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Electronic ladder model harboring Z4 parafermions
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Parafermions are anyons with the potential for realizing nonlocal qubits that are resilient to local perturbations.
Compared with Majorana zero modes, braiding of parafermions implements an extended set of topologically
protected quantum gates. This, however, comes at the price that parafermionic zero modes cannot be realized in
the absence of strong interactions, posing a challenge for their theoretical depiction. In this paper, we construct
a simple lattice model for interacting spinful electrons with parafermionic zero-energy modes. The explicit
microscopic nature of the considered model highlights realization avenues for these exotic excitations in recently
fabricated quantum dot arrays. By density matrix renormalization group calculations, we identify a broad range
of parameters, with well-localized zero modes, whose parafermionic nature is substantiated by their unique 8π

periodic Josephson spectrum.
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I. INTRODUCTION

As outlined at the turn of the century, key requirements
for the realization of a quantum computer are qubits with long
decoherence times and a universal set of robust quantum gates
acting on them [1]. Topological quantum computers, where
quantum information is encoded in nonlocal quasiparticles,
promise to address these issues at the hardware level [2,3].
Majorana fermions [4] and their fractionalized counterparts,
parafermions [5], are such excitations in topological super-
conductors [6,7]. Parafermions are classified by a Zd index,
with d = 2 corresponding to Majorana fermions. The char-
acteristic non-Abelian exchange statistics of parafermionic
excitations can be exploited to implement topologically pro-
tected quantum gates. Braiding of d > 2 parafermion zero
modes implements an extended set of quantum operations
compared with Majorana zero modes [8].

Blueprints for realizing parafermions rely on electron-
electron interactions [7]. Furthermore, some of these pro-
posals require combining superconductivity and fractional
quantum Hall edge modes, whose realization is challenging
as the magnetic field needed for stabilizing the quantum Hall
phase is detrimental for conventional superconductors [9,10].
Several recent theoretical works have proposed platforms for
realizing Z4 parafermion zero modes circumventing this co-
nundrum. These approaches are based on strongly interacting
quantum spin Hall (QSH) insulators coupled to superconduc-
tors and do not require a substantial external magnetic field

*Contact author: laszlo.oroszlany@ttk.elte.hu

[11,12]. In these proposals, interactions open a gap in the edge
states while preserving time-reversal symmetry. Parafermion
modes emerge at interfaces between edge regions gapped by
interactions and proximity-coupled superconducting sections.
The Z4 parafermionic modes manifest a fourfold degenerate
ground state and are characterized by 8π -periodic fractional
Josephson effect. Interestingly, this effect can be realized
without an extended region of strong interactions. In recent
proposals, it was suggested that coupling an impurity quantum
spin via an anisotropic exchange term to the Josephson junc-
tion formed at a QSH edge can exhibit 8π periodicity [13,14].
Weak interactions in a constriction of topological insulators
can also stabilize the 8π -Josephson signal [15]. The existence
of parafermionic zero modes was also investigated in spinless
[16] and spinful [17] nano-wire setups.

All the studies above regarding the physical implemen-
tation of parafermionic phases rely on the bosonization
technique, thus neglecting high-energy or lattice-scale ef-
fects [18]. Alternatively, lattice models can be used to study
the rich landscape defined by parafermionic excitations. The
density matrix renormalization group (DMRG) method [19]
has been applied to investigate dynamical excitations in
parafermionic chains [20]. There is a natural mapping be-
tween Z4 parafermionic and spinful fermionic degrees of
freedom since they both encode a four-dimensional local
Hilbert space. The algebraic structure of this mapping has
recently been thoroughly explored [21]. The fermionized ver-
sion of parafermion chains has also been investigated, yielding
an electronic lattice model with exotic components, such as
three-particle interactions as well as occupation and spin-
dependent hopping [22,23].
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Here, we follow a more realistic approach inspired by ex-
perimentally feasible proposals utilizing the helical QSH edge
modes. In Sec. II, we construct a lattice model for spinful elec-
trons with the potential to host Z4 parafermionic zero modes.
Utilizing the DMRG approach, we explore its rich phase
diagram and demonstrate the presence of the parafermionic
states in Secs. III and IV, respectively. In Sec. V, we discuss
the impact of isotropic exchange interaction on the stabil-
ity of the parafermionic phase. As summarized in Sec. VI,
the simplicity of our model highlights realization avenues
of parafermionic zero modes in highly tunable quantum dot
arrays. Further details of our calculations and analysis are
given in the Appendix.

