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Spin mechanism of drag resistance in strongly correlated electron liquids
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We investigate the effect of Coulomb drag resistance in a bilayer system of strongly correlated electron liquids
magnetized by an in-plane field employing the framework of hydrodynamic theory. We identify a mechanism
for drag magnetoresistance, which physically arises from the spin diffusion driven by fluctuations of the spin
currents within a partially spin-polarized fluid. This effect is further enhanced by acoustic and optic plasmon
resonances within the bilayer, where hydrodynamic plasmons are driven by fluctuating viscous stresses. We
express the drag magnetoresistivity in terms of the intrinsic dissipative coefficients and basic thermodynamic
properties of the electron fluid. Our results are derived nonperturbatively in interaction strength and do not rely
on assuming Fermi-liquid behavior of the electron liquid, and applicable also in the regimes of semiquantum and
highly correlated classical fluids.
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I. INTRODUCTION AND MOTIVATION

In two-dimensional electron systems (2DES), the effects of
Coulomb interaction on thermodynamic and transport prop-
erties become especially pronounced in the limit of dilute
particle density [1,2]. The strength of these interactions can
be quantified by the dimensionless parameter rs = VC/EF,
which is defined as the ratio of the Coulomb energy VC to
the Fermi energy EF. As a function of the particle density
n, rs can be expressed as rs = 1/

√
πna2

B , where aB = ε/me2

is the Bohr radius in the material with dielectric constant ε
and effective mass m (hereafter, Planck’s constant h̄ = 1). For
values of rs < 1, the system forms a weakly interacting Fermi
gas, which is well described in the framework of Fermi-liquid
(FL) theory.

The regime of strong electron correlations extends over
the broad range of 1 < rs < rsc up to the critical value rsc,
marking the Wigner crystallization of the electron system
[3]. State-of-the-art numerical methods, such as quantum
Monte Carlo methods [4,5], provide reliable estimates that
the quantum critical point (QCP) associated with the quantum
liquid-to-Wigner solid transition occurs at rsc � 35 consistent
with the experimental observations, see e.g., Ref. [6]. At finite
temperature, the Wigner crystal (WC) melts. In the T -versus-
rs phase diagram, various mesoscopic and microemulsion
phases of electron liquid were predicted, including differ-
ent forms of magnetism of a WC [5,7,8]. However, despite
decades of efforts, we know little beyond the basic thermody-
namic properties of these electronic states.

Transport measurements of Coulomb drag provide a useful
probe of correlation effects in electron bilayers (see review
[9] and references therein). For example, drag resistance ρD
reveals signatures of superconducting fluctuations [10], inter-
layer exciton condensation [11,12], and exquisite properties
of quantum Hall liquids [13,14]. In the present paper, we
focus on the physics of nonlocal transport in 2DES at large
rs, motivated in part by a long-standing problem: the un-
usual temperature (T ) and magnetic field (H) dependencies
of drag resistance ρD(T, H ) observed in bilayer p-type GaAs
heterojunction devices [15–17]. For the problem in question,

the field dependence concerns the spin effect rather than the
orbital effect. We describe a particular mechanism of spin-
induced magnetodrag resistance, derive the corresponding
results that are nonperturbative in interaction, and, in princi-
ple, applicable to non-Fermi liquids.

This paper is structured as follows. In Sec. II, we be-
gin with a brief summary of the experimental situation and
formulate the problem. We also review the relevant existing
theories devoted to this particular topic in parallel. This en-
ables us to place our paper in the context of existing studies.
In Sec. III, we formulate our approach to the problem of drag
in 2DES with rs � 1. It is based on the theory of hydrody-
namic fluctuations. To describe magnetotransport properties,
we generalize this theory to include fluctuations of the spin
density and spin currents in the presence of partial spin polar-
ization induced by the external field. In Sec. IV, we apply this
theory to the calculation of drag magnetoresistance. Finally, in
Sec. V, we provide summary of main findings and concluding
remarks.

II. THEORETICAL AND EXPERIMENTAL BACKGROUND

The original measurements of drag resistance in weakly
correlated electron bilayers [18], with rs � 1, are in both qual-
itative and quantitative agreement with existing Fermi-liquid
theories of drag [19–22]. The drag resistance is given by (up
to a numerical factor)

ρD � h

e2

1

(kFd )2(kTFd )2

(
T

EF

)2

. (1)

Here, d is the interlayer separation, kF is the Fermi momen-
tum, and kTF = 2πe2ν/ε ∼ rskF is the inverse Thomas-Fermi
screening radius, with ν being the single-particle density
of states. For simplicity, we assume identical layers with
matched densities and we will focus only on the expressions in
the clean limit kFl � 1, where l is the elastic mean-free path.
This limit is particularly relevant to bilayer devices at large rs

since drag experiments in these systems were performed on
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high-mobility samples whose conductances are significantly
larger than conductance quantum ∼e2/h. Therefore, disorder
renormalizations of scattering and screening effects can be
neglected.

A. Temperature dependence

The quadratic temperature dependence of drag resistance
in Eq. (1) can be understood from a simple phase-space argu-
ment: For two-particle collisions, there are ∝ T states near
the Fermi level per layer that are susceptible to scattering
when T � EF. The scaling of the drag resistance with the
interlayer separation, ∝ 1/d4, also follows naturally from the
properties of the dynamically screened Coulomb interaction.
In this limit, drag is dominated by excitations in the particle-
hole continuum, and for a long time, it was believed that
Eq. (1) applies at all temperatures below the Fermi energy.
For this reason, deviations from the ∝ T 2 behavior are typ-
ically attributed to signatures of non-Fermi liquid physics.
Indeed, such arguments were put forward since subsequent
measurements in strongly correlated bilayers with rs � 1 not
only found a nonquadratic temperature dependence of ρD
over a broad range of temperatures, but also a drag resistance
magnitude that is two to three orders of magnitude larger than
expected based on Fermi liquid theory [15].

An attempt to resolve these discrepancies was put forward
in Ref. [23]. The theory was based on a standard pertur-
bative expression for the drag resistivity valid at rs ∼ 1,
using an improved Hubbard approximation for the single-
layer polarization operator and the experimentally measured
density dependence of the single-layer conductivity. How-
ever, it should be noted that attempting to extrapolate usual
expressions to the limit of large rs � 1 is uncontrolled and,
strictly speaking, lacks solid justification. This approach could
also lead to unphysical predictions regarding the screening
properties of the electron liquid.

