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Possibility of like-charged particles to attract each other at negative permittivity
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It is discussed whether like charges can be attracted to each other at a negative permittivity. The possibility of
achieving negative permittivity in dielectric-conductor metamaterials due to localized surface plasmon resonance
is shown. The possibility of manipulating the resonance frequency in a wide range of frequencies from zero to the
plasma frequency by applying a magnetic or electric field is shown. The possibility of breakup of electron-hole
pairs (exciton cold dissociation) and formation of electron-electron bound pairs at negative permittivity and
nonzero frequency is discussed.
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I. INTRODUCTION

It is well known that the permittivity ε of metals can
reach negative values. However, only very recently this fact
was widely used in theoretical and experimental studies of
metamaterials. This brings to mind fantastic and unexpected
optical properties [1–3]. The relation between the electric
displacement D and the electric field E

D = ε · E, (1)

shows that at negative ε, the directions of D and E are op-
posite. It is worth noting that the permittivity ε appears also
in the law of the electrostatic Coulomb interaction of charged
particles q1 and q2 at a distance r:

F = 1

ε

q1q2

r3
r. (2)

There is no doubt that the Coulomb interaction can be reduced
or even enhanced by changing ε in the positive region [4].
However, it follows logically from Eq. (2) that the force F
should reverse its direction when ε is negative. Therefore, like
charges should attract each other, while unlike charges should
repel each other. The consequence of this can lead to unex-
pected physical properties and fantastic technical applications
but it requires theoretical justification and experimental verifi-
cation. Especially because the Coulomb interaction of Eq. (2)
in media is verified only for positive values of the permit-
tivity ε. Moreover, in most physics texts it is declared that
the medium weakens the Coulomb interaction, i.e., that ε

should be not only positive but also greater than 1. Although
Coulomb’s law and the superposition principle for electric
fields in vacuum are completely equivalent to Maxwell’s
equations for electrostatics, it is not obvious that the permit-
tivitiy in Eqs. (1) and (2) is the same. This is somewhat similar
to the situation in mechanics where the inertial mass (F =
ma) and gravitational mass (F = γ m1m2

r2 ) are not obviously
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the same and their identity was used to form the theory of
general relativity. The appearance of the relative permittivity
in the Coulomb law is usually explained phenomenologically
as a result of the polarization of the medium. An attempt to
derive the permittivity by an elementary calculation of lattice
sums in the dipole approximation (see Appendix B) gives the
result ε = 1, which shows the nontriviality of this issue, which
requires further study.

The possibility to change repulsion of like charges to at-
traction is discussed very rarely in the literature. Nevertheless,
when the current work was under preparation, we found sev-
eral publications devoted to this problem. As far as we know,
one of the first authors who pointed to the possibility of
using negative permittivity to change repulsion to attraction
was Ginzburg [5]. However, he mentioned this only in order
to illustrate qualitatively the appearance of Cooper pairs in
superconductors. In the article by Kirzhnits [6] (which was
written at the request of Ginzburg) it was stated explicitly:
“There exists, in principle, a class of substances within which
the static interaction of the electrons has the character not of
repulsion, as in vacuo, but of attraction.” The latter prediction
is probably already verified experimentally, at least partially.
In a recent publication [7] the observation of attraction be-
tween electrons was reported in the system of bubble and
stripe phases at negative permittivity.

We have also found several other publications about this
problem [8–13] (we do not consider attraction of metal
nanoparticles [14] in an electrolyte solution [15]). In addition,
it is obvious that this problem can be extended to the case
of ions and nuclei. For example, in Ref. [16] it was recently
reported that 6Li nuclei may be bound into Cooper-pair-like
states [using a two-dimensional (2D) optical dipole trap]. We
think that the time has now come to study intensively the
above mentioned opportunities which give a negative permit-
tivity. In this article, we discuss whether electrons can attract
each other when the permittivity is negative (the spin depen-
dence of this will be ignored for the sake of simplicity). As
we will show, this can be realized not only in the static regime
but also at nonzero frequency. Negative values of permittivity
we propose to achieve due to the localized surface plasmon
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FIG. 1. (a) Sketch of the 1/ε vs ε with discontinuity at the point
ε = 0 when ε is assumed as real. (b) Real (blue solid line) and
imaginary (red dashed line) parts of ε ≡ ε(M )

xx [given by Eq. (A1)] vs
ω/ωp for the dimensionless magnetic field H = ωcτ = 20. ωpτ =
40. (c) Real part of 1/ε vs. Reε when the existence of the imaginary
part of ε is taken into account. The numerical values of ε are taken
from the branch AB shown in (b).

resonances (LSPR) in metamaterials. These resonance fre-
quencies can be varied over a wide range by application of
static magnetic or electric fields.

The remainder of this paper is organized as follows: In
Sec. II we discuss the possibility to observe the attraction
of like charges at a frequency in the range 0 < ω < ωp. In
Sec. III we discuss the possibility of breakup of electron-hole
pairs (dissociation of Wannier excitons) at negative permit-
tivity and the creation of electron-electron or hole-hole pairs.
In Sec. IV we present an analytical expression for LSPR in
dielectric-conductor metamaterials and discuss the condition
for achievement of negative permittivity ε. We conclude in
Sec. V. In Appendix A we present an expression for the
magnetic-field dependent permittivity tensor using the Drude
approximation. In Appendices B and C we try to evaluate the
relative dielectric constant of the Coulomb interaction in a
classical approximation from first principles and show that it
is equal to 1, i.e., that in the dipole approximation the medium
does not affect the Coulomb interaction.

II. IMAGINARY PART OF THE PERMITTIVITY
IN THE CASE OF ANOMALOUS DISPERSION

A. Imaginary part of ε

The work of Kirzhnits [6] was based mainly on the study
of the Kramers-Kronig relations. Let us check here the possi-
bility of zero and negative values of the relative permittivity
ε in the Coulomb law from first principles. At first glance
Eq. (2) should not be correct at negative values of ε since
it has a discontinuity at ε = 0 as it is shown by the sketch
in Fig. 1(a). However, it is known in the case of anomalous
dispersion (namely, when it is possible to obtain zero or nega-
tive values of ε), the permittivity inevitably has an imaginary
part [17]. In the case of normal dispersion, the imaginary
part is usually small. Even from numerical calculations [see

FIG. 2. (a), (b) Similar to Figs. 1(b) and 1(c) but for the macro-
scopic dielectric permittivity εe of the conductor-insulator composite
with conducting elliptical inclusions (shown in the inset). Results are
obtained by Clausius-Mossotti (blue) and dilute (red) approximations
(see Eqs. (15)–(18), (33) below and Refs. [18,19]) vs ω/ωp. ωpτ =
40. (b) The numerical values of εe are taken from the Clausius-
Mossotti approximation branch AB shown in (a).

Fig. 1(b)] it follows that when the real part of ε vanishes,
its imaginary part essentially differs from zero. These depen-
dences are calculated using the Drude model of the metal
permittivity tensor [see Eq. (A1) in the Appendix A]. The
real part of the inverse permittivity, i.e., the value of Re(1/ε),
passes continuously through zero, as shown in Fig. 1(c). This
is obvious, since if the permittivity is complex ε = ε′ + iε′′
then the inverse permittivity will also have a zero real part
Re(1/ε) = ε′/(ε′2 + ε′′2) when ε′ = 0.