II. THE MODEL

In the following, we introduce a ladder Hamiltonian acting
on spinful electrons which captures the essential properties
of the edge states of two-dimensional topological insulators
without explicitly treating the insulating bulk. We build on
previous works where a similar lattice model was applied
for modeling free fermions [24–26], helical Majorana modes
subject to interactions [27,28], and the edge states of fractional
topological insulators [29]. In the proposed model, each elec-
tronic site has local spin degrees of freedom denoted by ↑ and
↓, while the left and right legs of the ladder will be referred
to simply by the labels L and R, respectively. We write the
Hamiltonian of the system as the sum of three parts:

H = Hkin + Hsc + Hint. (1)

The first term describes the kinetic contributions, capturing
propagation along the legs and hopping across the rungs of
the ladder:

Hkin =
∑

m

c†
m(−μms0 ⊗ ζ0 + ts0 ⊗ ζx )cm

− t

2

∑

m

c†
m+1(isz ⊗ ζz + s0 ⊗ ζx )cm + H.c. (2)

Here, sα and ζα are Pauli matrices acting on the spin
and leg degrees of freedom, respectively, and c†

m =
(c†

m,L,↑, c†
m,R,↑, c†

m,L,↓, c†
m,R,↓), where c†

m,ζ ,s denotes the cre-
ation operator of an electron with spin projection s ∈ {↑,↓}
on-site m of leg ζ ∈ {L, R}, and t serves as an overall energy
scale for the system, while μm is a site-dependent potential.
A visual representation of the different considered hopping
processes is shown in Fig. 1(a).

For low energies, the kinetic term in Eq. (2) describes
the propagation of helical particles which can be made
more explicit if we take the Fourier transform of Eq. (2)
along the ladder, by introducing operators ck = ∑

m eimkcm.
Thus, the kinetic term, for uniform values of the chemical
potential μm = μ, becomes Hkin = ∑

k c†
kH(k)ck . For low en-

ergies, this term can be analyzed by the envelope function
approximation around k = 0, yielding

H(k) ≈ −μs0 ⊗ ζ0 + ktsz ⊗ ζz. (3)

Crucially, no terms are mixing the two legs; thus, for low-
energy helical particles, the two legs are decoupled just as
they would be for two spatially separated edges of a large

FIG. 1. (a) Sketch of the kinetic term, detailing all single-particle
hopping processes along the ladder. Note the opposite signs of the
complex amplitudes of the parallel hopping processes along the two
legs of the ladder. These refer to the hopping direction marked by the
arrows. (b) Configuration of a finite-sized system used for obtaining
the phase diagram and excitation spectrum. Red shade denotes the
region of superconductivity with pair potential strength �. Blue
color signals a region with interactions of strength V , homogeneous
potential μ, and superconducting term with pair potential �′. The
green dashed cut denotes the interface at which the entanglement
entropy is obtained for the phase diagram calculations.

two-dimensional topological insulator. We note that our
model can also be employed for investigating disjoint edges
of two distinct topological insulators coupled by a Kondo
impurity [30].

The second term in the Hamiltonian in Eq. (1) describes
proximity to an s-wave superconductor:

Hsc =
∑

m,ζ

�m,ζ [c†
m,ζ ,↑c†

m,ζ ,↓ + H.c.], (4)

with a site and leg-dependent pair potential �m,ζ .
The last term Hint describes a short-ranged microscopic

interaction:

Hint =
∑

m,ζ

Vm,ζ [c†
m,ζ ,↑cm,ζ ,↓c†

m+1,ζ ,↑cm+1,ζ ,↓ + H.c.]. (5)

Introducing c†
m,ζ = (c†

m,ζ ,↑, c†
m,ζ ,↓) and rewriting the interac-

tion term with operators Sα
m,ζ = c†

m,ζ sαcm,ζ , we get

Hint =
∑

m,ζ

Vm,ζ

2

[
Sx

m,ζ Sx
m+1,ζ − Sy

m,ζ Sy
m+1,ζ

]
, (6)

that is, this term describes an anisotropic symmetric exchange
coupling of strength Vm,ζ between electron spins on neighbor-
ing sites along a leg.

An important aspect of this model is that it can be used to
effectively circumvent fermion doubling [31], without break-
ing time-reversal symmetry albeit at the cost of dismissing
charge conservation. For instance, in a configuration depicted
in Fig. 1(b), a fixed, large value of � gaps the whole red
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FIG. 2. Entanglement entropy for model setup shown in
Fig. 1(b) as a function of interaction strength V for N1 = N3 = 20,
N2 = 100, and �/t = 1.0. In (a), the chemical potential μ, while in
(b), the pair potential �′ is varied. Dashed lines are a guide to the eye
and indicate phase boundaries.

region, thus allowing the exploration of effects of arbitrary
local interactions on the helical states localized in the blue
region.