An alternative explanation for the strong enhancement of
drag resistance at large rs was proposed in Ref. [24], based
on the picture of microemulsion phases. At the level of mean-
field theory, these phases can be characterized as a mixture of
microphase-separated regions of liquid and crystal. Practical
considerations for the drag resistance were given for the bub-
ble phase, which can be viewed as a suspension of WC islands
floating in a uniform Fermi liquid. Under such assumptions,
an increased drag can be attributed to the Pomeranchuk effect:
Because the WC has a higher spin entropy density than a
Fermi liquid, the areal fraction of the WC increases with
temperature. This fraction can be determined from thermody-
namic considerations by examining the free energy difference
between the uniform WC and FL phases, which scales linearly
with temperature as ∝ nT ln 2. This explanation is plausible,
although its underlying theory is purely phenomenological.
For completeness, we should also mention Ref. [25], where
an asymmetric WC-FL bilayer was considered with the WC
phase pinned by disorder. In this case, drag resistance was
shown to scale as ρD ∝ T 4. This result is analogous to the
Bloch law for the contribution of electron-phonon interac-
tion to the resistivity and drag [26]. However, this specific
mechanism leads to a significant decrease in transresistivity
and requires disorder, thus unlikely to be relevant in applica-
tion to experiments in high-mobility systems.

It should be emphasized that even in a weakly corre-
lated regime, rs ∼ 1, where the framework of FL applies,
the temperature dependence of drag resistance is not simply
quadratic. It turns out that Eq. (1) is valid only at lowest
temperatures when T < EF/(kFd ). Note that for GaAs quan-
tum wells typically kFd > 1. At slightly higher temperatures,
EF/(kFd ) < T < EF/

√
kFd , drag resistance is given by a dif-

ferent expression such that ρD ∝ T . It was implicit in the
analysis of Ref. [19], but not clearly emphasized, and later
rediscovered in Ref. [27]. As compared to Eq. (1), in this limit,
the kinematics of collisions near the threshold of particle-hole
continuum for typical frequencies and wavenumbers where
ω ∼ vFq changes the drag resistance to be linear in tem-
perature. The upper limit in the applicability condition of
the ρD ∝ T behavior, namely ∼EF/

√
kFd , marks the energy

scale at which the intralayer mean-free path because of elec-
tron collisions �(T ) becoming comparable or smaller than
the interlayer distance d . This regime defines the onset of
collision-dominated transport. At even higher temperatures,
EF/

√
kFd < T < EF/

4
√

kFd , drag resistance is dominated by
plasmons and ρD ∝ T 3. The energy scale ∼EF/

4
√

kFd corre-
sponds to the hydrodynamic regime of plasmons, when their
frequency ωpl at the typical wave-numbers, q ∼ 1/d , becomes
comparable or smaller than the rate of electron collisions τ−1.
Above this temperature, but still below EF, one finds drag
decreasing with temperature as ρD ∝ 1/T [28].

B. Magnetic field dependence

The observed dependence of Coulomb drag at large rs on
spin polarization induced by the application of an in-plane
magnetic field, as described in Refs. [16,17], raises addi-
tional questions and challenges for the theory. Indeed, with
an increase in H , the temperature dependence is significantly
suppressed: While ρD ∝ T αT with αT � 3 in the zero-field
limit, αT � 1 for H ∼ H∗, where H∗ corresponds to the field
required to fully polarize the electron spins. The magnitude
of drag magnetoresistance increases rapidly with H , by as
much as an order of magnitude, and then tends to saturate
for H > H∗. The fit to the data at low fields suggests a
quadratic field dependence, ρD ∝ H2. The change in the tem-
perature dependence induced by the finite field is monitored
through the ρD/T 2 ratio, which changes from increasing with
T to decreasing with T very close to H∗. Perhaps an even
more striking feature is that both the temperature and mag-
netic field dependencies of single-layer magnetoresistance ρ

and drag magnetoresistance ρD appear qualitatively similar.
This is unexpected a priori since these kinetic coefficients
describe completely different transport properties. This simi-
larity suggests a unifying mechanism for the spin-polarization
dependence of both ρ and ρD.

The theory presented in Ref. [29] addressed the experi-
mental observations of ρD(T, H ) based on the random-phase
approximation (RPA) with an extrapolation of computed re-
sults to large values of rs. However, this approach is not
physically justified as it extends the RPA theory beyond the
limit of its validity. In contrast, in the theory of microemulsion
phases, a strong increase in drag with the field can be quali-
tatively explained by the argument that spins are substantially
more polarizable in the Wigner crystal (WC) phase [24]. It
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should be noted that there is strong experimental support
for the enhancement of spin susceptibility in dilute 2DES
[30–32].

C. Density dependence

The observed density dependence of the drag resistance
is equally intricate as discussed in detail in Refs. [16,17].
To put this in perspective, recall that the FL theory predicts
ρD ∝ 1/n3, per Eq. (1). However, the experiment reveals a
much stronger dependence, ρD ∝ 1/n5, which was deduced
from the data collapse in bilayers with rs � 1 and matched
density. This power law, found at low temperatures, is mostly
unaffected by a small parallel magnetic field. In general,
experiments found that at zero field and for T � EF/2, ρD

follows approximately a ∝ 1/n5/2
i dependence upon either

layer density n1,2. For mismatched densities at zero field, drag
resistance is a completely monotonic decaying function of the
density ratio, when density is swept in one layer by a gate
voltage, while the other is kept fixed. In contrast, at higher
fields, a different behavior is observed. A clear enhancement
of ρD from H shows a nonmonotonic behavior as a function of
density ratio between the layers, exhibiting a local maximum
at essentially matched densities.

D. Hydrodynamic description

In this paper, we develop a theory of drag in bilayers
of spin-polarized electron liquids. Our approach is based on
the hydrodynamic description of transport in the regime of
strong electron correlations originally described in Ref. [33].
This approach can be justified in high-mobility conductors
within a range of temperatures and sample purities where
the electron-electron mean-free path is small compared to the
length scales over which momentum and energy conservation
of electron systems are violated. An extension of the theory in
Ref. [33] to include hydrodynamic fluctuations and compute
drag resistance in zero field was given in Refs. [27,28,34].
The orbital effect of the magnetic field was considered in
Refs. [35,36]. Here, we focus on the spin effect and incor-
porate fluctuations of the spin density and spin current into
the main set of hydrodynamic equations, supplemented by
the fluctuation-dissipation relations. This enables us to con-
sider both drag and single-layer resistivities from a unified
perspective. Our results are as general as any hydrodynamic
theory and rely only on the applicability conditions of the
hydrodynamic approximation. We analyze our results for the
temperature, field, and density dependence of drag resistance
in light of experimental findings [15–17].

