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Controlling interplay between weak localization and interface-roughness scattering of electrons
in nonlinear transport within a superlattice

Po-Hsin Shih,1 Danhong Huang ,2,* Godfrey Gumbs ,1 Thi-Nga Do ,3 Christian P. Morath,2 and Diana Maestas2

1Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
2Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, USA

3Department of Physics, National Cheng Kung University, Tainan 701, Taiwan, Republic of China

(Received 2 May 2024; revised 25 July 2024; accepted 29 July 2024; published 16 August 2024)

In this study, we have explored simultaneously two distinctive physical aspects of electron transport within
a semiconductor superlattice subjected to both randomly distributed barrier scattering strengths and in-plane
interface-roughness scattering of electrons within each barrier layer. To include interface-roughness scattering
of electrons within a single barrier layer, we adopt the reduced Boltzmann transport equation to compute the
nonequilibrium occupation function of electrons. In the presence of randomness within a superlattice, we apply
a quantum-mechanical transfer-matrix approach for an electron wave to take into account all barrier-layer scatter-
ing within the superlattice. Consequently, the single-electron group velocity has been replaced by a mean group
velocity assisted with a randomness-averaged transmission coefficient. For the interface-roughness scattering
of electrons by each barrier layer, we numerically solve the reduced Boltzmann transport equation exactly and
acquire the electrical current by another weighted average of obtained mean group velocities over the numerically
calculated transient nonequilibrium occupation function of electrons from the reduced Boltzmann transport
equation.
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I. INTRODUCTION

Physically speaking, if the length of a superlattice (SL)
is short enough, i.e., on the order of ∼100 nm or a meso-
scopic scale, such that the electron wave function is able
to keep its phase coherence after they suffer multiple scat-
terings within the whole superlattice structure, then electron
waves traveling through different paths can interfere with each
other, leading to quantum interference. Such a mesoscopic
physics phenomenon plays a profound role in electron trans-
port. This quantum-interference effect of electron waves has
attracted a great deal of interest, e.g., universal conductance
fluctuations, and furthermore it has been discussed exten-
sively in the context of solid-state physics for a long time
[1–6]. Since then, various electron devices, which rely on this
quantum-interference mechanism, have been proposed [7,8],
including high-speed, low-power dissipation and multifunc-
tionality applications. Meanwhile, quantum interference has
also attracted much attention from a technological point of
view. In the presence of interface roughness within each thin
barrier layer of a superlattice [9], the scattering strengths of
these barrier layers become random for vertically moving
electron waves, even though the superlattice period is still
a constant. This gives rise to a so-called weak-localization
phenomenon for electron transport along the direction of a
superlattice. Hereafter, the localization phenomenon studied
in this paper refers only to a weak-localization effect on elec-
trons in their transport.

*Contact author: danhong.huang@us.mil

Technological advances in submicron physics have fi-
nally enabled experimentalists to fabricate nearly ideal
one-dimensional (1D) quantum wires [10]. The physics con-
nection between electrical conductance at zero temperature
and transmission coefficients, as shown by the well-known
Landauer formula [11], indicates that some experimentally
measurable quantities can be adequately accounted for when
a simple infinite 1D array of short-range scatterers is intro-
duced. The discovery of quasicrystals [12] has stimulated
strong interest in exploring the physical nature of quasiperi-
odic (e.g., Fibonacci and Thue-Morse) sequences [13] as
well as commensurate-incommensurate low-dimensional sys-
tems [14]. Previous works on quasiperiodic sequences have
included plasmon excitation [15], localization [16], neutron
polarization [17], density of states [18], optical-phonon tun-
neling [19], nonlinear optical filters [20], optical absorption in
a random superlattice [21], electric-field-induced localization
[22], as well as defect-assisted tunneling [23]. Interestingly,
the quasiperiodicity in an infinite chain gives rise to a self-
similar structure in the transmission of electrons as a function
of their incident kinetic energy. Mathematically speaking, the
disorder (fully random) chain leads to the well-known An-
derson localization only when the chain becomes infinitely
long. For a short disorder chain, on the other hand, there is
no complete localization, and only an incomplete localization
appears. Technically, as the chain length practically exceeds
a threshold value, e.g., the localization length, the electron
transport behaves very close to that found when there exists
a complete localization. Therefore, the transmission of a long
chain with disorder is expected to be extremely small.