In Fig. 2 we show, similar to Fig. 1, dependences of the
effective macroscopic permittivity εe and Re(1/εe) but ob-
tained for a dielectric-conductor metamaterial. The results are
obtained by using the dilute and Clausius-Mossotti approxi-
mations (see Eqs. (15)–(18), (33) below and Refs. [18,19]).

B. Non-Hermitian problem

The presence of the imaginary part of permittivity ε com-
plicates the theory of considered phenomenon. In quantum
mechanical description, the Hamiltonian in the Schrödinger
equation will be non-Hermitian when the permittivity is
complex. This also means that the solution will not be sta-
tionary and will be damped [20,21]. This can be seen directly
from the time-dependent Schrödinger equation for a pair of
quantum particles (see below) [22] ih̄ ∂ψ

∂t = ( −h̄2∇2

2μeh
+ V ′ −

iV ′′)ψ , where ψ = ψ (r, t ) is the wave function, V ′ − iV ′′ =
e2/[(ε′ + iε′′)|r|] is the complex Coulomb potential, r is
the distance, h̄ ≡ h/(2π ) is Planck’s constant, and μeh is
the reduced mass of a pair of particles “e” and “h” (see
below). Multiplying the above Schrödinger equation by ψ∗
and the complex conjugated equation by ψ we get ∂ρ

∂t +
∇ · J = −V ′′

h̄ ρ, where ρ ≡ ψ∗ψ is the particle density and
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J ≡ ih̄
2μeh

(ψ∇ψ∗ − ψ∗∇ψ ) is the current density. Therefore,
in the steady state the particle density is attenuated by V ′′.

The influence of the imaginary part of the Coulomb
potential can be illustrated also in the framework of
Newton dynamics. The potential in Newton’s second law
(written along the x axis) ẍ + e2/(εμehx2) = 0 can be ex-
panded in series near the initial position R0: 1

(R0−x)2 � 1
R2

0
+

2x
R3

0
+ 3x2

R4
0

+ . . . . Up to the term linear in x we have ẍ +
ω2

0x = −e2/(εμehR2
0), where ω2

0 = ε′−iε′′
ε′2+ε′′2

2e2

μehR3
0

= Aeiφ , A =
2e2

μehR3
0
( ε′
ε′2+ε′′2 ), φ = − arctan( ε′′

ε′ ). The solution of this is

x = x1e±iω0t − R0

2
= x1e∓√

A sin φ

2 t e±i
√

A cos φ

2 t − R0

2
, (3)

where x1 is the amplitude of the “oscillations”. Thus, the
imaginary part of the Coulomb potential (due to imaginary
part of permittivity ε) leads (as in optics) to damping. Whether
the imaginary part of the permittivity ε prevents or helps the
pairing of particles requires additional consideration. Mean-
while, from Fig. 5(c) and Figs. 6(b) and 6(c) (see below) it can
be seen that it is possible to find frequencies for which ε′ < 0
and ε′′ � 0. For simplicity we consider everywhere below the
case ε′′ � 0.

III. ELECTRON OSCILLATION
AND WANNIER EXCITONS

Kirzhnits [6] and others [8–10] have considered the static
situation when the permittivity should be taken at zero fre-
quency. To achieve negative values of the permittivity ε at
zero frequency ω = 0 is a main difficulty in this problem.
The static case corresponds to an attraction of particles strictly
along a straight line. According to classical mechanics [23],
this is possible only when their angular momentum M is
strictly equal to zero. If M is nonzero, then the particles will
move along elliptical trajectories and the fall of a particle to
the center will be impossible within the framework of classical
mechanics. Though to reach a negative value of ε in the
static regime [i.e., ε(0) < 0] is possible in metamaterials by
application of magnetic [18,19,24–33] or electric [34] fields
(see Sec. IV below), it is more convenient to use for this
purpose permittivity at nonzero frequency ω which can be
realized in the case of oscillating or rotating charges. If, for
example, the point charges are rotating one about the other
(around a common center like in the case of the Wannier ex-
citons [35–40]) then from outside it looks like oscillations of
the dipole moment, i.e., oscillations of the electric field. In this
case the permittivity ε, as a response of the surrounding media
to the perturbation caused by charge oscillations, should be
used at the frequency of these oscillations. One needs only
to check whether the permittivity ε at these frequencies can
reach negative values. The situation is similar to a problem in
the theory of Wannier excitons: which ε should be used in the
Coulomb interaction of a hole with an electron. As was shown
in Refs. [35,41] and [42], when the radius of the exciton orbit
(electron-hole pair) is small and therefore the frequency of
rotation is large then the permittivity should be taken as ε = 1,
since the valence electrons of the crystal cannot follow the
rapid motion of the electron-hole pair. By contrast, when the

FIG. 3. Two point unlike charged q1 and q2 in a thin slab with
permittivity ε1 creating a bound electron-hole pair (exciton). Side
view. Not all lines of the electrostatic forces are inside the slab.
Therefore, the interaction between the point charges does not follow
the Coulomb law [43–46]. The permittivity of the surrounding media
is ε2.

orbit radius is large the rotation frequency is small and the
value of ε should be taken as the low frequency permittivity.
As we will show in Sec. IV, negative values of ε can be
achieved in the entire range of frequencies 0 < ω < ωp. That
is, the frequency of exciton oscillation should be smaller than
the plasma frequency ωp (see Sec. IV and Appendix A).

The case of rotation of an electron around a hydrogen
nucleus is often considered as a simple classical exercise.
This can be treated as electric oscillations. From elementary
evaluations (mev

2/rB = e2/r2
B, where rB is the Bohr radius,

me is the electron mass), we can find the angular frequency of
electron rotation ωe = v/r = e/r3/2

B m1/2
e � 4.1×1016rad/sec.

Similarly, we can find the frequency ωex of rotation of electron
and hole around their common center of mass in the case of
the Wannier-Mott exciton [35–38] (i.e., a pair of electron and
hole).

A. Modification of the Coulomb law in slabs: Method of images

We assume that the exciton is located in a thin dielectric
slab (with positive permittivity ε1 > 0) which is placed be-
tween two metal-dielectric media (with negative permittivity
ε2 < 0), see Fig. 3. Since not all lines of the electrostatic
forces are inside the slab (see Fig. 3 and Refs. [43–46]) the in-
teraction between the point charges does not follow the usual
Coulomb law. Therefore the Coulomb interaction will depend
not only on the permittivity ε1 but also on ε2. Therefore,
when ε2 < 0, the attraction between electron and hole can be
changed to repulsion and the repulsion between electrons can
be changed to attraction. This can be shown for example by
the method of images [17,47]: In general this method is applied
for the static case. However, if the relaxation time τ of elec-
trons of the media with negative permittivity (see media with
ε2 in Figs. 3 and 4) is much less than the inverse frequency
1/ω of the rotation (or oscillation) of the point charges (−q1

and −q2 in Fig. 4) in the media with ε1 (i.e.,τ << 1/ω), then
the induced image charges in the medium with ε2 (+q′

1 and
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FIG. 4. Two point charges −q1 and −q2 in a slab with permit-
tivity ε1 above an infinitely thick medium with permittivity ε2. The
horizontal component of the Coulomb force F‖ between charges −q1

and −q2 is calculated using the method of images.