In closing this section, for clarity, we comment on one
terminological detail. We use the term spin drag to describe
Coulomb drag resistance in a bilayer system. In the literature,
there also exists a term spin Coulomb drag, which describes
a completely different phenomenon [37,38]. Spin Coulomb
drag refers to the mutual friction between spin-polarized elec-
tron populations in a single layer, which can be observed in
spin-valve devices and 2D electron systems (2DES) [39]. The
theory of spin Coulomb drag relies on the key assumption that
the spin-up and spin-down components of the electron system
have distinct drift velocities. In the hydrodynamic regime

dominated by electron collisions that we are interested in, this
is not possible as both electron subsystems develop a single
hydrodynamic velocity.

III. HYDRODYNAMIC THEORY OF COULOMB DRAG
FOR SPIN-POLARIZED 2DES

A. Main equations

A hydrodynamic description of electron transport is based
on the existence of slow variables associated with conserved
quantities [33]. The conservation of the total particle number
is captured by the continuity equation

∂tδn + ∇ · δ jn = 0. (2)

Here we present it in the linearized form written for the
fluctuation components of the particle density δn(r, t ) and
corresponding particle current density

δ jn = vδn + nδv, (3)

where v and δv(r, t ) is the hydrodynamic velocity of the flow
and its fluctuating component respectively. In equilibrium v =
0 and particle density is uniform.

The energy conservation is usually replaced by an equiva-
lent evolution equation for the entropy density [40]

nT (∂t + v · ∇)δs + ∇ · δ jq = 0. (4)

where T is the equilibrium temperature. The fluctuation of
the heat current δ jq is related to the temperature fluctuation
δT (r, t ) by Fick’s law

δ jq = −κ∇δT + δg, (5)

where κ is the thermal conductivity of the fluid. The sec-
ond term in the current fluctuation δg(r, t ) is the stochastic
Langevin heat flux whose correlation function is given by the
fluctuation-dissipation-relation [41]

〈gi(r, t )gk (r′, t ′)〉 = 2κT 2δikδr−r′δt−t ′ , (6)

where i, k are Cartesian indices for the coordinates in 2D
plane and 〈. . .〉 denotes averaging over the thermal fluctua-
tions.

We add now a conservation law for the spin current [42]. To
this end, we assume that the spin-orbit interaction is weak, so
that the spin component σ along the magnetic field applied
parallel to the plane of 2DES is approximately conserved.
This is reasonable assumption since spin relaxation in GaAs
is sufficiently long. We thus have for the spin fluctuation

(∂t + v · ∇)δσ + ∇ · δ jσ = 0. (7)

It is important to stress that only the spin component along
the magnetic field appears in this equation since the other spin
components are not conserved because of spin precession. The
fluctuation of the spin current density

δ jσ = −σs∇δμσ + δς (8)

is related to the gradient of the spin chemical potential fluc-
tuation δμσ via the spin conductivity σs. The latter can be
expressed in terms of the spin diffusion constant Dσ via the
Einstein relation σs = χDσ , where χ is the magnetic suscep-
tibility. In the expression for the spin current, we neglected
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the term corresponding to the spin thermocurrent that must be
present by the Onsager principle. Its contribution is important
for spin-caloric and spin-drag thermal resistances near charge
neutrality [43,44], but is expected to be small for electrical
properties at high doping as compared to the spin diffusion
term. In accordance with the fluctuation-dissipation theorem,
the random flux of Langevin spin currents correlates to the
spin conductivity

〈ςi(r, t )ςk (r′, t ′)〉 = 2σsT δikδr−r′δt−t ′ , (9)

The continuity equation for momentum density has the stan-
dard form

mn(∂t + v · ∇)δv + ∇ · δ�̂ = 0. (10)

Here fluctuations of the momentum flux tensor

δ�̂ik = (δP + enδ�)δik − δ�̂ik (11)

comprise of local hydrodynamics fluctuations in the pressure
of a fluid δP, fluctuations of the long-ranged Coulomb poten-
tial δ�, and fluctuations of viscous stresses

δ�̂ik = η(∂kδvi + ∂iδvk ) + (ζ − η)δik∇ · δv + δ�̂ik . (12)

The latter are expressed in terms of the spatial gradients ∂i =
∂/∂xi of the velocity field components δvk , where η and ζ are,
respectively, the shear and bulk viscosities. The random fluxes
of fluctuating viscous stresses in the fluid are described by the
correlation function of the form

〈δ�̂ik (r, t )δ�̂lm(r′, t ′)〉 = 2T [η(δilδkm + δimδkl )

+ (ζ − η)δikδlm]δr−r′δt−t ′ . (13)

The hydrodynamic description applies to any liquid type
whether it is Fermi liquid or not. Microscopic properties of
the liquid manifest themselves via the temperature and density
dependence of the intrinsic dissipative coefficients as well as
thermodynamic quantities, and the equation of state. Notewor-
thy, in high-mobility and low-density 2DES the momentum
and energy-relaxing electron-phonon scattering is still weak
even at T > EF [45]. Therefore, the hydrodynamic description
applies from very short distances of the order of interelectron
spacing for both semiquantum liquids at EF < T <

√
rsEF,

or highly correlated classical fluid at
√

rsEF < T < rsEF. It
should be mentioned that there is no established theory in
these regimes, but a conjecture concerning the T dependen-
cies of s, κ, η, ζ was put forward in Ref. [46]. We have also
our own results for some of these quantities that will be
reported in a separate publication.

B. Solution for a bilayer setup

Consider now a bilayer geometry relevant for the Coulomb
drag setup Fig. 1. For simplicity we assume identical 2DES.
To describe this system we need to duplicate the number of
equations describing fluctuations of particle density Eq. (2),
entropy density Eq. (4), spin density Eq. (7), and hydrody-
namic velocity Eq. (10) in each of the layer and their coupling.
For hydrodynamic model to be applicable, we are constrained
to work under the tacit condition that interlayer separation
exceeds the intralayer mean-free path because of electron col-
lisions d � �. Since � diverges in the low temperature limit,

FIG. 1. Schematic representation of the Coulomb drag setup con-
sisting of two interactively coupled 2DES separated by a distance d .
Both layers are magnetized by an in-plane magnetic field H . A steady
hydrodynamic flow is imposed in the active layer with the current
density j. Coulomb interaction between the particles is depicted by
wavy lines with the corresponding dynamically fluctuating potentials
marked as δ�1,2 per Eq. (18). The electrons (holes) are depicted
as circles with arrows showing spin polarization. The underlying
background of each layer represents a snapshot of inhomogeneous
thermally driven particle and spin density fluctuation profiles

hydrodynamics sets in at the intermediate range of temper-
atures. For a Fermi liquid, the onset of collision-dominated
regime is marked by the temperature T � EF/

√
kFd . In the

following, we denote density fluctuations in each layer as
δn1,2(r, t ), and similarly for all other quantities.