On the other hand, the vertical transport of electrons in SLs
has also gotten a lot of attention because of the unique band
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structures of InAs/GaSb SLs, which has played an important
role in third-generation infrared focal-plane arrays and photo-
diodes [24–33]. For imaging application, the performance of
optoelectronic devices needs high vertical carrier mobilities
for efficient transport based on diffusion usually and/or drift
sometimes [34]. Unfortunately, vertical mobilities cannot be
measured directly since their measurement involves nonstan-
dard and indirect experimental techniques, e.g., the geometric
magnetoresistance [35,36]. As a result, the vertical mobility
can be extracted indirectly by using the curve fitting to both
vertical and lateral magnetotransport measurements [37,38].
There exist a lot of reported research works on in-plane trans-
port within quantum wells [39], but there is no comparable
effort for SL transport [40], even though the theory for diffu-
sive carrier transport in SLs was developed early by Mori and
Ando [41], Dharssi and Butcher [42], and others [43,44]. As
a result, most theoretical and experimental efforts to date are
still limited to horizontal transport [45].

Very recently, Szmulowicz et al. [46] established an
analytic formalism for calculating simultaneously low-
temperature vertical and horizontal mobilities, and they
applied it to the case of InAs/GaSb SLs. In their work, both
the numerically computed band-structure and the semiclas-
sical Boltzmann transport theory, along with the measured
in-plane mobilities, are combined to extract the vertical carrier
mobilities so as to control interface-roughness scattering for
enhancing device performance and material transport charac-
teristics. However, their theory still employed a phenomeno-
logical relaxation-time approximation for a steady-state linear
transport of electrons in InAs/GaSb SLs driven by a weak dc
electric field.

The physics of semiconductor SLs under a strong dc elec-
tric field E0 appears very rich and interesting due to the large
number of parameters that can be controlled quite easily in
experiments. For example, eBloch oscillations in doped SLs,
resulting in a negative differential conductance as predicted
by Esaki and Tsu [47], were reported by Sibille et al. [35]
for samples at room and low temperatures. In this situation,
the acquired tunable strong terahertz (THz) emitter is used
for real-time active spectral imaging after its combination
with a focal-plane detector array [48]. Meanwhile, studies
on long-time average current under ac monochromatic [49]
and bichromatic [50] electric fields have also been reported,
in which conditions for the presence of dynamical localiza-
tion [51–53] were shown either for a scattering-free system
or within the relaxation-time approximation for elastic scat-
tering of electrons. Conditions for generalized dynamical
localization under ac electric fields were also revealed after
a tight-binding band structure beyond the nearest-neighbor
approximation was employed [53,54].

Most recently, Shih et al. [9] have proposed and solved
exactly the reduced Boltzmann transport equation with the
full inclusion of microscopic scattering of electrons by impu-
rities, phonons, interface roughness, etc. [55]. In their theory,
instead of applying a relaxation-time approximation to scat-
tering of electrons in the Boltzmann transport equation [46],
a first-principles quantum-kinetic model [55] was employed
for studying accurately the full effects of interface roughness
on transient nonlinear vertical transport of electrons in SLs.
To cut down computation time for very complex and time-

consuming numerical calculations, an effective 1D occupation
function was proposed for nonequilibrium miniband electrons
in their vertical SL transport subjected to both dominant for-
ward and secondly backward scatterings by in-plane interface
roughness. Such a quantum-kinetic theory enables evaluating
accurately nonlinear dc current and field-dependent mobility
for vertical transport of miniband electrons in a SL through
extracting its long-time steady-state currents under a fixed dc
field. In this work, they assumed that the width W0 of a SL
miniband is large and the applied dc field amplitude E0 is mod-
erately high, so that the condition eE0d < W0 can be satisfied
to avoid Wannier-Stark strong localization of electrons within
SLs [56,57], where d refers to the spatial period of SL.

In our current work, by introducing random fluctuations
to barrier-scattering strengths in a SL [16,58], we explore
the weak-localization phenomenon in a miniband transport
of electrons, and we quantify the rejection current from
randomness in the system, demonstrating an exponential
dependence of current on SL sample length. Meanwhile,
by simultaneously including interface-roughness-induced in-
plane scattering of electrons, we reveal the interplay of weak
localization with interface-roughness in nonlinear electron
transport within a semiconductor SL, as well as the intrigu-
ing dependence of localization length in vertical transport of
electrons on applied DC-field strength and temperature.

The rest of the paper is organized as follows. In Sec. II,
we describe the weak-localization effect in a SL with random
barrier-scattering strengths for out-of-plane electron scat-
terings. In Sec. III, we introduce the reduced Boltzmann
transport equation for in-plane interface-roughness scattering
of electrons within a SL. Numerical results and their dis-
cussions are presented in Sec. IV to highlight the interplay
between the effects of weak localization and interface-
roughness scattering on nonlinear electron transport within a
semiconductor SL. Meanwhile, we also reveal in Sec. IV the
unique dependence of weak-localization length on SL sample
length, random barrier scattering strengths, temperature, and
applied DC-field strength. Finally, a brief summary is given in
Sec. V along with some remarks.