III. PHASE DIAGRAM

We explore the phase diagram of the proposed model in
Eq. (1) with the DMRG [32,33] method, as it is an ideal tool
for characterizing quasi-one-dimensional systems. Quantum
phase transitions can be detected by the anomaly of entan-
glement measures [34–37]. In practice, we computed the half
system von Neumann entropy [38] for the geometry shown in
Fig. 1(b). The technical details of the used DMRG calcula-
tions are presented in Appendix A. In this section, we focus
on the physical interpretation of the phase diagram.

To study the stability of the potential phases emerging
by tuning the interaction strength, we investigate the phase
diagram under general conditions controlled by parameters μ

and �′. The obtained entanglement entropy maps are depicted
in Fig. 2. For �′ = 0, three phases are clearly discernible
in Fig. 2(a). Allowing for finite �′ shown in Fig. 2(b), for
small enough interactions, any finite value of �′ gaps the
system, thus pushing the middle region of the system where
interactions are active [bluish part in Fig. 1(b)] to the same
superconducting phase as the rest. A hallmark of this is the
marked drop in entanglement entropy as �′ is increased. For
large enough interaction strength, the two phases observed for
�′/t = 0 remain stable even for large �′.

Note that, for large enough μ/V or �′/V , the system
reverts effectively to a phase that can be described by a nonin-
teracting theory. For large μ, the separation of the states to the
two legs of the ladder does not hold, and the system will revert
back to a metallic behavior. For large �′, the superconducting
correlations overpower effects due to interactions, turning the
whole system to a conventional superconducting phase. To
distinguish the observed phases, in Fig. 3, we now study
the low-energy many-body excitation spectrum obtained by
the DMRG approach [39] as the function of the interaction
strength V fixing �′/t = μ/t = 0 for the sake of simplicity.
Three different phases can be identified in complete agree-
ment with our entropy analysis. Notably, for weak interaction,
up to around V/t = 1.5, the system has a well-defined ground
state with even fermion parity, and the first excited state is

FIG. 3. Excitation spectrum of the considered model as the func-
tion of the interaction strength V , for Ni = 20 and μ/t = 0 in the
configuration depicted in Fig. 1(b). The two lowest-energy even and
odd parity states are marked by |ei〉 and |oi〉, with i ∈ {1, 2}. Vertical
dashed lines mark the same boundaries as in Fig. 2.

a doubly degenerate odd state. In the thermodynamic limit,
the spectrum of this phase shows a metallic character with a
vanishing excitation gap, as demonstrated in Appendix C. For
intermediate interaction strengths, beyond the reach of pertur-
bation theory, a phase with a fourfold degenerate ground state
emerges with a considerable gap in the excitation spectrum.
We label the states in this degenerate ground-state manifold
as |ei〉 for even parity and |oi〉 for odd parity, with i ∈ {1, 2}.
This spectral structure is found to be independent of the size
of the system (see Fig. 8 in Appendix C). At around V/t = 3,
a second phase transition is observed. For stronger interaction
strengths, the degeneracy is lifted again, and the gap increases
linearly with V .

Note that the four zero-energy modes observed in our
designed model at moderate interaction strengths have the
potential to host Z4 parafermions. In the following, we show
that, in this phase, the system is indeed characterized by
parafermionic zero modes.

IV. IDENTIFICATION OF PARAFERMIONS

For the remainder of this paper, we focus on the thor-
ough analysis of the phase with fourfold degeneracy to
reveal its genuine parafermionic nature. Parafermionic zero
modes have to satisfy the following checklist. First, the phase
hosting these exotic zero-energy modes should be charac-
terized by zero-energy localized single-particle excitations
[4]. Second, the ground-state manifold should be robust
against external perturbations [6]. In our model, time-reversal
symmetry-preserving perturbations, i.e., external electrostatic
fields, are expected to preserve the ground-state degener-
acy. Perturbations breaking time reversal are expected to
split the zero-energy modes [11,12]. Finally, to distinguish
the parafermionic phase from time-reversal symmetric Ma-
jorana modes, a characteristic Josephson signal will serve as
a definitive fingerprint. In the case of Majorana fermions, a
4π periodic Josephson effect is expected [40,41], while Z4