To solve the equations we use Fourier transform
{δn, δs, δv, δσ } ∝ exp(−iωt + iqr). From Eq. (2) we get in
the active layer

[ω − (q · v)]δn1 = n(q · δv1). (14)

In the passive layer the equation is the same except v = 0.
In other words, we assume open circuit boundary condition,
where the drag force exerted from the active layer onto the
passive layer is compensated by a force from the built-in elec-
tric field in the passive layer in a stationary fluid. Analogously,
from Eq. (4) we obtain

nT [−iω + i(q · v)]δs1 = −κq2δT1 − i(q · δg1), (15)

while from Eq. (7) we similarly find

[−iω + i(q · v)]δσ1 = −σsq
2δμσ1 − i(q · δς1). (16)

Finally, from the momentum balance equation (10)

[−iω + i(q · v)]δv1 = − iq
m

eδ�1 − iq
mn

δP1 + i(q · δ�̂1)

mn
.

(17)
The main mechanism of coupling between the layers is by

Coulomb potential that includes both fluctuations of the den-
sity in the layer-1 as well as dynamically screened fluctuations
of the density in the layer-2. In layer-1 it takes the form

δ�1(q, ω) = 2πe

εq
[δn1(q, ω) + e−qdδn2(q, ω)], (18)

and similarly in the other layer δ�2, which is obtained by
simply interchanging the indices. The fluctuations of pressure
in the local part of the momentum flux tensor Eq. (11) has
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several contributions

δP1 = (∂nP)δn1 + (∂sP)δs1 + (∂σ P)δσ1. (19)

The first term can be neglected as compared to the corre-
sponding term in the fluctuations of the Coulomb potential
that dominates in the long wave length limit, q → 0, so that
enδ� � (∂nP)δn. The second term leads to the interlayer den-
sity coupling via the thermal expansion of the fluid mediated
by thermal fluxes. Calculation shows that the contribution
of this term to drag resistivity is subleading and, therefore,
can be neglected. In this approximation Eq. (15) decouples
and plays no role in the remaining analysis. The last term in
Eq. (19) must be retained as it captures the main effect of spin
polarization on the equation of state of the fluid.

The steady current ∝ nv in the active layer exerts the drag
on the passive layer. Using the Poisson equation to relate the
potential to density fluctuations, and ignoring the intralayer
thermal forces, we can express the drag force

FD =
∫

(−iq)

(
2πe2

εq

)
e−qdD(q, ω)d�qω (20)

in terms of the interlayer density-density correlation function

D(q, ω) = 〈δn1(q, ω)δn2(−q,−ω)〉, (21)

where the integration expands over the phase space d�qω =
dωd2q/(2π )3. In the linear response, drag resistance is the
proportionality coefficient between the electric field in the
passive layer and the current in the active layer E2 = ρD j1.
From the force balance condition on an element of the fluid
we have FD = enE2, while j1 = env; therefore, knowing the
drag force one readily finds the drag resistivity

ρD = FD

e2n2v
. (22)

The remaining technical task is to determine the linear in
v part of the drag force, or equivalently the density structure
factor in Eq. (21). To prepare for this computation we proceed
as follows: (i) We multiply Eq. (17) by an extra power of q and
express the product (q · δv1) in terms of δn1 with the help of
the continuity equation (14). In this step, we eliminate fluctua-
tions of hydrodynamic velocity from the system of equations.
We thus left with the coupled fluctuations for δn and δσ .
(ii) In Eq. (16) we write δμσ = (∂σμσ )δσ + (∂nμσ )δn, solve
for δσ1,2 in terms of δn1,2, and insert that expression into
Eq. (17). This leaves us with two coupled algebraic equa-
tions for δn1,2. (iii) We make a linear transformation to the
basis of symmetrized/antisymmetrized density modes δn± =
δn1 ± δn2. In this representation our algebraic equations de-
couple, and we solves them perturbatively to the linear order
in v. This gives a result

δn±(q, ω) = δn(0)
± (q, ω) + δn(1)

± (q, ω), (23a)

δn(0)
± = ω + iωσ

m�±
q · (q · δ�̂±) − q2∂σ P

m�±
(q · δς±),

(23b)

δn(1)
± = (q · v)

2�±

∑
i=±

[
�iδn(0)

i − q · (q · δ�̂i )

m

]
. (23c)

In this solution, δn(0)
± describe the equilibrium density fluctu-

ations driven by thermal fluctuations of viscous stresses δ�̂

and spin currents δς±. The additional terms, δn(1)
± , describe

nonequilibrium parts of density fluctuations advected by the
hydrodynamic flow. In the above expressions, we introduced
the following notations:

�± = −(ω + iωσ )[(ω2 − ω2
±) + iωων], (24a)

�± = ω2
± − 3ω3 + ωσων − 2iω(ων + ωσ ). (24b)

These functions have transparent physical meaning. Zeroes of
�± correspond to the dispersion relations of the collective
modes in the system. The first one corresponds to a spin
diffusion ω = −iωσ , with ωσ = Dσ q2. The second are the
plasmon resonances ω = ω±, with

ω2
± = ω2

q(1 ± e−qd ), ωq =
√

2πne2q

εm
, (25)

whose attenuation is determined by viscous spreading of
charge ω = ων/2, here ων = νq2 with ν = (η + ζ )/mn be-
ing the kinematic viscosity of the fluid. For completeness, we
mention that in the expression for �± we neglected an extra
term that scales as ∝ q4, which is insignificant for fluctuations
with long wave length. In all the analysis above, we also
assumed that the systems is Galilean invariant. In systems
with broken Galilean invariance plasmons can decay with the
Maxwell mechanism of charge relaxation [47]. This aspect
of the problem will not change the essence of our results for
drag magnetoresistance. It only determines the enhancement
factor of drag effect from plasmon resonances [48,49], which
is weakly sensitive to the mechanism of plasmon decay in the
hydrodynamic limit.

To close the system of required relations for the obtained
solution, we need expressions for thermal averages, which
follow directly from Eqs. (9) and (13), namely,

〈(q · δς±)(q · δς±)〉 = 4T σsq
2, (26a)

〈(q · (q · δ�̂±))(q · (q · δ�̂±))〉 = 4T (η + ζ )q4. (26b)

Owing to the fact that random Langevin fluxes of spin currents
are uncorrelated with the corresponding fluxes of viscous
stresses, dynamical density structure factor D(q, ω) is an ad-
ditive function of these sources of density fluctuations. The
same conclusion holds for the drag resistance. Therefore,
these contributions can be investigated separately.