II. WEAK LOCALIZATION IN A SUPERLATTICE
WITH RANDOM BARRIER-SCATTERING

STRENGTHS FOR VERTICAL SCATTERING
OF ELECTRONS

As shown in Fig. 1, by assuming a thin barrier layer satis-
fying LB/LW � 1, where LB and LW stand for the thicknesses
of a barrier and a well layer, respectively, the SL scattering
potential Vs(z) for a total number of N + 2 thin barrier layers
can be approximately written as a chain of δ-function scatters,
yielding

Vs(z) =
N+1∑
j=0

f j δ(z − jd ), (1)

where d is the SL period, L = (N + 1) d is the SL length,
and f j (in the unit of energy × length) represents the scattering
strength of the jth barrier layer due to the presence of interface
roughness.
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FIG. 1. Illustration of multiscatters of electrons inside a finite-
length superlattice with N + 2 potential barrier layers located at
positions {X0, X1, X2, . . . , XN−1, XN , XN+1}, respectively, and hav-
ing their corresponding randomly distributed scattering strengths
{S0, S1, S2, . . . , SN−1, SN , SN+1}. Here, the drift velocity vd for
incoming electrons in this system will be changed to v′

d for outgoing
ones due to successive barrier reflection of these moving electrons.
For simplicity, only a periodic position arrangement for barrier lay-
ers will be considered, i.e., x j = ( j − 1)d for j = 1, 2, . . . , N +
1, N + 2, where d is the superlattice period, but the random distri-
bution of layer scattering strengths is retained.

As seen in Eq. (1), the effect of interface-roughness in-
duced phase-sensitive vertical scattering of a single electron
can be approximately described by a linear array of point-
like scatters at these interface positions with their randomly
selected scattering strengths { f j}. For simplicity, we only
assume two values for these randomly selected scattering
strengths f j = {s1, s2}. Importantly, this f j value should not
be confused with the SL barrier height V0. In the present case,
the scaled quantity, f j/V0d , becomes dimensionless and is
usually assumed taking its values within a range between 0
and 0.5 [16].

Denoting ψ
(L,R)
j (z) as electron wave functions on the left

(L) and right (R) sides of the jth barrier layer, we find a
relationship between them from the static Schrödinger equa-
tion including Vs(z) in Eq. (1), i.e.,

ψ
(R)
j (z) = T̂ j (|kz|) ψ

(L)
j (z), (2)

where the transfer matrix T̂ j (|kz|) is given explicitly by [16,17]

T̂ j (|kz|) =
[

1 − iq j/2|kz| −iq j/2|kz|
iq j/2|kz| 1 + iq j/2|kz|

]
, (3)

which is symmetric with respect to ±kz as expected. In
Eq. (3), q jd = 2m∗

‖ f jd/h̄2 is a dimensionless barrier-strength

parameter, and m∗
‖ = 2h̄2/W0d2 is the effective mass of elec-

trons along the SL direction for the case of |kz| � π/d . To
see a significant dynamical effect in this system on electrons
with low wave numbers kz, q j/|kz| � 1 or q j � π/d is usually
requested. Furthermore, two wave functions of an electron
between the jth and ( j + 1)th barrier layers can be related
to each other by

ψ
(L)
j+1(z) = D̂ j (|kz|) ψ

(R)
j (z), (4)

where the displacement matrix D̂ j (|kz|) takes the form

D̂ j (|kz|) =
[
ei|kz |d 0

0 e−i|kz |d

]
. (5)

By considering a weak localization due to fluctuated bar-
rier strengths within a SL structure, the group velocity vz(k) =
(1/h̄) dEz(kz )/dkz of a single electron should be replaced

by an effective velocity T (|kz|, L) vz(kz ), where Ez(kz ) =
(W0/2)[1 − cos(kzd )] for |kz| � π/d by using a tight-binding
model, W0 is the bandwidth of an electron inside the SL,
and T (|kz|, L), as presented in Eq. (11) below, stands for an
average transmission coefficient for an incident electron with
its vertical wave number kz throughout the whole SL between
two electrodes. Consequently, the transient current for vertical
transport of electrons through the SL takes the form [9]

I (loc)(t, L | E0) = e

π

∫ π/d

−π/d
dkz vz(kz ) �n(kz, t )

= e

π

∫ π/d

−π/d
dkz T (|kz|, L) vz(kz ) �n(kz, t )

