0.22 −3.24 −0.19
Eq. (13)a 1.18 0.17 −1.18 −0.17
Ref. [23]b 1.15 0.24 −7.29 −0.24
Ref. [29] 1.24 0.17 −7.20 −0.16
Ref. [23]c 1.28 0.42 −4.06 −0.44

aUsing the SK parameters of Ref. [26] and Eq. (13).
bReported in Ref. [23].
cParabolic fit of the bands presented in Ref. [23].

Using the Slater-Koster parameters provided in Table II
in the expressions above, we compute the phosphorene’s
effective masses around the � point, and are listed together
with those reported in the literature in Table III. In Fig. 2
we present the lowest electronic bands of phosphorene at
the vicinity of the � and S point in the absence of SOC
effects. The blue (solid lines) correspond to the outcome of
the first-principles DFT calculations. The results from the
minimal tight-binding model obtained through Eq. (8) are
plotted in squared symbols (red) by using the best fit to the
SK parameters extracted from the DFT data, while the dotted
(gray) curves correspond to the evaluation of Eq. (8) using the
SK parameters obtained through the DFT + W90 procedure.
Interestingly, despite its simplicity, our minimal tight-binding
model clearly displays the expected asymmetry of the elec-
tronic bands around the high symmetry points characteristic
of phosphorene band structure [5,23,24].

Overall, we find that the minimal base tight-binding model
reproduces accurately the lowest bands, though showing a
slight deviation for the valence band in the �-X direction
where, in comparison with the DFT bands, a smaller effective
mass is obtained. Such slight discrepancy is not actually owed
to the fact that we have neglected the px and s orbitals at
the present stage of the tight-binding model. It is shown a
posteriori that taking into account such orbitals does not lead
to any appreciable change of the curvature of the bands around
the � point.

III. TIGHT-BINDING MODEL WITH SPIN-ORBIT
INTERACTION

We now proceed to examine the relativistic effects in
monolayer phosphorene. We focus on the spin-orbit inter-
action of the intrinsic (atomic) and extrinsic (Rashba) type.
The former arises naturally due the local spin-orbit interaction
of the atomic outer shell 3s and 3p electrons owing to the
presence of the potential V (r) of the phosphorous ions. The
latter (Rashba-type) can be present owing to the Stark effect,
and it is produced by an external uniform electric field E
perpendicular to the phosphorene plane, breaking the phos-
phorene spatial inversion symmetry along such direction.

The atomic spin-orbit interaction is modeled with the
Hamiltonian,

Hso = h̄

2m2c2
[∇V (r) × p] · s = ξ (r)L · S, (14)
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FIG. 2. Electronic low-energy bands for monolayer phosphorene without SOC along the paths (a) X-�-Y, (b) �-S, and (c) �-S-X,
respectively. The continuum (blue) lines correspond to the DFT band-structure calculations. The dotted (gray) and squared symbols (red)
curves are obtained with the exact eigenvalues of the low-energy effective model given in Eq. (8), using the SK-parameters provided by the
DFT + W90 calculations, and the best fit parameters of DFT electronic band structure at low energies, respectively (see Table II). The Fermi
energy of the DFT bands were shifted here to negative energies by half the band gap in order to facilitate their comparison with theoretical
model.

where m is the free-electron mass, c is the speed of light in
vacuum, p is the linear momentum operator, s = (sx, sy, sz ), is
the vector of the Pauli matrices, S = h̄

2 s denotes the electron
spin vector operator, and L is the orbital angular momentum
operator. Within the two-center approximation, the atomic po-
tential is assumed to be spherically symmetric V (r) → V (r),
therefore the function ξ (r) = 1

m2c2
1
r

∂V
∂r carries all the radial

dependence. In addition, the spin-orbit interactions between
neighboring phosphorous atoms and beyond are assumed to
be negligible. Hence, only the on-site spin-orbit interaction
terms will be considered in our approach.

Regarding the Stark effect, we include it by introducing
an external electric field E = Ezẑ perpendicular to the phos-
phorene plane. This field may arise from various sources such
as an externally applied voltage or charge impurities at the
substrate interface. We model this effect through the dipole
term in the Hamiltonian,

HSE = −eEzz, (15)

where e is the charge of the electron. As this interaction yields
a spatial symmetry breaking in the ẑ direction, thus within
tight-binding theory, the Stark effect leads to on-site transi-
tions between orbitals with opposite parity in the direction
of the field. Thus, as a consequence of the spatial inversion
symmetry breaking in the phosphorene layer, a sizable spin
splitting can be exhibited in the electronic bands.

Here the net effect of the spin-orbit interaction and
the Stark effect are included into the model by using
an extended spin-dependent basis |�〉 = |ψ〉 ⊗ {↑,↓}. In
such basis |ψ〉 = {|φ〉, |χ〉}, in which |φ〉 are described
in Eq. (2), while |χ〉 takes into account the hybridiza-
tion of the in-plane px- and py-like orbitals, and the

s-like orbitals, all within the same footing. Explicitly |χ〉 =
{|�A〉, |�A′ 〉, |�B〉, |�B′ 〉, |sA〉, |sA′ 〉, |sB〉, |sB′ 〉}, being

|�A/A′ 〉 = nlx

∣∣px
A/A′ 〉 ± ny

∣∣py
A/A′ 〉

,

|�B/B′ 〉 = −nlx

∣∣px
B/B′ 〉 ∓ ny

∣∣py
B/B′ 〉

(16)

with nlx = (−1)l sin θ , and ny = cos θ , where l = 1, 2 and
distinguishes the first two in-plane neighbors B(B′) and A(A′)
atoms [see Fig. 1(b)].

