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Description of molecular chirality and its analysis with high harmonic generation
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To clarify the microscopic origin of chirality-induced optical effect, we develop an analytical method that
extracts the chiral part of the Hamiltonian of molecular electronic states. We demonstrate this method in
a model chiral molecule consisting of two helically stacked N-sided regular polygons, and compare it with
numerical calculation for chiral discrimination via high harmonic generation (HHG) of the same molecule. The
discrimination signal here is the Kuhn g factor, the difference between the harmonic intensity from the bicircular
laser field and that from its reflected laser field normalized by their average. The g factor is a pseudoscalar
quantity that reflects the chirality of the molecule. As a result, we find that the g factor becomes large over a
wide range of harmonic orders making HHG suitable for chiral discrimination. We further find that to increase
the difference of harmonic intensity from the above two fields, the unnormalized g factor, the increase of capacity
to generate the longitudinal dipole moment is more advantageous than maximizing the transverse-to-longitudinal
conversion efficiency via the optimization of molecular chirality. We speculate this criteria may be extended to
other optical and current-induced processes relevant to the chiral molecules and materials.
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I. INTRODUCTION

Chirality, a structural property of an object that lacks re-
flection and inversion symmetries, is ubiquitous in nature
from single molecules, molecular assemblies, and crystals,
to living organisms [1]. Much effort has been devoted to-
ward understanding the functionality inherent in the chiral
systems. In crystals, electronic and phononic band splittings
are originated from the chiral symmetry breaking [2–8], which
has invigorated possibilities in transporting and converting
their angular momentums (AMs) [9–11]. In particular, prop-
erties of the AM in the chiral systems and its relevance to
chirality-induced spin selectivity (CISS) [12–15] effect have
been increasingly focused on. Thus, as well as elucidating
the characteristics of chiral materials and establishing efficient
means of asymmetric synthesis, discriminating the chirality is
also the indispensable problem.

Recent studies have demonstrated that the chirality in
quantum systems can be represented as the electric toroidal
monopole (ETM) [16–19]. This is antisymmetric with re-
spect to the inversion and reflection and has the time-reversal
symmetry, and thus is a generalization of the definition of
the chirality by Kelvin and Barron [20]. Because also the
Hamiltonian of chiral systems should include the ETM, we
can formally separate it into the symmetric and antisymmetric
part. The antisymmetric part is defined by the subtraction
of the Hamiltonians with the opposite chiralities, which be-
longs to the different Hilbert spaces composed of the different
electronic basis set. Then, its direct evaluation has a major
difficulty. One of the main results of this work is that we
develop a method to enable the direct subtraction of the matrix
elements, and thus the identification of the chirality.

Using the above identification method, we consider the
chiral discrimination signal by light as one example. The
chiral systems asymmetrically interact with the chiral light,

which can be utilized to optically discriminate the chirality.
In circular dichroism (CD), the differential absorption spec-
trum between the clockwise and the counterclockwise circular
polarization of light, which correspond to the spin angular mo-
mentum (SAM), is measured. The measured spectrum is the
pseudoscalar quantity, i.e., each enantiomer has the opposite
sign from the other. The ability to extract the pseudoscalar
(more generally the pseudotensor) quantity can be a clear
manifestation of the chiral discrimination [21,22]. It is natural
to explore criteria from a microscopic point of view on how to
extract a large pseudoscalar quantity.

Here, we focus on a nonlinear optical process called high
harmonic generation (HHG), which is the light emission with
frequencies multiple integers of the injected one. As a con-
sequence of the SAM conservation, the atoms and molecules
cannot emit the high harmonics from the light beams with the
single circular polarization and requires the bicircular field,
the combination of both circular polarizing fields [23–25].
This bicircular field can break the reflection symmetry, and
thus can be chiral. Then, the chiral discriminating HHGs
using the bicircular field have been studied [26–32], wherein
the HHG spectrum measurements have demonstrated that its
Kuhn g factor is pseudoscalar. We demonstrate our developed
identification method in a model chiral molecule consisting
of two helically stacked N-sided regular polygons, and com-
pare it with numerical calculation within so-called three-step
model [33,34]. It is found that the increase of the longitudi-
nal dipole moment is more advantageous than maximizing
the transverse-to-longitudinal conversion efficiency to obtain
the large difference between the harmonic intensity from the
bicircular laser field and that from its reflected laser field.

The remaining part of this paper is organized as follows. In
Sec. II, we introduce the model chiral molecule and its anti-
symmetric part is deduced in Sec. III. In Sec. IV, we present
the theory of the HHG based on the three-step model and
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FIG. 1. (a) Illustration of the model chiral molecule that consists
of two N = 3 regular polygons. The gray and green lines display the
intralayer and interlayer bonds. (b) Top view of our model. Regular
polygons are helically stacked with the twist angle β.

prove that the Kuhn g factor becomes pseudoscalar using the
symmetry argument. In Sec. V, numerical results of the chiral
discriminating HHGs are presented and its correspondence to
the chiral part of the Hamiltonian are analyzed. Section VI is
devoted to the concluding remarks.