= eW0d

2π h̄

∫ π/d

−π/d
dkz T (|kz|, L)

× sin(kzd ) �n(kz, t ), (6)

where vz(kz ) is a group velocity of electrons in the absence
of localization, while vz(kz ) ≡ T (|kz|, L) vz(kz ) represents an
effective group velocity of electrons in the presence of weak
localization. Additionally, �n(kz, t ) is the nonequilibrium part
of the full electron occupation function under a dc field, which
will be calculated and discussed in Sec. III below. Further-
more, the individual transmission coefficient T (kz ) for any
given SL barrier configuration can be calculated [16,58] by
a total transfer matrix involving a product of many transfer
and displacement matrices for randomly fluctuated barrier
scattering strengths. From Eq. (6), we know that the current
reduction (or rejection current) I (rej)(t | E0) is

I (rej)(t, L | E0) = e

π

∫ π/d

−π/d
dkz [1−T (|kz|, L)]vz(kz )�n(kz, t )

= eW0d

2π h̄

∫ π/d

−π/d
dkz R(|kz|, L)

× sin(kzd ) �n(kz, t ), (7)

which increases with the SL sample length L exponentially,
where R(|kz|, L) = 1 − T (|kz|, L) is the average reflection
coefficient for an incident electron with a vertical wave num-
ber kz.

By making use of the layer-index specified transfer and
displacement matrices in Eqs. (3) and (5), the total transfer
matrix M̂tot (|kz|), relating the first ( j = 0) to the last ( j =
N + 1) barrier layer, can be expressed as

M̂tot (|kz|) = {T̂N+1(|kz|)} ⊗ {D̂N (|kz|) T̂N (|kz|)}
⊗ · · · ⊗ {

D̂0(|kz|) T̂0(|kz|)
}

≡
[
M11(|kz|) M12(|kz|)
M21(|kz|) M22(|kz|)

]

=
[

1/t∗(|kz|) −r∗(|kz|)/t∗(|kz|)
−r(|kz|)/t (|kz|) 1/t (|kz|)

]
, (8)

where t (|kz|) and r(|kz|) are two complex amplitudes
for forward- and backward-going wave functions:
M22(|kz|) = M∗

11(|kz|) = 1/t (|kz|) and M21(|kz|) =
M∗

12(|kz|) = −r(|kz|)/t (|kz|). As a result, the total
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transmission T (|kz|, L) and reflection R(|kz|, L) coefficients
for a SL can be evaluated from

T (|kz|, L) = |t (|kz|, L)|2 = 1

|M22(|kz|)|2
, (9)

R(|kz|, L) = |r(|kz|, L)|2 = 1 − T (|kz|, L)

= |M21(|kz|)|2
|M22(|kz|)|2

. (10)

To simulate randomness in barrier scattering strengths of
a SL system, we assume that the barrier scattering strength,
q jd/π � 1/2 for j = 0, 1, . . . , (N + 1), only takes one of
two values, s1 and s2, each time in a random way with
s1 	= s2 ∈ [0, 0.5]. Therefore, for any given sequence {q j} ≡
(q0, q1, q2, . . . , qN−2, qN+1)q j∈{s1,s2} within the range of
[0, 0.5], in a relation to randomly distributed barrier scattering
strengths of different barrier layers, we are able to calcu-
late its transmission coefficient T (|kz| | q j ∈ {s1, s2}, 0 � j �
N + 1) from Eqs. (8)–(10). Consequently, the average trans-
mission coefficient T (|kz|, L) employed in Eq. (6) can be
calculated from

T (|kz|, L) = 1

M0

M0∑
{q j}=1

T (|kz|, q j ∈ {s1, s2},

0 � j � N + 1), (11)

where we have selected totally M0 (� 1) independent config-
urations of random sequence {q j} with q j ∈ {s1, s2} and 0 �
j � N + 1 for a distribution of barrier scattering strengths in
this averaging process.

From Eq. (11) we know that T (|kz|, L) is a function of kz

and also depends on SL length L and randomness parameters
{q j}. However, T (|kz|, L) will not rely on dc field E0. By
including the weak-localization (or transient carrier trapping)
effect, we find from Eq. (6) that the current I (loc)(t, L | E0)
not only changes with L and {q j} but also relies on E0 due to
its connection to the E0-dependent nonequilibrium occupation
�n(kz, t ). Meanwhile, as expected from Eq. (6), the transient
localization current I (loc)(t, L | E0) can alter its magnitude
with various selections of L and {qj}. For the steady-state
current I (loc)(t, L | E0), on the other hand, it will also depend
on L and {q j} due to the weak localization of electrons in
addition to the fact that I (loc)(t, L | E0) appears as functions
of both E0 and temperature T , which reveals the weak-
localization contribution to the resistance characteristics of the
system.