We then can construct a full spin-dependent 24 × 24
Hamiltonian in the basis |�〉. It reads, HT = H0 + HSO +
HSE , where

H0 =
(

Hφ U

U † H�,s

)
, (17)

with Hφ = Hφ ⊗ {↑,↓} and H�,s = H�,s ⊗ {↑,↓}, in which
H�,s contains the on-site and hopping integrals between the
{|�〉} and {|s〉} states, whereas U is the coupling matrix be-
tween the {|φ〉} and {|�〉, |s〉} states. The Hamiltonians HSO

and HSE correspond to the spin-orbit and Stark Hamiltonians
written in the basis |�〉, respectively. Details of the deriva-
tion a low-energy effective Hamiltonian starting from HT

using a Löwding transformation method is provided in the
Appendix D.

It is noteworthy that the matrix elements of the spin-orbit
sector of the total Hamiltonian HT have the general form〈

ψ (u)
ν,σ

∣∣ξ (r)L · S
∣∣ψ (u)

ν ′,σ ′
〉 → �σ,σ ′

ν,ν ′ (u) (18)

with (ν, ν ′) = {s, px, py, pz} denoting the character of the
atomic orbital of a given phosphorous atom u = {A, A′, B, B′}
of the primitive cell, and (σ, σ ′) = {↑,↓} describing its spin
state. Operationally, in order to arrive to such matrix elements,
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the states |ψ (u)
ν,σ 〉 are written in the basis of the eigenkets

of the angular momentum |�, m, σ 〉, with � = 0, 1 and m =
0,±1, the angular and magnetic quantum numbers. Hence,
matrix elements of the type ξ�〈�, m, σ |L · S|�′, m′, σ ′〉δ�,�′ can
be straightforwardly calculated, where here the parameter ξ�

measures the strength of the spin-orbit coupling. Such pa-
rameter is given by the integration of the radial part of the
� orbitals of phosphorus atoms; here all the nonvanishing
matrix elements are those for � = 1. As this parameter cannot
be known within the tight-binding approach, we rely on the
results obtained by first-principles calculations after Wannier-
ization of the electronic band structure.

However, although it is indeed possible to introduce ex-
plicitly all the �

↑,↓
ν,ν ′ (μ) in the model, the resulting Hamiltonian

expressions are rather complex, rendering them far less illumi-
nating. Therefore, we consider instead its mean absolute value
within perturbation theory, defined hereafter by ξp. From the
DFT + W90 calculations we extract ξp = 0.047 eV for mono-
layer phosphorene. Such value is slightly greater than the
reported for silicene (ξp ≈ 0.034 eV) [30] as expected, owing
to the atomic numbers of silicon and phosphorus differing
by just by one. On the other hand, the Stark effect leads
to on-site transitions between s and pz orbitals of the type
zsp = 〈s|z|pz〉. Thus the energy associated to the Stark effect
is z = −Ezezsp, where the magnitude of the electric field,
Ez, ranges typically between 1 and 5V/nm [23]. As for zsp,
it depends on the atomic size, here we estimate zsp ≈ 4.5a0,
where a0 = 0.0529 nm is the Bohr radius.

A. Hamiltonian near the � point with SOC

Once we have considered the presence of the Stark effect
and intrinsic spin-orbit coupling in phosphorene, we then
proceed to determine the effective continuum Hamiltonian
written in reciprocal space near the � point and valid for its
low-energy quasiparticles (see Appendix E). The Hamiltonian
reads,

H (k) = (
αk2

x + βk2
y − 

)
soτz − vykysoτy

+ λRxkxsyτz − λRykysxτz + R0 sxτy, (19)

where, (τy, τz ) and (sx, sy) are the usual Pauli matrices acting
on the electron-hole bands, and on the physical spin, respec-
tively, being so the unit matrix in spin space. The first two
terms in Eq. (19) characterize the low-energy quasiparticles in
the absence of SOC effects already discussed in the previous
section. The next two terms proportional to λRx along the �-X,
and to λRy along the �-Y direction, describe an anisotropic k-
linear Rashba-SOC arisen because of the Stark effect. The last
term accounts for a spin-orbit-dependent interaction between
conduction and hole bands with strength R0 . It is also of
Rashba nature, though k independent, as it is proportional to
the external electric field.

In terms of the Slater-Koster overlapping integrals, the
Rashba parameters are found to be (see Appendix E 1)

λRx � 4b1ζ0(sin θ )2

λRy � 2b2ζ0(cos θ sin ϕ)2

R0 = λRy

b2 sin ϕ
, (20)

where

ζ0 = zξpVssσVspσ cos ϕ

(VAA − Vppσ )(εs − εp)2
, (21)

and VAA = n2
lxVppπ − n2

y (m2
yVppσ + (1 − m2

y )Vppπ ). Here, λRx,
λRy, and R0 are all proportional to the magnitude of the
electric field Ez via z, as well as with the intrinsic spin-
orbit parameter associated to p orbitals of phosphorene ξp.
Also, as can be seen in Eq. (21), they depend linearly on the
on-site hybridization between s orbitals (Vssσ ) and between s
and p orbitals (Vspσ ) of the phosphorous atoms. The strong
anisotropy of the Rashba spin splitting of the bands can be
estimated through the ratio

λRx

λRy
= 2b1

b2

tan2 θ

sin2 ϕ
� 18.7, (22)

which incidentally, at first order, is not related to the SK
parameters, depending only upon geometrical factors of the
phosphorene atomic configuration. Using the SK parameters
obtained within the DFT + W90 procedure, we find that at a
typical electric field of Ez = 3 eV/nm, the linear in k Rashba
coupling coefficients are λRx = 0.2576 meV nm and λRy =
0.01379 meV nm, respectively, whereas the estimates as such
field for the term independent of k gives us R0 � 0.168 meV.
Note that within this model, the intrinsic SOC does not appear
explicitly here, as it turns out to be vanishing smaller. There-
fore, we can safely argue that is the Rashba coupling type
that gives rise to the dominant spin-orbit interaction at the �-
symmetry point of phosphorene, being the k-linear-dependent
term the most dominant at typical fields.