II. MODEL CHIRAL MOLECULE

As a model chiral system, we consider two helically
stacked N-sided regular polygon molecules (see Fig. 1 for
N = 3) characterized by the radius ρ, the interlayer dis-
tance h, and the twist angle β. The position of the jth
atom ( j = 1, . . . , N) in the kth layer (k = 1, 2) is written as
Rk j (β ) = [ρ cos 2θk j, ρ sin 2θk j, (k − 1)h]� with θk j = (k −
1)β/2 + ( j − 1)α/2 and α = 2π/N being the rotation angle.
To break the reflection symmetry, the twist angle has to satisfy
0 < |β| < α/2. Chirality reversal corresponds to the inversion
of the twist angle, β → −β, under the action of the reflection
operator σ̂ with respect to the xz plane, σ̂Rk j (β ) = Rk j (−β ).

Based on the Slater-Koster method [35,36], we construct
the tight-binding Hamiltonian Ĥ (β ) using the electronic
basis states {|φν

k j (β )〉} that consist of 2s (ν = 0), 2pz

(ν = z), and 2p± = 2px ± i2py (ν = ±) orbitals from each
atom, where |φν

k j (β )〉 represents the orbital ν centered at
Rk j (β ), 〈r|φν

k j (β )〉 = φν[r − Rk j (β )]. We consider the elec-
tronic bonds between the adjacent atoms in the same layer
(intralayer) and the ones with the same j in the different
layers (interlayer). The latter bond is necessary to endow the
chirality with the electronic state, which is characterized by
the helical angle γ = arctan[h/2ρ sin(β/2)] appeared in the
form of cos γ and sin γ . The former changes its sign under the
chirality reversal, while the latter is unchanged. In the limit
of h/ρ → ∞ or β → ±0, the molecule becomes achiral as
the former vanishes, cos γ → 0. For γ = 0 with h = 0, the
molecule becomes the two-dimensional system that cannot
be chiral [18]. The Slater-Koster overlaps for the intralayer
bond are denoted by V s

λν (s = σ and π for parallel with and
perpendicular to the bonding), which is parametrized by V ,
and those for the interlayer bond are denoted by W s

λν , which is
parametrized by W . For the constructed Hamiltonian and its
detailed derivation, see Appendix A.

The ground state |φGS(β )〉 is the eigenstate of Ĥ (β ), and
hence, belong to the irreducible representation (IRREP) of the
point group CN , because Ĥ (β ) possess the N-fold rotational

symmetry. Each eigenstate |φm(β )〉 is classified by its rota-
tional quantum number or the pseudo AM [9,37], m, through
the relation ĈN |φm(β )〉 = e−imα|φm(β )〉 with ĈN being the
N-fold rotational operator. For N-odd and even cases, the
pseudo-AM takes the value m = 0,±1, . . . ,±(N − 1)/2 and
m = 0,±1, . . . ,±(N − 1)/2, N/2, respectively. The time-
reversal symmetry enforces the degeneracy of |φm(β )〉
and |φ−m(β )〉. Thus, the ground state becomes |φGS(β )〉 =
[|φm(β )〉 + |φ−m(β )〉]/√2.

III. DESCRIPTION OF MOLECULAR CHIRALITY

To discuss the correspondence between the molecular chi-
rality and the Kuhn g factor, we extract the antisymmetric part
of the Hamiltonian with respect to the reflection operation.
This part is formally written as Ĝ0(β ) = [Ĥ (β ) − Ĥ (−β )]/2,
which satisfies σ̂ Ĝ0(β )σ̂ † = −Ĝ0(β ). Because the matrix el-
ement 〈φλ

ki(β
′)|Ĥ (β )|φν

l j (β
′)〉 is well defined only for the

β = β ′ cases, the direct subtraction of the Hamiltonians with
the opposite β requires the transformation from |φν

k j (0)〉 to
|φν

k j (±β )〉. For that purpose, we first translate the orbital cen-
ter from Rk j (β ) to Rk j (0) as

φν[r − Rk j (0)] = exp

[
− i

h̄
p̂ · [Rk j (0) − Rk j (β )]

]

× φν[r − Rk j (β )]

= T̂k j (β )φν[r − Rk j (β )], (1)

where p̂ = −ih̄∇ is the momentum operator. This procedure
is similar to pullback or push forward mapping in the Lie
derivative [38]. Expressing the orbital as the product of the
radial distribution and the spherical harmonics, the achiral
basis with β = 0 can be written as a linear combination of
the chiral basis states,∣∣φν

k j (0)
〉 = T̂k j (β )