Equation (6) can be employed generally to calculate a
steady-state current flowing through a SL system under a
dc electric field E0. Substituting T (|kz|, L) formulated in
Eq. (11) for the effect of random barrier scattering strength
into Eq. (6) in this SL system, we are able to obtain a transient
current I (loc)(t, L | E0), which includes weak-localization ef-
fects. Furthermore, we can formally define a steady-state
current in the form of I (loc)(L | E0) = I0(E0) exp(−L/ξloc) as
t → ∞, where I0(E0) represents the corresponding current in
the absence of localization, or equivalently as ξloc(L | E0) �
L. Therefore, the localization length ξloc(L | E0) can be written

simply as

ξloc(L | E0) = − lim
t→∞

L
ln [I (loc)(t, L | E0)/I0(t, E0)]

, (12)

where L = (N + 1) d stands for the SL length. Moreover,
I0(t, E0) in Eq. (12) can be calculated from Eq. (6) under the
condition of T (|kz|, L) ≡ 1. The unique dependence on L in
Eq. (12) for I (loc)(t, L | E0) < I0(t, E0) implies an incomplete
localization phenomenon for steady-state electrons within a
finite-length SL system, which eventually turns into a full-
localization system as L −→ ∞ with a negligible current.

Additionally, one finds from Eq. (6) that the electrical
current flowing through a SL also depends on the inter-
play between the average transmission coefficient T (|kz|, L)
and the nonequilibrium occupation function �n(kz, t ), where
the former describes a vertical-scattering facilitated weak-
localization effect on moving electrons due to the presence
of randomly distributed barrier scattering strengths while the
latter determines an in-plane scattering effect on electrons due
to the existence of interface roughness within the SL structure.
Here, the randomness in SL is quantified by the selection of s1

and s2 values for the random barrier-strength parameter qj for
out-of-plane scattering of electrons. The interface-roughness
scattering, however, is measured by its effective 1D scattering
potentials presented in Eqs. (B1) and (B2) for in-plane scat-
tering of electrons, which relies on externally applied dc field
amplitude E0 and temperature T and is determined from the
reduced Boltzmann transport equation discussed in Sec. III.

Our previous paper [9] has demonstrated an effective ap-
proach for accurate computation of the effect of parallel
interface-roughness scattering on electron transport within
a superlattice structure. In this work, on the other hand,
we propose a new concept and research related to unique
dynamics for the combination and competition of distinc-
tive in-plane and out-of-plane scattering mechanisms within
the same superlattice system. As seen in Eq. (6), in the pres-
ence of a localization effect on transport electrons, an accurate
calculation of vertical electrical current requires a single-
electron transmission coefficient T (|kz|,L) for an averaged
group velocity of Bloch electrons as well as a nonequilibrium
distribution function �n(kz, t ) for bias-field driven electrons
by solving a semiclassical Boltzmann equation [9]. On the
contrary, previous theories on localization of superlattice elec-
trons often replace �n(kz, t ) by a difference between two
thermal-equilibrium distribution functions of electrons in a
left and right electrical contact, respectively, with a fixed
voltage drop between them [59].

From a physics perspective, the current work includes
simultaneously both out-of-plane and in-plane random scat-
terings of transport electrons within the same superlattice,
and their interplay as well. As a result, distinctive dynamics
and effects, associated with either multistep scatterings of a
single electron with a series of rough barrier layers along
the perpendicular (superlattice) direction or many single-step
scatterings of different electrons by the same rough inter-
face in the parallel (interface) direction, have been mixed
together by a vertical transport of electrons, leading to a
new dynamics for vertical electron transport within a super-
lattice, such as unique temperature, bias-field strength, and
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FIG. 2. Illustrations for forwarded scattering (k′
z > 0) and back-

ward scattering (k′
z < 0) by roughness (solid black curve) on one

interface (black dashed line) within a SL, where qz = k′
z − kz, q‖ =

k′
‖ − k‖ are transition wave numbers, and the total kinetic energy

of electrons must be conserved for these elastic-scattering events.
Moreover, one must replace k′

z by k′
z ± 2π/d to maintain |k′

z| � π/d
within the first Brillouin zone once |k′

z| > π/d for the umklapp
scattering.

interface-roughness scattering dependence in a localization
length for electron transport in a superlattice.