parafermions exhibit 8π periodicity [7,11–14].
In this section, first, we show that the zero-energy modes

are characterized by edge-localized single-particle excita-
tions, robust against electrostatic disorder, as one expects from
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FIG. 4. Different local quantities evaluated in the fourfold degen-
erate subspace with V/t = 2.2 and �′ = μ = 0 for a setup depicted
in Fig. 1(b) with N1 = N3 = 20 and N2 = 40. (a) and (b) Expectation
values of the local spin momenta 〈e1|Sy

m,ζ |e1〉 and 〈e2|Sy
m,ζ |e2〉 for

the even subspace, respectively. Up to numerical precision, states in
the odd subspace, |o1〉 and |o2〉, show the same pattern. (c) Matrix
element

∑
s |〈o1|cm,ζ ,s|e1〉|2 of the local annihilation operator cm,ζ ,s

between states of the even and odd subspace with the same magneti-
zation pattern.

the bulk-boundary correspondence. Second, we observe 8π

periodicity in the Josephson current providing the definitive
signature of the Z4 parafermionic zero modes [11].

A. Local characteristics

The fourfold degeneracy of the ground state is resilient
against fluctuations of the electrostatic potential. In our calcu-
lations, we find that the expectation value of the local electron
density:

nm,ζ = c†
m,ζ ,↑cm,ζ ,↑ + c†

m,ζ ,↓cm,ζ ,↓, (7)

is identical for all four states, while the off-diagonal matrix
elements of nm,ζ are numerically negligible. Accordingly, no
local electrostatic potential configuration exists which can
split the fourfold degeneracy of the ground state.

On the contrary, breaking time-reversal symmetry with a
local magnetic field lifts the degeneracy of the ground state
owing to the emergence of uneven diagonal matrix elements
in the perturbative Zeeman term. Focusing on the states of the
even subspace |e1〉 and |e2〉, we observe that the expectation
value of Sy

mζ , localized to the region with interactions, differs
in sign, as depicted in Figs. 4(a) and 4(b). While similar
behavior is found in the odd subspace, all the other matrix
elements related to the local spin operators are proved to
be negligible. Note that the magnetization pattern exhibited
by the ground-state manifold is a clear consequence of the
considered interaction in Eq. (6) favoring an anisotropic spin
configuration in the y direction.

Zero-energy single-particle excitations in the ground-state
manifold are exponentially localized to the interfaces of
the superconducting and interacting regions, as depicted in
Fig. 4(c). This is again an indicator of two topological zero
modes attached to the boundary of the interacting region [4].

FIG. 5. Schematic representation of a phase-bias-induced
Josephson current crossing two parafermionic zero modes (left
panel) and Josephson spectrum (right panel) of a junction with
N = 8 sites and interaction strength V/t = 2.2.

However, to clearly distinguish these zero-energy excitations
from a time-reversal invariant pair of Majorana bound states
[42], further analysis is necessary.

B. Josephson spectrum

The Josephson spectrum, depicted in Fig. 5, decisively
reveals the presence of parafermionic zero modes in the
considered model. The evolution of the energy of the four
localized modes as a function of phase bias ϕ in between
two superconducting terminals can be used to characterize
anyonic excitations [43]. Time-reversal invariant Majorana
modes show a 4π -periodic modulation [40,41], while Z4

parafermions exhibit 8π periodicity [7].
The introduced model allows for the isolation of the

Josephson current passing through two parafermionic exci-
tations localized at the boundary of the interacting region.
In Fig. 5, we consider a short junction of N = 8 sites; thus,
the degeneracy is slightly lifted. At ϕ = 0, time-reversal sym-
metry protects the twofold degeneracy of states with odd
parity, while no such restrictions apply for even states. Ini-
tializing the system in |ψ1〉, we can continuously follow
its progression as the phase bias ϕ is tuned. At ϕ = π ,
as the consequence of the joint manifestation of the parity
anomaly and time-reversal symmetry, the spectrum exhibits
two distinct degeneracies [14]. Continuing further, a crossing
between ϕ = π and ϕ = 3π/2 is protected by local par-
ity of the junction. Arriving at ϕ = 2π , the system evolves
smoothly in |ψ2〉. We need a further three cycles, that is,
a total of 8π shift of the phase bias to recover the initial
state. In Appendixes B and D, we give additional details re-
garding the procedures for obtaining the presented Josephson
spectrum.