∣∣φν
k j (β )

〉 =
∑
ν ′

gνν ′
k j (β )

∣∣φν ′
k j (β )

〉
(2)

with gνν ′
k j (β ) ∈ C (see Appendix B for details). This allows us

to expand the Hamiltonians with the achiral basis states as
Ĥ (β ) = ∑

kli jλν〈φλ
ki(0)|Ĥ (β )|φν

l j (0)〉|φλ
ki(0)〉〈φν

l j (0)| with〈
φλ

ki(0)
∣∣Ĥ (β )

∣∣φν
l j (0)

〉
=

∑
λ′ν ′

(
gλλ′

ki (β )
)∗

gνν ′
l j (β )

〈
φλ′

ki (β )
∣∣Ĥ (β )

∣∣φν ′
l j (β )

〉
. (3)

This procedure also applies to Ĥ (−β ), and hence, allows us
to directly evaluate the antisymmetric term Ĝ0(β ) by simply
subtracting the matrix elements. For the small β, Ĝ0(β ) is
decomposed into two terms as

Ĝ0(β ) = Ĝcoup
0 (β ) + Ĝpos

0 (β ) + O(β2), (4)

where Ĝcoup
0 (β ) depends on β from cos γ in the interlayer

bonds and Ĝpos
0 (β ) depends on β from the atomic posi-

tion itself with the non-chiral interlayer coupling elements
described by sin γ . The former is expressed as

〈
φλ

2 j (0)
∣∣Ĝcoup

0 (β )
∣∣φν

1 j (0)
〉 = i√

2

ρβ

h

(
O M

−M† O

)
, (5)

085308-2



DESCRIPTION OF MOLECULAR CHIRALITY AND ITS … PHYSICAL REVIEW B 110, 085308 (2024)

where ν is taken in order {0, z,+,−}. The 2 × 2 matrix M
is defined by M11 = −M12 = W σ

sp and M21 = −M22 = W σ
pp −

W π
pp. Thus, the chirality appears as the imaginary hopping,

which is proportional to the radius ρ and inversely to the
interlayer distance h. This feature is consistent with the fact
that ρ/h corresponds to the ratio between the curvature and
the torsion in helices. The latter is expressed as

〈
φλ

2 j (0)
∣∣Ĝpos

0 (β )
∣∣φν

1 j (0)
〉 = ζρβ√

2

⎛
⎜⎜⎜⎝

0 0 u1 u∗
1

0 0 −u1 −u∗
1

−u∗
2 0 0 0

u2 0 0 0

⎞
⎟⎟⎟⎠,

(6)

with u1 = −ie−i( j−1)αW σ
ss /

√
3, u2 = √

3e−i( j−1)αW π
pp/2, and ζ

being the exponent of the radial component of the orbitals.
The derivation of Eqs. (5) and (6) is one of the main results
of this work. These expressions are identified solely from the
electronic state of the molecule, and help us to understand how
molecular chirality causes various chirality-induced effects.
In this work, we focus on the chirality-induced optical effect
in the HHG introduced in the next section and analyze its
correspondence with Eqs. (5) and (6) in Sec. V.

IV. CHIRAL DISCRIMINATING
HIGH-HARMONIC GENERATION

A. Three-step model

Typical spectra and behaviors of HHG for molecular sys-
tems can be successfully explained by the three-step model
[33,34]: The electron is first tunnel ionized, which is further
accelerated by the laser field. Finally, the electron recombines
with its parent ion emitting the high harmonics. The inten-
sity of the nth harmonics is given by In = (nω)4|μ(nω)|2 =
(nω)4| ∫ ∞

0 dt μ(t )einωt |2 with μ being the electric dipole mo-
ment. In the quantum mechanical formulation of the three-step
model, the electron-photon interaction is treated within the
electric dipole approximation. Furthermore, assuming that
only the single active electron participates in the HHG pro-
cess, the depletion of the ground state can be neglected, and
the nuclear positions are fixed (the frozen nuclear approxima-
tion), the electric dipole moment at time t is represented as
[34,39,40]

μ(t ) = Im
∫ t

0
dτ C(τ )d∗[pst − eA(t )]e− i

h̄ S(pst,t,t−τ )