+q′
2 in Fig. 4) will have time to form and the image method

should work.
Similar to Ref. [10] we consider a system of two media:

a dielectric slab with ε1, placed on the top of the thick semi-
conductor slab with ε2 (see Fig. 4). Above a dielectric slab
with ε1 it is possible to consider another thick slab with ε2

like in Ref. [10], but we assume that this medium with ε2

is a vacuum, what is easier to realize in experiment. Two
point charges q1 and q2 (q1 = q2) are placed in a slab ε1 at
the distance L each from each other. The distance from the
charges q1 and q2 to the lower medium ε2 (and therefore from
the induced charges q′

1 and q′
2 to the lower interface) is h. In

the semiconductor due to the LSPR the negative permittivity
ε2 < 0 can be achieved, while in the dielectric ε1 � 1. A point
charge q1 induces a point charge q′

1 in medium ε2, while
the point charge q′

1 induces in its turn a point charge q̃1 in
the medium ε1 (see Fig. 4). Finally, it is possible to find
[10,43–45] that the horizontal component of the Coulomb
force acting on the point charge q2 is equal (see Fig. 4):

F‖ = q1q2

ε1L2
− 2q2q′

1 cos α

ε1r2
, (4)

where r =
√

L2 + (2h)2 = L/ cos α, tan α = 2h/L, cos α =
1/
√

1 + (2h)2/L2. Therefore,

F‖ = q1q2

ε1L2

[
1 − q′

1

q1
cos3 α

]

= q1q2

ε1L2

⎡
⎣1 − ε1 − ε2

ε1 + ε2

1(
1 + 4h2

L2

)3/2

⎤
⎦. (5)

When 4h2/L2 
 1, Eq. (5) simplifies to the form

F‖ ≈ q1q2

ε1L2

2ε2

ε2 + ε1
. (6)

From Eq. (6) it follows that the like charges can attract each
other when ε2 < 0 while ε1 + ε2 > 0. Also the charges with
different sign will then repel each other.

B. Excitonlike electron-electron bound pairs

According to Ref. [35], a pair of unlike charged electron
and hole, i.e., a Wannier exciton of large radius, can be

roughly imagined if we consider only one excited electron
and one hole in a crystal, and take into account the remaining
emitted electrons and atomic cores by introducing a periodic
potential that determines only the isotropic masses of an elec-
tron and a hole, etc. If we further assume that an electron and a
hole in such a medium interact according to the Coulomb law
(−e2/εreh), then the Schrödinger equation for the electron-
hole system will have the following form:(

− h̄2∇2
e

2me
− h̄2∇2

h

2mh
− e2

εreh

)
� = E�, (7)

where reh is the distance between the electron and the hole, �

is the wave function, and me and mh are the electron and hole
masses, respectively. This equation is written in the so-called
effective mass approximation and is similar to the equation for
the hydrogen atom [48]. The quantum-mechanical expression
for the effective Bohr exciton radius [35–38] is

rex = εh̄2

e2μeh
, (8)

where μeh = memh/(me + mh) is the reduced mass of the
exciton. This differs from the hydrogen Bohr radius [48] by
the presence of the permittivity ε in the numerator. In semi-
conductors the typical permittivity ε is of order ε � 10 and,
therefore, the rotation frequency of the electron-hole pair is of
order ωex � 1.3×1015 sec−1, which is smaller than ωe. This
can be compared with the quantum estimation ωex= (angular
momentum)/(mass · radius2) (see Ref. [35]):

ωex = h̄/μehr2. (9)

For an exciton with an effective mass μeh = me/2 in a crystal
with gap energy EG = 2 eV and radius r = 5 Bohr radii we get
ωex ≈ 3×1015 sec−1, which is close to the previous classical
estimation.

The linear velocity of the electron in an exciton can be
estimated by v = rexωex = εex h̄2

e2μeh
ωex ≈ 1.4×105m/sec. This is

much less than one percent of the light speed 3×108m/sec.
Therefore the above classical estimates are reasonable.

We need to check whether the values of ω used above
ωex ≈ 1.3×1015 sec−1 or ωex ≈ 3×1015 sec−1 are smaller
than the plasma frequency ωp:

ωp =
√

4πN0e2

me
= 5.64×104√N0 rad/sec, (10)

where N0 is the concentration of free electrons in the metal.
Since for typical metals such as aluminum or silver N0 is
approximately 1023 cm−3, the plasma frequency of Eq. (10)
is of order ωp � 1.5×1016 sec−1 (which is in the ultraviolet
region). At the frequencies ω > ωp the metal permittivity
εm � 1 since the electrons of the surrounding media are un-
able to follow the electric field oscillations.

Since the frequency of the exciton oscillations ωex is much
smaller than the plasma frequency ωp, the permittivity ε in
Eq. (8) can be differ from 1. By tuning the LSPR with an
applied magnetic field [18,24–27,29–31] or an applied gate
voltage [34], the permittivity ε2 can be made negative at
the frequency ωex (see Sec. IV below). Since the interaction
between two point charges in a thin dielectric film with ε1
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depends also on the permittivity of a conducting film with
ε2, this should lead to breakup of electron-hole pairs (cold
electrostatic exciton dissociation) and creation of electron-
electron pairs (similar to Cooper pairs). Since the masses of
the electron and the hole can be different, the exciton hy-
drogenic Rydberg constant Rex = μe4/2h̄2ε2

ex (see Ref. [35])
for the electron-hole pairs and the electro-electron pairs can
also be different and the process of exciton destruction and
creation of electron-electron pairs can be experimentally ob-
servable directly in the optical spectra of the same sample.

The electron-electron system with negative permittivity ε

is also similar to positronium [49], but without annihilation.
Two electrons can form a bound state but cannot enter into
a fusion reaction since between electrons acts only the weak
interaction but not the strong one as in the case of protons.

Another interesting phenomenon which can appear at neg-
ative permittivity εe < 0, and which should be discussed
separately, is the ionization of atoms which is a consequence
of repulsion of the atomic nucleus and its electron shell.

C. Nuclei-nuclei bound pairs

Whether it possible to obtain a nucleon-nucleon pairing at
negative permittivity ε < 0 is an even more important ques-
tion than the electron-electron pairing discussed above. Being
substituted by a proton mass (instead an electron mass) into
expression for Bohr radius it gives a value of order 3×10−14 m
(when |ε| = 1), which is close to the distance ∼10−15m,
where the strong forces begin to act. That is, this estimation
is very promising for reaching nuclear fusion. However, the
other parameters (like rotation frequency and linear velocity
of nuclei) obtained using the discussed above formulas are
not realistic. Therefore, in contrast to the case of an electron-
electron pair, such estimations for nuclei should be performed
using relativistic quantum mechanics or other suitable ap-
proaches.