Neglecting the spin-dependent interaction term R0 sxτy

between conduction and valence bands, the eigenvalues of
the Hamiltonian in Eq. (19) give the following exact band
dispersion laws,

E (μ)
σ (k) = μ

√
v2

y k2
y + (

αk2
x + βk2

y −  + σκ
)2

, (23)

where μ = ± describes the conduction/valence bands, σ =
± denotes the spin-state for a given band, and κ = |κ|, with
κ = (λRxkx, λRyky), such that κ exp(±iφk ) = λRxkx ± iλRyky,
with tan φk = λRyky/(λRxkx ).

In Fig. 3(a) we present plots of the conduction and valence
bands using expression (23) showing the large anisotropy
of the band spin splittings occurring near the � point when
an electric field of Ez = 3 eV/nm is considered. If we de-
fine the energy spin splitting of the bands at a given Fermi
wave number kF as Ri (kF ) = 2λRi kF with i = x, y and
choosing a small kF = 0.01 nm−1 (for a small carrier den-
sity), yields spin-splitting energies of Rx(kF ) = 5.15 µeV
and Ry(kF ) = 0.28 µeV, respectively [Figs. 3(a), 3(d) and
3(e)]. While for higher carrier densities (nF = 1 × 1012 cm−2)
entailing a Fermi wave number of about kF = 0.25 nm−1,
we get spin-splitting energies of Rx(kF ) = 0.13 meV and
Ry(kF ) = 6.89 µeV, respectively. The monotonic linear be-
havior of the Rashba spin splitting with the SOC parameter
ξp and with the field Ez is depicted in Figs. 3(d)–3(e). The
plot in Fig. 3(c) shows the valence bands in the vecinity of
the S point, with (red continuous curves) and without (black
dashed lines) intrinsic SOC. More details of the intrinsic SOC
are discussed in the following section.
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FIG. 3. Band structure of phosphorene with SOC. In (a) the
asymmetric spin splitting of the bands between the directions �-X
and �-Y, giving a ratio λRx/λRy = 18.7. (b) Depiction of the spin
texture of the valence bands for an energy of 10 µeV. The plot in
(c) shows the intrinsic spin-orbit splitting at the S point between the
valence bands TB

I = 22.4 meV, red (continuous) curves. The black
(dashed) curves correspond to the same bands without SOC. The
splitting obtained from the DFT calculations is shown for compari-
son DFT

I = 20.4 meV. For (a)–(c) the electric field is Ez = 3 V/nm
and the intrinsic spin-orbit parameter was set to ξp = 0.047 eV. (d)–
(e) show the dependence of the intrinsic SOC splitting at the S point
denoted by TB

I = I and the Rashba spin splitting in the kx and ky

directions, Rx and Ry, respectively, as a function of ξp for a fixed
electric field of Ez = 3V/nm (d), and (e) as a function of the electric
field Ez for ξp = 0.047 eV. The Rashba splittings Rx and Ry, were
calculated for kF = 0.01 nm−1, where kF is the Fermi wave number.

The corresponding normalized eigenvectors of Eq. (19) for
the conduction (c) and valence bands (v) read,

∣∣ψ (c)
σ (k)

〉 = 1√
2

⎛⎜⎜⎜⎜⎝
σe−iφk cos(ϑσ/2)

i cos(ϑσ/2)

−σ ie−iφk sin(ϑσ/2)

sin(ϑσ/2)

⎞⎟⎟⎟⎟⎠,

∣∣ψ (v)
σ (k)

〉 = 1√
2

⎛⎜⎜⎜⎝
σe−iφk sin(ϑσ/2)

−i sin(ϑσ/2)

σ ie−iφk cos(ϑσ/2)

cos(ϑσ/2)

⎞⎟⎟⎟⎠, (24)

where we have defined ϑσ = arctan(vyky/Eσ ), and we have
omitted the superscript (c/v) in Eσ to simplify the notation.
The spin texture is then readily calculated,

〈S〉μ,σ = μσ

(
− λRyky

κ
,
λRxkx

κ
, 0

)
= μσ

κ
(ẑ × κ). (25)

Observe that the relative magnitude of the spin-orientation
vectors depend on the ratio λRx/λRy through κ, and that
Rashba coupling anisotropy in phosphorene imposes 〈S〉μ,σ ·
k �= 0 in general, contrasting with what occurs in graphene
with Rashba spin-orbit coupling, where 〈S〉μ,σ · k = 0 is al-
ways satisfied. In Fig. 3(b) we show the spin texture around
the Fermi energy contour formed by the valence bands for
an energy of −10 µeV, an electric field Ez = 3 V/nm, and a
spin-orbit parameter ξp = 0.047 eV. The spin-splitting asym-
metry near the � point is evident, having a nontangential
direction of the spin with respect to the energy Fermi contour,
except in the points (kF

x , 0) and (0, kF
y ). We also explored the

range of the linear Rashba spin- splitting Rx and Ry for a
fixed ξp = 0.047 meV as a function of the external field Ez

[Fig. 3(e)]. The counterparts for a fixed field Ez = 3 V/nm as
a function of ξp are plotted in [Fig. 3(d)].

It is also illustrative to calculate dipole strength coupling
between the conduction and valence band along the x and y
direction as a function of k, defined here as

Di(k) =
∑

σ

∣∣∣∣〈ψ (c)
σ

∣∣mo

h̄

∂H (k)

∂ki

∣∣ψ (v)
σ

〉∣∣∣∣2

, i = x, y (26)

with mo the free electron mass. This leads to dipole strength
anisotropy

Dx(k) = λ2
Rx sin

(
ϑ+ + ϑ−

2

)2

sin φk
2,

Dy(k) = λ2
Ry sin

(
ϑ+ + ϑ−

2

)2

cos φk
2 (27)

in units of m2
o/h̄2. Interestingly, the ratio of the dipole

strengths ηcv = Dy/Dx along the x and y direction does not de-
pend on the spin-orbit coupling strengths, nor in its anisotropy,
and gives the simple formula ηcv = k2

x /k2
y . Plots of the dipole

strength along different directions are depicted in Fig. 4.