× d[pst − eA(t − τ )] · E(t − τ ), (7)

with C(τ ) = 2
h̄ ( 2πme h̄

η+iτ )3/2, the vector potential A, the electric
field E = −∂t A, the electron charge e, and the electron mass
me. Here, η and pst = ∫ t

t−τ
dt ′ eA(t ′)/τ denote the regular-

ization constant and the stationary momentum, respectively,
both of which come from the saddle point approximation
in the momentum space integral. During the acceleration
process, the strong field approximation is invoked, wherein
the interaction between the ionized electron and the nuclei
is neglected, yielding the propagator described by the ac-
tion S(p, t, t − τ ) = ∫ t

t−τ
dt ′{[p − eA(t ′)]2/2me + Ip} with Ip

being the ionization potential. The ionization amplitude is

defined as d(p) = 〈p|er̂|φGS〉, where r̂ is the electron position
operator. In this formulation, the chiral effect is contained in
d and d∗ through the dependence on |φGS(β )〉. In our model,
where the ground state is given by |φGS(β )〉 = [|φm(β )〉 +
|φ−m(β )〉]/√2, μ(t ) is a sum of the IRREP-resolved electric
dipoles, μ(t ) = [μm(t ) + μ−m(t )]/2, where μm(t ) is obtained
by replacing |φGS(β )〉 in Eq. (7) with |φm(β )〉, because the
ionized electron returns to its original state or orbital, and
hence, the mixing of the states with the different m can be
neglected.

B. Pseudoscalar property of HHG signal

The chiral discrimination is quantified by the Kuhn g factor
[41], which is generalized to the HHG signals as defined
below. To prove that the Kuhn g factor is a pseudoscalar
quantity, we assume that the molecular rotational axis is fixed
and parallel with the propagation direction of the light beams.
This assumption affects the signals quantitatively, but is not
the prerequisite for the pseudoscalar nature as exemplified
by the numerical [30] and experimental [26,27] studies for
randomly oriented molecules. Then, the vector potential for
the bicircular field is given by

A(t ) = A+e+e−ir+ωt + A−e−e−ir−ωt + c.c., (8)

where e± = 1√
2
(1,±i, 0)� are the polarization vectors and

A± is the corresponding amplitudes with the fundamen-
tal frequency ω and r± ∈ N. This is transformed under
the reflection operation to Ā(t ) = σ̂A(t ) obtained by inter-
changing the polarization vectors, e± → e∓. In the cases of
A+ �= A− or r+ �= r−, the inequality Ā(t ) �= A(t ) holds, and
thus, the bicircular field is chiral. The reflection operation
also acts as σ̂ |φm(β )〉 ≡ |φ−m(−β )〉, which straightforwardly
leads to μ(nω, A, β ) = σ̂μ(nω, Ā,−β ), and thus, In(A, β ) =
In(Ā,−β ). Now, it is clear that the Kuhn g factor

g(β ) := 2
In(A, β ) − In(Ā, β )

In(A, β ) + In(Ā, β )
, (9)

is pseudoscalar, g(β ) = −g(−β ), for all harmonic orders n.
We also introduce the unnormalized g factor, which we call
g̃ factor, as g̃(β ) := In(A, β ) − In(Ā, β ) to discuss the cor-
respondence between the molecular chirality and the HHG
signal. The g̃ factor is also the pseudoscalar.

V. RESULTS

To calculate the electric dipole moment Eq. (7), we per-
formed the numerical integration using the Gauss-Kronrod
quadrature method [42] with the quad precision arithmetics.
Throughout the calculation, we set to ωA+ = 3 × 1010 V/m,
ωA− = 4 × 1010 V/m, r+ = 1, r− = 2, and ω = 1 eV for the
laser field, and ρ = 0.256 nm, V = 0.5 eV, W = 0.2 eV, and
Ip = 14 eV for the chiral molecule. Hereafter, we focus on the
N = 3 with m = ±1 case only, but the qualitative consistency
was also checked for the N = 4 with m = ±1 and the N = 6
with m = ±1 and ±2 cases.

Figure 2(a) depicts the g factor for each enantiomer of
our model chiral molecule. The pseudoscalar property is con-
firmed for all harmonic orders n, because the g factor is
reversed by inverting the twist angle, β. The g factor has a
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FIG. 2. (a) Calculated g factors for β = 0.1 α (blue line) and β =
−0.1 α (orange line). Each enantiomer is interconverted to the other
by inverting β. (b) Twist angle, β, dependence of the g factor. The
interlayer distance is fixed to h = 0.6 nm.

value in −2 � g � 2 and its increasing is advantageous for
the chiral discrimination. In Fig. 2(a), this value can exceeds
1.0, which is much larger than typical values of the CD.
This is because the CD is contributed from the magnetic
dipole moment in the light-matter interaction, the magnitude
of which is sufficiently smaller than that of the electric dipole
moment. At this point, we note that the harmonic intensity
itself becomes smaller for the higher harmonic orders and
the largeness of the g factor comes from the denominator
(normalization) of Eq. (9). Thus, the effectiveness of the HHG
for chiral discrimination refers to using the g factor for the
harmonic orders measurable with high accuracy.