IV. SPIN DRAG MAGNETORESISTANCE

We present drag resistance as a sum of two contributions

ρD = ρν + ρσ . (27)

The first one (ρν) arises from density fluctuations driven by
random viscous stresses. The second (ρσ ) arises from the
physics associated with the spin polarization and electron
density fluctuations driven by spin current fluctuations. We
focus on the spin contribution.

To the linear order in v, the dynamic density response
function averaged over the spin fluctuations Dσ = 〈δn1δn2〉ς
contains terms of the same 〈δn(0)

± δn(1)
± 〉ς and mixed symmetry
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〈δn(0)
± δn(1)

∓ 〉ς with respect to optical and acoustic plas-
mon resonances. The products with interchanged superscript
(0) ↔ (1) are also possible. These products contribute with
the opposite sign as δn(1)

± is odd in q. A careful inspection of
these terms reveals that they have different parity in frequency
dependence. The former are frequency odd, while the latter
are frequency even. Therefore, only averages of the products
of mixed parity density modes contribute to the drag force
in Eq. (20). Keeping all the relevant terms and after some
straightforward algebra, we arrive at the intermediate expres-
sion

Dσ = i(q · v)

4
ϒq

(�+�∗
−) − (�−�∗

+)

|�+|2|�−|2 , (28)

where we introduced a short-hand notation ϒq =
(4T σsq2)(q2/m)2(∂σ P)2. To derive this result, we used
complex-conjugation properties of the polarization and cou-
pling functions: �±(−ω) = −�∗

±(ω) and �±(−ω) = �∗
±(ω),

and applied equilibrium averages

〈δn(0)
± (q, ω)δn(0)

± (−q,−ω)〉ς = ϒq

|�±|2 (29)

that follow from Eqs. (23) and (26). The numerator of Eq. (28)
can be easily calculated with the help of Eq. (24) and
equals to (�+�∗

−) − (�−�∗
+) = 3ω2ων (ω2

+ − ω2
−). Insert-

ing now Eq. (28) into Eq. (20), and using Eq. (22) we find for
the spin drag resistance

ρσ = 3

8e2n2

∫ (
2πe2

εq

)
e−qd q2ϒqω

2ων (ω2
+ − ω2

−)

|�+|2|�−|2 d�qω.

(30)
The frequency integral here can be calculated using residues
in the complex plane of ω, but this approach results in a rather
cumbersome outcome. Instead, we found an approximation
that, as can be shown numerically, is fairly accurate and allows
us to make further analytical progress. This approximation
is based on the following observation. On Fig. 2 we plot
the integrand of Eq. (30), which comprises of the product
of the dynamical structure factor, Coulomb potential, and the
phase space factor. On the plot we introduced dimensionless
variables x = qd and y = ω/ωp, where ωp =

√
2πne2/εmd

is the characteristic plasmon frequency. This plot depends
on two dimensionless parameters α = Dσ /(ωpd2) and γ =
ν/(ωpd2). In this units, plasmon dispersions are given by√

x(1 ± e−x ), which are shown by the dashed lines on the plot.
The lower dashed line, at smallest frequencies, corresponds to
the spin diffusion branch of the spectrum. It is clear that the
integrand has maximal spectral weight at the plasmon poles,
which is highlighted by the color-bar scale.

Based on these considerations, we conclude that the most
important regions of frequency integration in Eq. (30) are
those near plasmon resonances ω±. We have verified that
the frequency region ω ∼ ωσ gives smaller contribution. For
typical wave numbers, q ∼ 1/d , plasmon energies are much
bigger than the energy scale characteristic of spin diffusion
ω± � ωσ . Therefore, the Lorentzian, (ω2 + ω2

σ )−1, in each
of the factor |�±|−2, can be approximately replaced by ω−2

± .
The remaining part of the frequency integral can be calculated

FIG. 2. Dispersion laws ω = ω±(q) for the optical and acoustic
plasmons Eq. (25), shown by dashed lines, superimposed on top of
the color plot that defines magnitude of the integrand in Eq. (30),
which was normalized to itself at the maximal value. The lower
dashed line defines broadening of the spectral weight because of
spin diffusion. This plot was generated for values α = 1.5 × 10−3

and γ = 2.5 × 10−2.

exactly in a compact form∫ +∞

−∞

ω2dω[
(ω2 − ω2+)2 + ω2ω2

ν

][
(ω2 − ω2−)2 + ω2ω2

ν

]
= 2π/ων

(ω2+ − ω2−)2 + 2ω2
ν (ω2+ + ω2−)

. (31)

This simplifies ρσ to the form

ρσ = 3

8e2n2

∫
d2q

(2π )2

(
2πe2

εq

)
e−qd

(
ω2

+ − ω2
−

ω2+ω2−

)

× q2ϒq

(ω2+ − ω2−)2 + 2ω2
ν (ω2+ + ω2−)

. (32)

Using the explicit forms of plasmon dispersions from Eq. (25),
the remaining momentum integral can be reduced to a dimen-
sionless form in terms of new integration variable x = qd .
We find as a final result (omitting overall numerical factor for
brevity)

ρσ � σs

e2

(εvF

e2

)2 f (γ )

(nd2)3

T

EF

(
H

EF

)2

, (33)

where we introduced dimensionless function

f (γ ) =
∫ ∞

0

x5e−xdx

sinh(x)(e−2x + γ 2x3)
, (34)

and the dimensionless parameter

γ = rs√
2

η + ζ

n

(aB

d

) 3
2
. (35)
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In order to extract the magnetic field dependence, ∝ H2,
which is implicit in ∂σ P, we used general thermodynamic
principles. The equation of state is determined by the grand
thermodynamic potential � = −PV [50]. Provided the linear
relationship between the magnetic polarization and the field,
σ = χH , and using the thermodynamic theorem of small
corrections, one finds �H = �0 − χH2/2, where �0 is the
potential of interacting systems without the field. From this
argument, it is evident that ∂σ P ∝ H .

The field-independent part of drag resistance, can be cal-
culated in the same fashion. Indeed, using thermal averages

〈δn(0)
± (q, ω)δn(0)

± (−q,−ω)〉� =
(
ω2 + ω2

σ

)
�q

|�±|2 (36)

where �q = 4T (η + ζ )q4/m2. This leads then to a corre-
sponding part of the density structure factor computed to the
linear order in v,

Dν = i(v · q)(nT q2/m)(ω2
+ − ω2

−)ω2
ν[

(ω2 − ω2+)2 + ω2ω2
ν

][
(ω2 − ω2−)2 + ω2ω2

ν

] . (37)

Using Eqs. (20) and (22), performing integrations one finds
the corresponding drag resistance

ρν �
(εvF

e4

)η + ζ

n

h(γ )

(kFd )5

T

EF
, (38)

where the dimensionless function is given by

h(γ ) =
∫ ∞

0

x4e−x(1 + γ 2x3)dx

sinh(x)(e−2x + γ 2x3)
. (39)

Drag resistance defined by Eqs. (33) and (38) are the main
results of this paper.