V. MINIMIZING THE REQUIRED ANISOTROPY
BY ISOTROPIC EXCHANGE

As we have shown above, the stability of the parafermionic
phase requires a considerable anisotropic exchange in-
teraction. Below, we give numerical evidence that the
parafermionic phase can be stabilized for considerably
smaller anisotropic exchange interaction as well if a suf-
ficiently large ferromagnetic isotropic Heisenberg exchange
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FIG. 6. Phase diagram for finite isotropic J and anisotropic A
exchange, with N1 = N3 = 20 and N2 = 100. in a geometry like the
one depicted in Fig. 1(b).

interaction is present in the system. In this section, we replace
the interaction term with the expression:

Hint =
∑

m,ζ

Jm,ζ Sm,ζ · Sm+1,ζ + Am,ζ Sx
m,ζ Sx

m+1,ζ , (8)

where Jm,ζ is the strength of isotropic Heisenberg ex-
change, while Am,ζ is single-axis anisotropy, with Sm,ζ =
(Sx

m,ζ , Sy
m,ζ , Sz

m,ζ ) being the vector of electron spin.
The phase diagram of the model is depicted in Fig. 6.

In the phase diagram, for sufficiently large negative J , two
phases with reduced entanglement entropy can be discerned
which are separated by a critical line. The excitation spectrum
evaluated at J/t = −4, as depicted in Fig. 7, shows that both
regions are characterized by a fourfold degenerate ground
state and have a considerable excitation gap. At around zero
anisotropy, the two phases are separated by a metallic critical
region. Further numerical investigation shows that the two
low-entropy regions are characterized by a parafermionic 8π -
periodic Josephson spectrum.

FIG. 7. Excitation spectrum as a function of the anisotropic ex-
change A for J = −4t .

VI. DISCUSSION

We constructed a lattice model with explicit time-reversal
symmetry which is capable of describing the edge states of
a topological insulator in the presence of superconductiv-
ity and interaction. We identified the different phases in the
model. We found a parameter regime where the model hosts
parafermionic excitations. Our model highlights realization
avenues for these exotic excitations in quantum dot arrays and
implies a bottom-up approach for germinating parafermionic
zero modes.

Ladderlike geometries consisting of four [44] and more
recently eight quantum dots [45] have been fabricated where
hopping, spin-orbit coupling, and interactions could be con-
trolled with high accuracy. Quantum dot arrays in conjunction
with topological superconductivity have been studied theoret-
ically [46] and realized experimentally [47,48]. Crucially, in
these systems, the relevant energy scales for superconduct-
ing pair potential, hopping, and spin-orbit coupling can be
tuned and are roughly in the same typical energy scale of
10–100 meV, thus providing a versatile platform for imple-
menting the proposed model. Ultracold atomic ladders [49]
in combination with spin-orbit-coupling-mimicking mecha-
nisms [50–52] could also provide an alternative route for the
realization of our model. In line with frameworks employing
the QSH phase, layered van der Waals materials may provide
a fresh realization pathway, as all necessary ingredients can
be found in these systems. The QSH effect has been observed
in WSe2 [53], and superconductivity was measured in twisted
bilayer graphene [54] and 2H-NbS2 samples [55]. Anisotropic
exchange interaction, crucial for our model, can be also real-
ized using magnetic van der Waals materials [56].
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APPENDIX A: DMRG CALCULATIONS

We applied the DMRG method, which is a prominent nu-
merical eigensolver for low-dimensional interacting quantum
systems [57,58]. The calculations were performed by both
the Budapest-DMRG code [33] and by the ITensor imple-
mentation [32], also allowing us to cross-check numerical
results.

The accuracy of the DMRG calculations was controlled
by the dynamic block-state selection scheme [59], where
the actual number of retained block states depends on the
spectral properties of the corresponding reduced density ma-
trix. In the calculations, keeping the truncation error between
10−7 and 10−9, the maximal number of block states reached
during sweeps was between Mmax = 1000 and 2500.

The bond dimension of the initial random matrices and
the minimum link dimension were set to the same value
between 30 and 100. In the DMRG chain representation, the
sites of the two legs were arranged in alternating order to
minimize the distance between correlated sites. Excited states
were obtained in an iterative manner by adding a projec-
tor, constructed from the previously computed states to the
Hamiltonian with a penalty factor of magnitude 20t–100t .
While one can readily show the time-reversal symmetry of
our proposed model, considering a system with explicit su-
perconductivity, particle parity remains the only conserved
Abelian quantum number that DMRG calculations can make
use of. Even though the limited number of quantum numbers
foreshadows a challenge for the accurate numerical treatment
of the problem, we found that the substantial gap induced by
the different gap generation mechanisms in the system makes
the DMRG simulations rather manageable even for system
sizes of a couple of hundred sites. In fact, in the DMRG
calculations, we treated ladder models with up to 220 rungs
to study finite-sized effects.