Next, we examine the correspondence between the molec-
ular chirality of Eqs. (5), (6) and the g factor. Hereafter, we
focus on the small β region, where the Hamiltonian is approx-
imated as Ĥ (β ) ≈ Ĥ (0) + Ĝcoup

0 (β ) + Ĝpos
0 (β ). In Fig. 2(b),

we present the g factors for the various values of β, where the
g factor monotonically increases as β is increased. Because
the twist angle does not change the molecular size, which is
the another element to affect the signal, this feature can be
attributed to the linear β dependence of Ĝcoup

0 (β ) and Ĝpos
0 (β ),

and thus, the increase of the molecular chirality.
To analyze the correspondence without consideration of

the effects from Ĝpos
0 (β ), we consider the h dependence of

the chiral discriminating signals, because Ĝpos
0 (β ) has no h

dependence. To remove further the contribution from the sym-
metric part of the Hamiltonian of the denominator in Eq. (8),
we present the g̃ factors for various values of h in Fig. 3(a),
where the peak intensities are a monotonic increasing function
of h. For the peaks of n = 28 and 34, we decompose this into
|μx(nω)|2 + |μy(nω)|2 and |μz(nω)|2 depicted in Fig. 3(b),
where the x + y component is negligibly small, and thus, the z
component dominantly contributes to the g̃ factor. We further
found that this z component scales quadratically with h. To
unveil the origin of this, the ionization amplitude d(p) is
expanded with the basis states as

d(p) =
∑
k jν

bν
k je

−ip·Rk j/h̄(Rk j + ih̄∂p)φ̃ν (p), (10)
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FIG. 3. (a) Calculated g̃ factors for various values of the inter-
layer distance, h. (b) The g̃ factor decomposition into the x + y
component, |μx (nω)|2 + |μy(nω)|2, and the z component, |μz(nω)|2,
for the harmonic orders n = 28 and 34. Twist angle is fixed to
β = 0.005 α.

where bν
k j is the linear coefficient for the basis |φν

k j〉 and

φ̃ν (p) is the momentum representation of φν . Eqs. (7) and (10)
shows that the quadratic dependence is originated from the z
component, (Rk j )z = (k − 1)h, of the first term of Eq. (10) for
the recombination process, d∗, and not the ionization process.
This is because the ionization amplitude emerges as the form
d · E and does not depend on this term due to no z component
of E(τ ). Thus, the chirality-induced optical process in the
HHG can be interpreted as the conversion from the trans-
verse dipole moment generated in the ionization process to
the longitudinal one at the recombination. Because increasing
the interlayer distance, h, decreases Ĝcoup

0 (β ), simultaneously
increasing the molecular size, this result also indicates that
the enhancement of the electric dipole moment by enlarg-
ing the molecular size contributes dominantly to the g̃ factor
rather than increasing the molecular chirality, Ĝcoup

0 (β ). This
may be because the z component of Eq. (10) is proportional
to h and unbounded, whereas the chiral contributions from
bν

k j and Rk j are bounded by the normalization condition of
the wave function and the helical angle γ appeared as sin γ

and cos γ , respectively. What should be noted here is that
this z component is contributed only from the 2pz orbitals,
which are involved only in the chiral cases. Indeed, in the
achiral case with β = 0, the 2pz orbital belong to the dif-
ferent IRREP from the other orbitals, and thus, they are
orthogonal.

VI. CONCLUDING REMARKS

In this study, we have developed the analytical method
that extracts the antisymmetric part of the Hamiltonian that
describes the chirality. Our approach is based on the trans-
lation of the orbital center of each electronic basis from the
achiral system to the chiral system. This allows us to ex-
pand the chiral Hamiltonians with the achiral basis states,
enabling the direct subtraction of the matrix elements of the
different chirality. As a demonstration of this method, we
consider the model chiral molecule that consists of two he-
lically stacked N-sided regular polygons and investigate the
correspondence between the chiral part of our model and the
Kuhn g factor in HHG. Numerical results shows that the g
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factor is the pseudoscalar quantity reflecting the chirality of
the molecule. Calculated values are much larger than the typ-
ical values of the CD and slightly larger than that reported in
Ref. [27] of the gaseous molecules. Extension of our result to
the randomly oriented molecules may give the quantitatively
consistent result with the experiments. Numerical results also
reveal that the enhancement of the electric dipole moment
dominantly contributes to increasing the difference of the har-
monic intensities even when this enhancement is accompanied
by reducing the molecular chirality. Therefore, we speculate
that the above criteria may be generalized to interconversions
between polar and axial quantities: This interconversion is
induced by the chirality and works efficiently for the strong
chiral systems. However, to obtain the large axial quantity
from the polar one, increasing capacity to generate the ax-
ial quantity can be effective (and vice versa). As the CD
monotonically increases with the molecular length [43], we
expect that this speculation is valid to various optical pro-
cesses. Furthermore, this may also be relevant to the effects
induced by the metal-molecule interaction with or without the
charge injection in the chiral systems, especially the CISS,
wherein the interrelation between the charge redistribution
and the formation of the antiparallel spin pair [44–46] is
hypothesized as one of the keys to understand the CISS
mechanism [15,47].