V. SUMMARY AND DISCUSSION

A detailed analysis of Eqs. (33) and (38) for the drag
resistance depends essentially on specific assumptions about
the density and temperature dependence of spin conductiv-
ity and electron liquid viscosity. These quantities have been
calculated microscopically only in the limit of a weakly inter-
acting Fermi gas [51]. In the context of the introduction and
discussion of the observed features of drag in 2DES with large
rs, we can provide several comparative comments.

(i) The measured spin diffusion constant via spin Coulomb
drag in 2DES [39] reveals that Dσ is almost temperature inde-
pendent in a broad range T > EF/10. With this input, Eq. (33)
predicts that drag magnetoresistance is linear in temperature,
ρσ ∝ T . This temperature behavior is qualitatively consistent
with the observations [16,17].

(ii) The plasmon enhancement factor described by f (γ )
is also temperature dependent, but only logarithmically. In-
deed, it can be readily verified that for T < EF the parameter
γ < 1. The asymptote of Eq. (34) in the limit γ � 1 is f ∼
2 ln6[γ ln(1/γ )]. For a Fermi liquid η ∼ n(EF/T )2, therefore
f behaves logarithmically with T . Note, however, that numer-
ically f ∼ 25 for γ ∼ 0.1 so that plasmon enhancement is
significant and strongest at matched density between the lay-
ers. The corresponding enhancement for the field-independent

FIG. 3. Dependence of the dimensionless functions from
Eqs. (34) (solid line) and (39) (dashed line) on the parameter γ that
determines broadening of the plasmon resonances and thus enhance-
ment of the drag resistance in Eqs. (33) and (38) respectively. The
shown plot range is γ ∈ [0.05, 0.25].

part, as described by h(γ ) function in Eq. (39), is slightly
weaker, see Fig. 3 for comparison.

(iii) Equation (33) also predicts quadratic field depen-
dence, ρσ ∝ H2, which we expect to saturate at higher fields
since spin polarization saturates. Additional complications
may arise from the H dependence of the kinetic coefficients
η(H ), ζ (H ).

(iv) As a function of density, the relevant prefactor in
Eq. (33) scales as ρσ ∝ σs(n)/n5. Provided that spin conduc-
tivity does not change significantly in the measured range of
densities, the power-law scaling of drag resistance with n is
therefore also in good agreement with the observed depen-
dence.

(v) The comparison of Eq. (38) to the FL formula for drag
resistivity Eq. (1) reveals that intralayer collisions strongly
enhance drag effect. This is qualitatively consistent with the
fact that drag resistance is bilayers with large rs is found to be
two to three orders of magnitude larger than expected on the
basis of FL theory [15].

(vi) The quantum Monte Carlo results for the spin sus-
ceptibility χ reported [52] have been widely compared with
experiment e.g., [31], and appear quite reliable and accurate.
These studies show that spin susceptibility of a 2DES, mea-
sured in the units of Pauli susceptibility χ/χP, grows by an
order of magnitude when rs is increased. As a consequence,
based on the Einstein relation σs = χDσ , Eq. (33) predicts
strongly enhanced drag magnetoresistance.

(vii) We note that our results can be extrapolated to the
nondegenerate limit T > EF that includes both semiquantum
and strongly correlated classical plasma. For example, for a
classical limit η ∼ ζ ∼ mvT T/e2, where vT ∼ √

T/m is the
thermal velocity, so that ρν ∝ T 5/2.

In light of the theoretical insights, it is instructive to dis-
cuss the reported puzzling similarities between drag resistivity
and intralayer magnetoresistance [16,17]. The hydrodynamic
mechanism of spin magnetoresistance was proposed in
Ref. [33]. It was shown that in-plane magnetoresistance
is primarily determined by spin diffusion, whereas zero-
field resistance is dominated by the viscous term, which is
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similar to our result for drag. This similarity is not acci-
dental and has clear physical interpretation. Indeed, in the
model of Ref. [33], electron flow occurs in the presence of
a long-range disorder potential with a correlation radius ex-
ceeding the electron mean free path. In this context, intralayer
magnetoresistivity can be understood in terms of the drag
force between the electron liquid and the disorder potential.
Specifically, the disorder potential creates fluctuations in the
particle and spin density within the electron liquid. To second
order in the disorder potential, the subsequent scattering of
these density fluctuations from the disorder potential produces
a net resistive force. In the case of Coulomb drag, both the
scattering potential and the fluctuations in electron density
are produced by thermal fluctuations, whose variance depends
on the temperature, proportional to T , through the strength
of Langevin fluxes. This aspect of the problem accounts for
the difference in the temperature dependence of drag and
intralayer magnetoresistivity. On the other hand, the propa-
gation of fluctuations in the fluid, in either case, is described
by the same linearized hydrodynamic equations and occurs in
the form of stress-driven viscous modes and spin fluctuation-
driven diffusive modes. This results in the similarity between
the corresponding transport coefficients ρ and ρD.

The result for drag magnetoresistance in Eq. (27) can be
generalized to systems with broken Galilean invariance. The
key modification required is the inclusion of the electrical
current because of finite intrinsic conductivity σc (i.e., charge
conductivity relative to the fluid, often referred to as micro-
scopic “incoherent” conductivity). Consequently, Langevin
fluxes must be augmented to account for fluctuations arising
from intrinsic currents in the fluid. These fluctuations intro-
duce an additional mechanism for density variation via current
continuity, thereby contributing to the dynamical structure
factor of the fluid and the interlayer drag force. While the
drag effect is still enhanced by plasmons, their lifetime is
now governed by the Maxwell time of charge relaxation
rather than viscous diffusion. For long-wavelength density

fluctuations, the corresponding attenuation coefficient is given
by ωq = 2πσcq/ε. This change in physics affects the broad-
ening of plasmon resonances and the enhancement factor in
drag resistance. The analysis indicates that Eq. (27) acquires
an additional contribution of the form

ρc = σc

4π2e4

T

EF

1

(nd2)2
g(β ). (40)

The dimensionless function g(β ) captures the plasmon en-
hancement and exhibits a logarithmic dependence on the
dimensionless parameter

β � σc

e2

√
e2

εvF

1√
kFd

. (41)

The main parametric dependence in Eqs. (33) and (38)
remains the same; however, the dimensionless functions
f (γ ) → f (β ) and h(γ ) → h(β ) are described by different
analytic expressions in terms of β as compared to Eqs. (34)
and (39) respectively. Therefore, modulo logarithmic factors,
the general conclusion regarding the field and temperature
dependence of the drag magnetoresistance remains the same
in this case as well.