IV. ANALYTICAL AND NUMERICAL
FORMALISM—RESONANCES

The negative permittivity ε needed for achieving attraction
of like charges can be obtained in insulator-conductor meta-
materials with appropriate nanostructures. The frequencies at
which negative values of ε are achieved can be manipulated
by an applied static magnetic [19,24–31] field B or electric
gate voltage [34]. The theory and formalism of this are pre-
sented briefly below (taking into account all parameters in
general form in order to find the best way for manipulating
the resonant frequency and striving for its minimal values of
frequency). We used a quasistatic approximation in which the
wave vector k = 0, i.e., the wavelength should be greater than
the characteristic sizes of the nanostructures of the metama-
terials. This approximation is used in many situations. The
description of the more general case when |k| > 0 can be
found, e.g., in Refs. [4,50].

We consider a two-constituent insulator-conductor com-
posite medium made of two uniform materials with per-
mittivity tensors ε̂1 and ε̂2. The position-dependent local
permittivity tensors ε̂(r) of this medium can be written as

ε̂ = ε̂1θ1 + ε̂2θ2 = ε̂2 − δε̂θ1, (11)

where δε̂ ≡ ε̂2 − ε̂1, θ2 = 1 − θ1. Here we have used the char-
acteristic or indicator function of the i constituent

θi(r) =
{

1 for r inside the i constituent,
0 elsewhere. (12)

If the inclusions form a periodic lattice, this description is
suitable, provided the lattice constant is much smaller than
the wavelength, i.e., when the sample is homogeneous on
the scale of the electromagnetic wavelength. Following our
previous works [19,24–31,34], we choose a scheme where
the composite medium occupies the entire volume in between
the infinitely conducting plates of a parallel plate capacitor.
The plates are taken to be infinitely large, and the distance
between them is taken to be finite but large compared to any
scale of inhomogeneity of the system. Keeping the medium
fixed, we can choose the orientation of the plates to be per-
pendicular to any of the coordinate axes. We denote by φ(α)

the local potential field that results when the plates are perpen-
dicular to the rα axis and a potential difference equal to their
distance apart is applied between them. The volume averaged
electric field is then 〈∇φ(α)〉 = ∇rα = eα , i.e., a unit vector
in the rα direction. The potential field φ(α) is the solution of
the partial differential equation for the electric displacement
∇ · D = ∇ · ε̂(r) · φ(α)(r) = 0, namely

∇ · ε̂2 · ∇φ(α) = ∇ · θ1δε̂ · ∇φ(α), (13)

and the boundary condition φ(α) = rα at the capacitor plates.
The bulk effective electric permittivity tensor is defined by

ε̂(e) · 〈E(r)〉 ≡ 〈ε̂(r) · E(r)〉, (14)

where the angular brackets denote a volume average 〈. . . 〉 ≡
1
V

∫
dV . . . .

The case of a single inclusion of ellipsoidal or cylindrical
shape can be solved exactly when H ≡ ωcτ = 0. [47] Exten-
sions of that solution for the case H �= 0 were described in
Refs. [19,24–29]. For a dilute system it immediately follows
that

ε̂(e) = ε̂2 − p1δε̂ · γ̂ , (15)

where p1 = Vinc/V is the volume fraction of the inclusions.
When B ‖ z (i.e., when δεxz = δεyz = δεzx = δεzy = 0) the
matrix γ̂ takes the form [18,31]

γ̂ =

⎛
⎜⎜⎝

1
D

(
1 − nyδεyy

εyy

)
1
D

nxδεxy

εxx
0

1
D

nyδεyx

εyy

1
D

(
1 − nxδεxx

εxx

)
0

0 0 1
1− nzδεzz

εzz

⎞
⎟⎟⎠,

(16)

D =
(

1 − nxδεxx

εxx

)(
1 − nyδεyy

εyy

)
− nxny

δεxy

εxx

δεyx

εyy
,

(17)

where nx, ny, and nz are the depolarization factors [47] of the
inclusion. Here we omit for simplicity the subscripts “2” in
the host permittivity tensors ε̂2.
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A. Insulating host and conducting ellipsoidal inclusions

Let us consider the case of insulating host and dilute conducting ellipsoidal inclusions. From Eqs. (15)–(17) we can write, for
example, an expression for the xx-component of the permittivity tensor ε̂e:

ε(e)
xx = εxx

{
1 − p1

(
εxx − ε(inc)

xx

)[
εyy − ny

(
εyy − ε(inc)

yy

)]+ ε(inc)
xy ε(inc)

yx ny

(εxx − nxδεxx )(εyy − nyδεyy) − nxnyδεxyδεyx

}
, (18)

where the host is insulator with εxx, εyy, and εzz permittiv-
ity tensor components (the off-diagonal components εxy =
εxz = εyx = εzx = 0 vanish), while the permittivity tensor
components of the conducting inclusions we indicate with
superscript “inc” and take from Eq. (A1) (see below) in the

limit ωτ � 1: ε(inc)
xx = ε(inc)

yy = ε0 − ω2
p

ω2−ω2
c
, ε(inc)

xy = −ε(inc)
yx =

iω2
pωc

ω(ω2−ω2
c ) .

The determinant D(ω) in Eqs. (16) and (17) plays a crucial
role when it is equal to zero and gives the values of the reso-
nance frequencies. Substituting Eq. (A1) in the limit ωτ � 1
into Eq. (17) and equating it to zero, we get an equation for
the resonance frequency ωres. This condition can be rewritten
as

ω2
res

[
α
(
ω2

res − ω2
c

)− nxω
2
p

][
β
(
ω2

res − ω2
c

)− nyω
2
p

]
= nxnyω

4
pω

2
c , (19)

where we have introduced the definitions α ≡ (1 − nx )εxx +
ε0nx and β ≡ (1 − ny)εyy + ε0ny, and where ε0 is the dielec-
tric constant of the background ionic lattice [see Eq. (A1)].
This can be simplified to the form of a biquartic equation

(
ω2

res − ω2
c

)[
ω4

res − (gω2
p + ω2

c

)
ω2

res + nxnyω
4
p

αβ

]
= 0, (20)

where g = nxβ + nyα

αβ
= nx

α
+ ny

β
. (21)

The solutions of Eq. (20) are

ωres = ±ωc, (22)

ω2
res ± = gω2

p + ω2
c

2
±
√(

gω2
p + ω2

c

)2
4

− nxnyω4
p

αβ
. (23)

The resonance (22) is called the “cyclotron resonance”.
From Eq. (23) for H = 0 we immediately obtain the
frequency ωres = ωp

√
nx, which is known as the LSPR.

However, as soon as H > 0, this splits into two reso-
nances: a “magneto-plasma resonance” (denoted by ω−) and
a “magneto-plasma shifted cyclotron resonance” (denoted by
ω+) [19,24–30]. Equation (23) can be expanded in the limits
ωc/ωp 
 1 and ωp/ωc 
 1. For a weak magnetic field (i.e.,
for ωp � ωc) we get

ωres ± �

√√√√g

2
+
√

g2

4
− nxny

αβ

+ 1

4

√
g
2 ±
√

g2

4 − nxny

αβ

⎛
⎜⎝1 + g

2
√

g2

4 − nxny

αβ

⎞
⎟⎠(ωc

ωp

)2

.