APPENDIX B: HIGH-PRECISION
SOLUTION—POST-DMRG ANALYSIS

The quality of the many-body states {|ψi〉}n
i=1 delivered by

the DMRG algorithm with energy {εi}n
i=1 was also monitored

by the variance [60] vi = 〈ψi|H2|ψi〉 − ε2
i , which measures

the noneigenstate content of the computed DMRG states and
was found to be on the order v/t2 ≈ 10−3 in all our calcu-
lations. We note that this translates to ≈0.03t accuracy in
energy. Since the key objective of this paper was to understand
a phase with a highly degenerate ground state, the quality of
the predictions in the ground-state manifold had to be drasti-
cally increased. For the resolution of the delicate details of the
Josephson spectrum, an accuracy beyond 10−4t was required
for the relevant system sizes. Instead of performing further
DMRG calculations with more stringent precision criteria,
and hence demanding substantial computational resources, we
performed the following orthogonalization procedure. Con-
sidering the set of {|ψi〉}n

i=1 many-body states obtained by
DMRG as basis states we re-expanded the Hamiltonian of the
model. Thus, introducing the effective Hamiltonian and over-
lap matrix hi, j = 〈ψi|H |ψ j〉 and si, j = 〈ψi|ψ j〉, respectively,
we solved the generalized eigenvalue problem hap = Epsap.
Note that the resulting matrix equation of low rank, which

FIG. 8. Excitation energies with respect to the inverse of the
system size for (a)–(c) interaction strengths V/t = 0.2, 2.1, and
3.5, respectively. Note that the used model setup is sketched in
Fig. 1(b). In the calculations, we set N1 = N3 = 20, and N2 was
varied.

equals the number of roots kept in the DMRG calculations,
is readily solved by standard means. The obtained Ep eigen-
values give appropriate accuracy for the true spectrum of the
system. Using the ap coefficient vectors, the corresponding
wave functions are obtained as |	p〉 = ∑

i(ap)i|ψi〉.

APPENDIX C: FINITE SCALING OF THE GAPS

The energy of the low-lying excitations with respect to the
system size is presented in Fig. 8 in a representative point
of each phase, which reveals the strikingly different structure
of the excitations. For the metallic phase observed for weak
interaction strength, as shown in Fig. 8(a), the gaps are van-
ishing for increasing system size. On the contrary, for strong
enough interactions, see Figs. 8(b) and 8(c), the excitation
energies converge to a finite value in the thermodynamic
limit. Most notable for intermediate couplings, illustrated in
Fig. 8(b), the ground state is found to be fourfold degenerate
for arbitrary system size, implying already the potential emer-
gence of parafermionic excitations.
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FIG. 9. (a) Excitation spectrum, zoomed to (b) the ground state manifold for a setup depicted in (c) with system size N1 = 20, N2 =
8, and N3 = 20, interaction strength V/t = 2.2, and pair potential �/t = 1.0 as the function of phase bias ϕ. The excitation spectrum is
calculated with respect to the mean energy ¯EGS of the four lowest eigenstates |e1/2〉, |o1/2〉.

APPENDIX D: DETAILED ANALYSIS
OF THE JOSEPHSON SPECTRUM

In this section, we provide details regarding the calcu-
lation of the Josephson spectrum. We consider two setups.
In the first configuration, the system has two interfaces
binding parafermionic zero modes, resulting in a fourfold
degenerate ground-state manifold. In the second, we consider
four interfaces, two pinning parafermions and two harbour-
ing Majoranas. If system sizes are appropriately chosen, the
Josephson current passing through the two parafermions can
be studied. The two setups can be used to understand the
nature of band crossings in the Josephson spectrum.

1. Two interfaces

Let us focus first on the configuration depicted in Fig. 9. In
this setting, a relatively short N2 = 8 junction induces a small
10−3t splitting in the fourfold degenerate ground state.