B. Hamiltonian around the S point with SOC

Using Löwdin transformation theory it can be shown (Ap-
pendix D) that in the vecinity of the S-symmetry point ks =
(ksx, ksy ), the full 8 × 8 spin-dependent Hamiltonian is given
by

H (k) = H ′(k)so + HI (k) (28)

with k = ks + q, being q = (π/b, π/a) the location of the S
point in the rectangular Brillouin zone referred to zone center
�. Here,

H ′ =
(

H2 0

0 H1

)
, (29)
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FIG. 4. Dipole strength ratio ηcv = Dy/Dx as a function of ki

in the �-X (i = x, orange), the �-Y (i = y, blue), and the � − S
(i = s, magenta) directions. The inset shows the dependence of the
dipole strength Dx , and Dy with the angle φk , exhibiting the strong
anisotropy.

where H1,2(k) were already described in Eq. (7), and com-
prises the diagonal sectors in spin of the full Hamiltonian.
In Eq. (28) HI arises as the dominant spin-orbit interacting
term at this symmetry point, and it turns out to be of purely
intrinsic nature, as it is owed to the atomic SOC of the outer
shell electrons with the nucleus of the phosphorous atoms. It

has the compact form

HI (k) = λI Im[h(k)]τzσyso − λI Re[h(k)]τzσzsx, (30)

where h(k) = 2 sin( bkx
2 )eikya/2, and we have introduced the

new the Pauli matrices (σy, σz ) on order to describe the
coupling of the otherwise (in the absence of SOC) double de-
generacy (four degeneracy taking into account the spin) of the
conduction and valence bands along the S-X direction. The
constant λI modulates the strength of the intrinsic spin-orbit
interaction, and as a function of the Slater-Koster parameters
reads,

λI = 2Vppσ ξp cos θ sin θ sin2 ϕ

VAA − Vppσ
, (31)

note that it depends only on the intrinsic spin-orbit parameter
ξp, and on the hybridization between σ and p orbitals of phos-
phorene, while those involving Vssσ and Vspσ , for instance,
do not play any role here, and as a consequence, in the spin
splitting of the bands.

In the following, to simplify the notation, we will make
the replacement ks → k, with the assumption that the shifting
with zone center has been already performed. An effective k ·
p-type low-energy Hamiltonian can be derived by expanding
Eq. (28) up to second order in k, however, such Hamiltonian
turns out to be cumbersome and not too illuminating to de-
scribe it here. On the other hand, it is compelling that given
the smallness of λI we can consider only the leading-order
expansion of HI . This renders the full Hamiltonian exactly
diagonalizable, yielding to the following eigenvalues for the
(two) conduction bands at the S point,

E σ
S,ν (k) =

√√√√V 2
ppσ + 4λ2

I + 4V 2
AB sin2

(
bkx

2

)
+ 4σνVppσ

√
V 2

AB sin2

(
bkx

2

)
sin2

(
aky

2

)
+ λ2

I , (32)

with σ = ± for a given spin state, and ν = ± for the conduc-
tion band 1 or 2, respectively. As the electron-hole symmetry
is not broken within this model, we have similarly −E σ

S,ν (k)
for the valence bands.

From the expression (32) we can extract the energy spin
splitting at k = 0 of a given conduction or valence band (ν),
and it gives simply,

T B
I = E σ

S,ν (0) − E −σ
S,ν (0) = 4|λI |. (33)

According to this formula, using (31) and the output of the
tight-binding SK parameters obtained through Wannieraliza-
tion of the band structure, the SOC spin splitting at the S point
between the conduction/valence bands is TB

I = 22.4 meV,
which is in very good agreement with the value obtained
directly by our DFT calculations (DFT

I = 20.4 meV). Note
that for phosphorene λTB

I = 5.6 meV is greater than the value
estimated for Silicene (λI = 3.9 meV) but much smaller than
the one calculated for germanene (λI = 43 meV) [30] at the
Dirac K point.

IV. CONCLUSIONS AND SUMMARY

We have introduced a minimal Slater-Koster multiorbital
tight-binding model amenable for description of the low-
energy quasiparticles in two-dimensional phosphorene under
spin-orbit effects. Our theoretical analysis was complemented
with numerical DFT calculations of the electronic band struc-
ture with a posteriori construction of a Hamiltonian written in
a suitable maximally localized Wannier basis employing the
WANNIER90 code [27]. The latter allows us to extract the rel-
evant Slater-Koster hopping integrals that were subsequently
utilized in our effective models. Our analytical tight-binding
approach yields useful expressions for the effective k · p-type
Hamiltonians describing the large anisotropy of the electronic
band structure of monolayer phosphorene near the Fermi en-
ergy at the high symmetry points. The model predicts also
a strong anisotropy of the extrinsic Rashba-SOC when a
perpendicular electric field is applied. It was found that the
dominant spin-orbit coupling effects at the zone center � is of
the extrinsic (field-dependent) Rashba type, comprising two
main terms, one which is linear in momentum, and other
one that is momentum independent, though rather weak. In
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contrast, at the S-symmetry point, is the intrinsic SOC, which
is the leading interaction, being the Rashba-type interaction
totally absent at this point.

We found that anisotropy of the Rashba coefficients fol-
lows the rule λRx � 19λRy , independent of the field. The
tunability of the Rashba coefficients could lead to sizable
spin-splittings. It is shown that a typical fields of ∼3 V/nm
and carrier densities of the order of 1012 cm−2 the energy
spin splitting of the bands in the �-X direction is in the
tenths of meVs (∼0.13 meV), while it ranges in the μeVs
in the �-Y path (∼7 µeV). It should be mentioned that an
enhancement of about one order of magnitude of the Rashba
coefficients can be achieved in phosphorene without the need
of an external electric field, but by means of proximity effects
with suitable substrates, as very recent has been reported in
phosphorene/WSe2 bilayer [31].