(24)

For a strong magnetic field (i.e., ωc � ωp) we get

ωres + � ωc + g

2

ω2
p

ωc
, (25)

and ωres − �
√

nxny

αβ

ω2
p

ωc
. (26)

When

nx = ny ≡ n and εxx = εyy = ε0, (27)

it then follows from Eqs. (25) and (26) that

ωres + � n

ε0

ω2
p

ωc
+ ωc, (28)

ωres − � n

ε0

ω2
p

ωc
(29)

(note that for the sphere nx = ny = nz ≡ n = 1/3). The
situation with Eq. (24) is more complicated under the condi-
tions (27) since for these parameters g2

4 − nxny

αβ
vanishes. One

needs to put conditions (27) into Eqs. (20) and (21), then these
resonances take simple forms:

ωres ± = ωp

√√√√ n

ε0
+ 1

2

(
ωc

ωp

)2

±
(

ωc

ωp

)√
n

ε0
+ 1

4

(
ωc

ωp

)2

.

(30)

From this we get an approximate expression in the limit
ωc 
 ωp:

ωres ± � ωp

√
n

ε0
± ωc

2
+ 1

8

√
ε0

n

ω2
c

ωp
. (31)

In order to observe the resonances (28), (29), and (31),
the conductivity relaxation time τ must satisfy ωτ > 1. Such
resonances were studied both experimentally and theoretically
many years ago [51,52] as well as more recently [18,19,24–
30] in the case of metamaterials.

When the applied magnetic field vanishes (ωc = 0), the
expression for the resonance frequency follows directly from
Eq. (30)

ωres ± � ωp

√
n

ε0
. (32)

The expression for ωres in the Clausius-Mossotti approxi-
mation has a similar form, one only needs to make the
substitution [19] ni → (1 − p1)ni:

ωres ± � ωp

√
(1 − p1)n

ε0
. (33)
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B. Cylindrical inclusions

When the cylinder axis is along the y axis then the depo-
larization factor in this direction is zero: ny = 0. When the
magnetic field is directed parallel to the z-axis, B ‖ z, Eq. (16)
simplifies and there are resonances when the denominator
D(ω) = εxx − nxδεxx, or D(ω) = εzz − nzδεzz vanishes.

When the elliptical cylinders are conducting and the host is
insulating, the expression for the resonance frequency can be
obtained directly from Eq. (23) just by putting ny = 0:

ωres =
√

nxω2
p

(1 − nx )εxx + ε0nx
+ ω2

c . (34)

We see that the value of ωres only increases with the applica-
tion of a magnetic field ωc. However, ωres can be decreased by
decreasing the depolarization factor nx from 0.5 to 0 and by
increasing ε0.

The case of insulating cylinders inside a conducting host
at nonzero magnetic field H is more complicated and is dis-
cussed in Refs. [19,24–30].

C. Results

In Fig. 5 we show numerically calculated real (solid blue
line) and imaginary (dashed red line) parts of ε(e)

xx of a periodic
array of conducting spheres (of radii R = 0.45a, where a is
the distance between the centers of neighboring spheres) vs
dimensionless frequency ω/ωp. The LSPR should appear at
the frequency given by Eq. (33). However, there are essential
shifts from these values due to large sphere radii when the
dilute or Clausius-Mossotti approximation do not give good
quantitative agreement. Larger values of the radii lead to
deeper negative values of ε(e)

xx at the resonances in all cases
of Fig. 5. In Fig. 5(a) we show the case of zero magnetic field
H = 0. The LSPR should appear at the frequency ωres/ωp �
0.45 [see Eq. (33)]. In the numerical calculation this resonance
is shifted to lower frequencies due to large sphere radius R =
0.45a. Changing ε0 [see Eq. (A1)] to the value ε0 = 10 shifts
the resonance by �ω3 to the lower frequency ωres/ωp � 0.17.
Application of an external magnetic field H = ωcτ = μe|B|
[see Eq. (A1)] is a promising tool for decreasing the reso-
nance frequency. In Fig. 5(c) we show the case H = 20 (when
ε0 = 1). The LSPR splits in this case into two branches, one
of which [ωres −, see Eq. (29)] shifts by �ω1 towards a lower
frequency, while the other one [ωres +, see Eq. (28)] shifts in
the opposite direction by �ω2. After substitution of the used
parameters, we get ωres −/ωp � 0.35 and ωres +/ωp � 0.85.
Using both parameters H = 20 and ε0 = 10 leads to a greater
shift.

In Fig. 6 we show drawings similar to Fig. 5 but for a
periodic array of infinitely long conducting cylinders (with
radii 0.4a ) vs dimensionless frequency ω/ωp. In Fig. 6(a)
is shown the case of zero magnetic field H = 0, while ε0 =
1. The LSPR appears at the frequency given by Eq. (34),
where the depolarization factor nx of the circular cylinder is
1/2. The other drawings are similar to Fig. 5. Note only that
if the cylinders are not infinite but have finite length as for
example is shown in Fig. 6(d) with length l = 0.6a, the LSPR
appears at lower frequencies than predicted by Eq. (34). This
is entirely due to the finite length of the cylinder, when the

FIG. 5. Numerically calculated real (solid blue line) and imag-
inary (dashed red line) parts of ε(e)

xx of periodic array of conducting
spheres vs dimensionless frequency ω/ωp. (a) Magnetic field H = 0,
while ε0 = 1, [see Eq. (A1)]. The LSPR appears at the frequency

ωres = ωp

√
(1−p1 )n

ε0
[see Eq. (33)]. (b) Similar to Fig. (a) but for

ε0 = 10. (c) Similar to (a) but for H = 20 (while ε0 = 1). The LSPR
splits into the two branches (due to the applied field), one of which
[ωres −, see Eq. (29)] shifts by �ω1 to smaller values of ω/ωp, while
the second one [ωres +, see Eq. (28)] shifts in the opposite direction
by �ω2. (d) Similar to previous figures but for both parameters:
H = 20 and ε0 = 10. The LSPR splits into the two branches (due to
applied magnetic field), one of which (ωres −) shifts by �ω which is
larger than in (c) due to parameter ε0 = 10. In all figures the radii of
spheres R = 0.45a, where a is the distance between sphere centers,
ωpτ = 40 [see Eq. (A1)], and εhost ≡ ε2 = 1. The vertical dashed
lines are eye guides which indicate the appearance of the LSPR. The
arrows indicate the shifts of the resonances.

behavior of the LSPR is qualitatively similar to the case of a
sphere.