Our method developed in this paper is applicable to real
chiral molecules, helices, and crystals with the values of their
orbital overlap integrals. Generalization to the systems with
the spin-orbit, electron-phonon, and electron-photon interac-
tions will be of great interest in elucidating the microscopic
insight into the AM exchange among them [48–50], which is
left for future studies.
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APPENDIX A: CONSTRUCTION
OF TIGHT-BINDING HAMILTONIAN

In this Appendix, the tight-binding Hamiltonian of the
model chiral molecule introduced in Sec. II is constructed
using the Slater-Koster method following Refs. [35,36]. For
notational simplicity, we omit β to specify the chirality from
the description.

The matrix element of the Hamiltonian is written as

Hλν
ki,l j := 〈

φλ
ki

∣∣Ĥ ∣∣φν
l j

〉 = Eλν
ki,l j exp

(
iξλν

ki,l j

)
, (A1)

where Eλν
ki,l j is the overlap integral and ξλν

ki,l j is the phase factor
that is determined to maintain the molecular symmetry. Let
n̂(νki ) denote the unit vector along the orbital |φν

ki〉. Then, the
overlap integral can be expressed as

Eλν
ki,l j = 〈n̂(λki ), n̂(νl j )〉V π

λν

+ 〈R̂l j,ki, n̂(λki )〉〈R̂l j,ki, n̂(νl j )〉
(
V σ

λν − V π
λν

)
, (A2)

where V σ
λν and V π

λν are the Slater-Koster overlaps and Rl j,ki =
Rl j − Rki is the bond vector. The normalized bond vector,

R̂l j,ki ≡ Rl j,ki/|Rl j,ki|, is given by

R̂l j,ki = − sin(θl j + θki ) cos γl j,kiex

+ cos(θl j + θki ) cos γl j,kiey

+ sin γl j,kiez (A3)

with θki = [(k − 1)β + (i − 1)α]/2, θl j,ki = θl j − θki, and
γl j,ki = arctan[(l − k)h/2ρ sin θl j,ki]. With these notations,
n̂(νki ) is written as n̂(ski ) = R̂l j,ki, n̂(sl j ) = −R̂l j,ki, n̂(xki ) =
cos 2θkiex + sin 2θkiey, n̂(yki ) = − sin 2θkiex + cos 2θkiey, and
n̂(zki ) = ez. Hence, we can obtain the analytical expressions
of the overlap integrals, Eλν

ki,l j , by directly evaluating Eq. (A2).
The details of the calculation are given in Ref. [36]. Finally,
we can obtain the matrix elements for the intralayer bond as

Hss
k j,k j±1 = −V σ

ss (A4)

Hzz
k jk j±1 = V π

pp (A5)

Hzs
k j,k j±1 = Hsz

k j,k j±1 = 0 (A6)

Hsη
k j,k j±1 = −Hηs

k j,k j±1 = ± iη√
2

e±iηπ/2V σ
sp (A7)

Hzη
k j,k j±1 = Hηz

k j,k j±1 = 0 (A8)

Hηη

k j,k j±1 = 1
2 e∓iηα

(
V σ

pp + V π
pp

)
(A9)

Hηη̄

k j,k j±1 = − 1
2

(
V σ

pp − V π
pp

)
(A10)

and for the interlayer bond as

Hss
k j,k±1 j = −W σ

ss (A11)

Hzz
k j,k±1 j = W π

pp + sin2 γ
(
W σ

pp − W π
pp

)
(A12)

Hzs
k j,k±1 j = Hsz

k j,k±1 j = ± sin γW σ
sp (A13)

Hsη
k j,k±1 j = (

Hηs
k j,k±1 j

)∗ = ± iη√
2

ei( j−1)ηα cos γW σ
sp (A14)

Hzη
k j,k±1 j = (

Hηz
k j,k±1 j

)∗

= iη

2
√

2
ei( j−1)ηα sin 2γ

(
W σ

pp − W π
pp

)
(A15)

Hηη

k j,k±1 j = W π
pp + 1

2 cos2 γ
(
W σ

pp − W π
pp

)
(A16)

Hηη̄

k j,k±1 j = − 1
2 cos2 γ

(
W σ

pp − W π
pp

)
. (A17)

In the above, the unknown parameters are the Slater-Koster
overlap constants. To determine these, we take the carbon
atom as a reference [35,36] and set to V σ

ss = −1.40 V , V σ
sp =

1.84V , V σ
pp = 3.24V , V π

pp = −0.81V , and W σ
ss = −1.40 W ,

W σ
sp = 1.84W , W σ

pp = 3.24W , W π
pp = −0.81W .