In contrast with what occurs near the �-symmetry point,
our tight-binding model also predicts that at the S-symmetry
point, it is rather the (atomic) intrinsic type of spin-orbit
coupling, which turn to be the dominant interaction, while the
Rashba-type is basically negligible at this point. The latter
is in agreement with our DFT calculations. We found that
the energy spin splitting developed at the S-symmetry point
is about 22 meV. Given the ranges of energies around the S
point, the results presented here can provide valuable insights
into the physics of electron-hole recombination processes in
phosphorene, particularly through direct and indirect optical
transitions, such as thermal excitations (electron-phonon in-
teractions). In this context, our effective Hamiltonian with
SOC around the S point would be useful, for example, for the
study of anisotropic thermal conductivity in phosphorene.

Lastly, simple formulas for the interband dipole strengths
are presented, revealing the origin of the strong anisotropic
behavior of the low-energy bands in phosphorene. We hope
that this study and the effective Hamiltonian models with
spin-orbit effects introduced here could serve as a good start-
ing point for further scrutiny of the spin-dependent transport
as well as its optospintronic properties in phosphorene and
possibly in its nanoribbons.
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APPENDIX A: PHOSPHORENE’S CRYSTALLINE
STRUCTURE AND GEOMETRICAL PARAMETERS

Single-layer (black) phosphorene possesses a two-
dimensional (2D) honeycomb puckered structure [see
Figs. 1(a) and 1(b)] of phosphorus atoms covalently bounded
to their three nearest neighbors throughout a sp3 orbital hy-
bridization. It has a rectangular 2D primitive lattice with a
basis formed by four atoms sites, denoted by A, A′, B, and
B′, as shown in Fig. 1(b). The primitive lattice vectors are
given by a1 = bx̂ and a2 = aŷ, where b and a are the lattice pa-
rameters in x̂ (zigzag) and ŷ (armchair) direction, respectively.
Note that for a given phosphorus atom A (A′) there are two

TABLE IV. Relaxed geometrical parameters of monolayer black
phosphorus [23].

b1 2.222 [Å]
b2 2.260 [Å]
θ 47.92◦

ϕ 21.29◦

a 4.620 [Å]
b 3.298 [Å]

nearest-neighbor B(B′) atoms in the same plane, and only one
nearest-neighbor A′(A) atom out of the plane. Therefore the
relative position vectors between the nearest-neighbor atoms
can be written as

δABl = b1(nlx, ny, nz ),

δA′B′
l
= b1(nlx,−ny, nz ),

δAA′ = b2(mx,−my,−mz ),

δBB′ = b2(mx, my,−mz ) (A1)

with the definitions,

nlx = (−1)l nx

(
θ,

π

2

)
, ny = ny

(
θ,

π

2

)
, nz = nz

(
π

2

)
,

mx = nx(0, ϕ), my = ny(0, ϕ), mz = nz(ϕ), (A2)

where b1 is the A(A′)-B(B′) atomic distance, while b2 is
the A(B)-A′(B′) atomic separation. Here l = 1, 2 and distin-
guishes the first two, in-plane, neighbors B(B′) for the atom
A(A′). The cosine directors, which in terms of the Euler
angles of the line joining the A(A′)–B(B′) atomic sites with
respect to the ŷ and ẑ axes are given by, nx(θ, ϕ) = sin θ sin ϕ,
ny(θ, ϕ) = cos θ sin ϕ, and nz(ϕ) = cos ϕ. The values of all
the parameters mentioned above have been taken by relaxed
DFT [23] calculations, and are reproduced in Table IV. As the
unit cell in reciprocal space for monolayer phosphorene is also
rectangular [Fig. 1(c)], thus its the first Brillouin zone has a
rectangular shape with its high symmetry points denoted by
S, X, Y, and �, which are located at the points (π/b, π/a),
(π/b, 0), (0, π/a), and (0,0), respectively.

APPENDIX B: AB INITIO COMPUTATIONAL METHOD

First-principles simulations were performed using density
functional theory (DFT) as implemented in the Vienna ab
initio simulation package [32] (VASP 5.4.4) using the relaxed
structure as provided by Ref. [23]. The hybrid Becke three-
parameter Lee-Yang-Parr (B3LYP) approximation [33] was
used to account for exchange and correlation effects, which
have been shown to accurately reproduce the band-gap energy
in phosphorene [11]. The lattice constants were selected based
on the relaxed structural parameters provided in Table IV. The
interaction between ions and electrons was described using
the projector-augmented wave (PAW) method [34]. DFT cal-
culations were carried out using an 11 × 9 × 1 �-centered k
mesh and a plane wave energy cutoff of 420 eV. Additionally,
an augmentation charge cutoff energy of 343 eV was utilized
in the calculations. SOC effects was included within the PAW
formalism in the self-consistent DFT method [35].
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To construct the effective Wannier Hamiltonian in the
maximally localized Wannier basis, atomic orbitals (P : s; p)
were projected onto using the WANNIER90 code [27] as a
postprocessing step of the DFT calculations. The Wannier
Hamiltonian was derived within a localized orbital basis set
without the need for additional Wannierization procedures.
This Hamiltonian facilitates the extraction of tight-binding
Slater-Koster parameters, simplifying the description of the
electronic structure of phosphorene.