III. REDUCED BOLTZMANN EQUATION FOR VERTICAL
TRANSPORT WITH IN-PLANE ROUGHNESS

SCATTERING IN A SUPERLATTICE

As seen in Eq. (6), the vertical electron transport current
I (loc)(t, L | E0), including the weak-localization effect from
vertical random scattering of electrons, also depends on the
nonequilibrium occupation function �n(kz, t ). As explained
in Fig. 2, �n(kz, t ) results from the in-plane scattering of
electrons in the presence of interface roughness. We would
like to point out that the inclusion of �n(kz, t ) in Eq. (6)
allows one to bring field and thermal effects into consideration
for a localized electrical current. Thereafter, we present the
computation and discussion of �n(kz, t ).

From the discussions in Appendix A, we are able to project
Eq. (A1) directly onto a 1D kz-space (|kz| � π/d) and acquire
the following reduced Boltzmann transport equation:

d

dt
�n(kz, t )= ∂n(kz, t )

∂t

∣∣∣∣
scat

−F (t )

h̄

[
∂n0(kz )

∂kz
+ ∂�n(kz, t )

∂kz

]
,

(13)

where �n(kz, t ) ≡ n(kz, t ) − n0(kz ), which is zero at t = 0,
and n0(kz ) is the initial thermal-equilibrium distribution of
electrons given in Eq. (22). Therefore, �n(kz, t ) represents
only the nonequilibrium part of the full electron distribution.
Equation (13) can be utilized to evaluate the time-dependent
nonequilibrium distribution �n(kz, t + �t ) for |kz| < π/d
based on a so-called three-point central-difference formula
[60] for the drifting term ∂�n(kz, t )/∂kz and known values
for �n(kz, t ) at an early time t . However, the values of n(kz =
±π/d, t + �t ) should still be determined by the periodic con-
dition n(kz = π/d, t + �t ) = n(kz = −π/d, t + �t ) as well
as the restraint for conservation of the total number of doped
electrons within the superlattice [60]. This yields

d

2π

∫ π/d

−π/d
dkz �n(kz, t + �t ) ≡ 0. (14)

Consequently, we expect that �n(kz = ±π/d, t + �t ) at two
boundary points can be determined from �n(kz, t + �t )
within the range of |kz| < π/d , leading to

g1(t + �t ) = gM (t + �t ) = −1

2

M−1∑
j=2

g j (t + �t ), (15)

from which we easily find

M∑
j=1

g j (t + �t ) ≡ 0, (16)

where g j (t + �t ) ≡ �n(k j, t + �t ) for 1 � j � M, k j =
−π/d + ( j − 1)�k, �k = 2π/(M − 1)d , and M � 3 is an
integer representing a total number of equal-distance discrete
points within the range of |kz| � π/d . Here, we empha-
size that our calculated �n(kz, t ) from Eq. (13) will show
�n(kz, t ) 	= �n(−kz, t ) for |kz| < π/d if a finite bias field
is applied, although �n(kz = π/d, t ) = �n(kz = −π/d, t ) is
still maintained.

Furthermore, we have introduced in Eq. (13) a reduced
Boltzmann-type scattering term on its right-hand side, which
is given explicitly by

∂n(kz, t )

∂t

∣∣∣∣
scat

≈ 2

nqwA
∑

k‖

∂ f ({k‖, kz}, t )

∂t

∣∣∣∣
(in)

scat

[1 − f0(Exy(k‖) − μ0)] − 2

nqwA
∑

k‖

∂ f ({k‖, kz}, t )

∂t

∣∣∣∣
(out)

scat

f0(Exy(k‖) − μ0)

≡ Win(kz, t | n0 + �n)[1 − n0(kz ) − �n(kz, t )] − Wout (kz, t | n0 + �n)[n0(kz ) + �n(kz, t )]

− δt,0
[
W (0)

in (kz | n0)[1 − n0(kz )] + W (0)
out (kz | n0) n0(kz )

]
, (17)

where the detailed-balance condition has been employed for the initial state n(kz, t = 0). From discussions in Appendix B, we
write down the reduced 1D scattering-in and scattering-out rates employed in Eq. (17) as

Win(kz, t | n0 + �n) ≈ 2

nqwA
∑

k‖

Win(k, t | f ) [1 − f0[Exy(k‖) − μ0]] ≡ 2π

h̄

∑
k′

z

U (in)
sc (kz, k′

z )[n0(k′
z ) + �n(k′

z, t )]

= Umax d

h̄

∫ π/d

−π/d
dk′

z U
(in)
sc (kz, k′

z )[n0(k′
z ) + �n(k′

z, t )], (18)
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Wout (kz, t | n0 + �n) ≈ 2

nqwA
∑

k‖

Wout (k, t | f ) f0[Exy(k‖) − μ0] ≡ 2π

h̄

∑
k′

z

U (out)
sc (kz, k′

z )[1 − n0(k′
z ) − �n(k′

z, t )]