V. CONCLUSIONS

In the present paper we showed that using the LSPR it
is possible to reach negative values of the permittivity ε in
a wide range of frequencies ω by application of magnetic
or electric fields. This can lead to attraction of like charged
particles instead of repulsion and can be observed experi-
mentally as destruction of electron-hole pairs and creation of
hole-hole or electron-electron pairs similar to Cooper pairs.
The latter can be used for new types of superconductivity
in specially prepared metamaterials and in other interesting
nontrivial applications. We conclude our paper with words
from the article by Kirzhnits [6]: ”Of course, the problem of
the actual existence of structures with ε(0, k) < 0 or of their
artificial synthesis remains completely open, as yet. However,
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FIG. 6. Similar to Fig. 5, but for a periodic array of infinitely long
conducting cylinders (a) Magnetic field H = 0, while ε0 = 1 [see
Eq. (A1)]. The LSPR appears at the frequency ωres/ωp � 0.43 [see
Eq. (34) with substitution nx by (1-p1)nx], where the depolarization
factor nx of the circular cylinder is 1/2 [see Eq. (32)]. (b) Similar
to (a) but for ε0 = 10. The LSPR [see Eq. (34)] shifts by ∼�ω

to smaller frequencies due to parameter ε0 = 10. ωres/ωp � 0.2
(c) Similar to (a) but for the case of applied magnetic field H = 20
(when ε0 = 1). The LSPR shifts by �ω to larger frequency.
ωres/ωp � 0.66 [see Eq. (34)]. (d) In (a)–(c) the cylinders are in-
finitely long, while in (d) the cylinders are of finite length l = 0.6a,
where a is the distance between cylinder centers. H = 20. The LSPR
appear at smaller frequencies. This is in contradiction to Eq. (34),
since the cylinders have final length l = 0.6a and, therefore, the be-
havior of the LSPR is qualitatively similar to behavior in the case of
sphere. In all figures the radii of the cylinders R = 0.45a, ωpτ = 40
[see Eq. (A1)], and εhost ≡ ε2 = 1. The vertical dashed lines indicate
the values of the LSPR frequencies obtained from Eq. (34).

such a possibility cannot be excluded and it appears that
the search for structures of this kind is an interesting and
important problem of solid-state physics.” The above words
should be also correct for nucleus-nucleus pairing. However,
the latter pairing due to a negative permittivity (in con-
trast with electron-electron pairing for which we have made
detailed estimations) requires further intensive theoretical
study.
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APPENDIX A: DRUDE APPROXIMATION
FOR THE PERMITTIVITY TENSOR

In the quasistatic regime the electric permittivity tensor of
a metal, ε̂M , has the form [19,24–31]

ε̂M = ε0 · Î + i
4π

ω
σ̂ = ε0 · Î

+ iω2
pτ

ω

⎛
⎜⎝

1−iωτ
(1−iωτ )2+H2

−H
(1−iωτ )2+H2 0

H
(1−iωτ )2+H2

1−iωτ
(1−iωτ )2+H2 0

0 0 1
1−iωτ

⎞
⎟⎠, (A1)

where the conductivity tensor σ̂ is taken in the free-electron
Drude approximation (with the static magnetic field B ‖ z), ε0

is the scalar dielectric constant of the background ionic lattice
and Î is the unit tensor.

The magnetic field enters only through the Hall-to-Ohmic
resistivity ratio H ≡ ρH/ρ = σyx/σxx = μe|B| = ωcτ , where
ωc = eB/mc is the cyclotron frequency, τ is the conduc-
tivity relaxation time, ωp = (4πe2N0/m)1/2 is the plasma
frequency, N0 is the charge carrier concentration, m is the
effective mass of the charge carriers, and μe is the electron
Hall mobility [19,24–31].

APPENDIX B: COULOMB INTERACTION

In a medium, the Coulomb force of interaction changes
(usually stated that it decreases) due to the phenomenon of
polarization. Most explanations of this phenomenon presented
in literature are only qualitative. Let us make here an ele-
mentary but quantitative consideration of this phenomenon
and evaluate a characteristic of the medium which is called
the dielectric constant or the permittivity ε directly from the
Coulomb law. For simplicity, let us assume the medium is a
cubic array of spheres as shown in Fig. 7. This medium is
infinite in y and z directions, but bounded in the x direction
(from −L1 up to +L2). A point charge q (shown as a black
disk) is placed at r = (x, 0, 0), while a second point charge
q2 is placed at r2 = (x2, 0, 0) = (−x, 0, 0). These two point

FIG. 7. Square lattice of dipoles. The z axis is perpendicular to
the figure plane.
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charges create an electric field and induce electric dipole
moments d in all spheres (shown as blue circles) of the sur-
rounding medium. In its turn, the electric field at r, which is
created by the dipole d located at r′, is [53]

E = 3[(r′ − r) · d](r′ − r)

|r′ − r|5 − d
|r′ − r|3 . (B1)

The force F of the Coulomb interaction of the point charge
q1 = q with another point charge q2 = q and with all the
dipoles d induced by them in the medium is

F = q2ex

(2x)2
+ q

′∑
r′

{
3[(r′ − r) · d](r′ − r)

|r′ − r|5 − d

|r′ − r|3
}
,

(B2)
where ex is the unit vector along the x axis. Here we sum
over all dipoles with coordinates r′ excluding points r′ = r
and r′ = r2. The induced dipole moment d is proportional to
the applied external field

d = χE, (B3)

where χ is the electric susceptibility of the medium. In general
χ is a tensor, but for simplicity we consider it here as a scalar.

If we assume the crystal to be a lattice of spheres with per-
mittivity ε1 placed inside a medium with permittivity ε2 = 1,
then the dipole moment d of each sphere is determined by the
expression [47]

d = χE = a3

3

ε1 − 1

1 + (ε1 − 1)n
E, (B4)

where n = 1/3 is the depolarization factor of the sphere, a
is the radius of the sphere, and E is the applied electric field.
From Eq. (B4) it can be seen that the dipole moment d, as well
as the susceptibility χ , can be both positive as well as negative
(at resonance, see Sec. IV) depending on the parameters ε1

and n. Physical intuition suggests that the permittivity ε of the
entire sample [appearing in Eq. (2)] should be proportional to
the dipole moment (B4), which implies that ε should also take
negative values when Eq. (B4) is negative. However, as will
be shown below, regardless of the magnitude and sign of the
dipole moment d, their lattice sum (calculated using simple
approximations and assumptions) is exactly zero. That is, this
lattice sum does not contribute to the dielectric constant ε.

In our case E at r′ is created by the two point charges
placed at r = (x, 0, 0) and r2 = (−x, 0, 0) and by dipoles
d(r′′) placed at all other points r′′. It can be expressed as

E(r′) = q(r′ − r)

|r′ − r|3 + q(r′ − r2)

|r′ − r2|3

+
∑

r′′

{
3[(r′′ − r′) · d(r′′)](r′′ − r′)

|r′′ − r′|5 − d(r′′)
|r′′ − r′|3

}
.

(B5)

From the latter and Eq. (B3) we can find an expression for the
dipole moment d(r′) at the point r′ as a solution of a system

of equations:

d(r′) − χ
∑

r′′

{
3[(r′′ − r′) · d(r′′)](r′′ − r′)

|r′′ − r′|5 − d(r′′)
|r′′ − r′|3

}

= qχ

[
(r′ − r)

|r′ − r|3 + (r′ − r2)

|r′ − r2|3
]
. (B6)

The off-diagonal terms of Eq. (B6) are of order ∼1/|r|3,
i.e., much less than the diagonal terms ∼1/|r|2. Therefore,
for simplicity of presentation we do not account for them in
this Appendix in our further considerations (exact accounting
of these off-diagonal terms would also drastically complicate
the calculations). The influence of the off-diagonal terms we
discuss in the Appendix C in the nearest-neighbors approxi-
mation. Hence, Eq. (B2) can be rewritten as

F = q2ex

(2x)2
+ q2χ

′∑
r′

{
3[(r′ − r) · (r′ − r)](r′ − r)

|r′ − r|8

+ 3[(r′ − r) · (r′ − r2)](r′ − r)

|r′ − r|5|r′ − r2|3
− (r′ − r)

|r′ − r|6

− (r′ − r2)

|r′ − r|3|r′ − r2|3
}
. (B7)