APPENDIX C: EFFECTIVE HAMILTONIAN IN
RECIPROCAL SPACE WITHOUT SPIN-ORBIT COUPLING

The explicit form of matrix elements of the Hamiltonian
Hφ in Eq. (5) are given by,

HAA′ = eik·δAA′ 〈φA|Ĥ0 |φA′ 〉 = Vppσ e−ikyh,

HAB =
∑

l

eik·δABl 〈φA|Ĥ0|φBl 〉

= 2VAB eiyky cos

(
bkx

2

)
,

HA′B′ =
∑

l

eik·δA′B′
l 〈φA′ |Ĥ0|φB′

l 〉

= 2VAB e−iyky cos

(
bkx

2

)
,

HBB′ = eik·δBB′ 〈φB|Ĥ0|φB′ 〉 = Vppσ eikyh. (C1)

Now, in order to find the continuum Hamiltonian cor-
responding to the model without spin orbit coupling, we
find convenient to first rewrite Eq. (5), in the basis
{|φA〉, |φB′ 〉, |φA′ 〉, |φB〉}, which yields to

Hφ,T(k) =

⎛⎜⎜⎜⎝
0 0 g(k)Vppσ f (k)VAB

0 0 f (k)VAB g(k)Vppσ

g∗(k)Vppσ f ∗(k)VAB 0 0

f ∗(k)VAB g∗(k)Vppσ 0 0

⎞⎟⎟⎟⎠, (C2)

which by taking its square leads to a block diagonal matrix,

H2
φ,T(k) =

⎛⎜⎜⎜⎜⎝
V 2

ppσ + 2V 2
ABg2(k) 4VABVppσ f2(k) 0 0

4VABVppσ f2(k) V 2
ppσ + 2V 2

ABg2(k) 0 0

0 0 V 2
ppσ + 2V 2

ABg2(k) 4VABVppσ f2(k)

0 0 4VABVppσ f2(k) V 2
ppσ + 2V 2

ABg2(k)

⎞⎟⎟⎟⎟⎠, (C3)

where we have defined the functions,

f2(k) = cos

(
bkx

2

)
cos

(
aky

2

)
,

g2(k) = 2 cos2

(
bkx

2

)
. (C4)

The eigenvalues of the squared Hamiltonian of Eq. (C3) are
given by

ε2
μ(k) = 2V 2

AB + V 2
ppσ + 2V 2

AB cos (bkx )

− 4(−1)μVABVppσ cos

(
bkx

2

)
cos

(
aky

2

)
, (C5)

hence the dispersions of the four bands are E±μ(k) = ±√|εμ|,
where μ = 1, 2 denotes the index of the band, and the sign ±
for the conduction/valence character (c/v) of a given band.
The eigenvectors of (C3) are

|ψv2〉 = 1√
2

⎛⎜⎜⎝
0
0

−1
1

⎞⎟⎟⎠, |ψc2〉 = 1√
2

⎛⎜⎜⎝
−1
1
0
0

⎞⎟⎟⎠,

|ψv1〉 = 1√
2

⎛⎜⎜⎝
0
0
1
1

⎞⎟⎟⎠, |ψc1〉 = 1√
2

⎛⎜⎜⎝
1
1
0
0

⎞⎟⎟⎠. (C6)

which are utilized to construct a unitary matrix,

Ũ = 1√
2

⎛⎜⎜⎝
0 −1 0 1
0 1 0 1

−1 0 1 0
1 0 1 0

⎞⎟⎟⎠. (C7)

that led to a block-diagonal Hamiltonian H̃φ,T through the
similar transformation,

H̃φ,T = Ũ †Hφ,RŨ

=

⎛⎜⎜⎝
0 V ∗

2 (k) 0 0
V2(k) 0 0 0

0 0 0 V ∗
1 (k)

0 0 V1(k) 0

⎞⎟⎟⎠, (C8)

where the function Vη(k) = VAB f (k) + (−1)η+1Vppσ g(k), and
f (k) and g(k) were defined in Eq. (6). Subsequently, The
matrix Hamiltonian in Eq. (C8) can be transformed into a new
basis U that couples the conduction and valence block states
for each given band index η = 1, 2. Such unitary transforma-
tion has the form

U = 1√
2

⎛⎜⎜⎝
1 1 0 0

−1 1 0 0
0 0 1 1
0 0 −1 1

⎞⎟⎟⎠. (C9)
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TABLE V. Slater and Koster (SK) parameters obtained here from
the DFT+W90 calculations without and with SOC.

SK integral Without SOC (eV) With SOC (eV)

Vppσ 3.85 3.81
Vppπ −0.99 −0.95
VAB −1.02 −0.98
VAA −0.39 −0.38
Vspσ 2.16 2.15
Vssσ −1.99 −1.99
εs −12.03 −11.87
εp −3.42 −3.33
ξp 0.047
z 0.23

Hence, the Hamiltonian transformed to new the basis
{|φv2〉, |φc2〉, |φv1〉, |φc1〉} reads,

H ′ = U †H̃φ,TU =
(

H2 0

0 H1

)
, (C10)

where,

Hη(k) = (−1)η
(

Re[Vη(k)] iIm[Vη(k)]

−iIm[Vη(k)] −Re[Vη(k)]

)
. (C11)

and the explicit form for such basis is given by,

|φv1〉 = 1
2 (|φA′ 〉 + |φB〉 − |φA〉 − |φB′ 〉),

|φc1〉 = 1
2 (|φA′ 〉 + |φB〉 + |φA〉 + |φB′ 〉),

|φv2〉 = 1
2 (|φB〉 − |φA′ 〉 − |φB′ 〉 + |φA〉),

|φc2〉 = 1
2 (|φB〉 − |φA′ 〉 + |φB′ 〉 − |φA〉). (C12)

APPENDIX D: EFFECTIVE HAMILTONIAN
WITH SPIN-ORBIT INTERACTION

In this Appendix we outline the derivation of the effective
Hamiltonian model including the spin-orbit coupling effects.
With this aim we first expand the original basis |φ〉 introduced
in Eq. (2), to include spin and the hybridization of the in-plane
px- and py-like orbitals, as well as the s-like orbitals; here
denoted compactly by |�〉 = {|φ〉, |χ〉} ⊗ {↑,↓}, with

|χ〉 = {|�A〉, |�A′ 〉, |�B〉, |�B′ 〉, |sA〉, |sA′ 〉, |sB〉, |sB′ 〉},
in which the |�A/A′ 〉 and |�B/B′ 〉 are linear combinations of
px- and py-like orbitals as established in Eq. (16). Therefore,
the full (24 × 24) Hamiltonian in the basis |�〉 has the form