ACKNOWLEDGMENTS

We are grateful to A. Andreev, S. Kivelson, and B. Spivak
for insightful discussions. This research project was finan-
cially supported by the National Science Foundation (NSF)
Grant No. DMR-2203411 and H. I. Romnes Faculty Fel-
lowship provided by the University of Wisconsin-Madison
Office of the Vice Chancellor for Research and Graduate
Education with funding from the Wisconsin Alumni Re-
search Foundation. I.E. was supported by the University of
Wisconsin–Madison. This paper was finalized at the Aspen
Center for Physics, during the program “Quantum Matter
Through the Lens of Moiré Materials”, which is supported by
the NSF Grant No. PHY-2210452.

[1] T. Ando, A. B. Fowler, and F. Stern, Electronic properties of
two-dimensional systems, Rev. Mod. Phys. 54, 437 (1982).

[2] B. Spivak, S. V. Kravchenko, S. A. Kivelson, and X. P. A. Gao,
Colloquium: Transport in strongly correlated two dimensional
electron fluids, Rev. Mod. Phys. 82, 1743 (2010).

[3] E. Wigner, On the interaction of electrons in metals, Phys. Rev.
46, 1002 (1934).

[4] B. Tanatar and D. M. Ceperley, Ground state of the two-
dimensional electron gas, Phys. Rev. B 39, 5005 (1989).

[5] N. D. Drummond and R. J. Needs, Phase diagram of the low-
density two-dimensional homogeneous electron gas, Phys. Rev.
Lett. 102, 126402 (2009).

[6] J. Yoon, C. C. Li, D. Shahar, D. C. Tsui, and M. Shayegan,
Wigner crystallization and metal-insulator transition of two-
dimensional holes in GaAs at B = 0, Phys. Rev. Lett. 82, 1744
(1999).

[7] B. Spivak and S. A. Kivelson, Phases intermediate between a
two-dimensional electron liquid and Wigner crystal, Phys. Rev.
B 70, 155114 (2004).

[8] B. K. Clark, M. Casula, and D. M. Ceperley, Hexatic and
mesoscopic phases in a 2D quantum Coulomb system, Phys.
Rev. Lett. 103, 055701 (2009).

[9] B. N. Narozhny and A. Levchenko, Coulomb drag, Rev. Mod.
Phys. 88, 025003 (2016).

[10] N. Giordano and J. D. Monnier, Cross-talk effects in
superconductor–insulator–normal-metal trilayers, Phys. Rev. B
50, 9363 (1994).

[11] J. A. Seamons, C. P. Morath, J. L. Reno, and M. P. Lilly,
Coulomb drag in the exciton regime in electron-hole bilayers,
Phys. Rev. Lett. 102, 026804 (2009).

[12] C. P. Morath, J. A. Seamons, J. L. Reno, and M. P. Lilly,
Density imbalance effect on the Coulomb drag upturn in an
undoped electron-hole bilayer, Phys. Rev. B 79, 041305(R)
(2009).

[13] M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and
K. W. West, Observation of quantized Hall drag in a strongly
correlated bilayer electron system, Phys. Rev. Lett. 88, 126804
(2002).

085307-8

https://doi.org/10.1103/RevModPhys.54.437
https://doi.org/10.1103/RevModPhys.82.1743
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRevB.39.5005
https://doi.org/10.1103/PhysRevLett.102.126402
https://doi.org/10.1103/PhysRevLett.82.1744
https://doi.org/10.1103/PhysRevB.70.155114
https://doi.org/10.1103/PhysRevLett.103.055701
https://doi.org/10.1103/RevModPhys.88.025003
https://doi.org/10.1103/PhysRevB.50.9363
https://doi.org/10.1103/PhysRevLett.102.026804
https://doi.org/10.1103/PhysRevB.79.041305
https://doi.org/10.1103/PhysRevLett.88.126804


SPIN MECHANISM OF DRAG RESISTANCE IN STRONGLY … PHYSICAL REVIEW B 110, 085307 (2024)

[14] E. Tutuc, R. Pillarisetty, and M. Shayegan, Giant frictional drag
in strongly interacting bilayers near filling factor one, Phys.
Rev. B 79, 041303(R) (2009).

[15] R. Pillarisetty, H. Noh, D. C. Tsui, E. P. De Poortere, E. Tutuc,
and M. Shayegan, Frictional drag between two dilute two-
dimensional hole layers, Phys. Rev. Lett. 89, 016805 (2002).

[16] R. Pillarisetty, H. Noh, E. Tutuc, E. P. De Poortere, D. C.
Tsui, and M. Shayegan, In-plane magnetodrag between di-
lute two-dimensional systems, Phys. Rev. Lett. 90, 226801
(2003).

[17] R. Pillarisetty, H. Noh, E. Tutuc, E. P. De Poortere, D. C.
Tsui, and M. Shayegan, Spin polarization dependence of the
Coulomb drag at large rs, Phys. Rev. Lett. 94, 016807 (2005).

[18] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N.
Pfeiffer, and K. W. West, Mutual friction between parallel two-
dimensional electron systems, Phys. Rev. Lett. 66, 1216 (1991).

[19] A.-P. Jauho and H. Smith, Coulomb drag between parallel two-
dimensional electron systems, Phys. Rev. B 47, 4420 (1993).

[20] L. Zheng and A. H. MacDonald, Coulomb drag between dis-
ordered two-dimensional electron-gas layers, Phys. Rev. B 48,
8203 (1993).

[21] A. Kamenev and Y. Oreg, Coulomb drag in normal metals
and superconductors: Diagrammatic approach, Phys. Rev. B 52,
7516 (1995).

[22] K. Flensberg, B. Y.-K. Hu, A.-P. Jauho, and J. M. Kinaret,
Linear-response theory of Coulomb drag in coupled electron
systems, Phys. Rev. B 52, 14761 (1995).

[23] E. H. Hwang, S. Das Sarma, V. Braude, and A. Stern, Frictional
drag in dilute bilayer 2D hole systems, Phys. Rev. Lett. 90,
086801 (2003).

[24] B. Spivak and S. A. Kivelson, Drag resistance of two-
dimensional electronic microemulsions, Phys. Rev. B 72,
045355 (2005).

[25] V. Braude and A. Stern, Coulomb drag between a metal and a
Wigner crystal, Phys. Rev. B 64, 115431 (2001).

[26] M. C. Bønsager, K. Flensberg, B. Yu-Kuang Hu, and A. H.
MacDonald, Frictional drag between quantum wells mediated
by phonon exchange, Phys. Rev. B 57, 7085 (1998).