The sum of the first and third terms in braces leads to a simpler
form:

3[(r′ − r) · (r′ − r)](r′ − r)

|r′ − r|8 − (r′ − r)

|r′ − r|6

= 3|r′ − r|2(r′ − r)

|r′ − r|8 − (r′ − r)

|r′ − r|6 = 2(r′ − r)

|r′ − r|6 . (B8)

The magnitude of the force (B7) can be written as

|F| = q2

(2x)2

∣∣∣∣
[

1 + (2x)2χ
∑

r′

{
2(r′ − r)

|r′ − r|6

+ 3[(r′ − r) · (r′ − r2)](r′ − r)

|r′ − r|5|r′ − r2|3

− (r′ − r2)

|r′ − r|3|r′ − r2|3
}]∣∣∣∣. (B9)

We should check whether the expression in the square brack-
ets is the inverse permittivity 1/ε. The first sum in Eq. (B9)
simplifies to the form∑

r′

2(r′ − r)

|r′ − r|6 =
∑

r′

2(x′ − x)ex + 2y′ey + 2z′ez

[(x′ − x)2 + y′2 + z′2]3

= ex

∑
r′

2(x′ − x)

[(x′ − x)2 + y′2 + z′2]3
, (B10)

since the sum along ey and ez axes cancel due to symmetry
of the cubic lattice (ey, and ez are the unit vectors along
Cartesian y and z axes, respectively). Let us consider the
slab of thickness 2L (from x′ = −L up to x′ = +L, where
L → ∞). The sizes in y and z directions are infinite (see
Fig. 7). The sum (B10) should be zero. This can be seen if we
shift the origin of the system of coordinates to the point x (i.e.,
when x′ − x → x′). This also can be verified by direct evalu-
ation of the sum (B10) where for simplicity we evaluate the
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above lattice sums in continuous approximation. Integration in y′, z′ plane is convenient to perform in polar coordinates: 0 �
ϕ � 2π and 0 � ρ � ∞. The area of integration along the x′ axis we define by theta function θ (x′). Sum (B10), therefore, can
be rewritten in continuous approximation (in limit L → ∞) as

4π

∫
θ (x′)(x′ − x)dx′

∫ ∞

0

ρdρ

[(x′ − x)2 + ρ2]3
= π

∫ +L

−L

(x′ − x)dx′

(x′ − x)2
= π ln

(
L − x

L + x

)2

→ 0. (B11)

The sum of the second and the third terms in the braces of Eq. (B9) can be simplified to the form

∑
r′

{
3[(r′ − r) · (r′ − r2)](r′ − r)

|r′ − r|5|r′ − r2|3 − (r′ − r2)

|r′ − r|3|r′ − r2|3
}

= ex

∑
x′,y′,z′

{
1

[(x′ − x)2 + y′2 + z′2]3/2[(x′ + x)2 + y′2 + z′2]3/2

[
3(x′ − x)2(x′ + x) + 3(y′2 + z′2)(x′ − x)

[(x′ − x)2 + y′2 + z′2]
− (x′ + x)

]}

= ex

∑
x′,y′,z′

2[(x′ − x)2(x′ + x) + (y′2 + z′2)(x′ − 2x)]

[(x′ − x)2 + y′2 + z′2]5/2[(x′ + x)2 + y′2 + z′2]3/2

= ex

∑
x′,y′,z′

{
2(x′ + x)

[(x′ − x)2 + y′2 + z′2]3/2[(x′ + x)2 + y′2 + z′2]3/2
− 6x(y′2 + z′2)

[(x′ − x)2 + y′2 + z′2]5/2[(x′ + x)2 + y′2 + z′2]3/2

}
.

(B12)

As in Eq. (B10), the sum along ey and ez axes cancel due to symmetry of the cubic lattice. Similarly to Eq. (B11), we can rewrite
the lattice sums (B12) in continuous approximation (we also took into account that x2 = −x):

4π

{∫
θ (x′)(x′ + x)dx′

∫ ∞

0

ρdρ

[(x′ − x)2 + ρ2]3/2[(x′ + x)2 + ρ2]3/2

− 3x
∫

θ (x′)dx′
∫ ∞

0

ρ3dρ

[(x′ − x)2 + ρ2]5/2[(x′ + x)2 + ρ2]3/2

}
. (B13)

The first integral in Eq. (B13) over dρ is

− ρ2 + x′2 + x2

8x′2x2
√

ρ2 + (x′ − x)2
√

ρ2 + (x′ + x)2

∣∣∣∣∣
∞

0

= − 1

8x′2x2
+ x′2 + x2

8x′2x2|x′ − x||x′ + x| . (B14)

The second integral in Eq. (B13) over dρ is

− (x′2 − x2)2(x′2 − x′x + x2) + ρ4(x′2 + x′x + x2) + 2ρ2(x′4 + x′2x2 + x4)

24x′3x3[ρ2 + (x′ − x)2]3/2
√

ρ2 + (x′ + x)2

∣∣∣∣∣
∞

0

= − (x′2 + x′x + x2)

24x′3x3
+ (x′2 − x2)2(x′2 − x′x + x2)

24x′3x3|x′ − x|3|x′ + x| . (B15)

After substitution of Eq. (B15) into the second integral of Eq. (B13) we get the following expression:

2π

(2x)2

[∫
θ (x′)

(x′2 + x′x + x2)dx′

x′3 −
∫

θ (x′)
(x′2 − x2)2(x′2 − x′x + x2)dx′

x′3|x′ − x|3|x′ + x|
]
. (B16)

The second integral in Eq. (B16) can be transformed to the form∫
θ (x′)

(x′ + x)(x′2 + x2)dx′

x′2|x′ − x||x′ + x| + x2
∫

θ (x′)
(x′ + x)(x − x′)dx′

x′3|x′ − x||x′ + x| . (B17)

Substituting Eqs. (B14), (B16), and (B17) into Eq. (B13) we get

2πx2

(2x)2

[∫
θ (x′)

dx′

x′3 −
∫

θ (x′)
(x′ + x)(x − x′)dx′

x′3|x′ − x||x′ + x|
]
. (B18)

The first integral in Eq. (B18) with symmetric limits is zero as an integral of an odd function. The second integral in the
last expression should be evaluated carefully since in the denominator are absolute values. This integral is zero in symmetric
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limits:∫
θ (x′)

(x′ + x)(x − x′)dx′

x′3|x′ − x||x′ + x|

=
∫ −x

−L

(x′ + x)(x − x′)dx′

x′3(x′ − x)(x′ + x)
−
∫ x

−x

(x′ + x)(x − x′)dx′

x′3(x′ − x)(x′ + x)

+
∫ L

x

(x′ + x)(x − x′)dx′

x′3(x′ − x)(x′ + x)
= 0. (B19)