HT =
(

Hφ U

U † H�,s

)
, (D1)

where Hφ = Hφ ⊗ {↑,↓} is a (8 × 8) matrix, with Hφ

provided in Eq. (3). H�,s = H�,s ⊗ {↑,↓} is a (16 × 16)
Hermitian matrix, where H�,s contains the onsite and hopping
integrals between the |�〉 and |s〉 orbital states, and finally,
the (8 × 16) complex matrix U and the (16 × 16) U † con-
tain the hopping integrals between |φ〉 ⊗ {↑,↓} and |χ〉 ⊗
{↑,↓} states. Explicitly, the Hamiltonian H�,s in the basis
{|�A〉, |�A′ 〉, |�B〉, |�B′ 〉, |sA〉, |sA′ 〉, |sB〉, |sB′ 〉} is found to
be,

H�,s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 VAA −Vppσ 0 0 −nymyVspσ −Vspσ 0

VAA 0 0 −Vppσ −nymyVspσ 0 0 −Vspσ

−Vppσ 0 0 VAA −Vspσ 0 0 −nymyVspσ

0 −Vppσ VAA 0 0 −Vspσ −nymyVspσ 0

0 −nymyVspσ −Vspσ 0 εsp Vssσ Vssσ 0

−nymyVspσ 0 0 −Vspσ Vssσ εsp 0 Vssσ

−Vspσ 0 0 −nymyVspσ Vssσ 0 εsp Vssσ

0 −Vspσ −nymyVspσ 0 0 Vssσ Vssσ εsp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(D2)

where the atomic on-site energy difference between the s and p states is εsp = εs − εp, and we have found that the matrix
elements 〈�A/A′ |Ĥ0|�B/B′ 〉 = −Vppσ and that VAA′ = VBB′ with

VAA′ = 〈�A/B|Ĥ0|�A′/B′ 〉 = n2
lxVppπ − n2

y

(
m2

yVppσ + (
1 − m2

y

)
Vppπ

)
, (D3)

the remaining SK parameters, Vssσ and Vspσ are defined in Table V. The coupling matrix, U , between the |φ〉 ⊗ {↑,↓}
and |χ〉 ⊗ {↑,↓} are provided in Table VI below,where V ∗

ppσ = nymyVppσ , and V ∗
spσ = nymyVspσ , and we have defined u±

1 =
−nlxmysz + (nlxsy ± nysx )mz and u±

2 = −nlxmysz − (nlxsy ∓ nysx )mz, being {sx, sy, sz} the spin Pauli matrices, and so is the 2 × 2
identity matrix. Starting from Eq. (D1) an effective Hamiltonian in real space can be obtained by using the band-folding method
considering the |χ〉 ⊗ {↑,↓} states in perturbation theory,

Heff ≈ Hφ − U H −1
�,s U

† =

⎛⎜⎜⎜⎝
0 Vppσ so + i�R+sx VABso − i�Rs− −i�I sz

Vppσ so − i�R+sx 0 i�I sz VABso + i�Rs+
VABso + i�Rs− −i�I sz 0 Vppσ so − i�R−sx

i�I sz VABso − i�Rs+ Vppσ so + i�R−sx 0

⎞⎟⎟⎟⎠, (D4)
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TABLE VI. Elements of the coupling matrix U . The short notation |�A, ↑↓〉 represent the set {|�A ↑〉, |�A ↓〉}, and similarly for the
other states.

|�A, ↑↓〉 |�A′
, ↑↓〉 |�B,↑↓〉 |�B′

, ↑↓〉 |sA, ↑↓〉 |sA′
, ↑↓〉 |sB, ↑↓〉 |sB′

,↑↓〉
〈φA, ↑↓| iu−

1 ξp V ∗
ppσ so V ∗

ppσ so 0 zso Vspσ so V ∗
spσ so 0

〈φA′
, ↑↓| −V ∗

ppσ so iu+
1 ξp 0 −V ∗

ppσ so −Vspσ so zso 0 −V ∗
spσ so

〈φB, ↑↓| V ∗
ppσ so 0 iu+

2 ξp V ∗
ppσ so V ∗

spσ so 0 zso Vspσ so

〈φB′
, ↑↓| 0 −V ∗

ppσ so −V ∗
ppσ so iu−

2 ξp 0 −V ∗
spσ so −Vspσ so zso

with s± = nlxsy ± nysx, and,

�I = 2nlxmyn2
yVppσ ξp

VAA − Vppσ
, �R± = 2mznyVspσVssσ stξp(1 ± nymy)

(VAA − Vppσ )ε2
sp

(
1 + 4V 2

ssσ

ε2
sp

)
, �R = 2mzVspσVssσ stξp(1 + nymy)

(VAA − Vppσ )ε2
sp

. (D5)

Note that the coupling parameter �I arises due the intrinsic SOC through ξp, whereas the coefficients �R and �R± depend on
both, ξp and z, the latter being proportional to the electric field, which suggests its Rashba-type nature.