= Umax d

h̄

∫ π/d

−π/d
dk′

z U
(out)
sc (kz, k′

z ) [1 − n0(k′
z ) − �n(k′

z, t )]. (19)

Here, W (0)
in (kz | n0) and W (0)

out (kz | n0) in Eq. (17) can be easily
obtained from Eqs. (18) and (19) after setting �n = 0. More-
over, we have assumed a thermal-equilibrium distribution
f0[Exy(k‖) − μ0] = (1 + exp{[Exy(k‖) − μ0(T )]/kBT })−1 in
Eq. (17) for in-plane roughness-scattering motions, which has
been used in Eqs. (B1) and (B2) and reduces to �(EF −
Exy(k‖)) with the Fermi energy EF at low temperatures
kBT � EF , where Exy(k‖) = h̄	0/2 + h̄2k2

‖/2m∗. In Eqs. (18)

and (19), we define U sc(kz, k′
z ) ≡ Usc(kz, k′

z )/Umax with a
maximum value Umax for |Usc(kz, k′

z )|, and we assume that
�t � Umax/h̄. In fact, Eq. (17) becomes nonlinear with re-
spect to �n(kz, t ) since Win and Wout themselves depend on
n(kz, t ).

Meanwhile, the effective 1D inverse energy-relaxation
time is calculated as

1

τ1(kz )
= 2

nqwA
∑

k‖

1

τE(k)
≈ 2π

h̄

∑
k′

z

{
U (out)

sc (kz, k′
z )

+ [
U (in)

sc (kz, k′
z ) − U (out)

sc (kz, k′
z )

]
n(k′

z, t )
}
, (20)

which also depends on n(k′
z, t ). The quantum-statistical aver-

age of this effective 1D inverse energy-relaxation time further
leads to

1

τ0(t )
= d

2π

∫ π/d

−π/d
dkz [n0(kz ) + �n(kz, t )]

1

τ1(kz )
. (21)

Here, τ0(t ) in Eq. (21) can be regarded as a macroscopic
energy-relaxation time, which is often used in the so-called
relaxation-time approximation and relates to the random
interface-roughness scattering within the SL system.

On the left-hand side of Eq. (13), we have introduced a
time-dependent force F (t ) pointing towards the SL (z) direc-
tion, which is given by

F (t ) = −eE0

M

M∑
j=1

[
1

2
+ 1

π
tan−1

(
t − j�t

δ0

)]
,

where M stands for the total number of turning-on steps, E0

(eE0d < W0) is the magnitude of an applied dc field, t j = j�t
is the jth turning-on time, �t is the waiting (or stage) time,
and δ0 (� �t) represents the broadening for a turning-on time
at t = t j .

Since the dc field is applied after t = 0, the initial condition
for occupation function n(kz, t ) at t = 0 can be simply set
as a thermal-equilibrium Fermi function at temperature T ,

yielding

n(kz, t = 0) = n0(kz )

= 2

nqwA
∑

k‖

{
1 + exp

[
εk‖,kz − μ0(T )

kBT

]}−1

= 1

πnqw

∫ ∞

0
dk‖ k‖

{
1 + exp

[
εk‖,kz − μ0(T )

kBT

]}−1

,

(22)

where μ0(T ) is the chemical potential, which, for a given
volume doping density ρ0, is determined by the root of a
constraint equation [61] for any fixed value of T , i.e.,

ρ0 = 1

2π2

∫ π/d

−π/d
dkz

∫ ∞

0
dk‖ k‖

×
{

1 + exp

[
εk‖,kz − μ0(T )

kBT

]}−1

, (23)

where εk‖,kz = Exy(k‖) + Ez(kz ) with their expressions given
in Appendix B. With this determined chemical potential
μ0(T ), we further obtain the quantum-well areal density
nqw ≈ ρ0d of electrons used in Eq. (22).

It is well known that both the nonequilibrium Green’s func-
tion [62] (NEGF) and the Wigner equation [63] are quantum
theories, which, in particular, can be applied to find coherent
(and tunneling) transport of electrons in the presence of one or
more static or transient potential barriers on the transport path
of electrons. However, both of them usually do not treat ex-
actly nonlocal dynamics associated with random pair, phonon,
roughness, and impurity scatterings of carriers. Instead, only a
simple and finite lifetime parameter will be introduced some-
times to account for the scattering effect of electrons.