As fermionic parity is a good quantum number in the whole
model, we can discuss even and odd states separately. At
ϕ = 0, the degeneracy of the even parity of states is lifted,
while the degeneracy of the odd states remains guaranteed by
time-reversal symmetry. As ϕ is changed, a crossing of |e2〉
and |o1〉 can be observed. This crossing is strictly protected by
fermion parity. At ϕ = π , in Fig. 9(b), a further two crossings
can be observed accompanied by a seemingly discontinuous

shift of the parity of states. This crossing is again protected
by time-reversal symmetry. Zooming out in subfigure (a), we
observe a bulk state plunging to zero energy at exactly ϕ = 0.
Inspecting the local properties of this state reveals that it is
localized at the edge of the system, far from the interface.
The appearance of this state at low energies, also visible in
(b) as a single gray point at ϕ = 0, explains the observed
discontinuous evolution of the parity eigenvalues, as this state
carries charge from the interaction region. This effect is often
labeled as the parity anomaly [14]. As ϕ is tuned further,
we cross another degeneracy protected by parity. Finally, at
ϕ = 2π , all states seem to return to their original position.
At this point, we are faced with a dilemma. If we prepare
the state, say |e1〉, how will it evolve as we tune across
the seeming parity discontinuity at ϕ = π? To address this
issue, we shall focus on a slightly extended system where
there are no high-energy states interfering with the ground
state.

2. Four interfaces

To acquire the Josephson spectrum without the high-energy
bulk state crossing the ground-state manifold, we considered
a system with the geometry depicted in Fig. 10. On top of the
kinetic background, represented by the lattice structure in the
figure, we consider interfaces between two superconducting
regions, denoted by reddish and magenta colors in the figure.
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FIG. 10. System configuration used for the calculation of the
Josephson spectrum with four interfaces.

On the left side of the system, we consider an interacting
region, marked by a bluish color and characterized by inter-
action strength V , and a region with a finite magnetic field
pointing in the x direction with magnitude B. Each region has
a length labeled by Ni. We need to resort to this geometry to
avoid interface states between the superconducting regions,
localized far from the interacting region, which traverses the
excitation gap as ϕ is varied, thus masking crucial parts of the
spectrum. Introducing a region with a magnetic field proved
to be a particularly useful approach. This choice pins the
aforementioned interface states to zero in the form of two
Majorana fermions, marked by light blue stars in the figure.
We can identify three Josephson junctions in the considered
geometry, indicated by blue arrows in the figure. The magni-
tude of the Josephson current for the three junctions is denoted
by Ji. Changing the Ni geometrical parameters, the separate Ji

contributions to the current behave differently. Here, J1, the
contribution through the interaction region, is exponentially
suppressed as N2 is increased. Similarly, J2 is diminished if
N4 is enlarged. On the other hand, J3 depends linearly on
N3. Thus, typically, we expect to have a large modulation
due to J3 with period 2π . Increasing N4 to the limit where
the two Majorana fermions decouple, we can concentrate on
the signal coming from tunneling through the localized zero-
energy excitations marked by yellow stars at the edge of the

FIG. 11. Josephson spectrum for two different geometrical setups. In (a)–(c) N2 = 8, while all other length scales are 20, in (d)–(f), we
set N4 = 8 and set the rest again to 20. In (a) and (d), the evolution of the first couple of many-body states is depicted, while (b) and (e)
show excitation spectrum compared with the degenerate ground state, and (c) and (d) zoom in on the low-energy manifold. In all plots
�/t = B/t = 1.0 and V/t = 2.2. Data in these plots were obtained in the global odd sector. The even sector exhibits the same spectrum with a
maximal difference not bigger than 10−6t . That is considering both parities; in (c), each blue point is doubly degenerate, while in (f), quadruple
degeneracy is observed.
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interacting region. We show the results of such a calculation
in Figs. 11(a)–11(c). The large-scale 2π -periodic modulation
is evident from the many-body spectrum in (a). However, if
we focus on the low-energy excitations shown in (c), then the
orthogonalized excitation spectrum shows a characteristic 8π

modulation.
This observation confirms that these excitations are in-

deed parafermionic. We must make an important observation
regarding the raw DMRG data. The raw data exhibit a
4π -periodic modulation compared with the orthogonalized
values. Thus, one must be careful when drawing conclusions
based on these values alone. Of course, the comparatively
poor accuracy of the raw results is at fault. Given enough com-
putational resources, the raw data can be made more precise;
however, orthogonalization is much more practical for this
use case.