APPENDIX E: EFFECTIVE HAMILTONIAN WITH SPIN-ORBIT INTERACTION IN RECIPROCAL SPACE

Once the Fourier transform in k space is perfomed to the expression in Eq. (D4), the following effective Hamiltonian is
obtained,

H (k) =

⎛⎜⎜⎜⎝
0 (Vppσ so + iλR+sx )g(k) VABso f (k) − iλRSxy(k) λI szh∗(k)

(Vppσ so − iλR+sx )g∗(k) 0 −λI szh(k) VABso f ∗(k) − iλRSxy(k)

VABso f ∗(k) + iλRS∗
xy(k) −λI Szh∗(k) 0 (Vppσ so + iλR−sx )g∗(k)

λI szh(k) VABso f (k) + iλRS∗
xy(k) (Vppσ so − iλR−sx )g(k) 0

⎞⎟⎟⎟⎠, (E1)

which is written in the basis {|φA,↑↓〉, |φA′
,↑↓〉, |φB,↑↓〉, |φB′

,↑↓〉}, with Sxy(k) = sx cos θ f (k) − isy sin θ f ′(k), and

λI = 2Vppσ ξp cos θ sin θ sin2 ϕ

VAA − Vppσ
, λR± = 2VssσVspσ stξp cos θ cos ϕ(1 ± cos θ sin ϕ)

(VAA − Vppσ )ε2
sp

(
1 + 4V 2

ssσ

ε2
sp

)
,

λR = 2VspσVssσ stξp cos ϕ(1 + cos θ sin ϕ)

(VAA − Vppσ )ε2
sp

, (E2)

where f (k) and g(k) were defined in Eq. (6), and we have introduced the new spectral functions,

f ′(k) = 2eikyy sin

(
bkx

2

)
, h(k) = 2 sin

(
bkx

2

)
eikya/2. (E3)

Observe that at �-symmetry point the spectral function h(k) vanishes, hence all the off-diagonal matrix elements of (E1) are
identically zero. This leaves a Hamiltonian with a dominant Rashba-SOC and absent intrinsic SOC effects.

1. Low-energy effective Hamiltonian with SOC at the � point

We start by writing the Hamiltonian of Eq. (C10) expanded into the spin basis {|φv2 ↑〉, |φc2 ↑〉, |φv2 ↓〉, |φc2 ↓〉,
|φv1 ↑〉, |φc1 ↑〉, |φv1 ↓〉, |φc1 ↓〉},

H0 =
(

H2 04×4

04×4 H1

)
, Hμ =

(
Hμ J

J∗ Hμ

)
, μ = 1, 2 (E4)

J =
(

I1(k) I2(k)

I ∗
2 (k) −I1(k)

)
, (E5)

having defined

I1(k) = − 1

2
(λR+ − λR−) sin(hky) − 2i sin θλR sin

(
bkx

2

)
cos(yky), (E6)

I2(k) = − 1

2
i(λR+ − λR−) cos(hky) + 2 sin θλR sin

(
bkx

2

)
sin(yky), (E7)
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which, at linear order in kx and ky, simplifies to

I1(k) ≈ −i(λR sin θ )bkx − λR+ − λR−
2

hky I2(k) ≈ −i
λR+ − λR−

2
. (E8)

Hence for the lowest-energy bands (η = 1) the corresponding effective k · p-type Hamiltonian [H1(k) → H (k)] that includes
the Rashba SOC around the � point reduces to

H (k) �
((

αk2
x + βk2

y − 
)
so + λRxkxsy − λRykysx ivykyso − iRosx

−ivykyso + iRosx
(−αk2

x − βk2
y + 

)
so − λRxkxsy + λRykysx

)
, (E9)

where we have defined the constants,

λRx = λRb sin θ � 4b1ζ0(sin θ )2, λRy = h(λR+ − λR−)

2
� 2b2ζ0(cos θ sin ϕ)2,

Ro = λR+ − λR−
2

= λRy

b2 sin ϕ
. (E10)

with

ζ0 = zξpVssσVspσ cos ϕ

(VAA − Vppσ )(εs − εp)2
. (E11)

Expression (E9) corresponds to the Hamiltonian provided compactly in Eq. (19). The eigenenergies of (E9) yields,

E μ
σ (k) = μ

√√√√√v2k2
y + �2

k + κ2 + 2
R0

+ 2σ

√√√√
λ2

Rx
k2

x

(
�2

k + 2
R0

) + λ2
Ry

k2
y

(
�k + vR0

λRy

)2

, (E12)

with �k = αk2
x + βk2

y − , and κ2 = λ2
Rx

k2
x + λ2

Ry
k2

y , (E13)

where μ = ± labels the conduction/valence band and σ = ± its spin state. In the limit Ro → 0, the band structure (E12)
reduces to Eq. (23).

2. Low-energy effective Hamiltonian with SOC at the S point

At the vicinity of the S point we have k = ks + q, being q = (π/b, π/a). At this point, is the intrinsic SOC that dominates
over the Rashba-SOC. Hence we can safely preserve only the intrinsic type of SOC matrix elements in (E1). That is, those matrix
elements which are proportional to λI . Bearing this in mind, afterwards we can conveniently write the resulting Hamiltonian in
proper basis that renders the Hamiltonian block diagonal in such basis, leading to the Hamiltonian,

H (k) = H ′(k)so + HI (k), (E14)

written in the basis {(|φv2〉, |φc2〉, |φv1〉, |φc1〉)} ⊗ |↑ , ↓〉, where H ′(k) is given in (C10), and the intrinsic spin-orbit term reads

HI (k) =
(

H↑
vc 0

0 H↓
vc

)
, (E15)

with

H↑
vc =

⎛⎜⎜⎜⎜⎝
0 −λI Re[h(k)] −iλI Im[h(k)] 0

λI Re[h(k)] 0 0 −iλI Im[h(k)]

iλI Im[h(k)] 0 0 λI Re[h(k)]

0 iλI Im[h(k)] λIRe[h(k)] 0

⎞⎟⎟⎟⎟⎠, and H↓
vc = −H↑

vc. (E16)

Next, by evaluating (E14) in k = ks + q, and expanding the Hamiltonian around ks while considering only the dominant
terms in HI (k), the eigenvalues of (E14) leads to the band structure at the S-symmetry point reported in (32), in which we have
replaced there ks → k to simplify the notation.
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