[27] W. Chen, A. V. Andreev, and A. Levchenko, Boltzmann-
Langevin theory of Coulomb drag, Phys. Rev. B 91, 245405
(2015).

[28] S. S. Apostolov, A. Levchenko, and A. V. Andreev, Hydro-
dynamic Coulomb drag of strongly correlated electron liquids,
Phys. Rev. B 89, 121104(R) (2014).

[29] S. Das Sarma and E. H. Hwang, In-plane magnetodrag in dilute
bilayer two-dimensional systems: A Fermi-liquid theory, Phys.
Rev. B 71, 195322 (2005).

[30] A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M.
Klapwijk, Indication of the ferromagnetic instability in a dilute
two-dimensional electron system, Phys. Rev. Lett. 87, 086801
(2001).

[31] J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and
K. W. West, Spin susceptibility of an ultra-low-density two-
dimensional electron system, Phys. Rev. Lett. 90, 056805
(2003).

[32] E. Tutuc, S. Melinte, E. P. De Poortere, M. Shayegan, and
R. Winkler, Role of finite layer thickness in spin polarization

of gaas two-dimensional electrons in strong parallel magnetic
fields, Phys. Rev. B 67, 241309(R) (2003).

[33] A. V. Andreev, S. A. Kivelson, and B. Spivak, Hydrodynamic
description of transport in strongly correlated electron systems,
Phys. Rev. Lett. 106, 256804 (2011).

[34] T. Holder, Hydrodynamic Coulomb drag and bounds on diffu-
sion, Phys. Rev. B 100, 235121 (2019).

[35] A. A. Patel, R. A. Davison, and A. Levchenko, Hydrodynamic
flows of non-Fermi liquids: Magnetotransport and bilayer drag,
Phys. Rev. B 96, 205417 (2017).

[36] S. S. Apostolov, D. A. Pesin, and A. Levchenko, Magnetodrag
in the hydrodynamic regime: Effects of magnetoplasmon reso-
nance and Hall viscosity, Phys. Rev. B 100, 115401 (2019).

[37] I. D’Amico and G. Vignale, Theory of spin Coulomb drag in
spin-polarized transport, Phys. Rev. B 62, 4853 (2000).

[38] I. D’Amico and G. Vignale, Spin Coulomb drag in the two-
dimensional electron liquid, Phys. Rev. B 68, 045307 (2003).

[39] C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens,
and D. D. Awschalom, Observation of spin Coulomb drag in
a two-dimensional electron gas, Nature (London) 437, 1330
(2005).

[40] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed.,
Course of Theoretical Physics Series, Vol. 6 (Butterworth-
Heinemann, Oxford, 1987).

[41] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2,
1st ed., Course of Theoretical Physics Series, Vol. 9 (Elsevier,
Oxford, 2014).

[42] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, And
Correlation Functions, 1st ed. (CRC Press, Taylor and Francis
Group, New York, 2019).

[43] A. Levchenko and A. V. Andreev, Spin drag mechanism of giant
thermal magnetoresistance, arXiv:2401.14455.

[44] A. Levchenko, Spin-caloric resistance of Dirac plasma in
graphene Corbino device, arXiv:2404.03135.

[45] X. P. A. Gao, G. S. Boebinger, A. P. Mills, A. P. Ramirez,
L. N. Pfeiffer, and K. W. West, Strongly enhanced hole-phonon
coupling in the metallic state of the dilute two-dimensional hole
gas, Phys. Rev. Lett. 94, 086402 (2005).

[46] B. Spivak and S. A. Kivelson, Transport in two dimensional
electronic micro-emulsions, Ann. Phys. (NY) 321, 2071 (2006).

[47] D. Zverevich and A. Levchenko, Transport signatures of plas-
mon fluctuations in electron hydrodynamics, Low Temp. Phys.
49, 1376 (2023).

[48] K. Flensberg and B. Y.-K. Hu, Coulomb drag as a probe of
coupled plasmon modes in parallel quantum wells, Phys. Rev.
Lett. 73, 3572 (1994).

[49] K. Flensberg and B. Y.-K. Hu, Plasmon enhancement of
Coulomb drag in double-quantum-well systems, Phys. Rev. B
52, 14796 (1995).

[50] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd
ed., Course of Theoretical Physics Series, Vol. 5 (Butterworth-
Heinemann, Oxford, 1980).

[51] J. Sykes and G. A. Brooker, The transport coefficients of a
Fermi liquid, Ann. Phys. (NY) 56, 1 (1970).

[52] C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet,
Correlation energy and spin polarization in the 2D electron gas,
Phys. Rev. Lett. 88, 256601 (2002).

085307-9

https://doi.org/10.1103/PhysRevB.79.041303
https://doi.org/10.1103/PhysRevLett.89.016805
https://doi.org/10.1103/PhysRevLett.90.226801
https://doi.org/10.1103/PhysRevLett.94.016807
https://doi.org/10.1103/PhysRevLett.66.1216
https://doi.org/10.1103/PhysRevB.47.4420
https://doi.org/10.1103/PhysRevB.48.8203
https://doi.org/10.1103/PhysRevB.52.7516
https://doi.org/10.1103/PhysRevB.52.14761
https://doi.org/10.1103/PhysRevLett.90.086801
https://doi.org/10.1103/PhysRevB.72.045355
https://doi.org/10.1103/PhysRevB.64.115431
https://doi.org/10.1103/PhysRevB.57.7085
https://doi.org/10.1103/PhysRevB.91.245405
https://doi.org/10.1103/PhysRevB.89.121104
https://doi.org/10.1103/PhysRevB.71.195322
https://doi.org/10.1103/PhysRevLett.87.086801
https://doi.org/10.1103/PhysRevLett.90.056805
https://doi.org/10.1103/PhysRevB.67.241309
https://doi.org/10.1103/PhysRevLett.106.256804
https://doi.org/10.1103/PhysRevB.100.235121
https://doi.org/10.1103/PhysRevB.96.205417
https://doi.org/10.1103/PhysRevB.100.115401
https://doi.org/10.1103/PhysRevB.62.4853
https://doi.org/10.1103/PhysRevB.68.045307
https://doi.org/10.1038/nature04206
https://arxiv.org/abs/2401.14455
https://arxiv.org/abs/2404.03135
https://doi.org/10.1103/PhysRevLett.94.086402
https://doi.org/10.1016/j.aop.2005.12.002
https://doi.org/10.1063/10.0022363
https://doi.org/10.1103/PhysRevLett.73.3572
https://doi.org/10.1103/PhysRevB.52.14796
https://doi.org/10.1016/0003-4916(70)90002-3
https://doi.org/10.1103/PhysRevLett.88.256601