APPENDIX B: EXTRACTION OF THE ANTISYMMETRIC
PART OF THE HAMILTONIAN

In this Appendix, we present a method to evaluate
the antisymmetric part of the Hamilonian, and identify
the key parameters describing the chirality of the system.
The Hamiltonian is separated formally into the symmet-
ric and antisymmetric terms with respect to the reflection
operation as

Ĥ (β ) = Q̂0(β ) + Ĝ0(β ), (B1)
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where Q̂0(β ) = [Ĥ (β ) + Ĥ (−β )]/2 and Ĝ0(β ) = [Ĥ (β ) −
Ĥ (−β )]/2 satisfy σ̂ Q̂0(β )σ̂ † = Q̂0(β ) and σ̂ Ĝ0(β )σ̂ † =
−Ĝ0(β ), respectively. The antisymmetric term Ĝ0 is defined
as the subtraction of the Hamiltonians, each of which has the
different chirality and is expanded in terms of the chirality-
dependent electronic basis states. Because the vanishing twist
angle, β = 0, corresponds to the achiral system, and using
the fact that the chirality enters as the atomic positions in the
orbital center, each basis is related to the achiral basis as

φν[r − Rk j (0)] = exp

(
− i

h̄
p̂ · [Rk j (0) − Rk j (β )]

)

× φν[r − Rk j (β )]

= T̂k j (β )φν[r − Rk j (β )], (B2)

where p̂ = −ih̄∇ is the momentum operator. The exponent is
expressed as

− i

h̄
p̂ · [Rk j (0) − Rk j (β )]

= iρ sin

(
k − 1

2
β

)
[eiκk j (∂x − i∂y) − e−iκk j (∂x + i∂y)]

(B3)

with κk j = (k − 1)β/2 + ( j − 1)α. Because the nuclei are
fixed, the differential operator for r is equivalent to that for
r′ = r − Rk j (β ) = (x′, y′, z′)�, ∂a = ∂a′ (a = x, y, z). By ex-
pressing the orbitals as φν (r′) = Rn(r′)Y m

l (θ ′, ϕ′), where Rn

and Y m
l are the radial distributions and the spherical harmonics

with n, l, m being the quantum number corresponding to the
orbital ν, the differential operator acts as

(∂x′ ± i∂y′ )φν = e±iϕ′
[

sin θ ′Y m
l ∂r′Rn

+ Rn

r′

(
cos θ ′∂θ ′ ± i

1

sin θ ′ ∂ϕ′

)
Y m

l

]
. (B4)

Assuming that the Hamiltonian is spanned by the 2s, 2pz, and
2p± orbitals, and hence, the contribution from the other is neg-
ligibly small, the action of the differential operator becomes

(∂x ± i∂y)φ0(r′) = −
√

2

3
ζφ±(r′) (B5)

(∂x ± i∂y)φz(r′) = 0 (B6)

(∂x ± i∂y)φ±(r′) = 0 (B7)

(∂x ± i∂y)φ∓(r′) = −
√

3

2
ζφ0(r′), (B8)

with ζ being the exponent of the radial distribution, Rn(r) ∝
rn−1e−ζ r .

What is necessary is to represent the action of T̂k j (β ) on
the orbital space {φν (r′)}ν , namely, to determine the coef-
ficients that satisfies T̂k j (β )φν (r′) = ∑

ν ′ gνν ′
k j (β )φν ′

(r′) with

gνν ′
k j (β ) ∈ C. For that purpose, the eigenstates of the operator

i[eiκk j (∂x − i∂y) − e−iκk j (∂x + i∂y)] as the linear coupling of
φ′ = [φ0(r′), φ+(r′), φ−(r′)]� needs to be constructed. The
orbital φz(r′) does not couple to the other orbital and itself
forms the eigenstate. From Eq. (B8), the action of the above

operator is written as

i[eiκk j (∂x − i∂y) − e−iκk j (∂x + i∂y)]φ′

= −
√

2

3
ζ

⎛
⎜⎝

0 −ie−iκk j ieiκk j

3
2 ieiκk j 0 0

− 3
2 ie−iκk j 0 0

⎞
⎟⎠φ′. (B9)

Hence, we have to diagonalize the matrix in the right-hand
side of Eq. (B9). This can be straightforwardly done, resulting
to the eigenvalues ε0 = 0 and ε± = ∓√

2ζ with the corre-
sponding eigenstates

ψ0 = 1√
2

(eiκk j φ+ + e−iκk j φ−), (B10)

ψ± = ∓i

√
2

5
φ0 +

√
3

10
(eiκk j φ+ − e−iκk j φ−), (B11)

respectively. Inversely, each orbital can be expressed in terms
of the eigenstates as

φ0 =
√

5

8
i(ψ+ − ψ−) (B12)