This way, we found that the dipole lattice in Eq. (B9) is zero,
i.e., the polarization of the crystal does not contribute to the
permittivity within the framework of the considered classical
model and, therefore, ε = 1. This is partially reminiscent of
the Lorentz’ result [17,54] and shows that the field due to
the nearby atoms in a simple cubic lattice vanishes at any
lattice site. Our result appears either because of the above
dipole approximation (which is probably not enough) or due
to some other simplifications the main of which is neglecting
of off-diagonal terms in Eq. (B4). It is also possible that
zeroing out the lattice sum has a deeper reason: It is interest-
ing to compare this with the phenomenon of magnetization.
The appearance of magnetic permeability μ > 1 (i.e., mag-
netization) of samples was explained for a long time as the
result of the summation of the molecular circular currents.
However, the circular currents inside the samples as well (as
the dipole moments in our cases) are mutually compensated.
Only those currents (and molecular dipole moments in our
case) remain uncompensated which are located near the side
sample surfaces. However, in respect to magnetization it was
shown by the Bohr-Van Leeuwen theorem that this explana-
tion is not correct and the magnetism in solids is solely a
quantum mechanical effect and means that classical physics
cannot account for paramagnetism, diamagnetism, ferromag-
netism, etc. Probably, the result obtained in this chapter by
simple integration, suggests that the permittivity, similarly to
magnetization, cannot be explained within the framework of
classical theory.
Note for comparison, that in Ref. [41] within studies of exci-
tons in the framework of quantum mechanics, the following
expression was obtained for the permittivity

ε = 1

1 −∑i
γ 2

i

2π�Ẽi

, (B20)

where the summation is over all ith excited exciton states,
γ = 4πe| �μ|/√V0, �μ is dipole moment, V0 is the volume of
the crystal unit cell, �Ẽ = h̄�‖(0) (in definitions of Authors)
[see text after Eq. (4.18) in Ref. [41]]. Since the permittivity ε

FIG. 8. Sketch for accounting the off-diagonal terms of Eq. (B6)
in nearest-neighbors approximation.

is usually greater or equal to one, the sum in the denominator
of Eq. (B20) must be positive and smaller than one. It can be
assumed that when this sum is greater than 1, then the permit-
tivity will become negative. However, whether this is possible
in the case of exciton systems requires further analyses. It
is also required to find out whether the expression similar to
Eq. (B20) is valid for other (nonexcitonic) quantum systems.
Anyway, in the case of plasmons, the negative permittivity is
observed both in theory and in experiment.
Despite the result of calculation of the lattice sum contradicts
to our expectations (i.e., the sum is zero and is not propor-
tional to d), we provided here a detailed presentation of our
calculations in order to attract the attention of scientists to the
nontriviality of this problem.

APPENDIX C: ACCOUNTING OF THE OFF-DIAGONAL
TERMS IN NEAREST-NEIGHBOR APPROXIMATION

Exact accounting of the off-diagonal terms in Eq. (B6) is
a complicated problem. In this Appendix we justify quali-
tatively that accounting of these terms does not change the
above obtained result. Let us consider this problem in the
nearest-neighbor approximation.

1. First way

For convenience, let us write out Eq. (B6) in expanded
form for the points (for simplicity of presentation we consider
the 2D case) r′ = (x′, y′) and r′′ = (x′ + a, y′), (x′ − a, y′),
(x′, y′ + a), (x′, y′ − a) [where (±a, 0) and (0,±a), are the
distances between two neighbors in two x and y directions,
see Fig. 8]:

dx(x′, y′) − χ
3[(x′ + a − x′)dx(x′ + a, y′) + (y′ − y′)dy(x′ + a, y′)](x′ + a − x′)

[(x′ + a − x′)2 + (y′ − y′)2]5/2
+ χ

dx(x′ + a, y′)
[(x′ + a − x′)2 + (y′ − y′)2]3/2

− χ
3[(x′ − a − x′)dx(x′ − a, y′) + (y′ − y′)dy(x′ − a, y′)](x′ − a − x′)

[(x′ − a − x′)2 + (y′ − y′)2]5/2
+ χ

dx(x′ − a, y′)
[(x′ − a − x′)2 + (y′ − y′)2]3/2

− χ
3[. . . ](x′ − x′)

[. . . ]5/2
+ χ

dx(x′, y′ + a)

[. . . ]3/2
− χ

3[. . . ](x′ − x′)
[. . . ]5/2

+ χ
dx(x′, y′ − a)

[. . . ]3/2

= qχ

[
x′ − x)

|r′ − r|3 + (x′ + x)

|r′ − r2|3
]
. (C1)
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Expanding the dipole moment d (x) in a Taylor se-
ries dx(x′ ± a, y′) � dx(x′, y′) ± ∂dx

∂x a and dx(x′, y′ ± a) �
dx(x′, y′) ± ∂dx

∂y a, we find that

dx(x, y) = qχ

1 − 2χ

a3

[
x′ − x

|r′ − r|3 + x′ + x

|r′ − r2|3
]
. (C2)

That is, the accounting of the diagonal terms in Eqs. (B6) leads
only to renormalization of the coefficient χ . The lattice sums
with these terms were already calculated in Appendix B and
gave a vanishing result.

2. Second way

Let us write out Eq. (B6) in the 1D case

dx(x′) − 3χ

a3
[dx(x′ + a) + dx(x′ − a)] + χ

a3

× [dx(x′+ a)+ dx(x′ − a)] = qχ

[
1

(x′ − x)2
+ 1

(x′ + x)2

]
.

(C3)

This can be rewritten as

dx(x′) − 2χ

a

[dx(x′ + a) − 2dx(x′) + dx(x′ − a)]

a2

− 4χ

a3
dx(x′) = qχ

[
1

(x′ − x)2
+ 1

(x′ + x)2

]
. (C4)

The terms in the left-hand side can be understood as the
second derivative d2dx/dx2 of the dipole moment, written in

terms of finite differences. Therefore, we have

d2dx(x′)
dx2

+ κ2
0 dx(x′) = −aq

2

[
1

(x′ − x)2
+ 1

(x′ + x)2

]
,

(C5)

where κ2
0 = 4χ/a3−1

2χ/a . The solution of this equation is

dx(x′) = C1eiκ0x + C2e−iκ0x + C3

[
1

(x′ − x)2
+ 1

(x′ + x)2

]
.

(C6)

The third part of this solution (C6) with coefficient C3 is
not important since it was already included in the lattice
sum and evaluated in Appendix B. The other part of the
solution (C6) with coefficients C1 and C2 are decaying or
oscillating (depending on the sign of κ2

0 ) terms. Therefore, we
can look for the solution of Eq. (B6) in the form d ∼ eiκ0·x
and write di(r′ ± ai ) � di(r′) exp(±iκ0iai ), where i = x, y, z.
Then from Eq. (B6) it follows (if ax = ay = az):[

1 − 2χ

a3
(2 cos κ0xa − cos κ0ya − cos κ0za)

]
dx(x′, y′, z′) =

= χq

[
(r′ − r)

|r′ − r|3 + (r′ − r2)

|r′ − r2|3
]

x

. (C7)

That is, the accounting of the diagonal terms in Eqs. (B6)
again leads only to renormalization (if κ0x �= κ0y �= κ0z ) of
the coefficient χ and the results of the lattice summation
should be the same as in Appendix B. In our opinion, despite
the approximate nature of the calculations carried out in the
previous, and especially the present Appendix, the obtained
result reflects the symmetry of the problem and has a deep
physical meaning.
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