We present the results obtained for the opposite case in
Figs. 11(d)–11(f). In this setup, the two parafermionic modes
are the ones that decouple due to an increased separation, and
the Majorana fermions remain hybridized due to a shortened
junction. Thus, we expect 2π modulation for the large-scale
structure and, upon close inspection, a 4π -periodic Josephson
signal when we concentrate on the ground-state manifold, as
is evident from the figure our expectations are fulfilled. Raw
DMRG spectra in this case are qualitatively in agreement with
the orthogonalized values. We note that we only show data
at ϕ values where the raw DMRG calculations or the spectra
obtained after orthogonalization possess a fourfold degener-
ate ground state with a tolerance >10−2t . As in the applied
DMRG implementation, excited states are found one after the
other. In practice, nothing guarantees that, at a given value of
ϕ, all states in the degenerate ground-state manifold will be
found. As the starting point of the DMRG calculations is a
random state, this numerical issue can be solved by redoing
the calculation at a given ϕ appropriately many times. Further
processing the obtained data shown in Fig. 11(c), we can
make the 8π periodicity of the Josephson current through the
interacting region more explicit. By considering the overlaps
〈	i(ϕ)|	 j (ϕ + δ)〉 between orthogonalized states at neigh-
boring ϕ and solving the assignment problem [61], one can
arrange states according to their evolution in ϕ. The result,
shown in Fig. 12, demonstrates how the energy of these states
develop as we tune ϕ. To understand this picture, it is useful
to discuss how the low-energy manifold of the system is com-
prised in a given parity sector. First, we focus on a qualitative
analysis. The Majorana zero mode localized in the region with
a magnetic field can either be filled or empty, giving two
states with differing local parity which we denote by |eM〉 and
|oM〉 for even and odd parity, respectively. The region with
interactions, on the other hand, hosts four states. We have two
even |e1/2〉 and two odd |o1/2〉 parity states localized to this
region. The global even subspace of the system is spanned
by the four states |e1/2〉 ⊗ |eM〉 and |o1/2〉 ⊗ |oM〉, while the
global odd subspace has the remaining four states given by
|e1/2〉 ⊗ |oM〉 and |o1/2〉 ⊗ |eM〉. Focusing on the globally odd
states at ϕ = 0, depicted in Fig. 12, the lowest-energy state
|	1(0)〉 is composed as |e1〉 ⊗ |oM〉. As we tune ϕ up to
2π , three crossings are observed. The first two are protected
due to local parity conservation since they evolved from the
|o1/2〉 ⊗ |eM〉 states, while the degeneracy at 2π is the result

FIG. 12. Continuous Josephson spectrum obtained for the glob-
ally odd states through linear sum assignment from the overlap
matrices of orthogonalized states. All parameters are the same as in
Fig. 11(c).

of time-reversal symmetry. At this point, an integer charge
is transferred across the junction, and we smoothly evolve
from the initial state to |o2〉 ⊗ |eM〉 while flipping the parity
of the Majorana bound state. As we tune ϕ further toward
4π , we traverse again crossings protected by local parity and
cycle another unit of charge across the junction, arriving at
|e2〉 ⊗ |oM〉. At 6π , this turns into |o1〉 ⊗ |eM〉. Finally, at 8π ,
we return to |e1〉 ⊗ |oM〉. In the even parity subspace, similar
reasoning gives the sequence |e1〉 ⊗ |eM〉 → |o2〉 ⊗ |oM〉 →
|e2〉 ⊗ |eM〉 → |o1〉 ⊗ |oM〉 → |e1〉 ⊗ |eM〉. The observed 8π -
periodic Josephson effect serves as the definitive fingerprint
for parafermionic excitations.

Additionally, more quantitative information complement-
ing the discussion above can be gained by evaluating the
expectation value of the partial parity operator for a collection
of sites p ∈ �:

P� =
∏

p∈�,σ

(−1)np,σ . (D1)

We cut the system into two parts in the middle of the su-
perconducting region with varying phases (the region with
length N3 in Fig. 10). That is, the first region, which we
denote by �1, contains all the sites where interactions are
active; thus, this is the region with parafermionic zero modes.
The second region �2 contains the sites where the mag-
netic field is active; thus, this region contains the Majorana
zero modes. The results of evaluating the matrix elements
of the local parity operator defined in Eq. (D1) in the two
regions for all states of the globally odd sector are depicted in
Fig. 13.

The matrix elements for region �1 for the lowest two
eigenstates evolve smoothly from a positive number to a
negative number, while the two larger eigenvalues interpolate
smoothly from a negative number to a positive. In region �2, a
reversed tendency can be observed for all cases. For the glob-
ally even set of eigenstates, the evolution of the local parities
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FIG. 13. Partial parity expectation values for states in the Josephson spectrum in the globally odd sector.

in the two regions is identical to the one depicted for region
�1 in the globally odd states. Thus, this quantitative analysis is

fully in line with the more simple qualitative picture discussed
before.
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