φ± = e∓iκk j

[
1√
2
ψ0 ±

√
5

24
(ψ+ + ψ−)

]
. (B13)

Using these results, the action of T̂k j (β ) on the orbitals φ =
[φ0(r′), φz(r′), φ+(r′), φ−(r′)]� is calculated and summarized
as T̂k j (β )φ = gk j (β )φ with

gk j (β )

=

⎛
⎜⎜⎜⎜⎜⎝

ck 0 −
√

3
2 skeiκk j

√
3

2 ske−iκk j

0 1 0 0
i√
3
ske−iκk j 0 1+ck

2
1−ck

2 e−i2κk j

− i√
3
skeiκk j 0 1−ck

2 ei2κk j 1+ck
2

⎞
⎟⎟⎟⎟⎟⎠ (B14)

with sk = sinh τk , ck = cosh τk , and τk = √
2ζρ sin( k−1

2 β ).
Now, let us calculate the antisymmetric part of the Hamil-

tonian, Ĝ0(β ) = [Ĥ (β ) − Ĥ (−β )]/2 expanded in terms of
the achiral basis states. The matrix element is given by〈

φλ
ki(0)

∣∣Ĝ0(β )
∣∣φν

l j (0)
〉

= 1

2

∑
λ′ν ′

[[
gλλ′

ki (β )
]∗

gνν ′
l j (β )

〈
φλ′

ki (β )
∣∣Ĥ (β )

∣∣φν ′
l j (β )

〉
− [

gλλ′
ki (−β )

]∗
gνν ′

l j (−β )
〈
φλ′

ki (−β )
∣∣Ĥ (−β )

∣∣φν ′
l j (−β )

〉]
.

(B15)

Using Eq. (B14), the right-hand side of the above equation can
be calculated, which has the matrix form in the orbital space〈

φλ
2 j (0)

∣∣Ĝ0(β )
∣∣φν

1 j (0)
〉

=

⎛
⎜⎜⎜⎝

f1 0 f3 f ∗
3

f2 0 f4 f ∗
4

f5 + f6 f7 f8 − f ∗
8 + f9

f ∗
5 − f ∗

6 f ∗
7 − f8 + f ∗

9 f ∗
8

⎞
⎟⎟⎟⎠, (B16)
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where its elements are defined as

f1 = −i

√
3

2
Im (a1)W σ

sp (B17)

f2 = −i

√
3

2
Im (a1) sin γ

(
W σ

pp − W π
pp

)
(B18)

f3 = − i√
3

a2W
σ

ss + i√
2

a3W
σ

sp (B19)

f4 = i√
3

a2 sin γW σ
ss + i√

2
a3 sin γ

(
W σ

pp − W π
pp

)
(B20)

f5 = − i√
2

cosh τ cos γW σ
sp (B21)

f6 = −
√

3

2

(
a∗

2W π
pp + Re (a2) cos2 γ

(
W σ

pp − W π
pp

))
(B22)

f7 = − i√
2

sin γ cos γ
(
W σ

pp − W π
pp

)
(B23)

f8 = i√
6

a1W
σ

sp − i

2
a4 cos2 γ

(
W σ

pp − W π
pp

)
(B24)

f9 = −ia∗
4W π

pp (B25)

with

a1 = e−i( j−1)α sinh τ sin
β

2
cos γ (B26)

a2 = e−i( j−1)α sinh τ cos
β

2
(B27)

a3 = cosh2 τ

2
+ e−2i( j−1)α sinh2 τ

2
cos β (B28)

a4 = e−2i( j−1)α sinh2 τ

2
sin β (B29)

and τ = τ2 = √
2ζρ sin(β/2). In the above elements, we can

distinguish two origins of β dependence, which are the atomic
position through the dependence on j and the interlayer bond
through the dependence on the helical angle γ . These two
contributions are decouped in the first-order component of
β. For the sufficiently small β region, the elements from the
former and the latter origins are expressed as f pos

i and f coup
i ,

respectively and are written as f pos
1 = f pos

2 = f pos
5 = f pos

7 =
f pos
8 = f pos

9 = 0,

f pos
3 = − i√

6
ζρβe−i( j−1)αW σ

ss , (B30)

f pos
4 = i√

6
ζρβe−i( j−1)αW σ

ss , (B31)

f pos
6 = −

√
3

8
ζρβei( j−1)αW π

pp, (B32)

f coup
1 = f coup

2 = f coup
6 = f coup

8 = f coup
9 = 0,

f coup
3 = i√

2

ρ

h
βW σ

sp, (B33)

f coup
4 = i√

2

ρ

h
β
(
W σ

pp − W π
pp

)
, (B34)

f coup
5 = − i√

2

ρ

h
βW σ

sp, (B35)

f coup
7 = − i√

2

ρ

h
β
(
W σ

pp − W π
pp

)
. (B36)
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