On the other hand, the Boltzmann transport equation em-
ployed in this work is a semiclassical theory, and we have
solved it exactly after having fully considered nonlocal ran-
dom scattering of electrons with interface roughness within
a superlattice beyond the commonly used relaxation-time
approximation and a linearized Boltzmann transport equa-
tion [60]. In fact, the calculated nonlinear dependence on a
bias-field strength in electrical current (i.e., so called non-
Ohmic behavior under a high bias field) results directly from
random interface-roughness scattering of electrons in a super-
lattice. Here, the presence of periodic barrier layers within a
superlattice structure has been taken into account directly by
using a tight-binding band structure for Bloch electrons.

Furthermore, the localization effect originates from an
average over multiple scatterings of a single electron with
many barrier layers with fluctuated strengths along the per-
pendicular (superlattice) direction. On the other hand, the
interface-scattering effect results from a different average over
many one-time collisions of various electrons with the same
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TABLE I. Parameters used for numerical calculations of electron
transport in a superlattice.

Parameter Description Value Unit

h̄	0 energy-level separation 100 meV
W0 miniband width 10 meV
N + 1 number of SL periods 51 unitless
d SL period 100 Å
ρ0 electron volume density 1 1016 cm−3

m∗ in-plane electron effective mass 0.067 9.1 × 10−31 kg
0 electron lifetime broadening 0.5 meV
�0 average interface roughness 5 Å
�0 in-plane correlation length 30 Å
M number of time steps 5 unitless
�t waiting time 10 ps
M0 number of random configurations 1000 unitless
δ0 broadening time 0.5 ps
Ẽ0 DC electric field 0.5 kV/cm
T temperature 4 (77) K

rough interface in the parallel (interface) direction. Clearly,
the unique combination of these two distinctive scattering
mechanisms in the same system is not only novel and unique
in physics but also very important for device applications and
increasing its performance limit.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The used parameters in our numerical computations are
listed in Table I. The parameters that are not given in Table I
will be provided directly in individual figure captions.

A. Effect of random barrier strength on electron transmission

As seen in Fig. 3, for N = 50, s1 = 0.01, and fixed SL
length L = (N + 1) d (left panel), we observe that the com-
puted average electron transmission coefficient T (|kz|, L)
becomes zero around kz = 0 by displaying a “gap,” but it
approaches unity around kz = ±π/d , appearing as a “hall
way.” On the other hand, as s2 value increases gradually from
0.002 up to 0.02 by an order of magnitude for fixed s1 = 0.01,

FIG. 4. Comparison for the computed average group velocity
vz(kz, L) = T (|kz|, L) vz(kz ) as a function of kz for s1 = 0.01, s2 =
0.005, and various N values. The dotted curve corresponds to the
case without randomness or T (|kz|, L) ≡ 1.

T (|kz|, L) first increases and then deceases away from kz = 0.
In particular, T (|kz|, L) approach unity as s2 becomes close to
given s1 = 0.01 because of reduced randomness or the weak-
localization effect within the SL system. For s1 = 0.01 and
s2 = 0.005 (right panel), T (|kz|, L) decreases with increasing
N from 50 to 500 due to inclusion of more vertical-scattering
layers for random fluctuations, leading to enhanced random-
ness or weak localization in this system. Very interestingly,
we find that T (|kz|, L) < 1/2 while R(|kz|, L) > 1/2 in the
region around kz = 0. For the other two regions close to kz =
±π/d , on the other hand, the opposite feature is observed.

B. Dependence of electron tunneling current on random barrier
scattering strength, dc field, and sample length

When the randomness effect in the system has been
ignored, i.e., s1 = s2, one arrives at T (|kz|, L) ≡ 1 corre-
sponding to a perfect transmission in a SL for all kz values,
and then vz(kz, L) reduces to vz(kz ) = (1/h̄) dEz(kz )/dkz, as
presented by the black dotted curve in Fig. 4. As s1 = 0.01 and
s2 = 0.005 are taken, on the other hand, the weak-localization

FIG. 3. Calculated average electron transmission coefficient T (|kz|, L) as a function of electron wave number kz for N = 50 and scattering
strengths s1 = 0.01 but different s2 values (left), as well as for s1 = 0.01, s2 = 0.005, but various selections of N values (right).
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FIG. 5. Plots for forward I (loc)(t, L | E0 ) (left) and backward I (rej)(t, L | E0 ) (right) electrical currents at T = 4 K as a function of time t
with N = 50, E0 = Ẽ0 for various values of s1, s2 (upper row) as well as for s1 = 0.01 and s2 = 0.005 but different values of E0 (lower row).

effect has been brought into the SL system due to the presence
of randomness. Particularly, as N increases gradually from
50 to 500, the black dotted curve for vz(kz ) is deformed
by a full suppression of vz(kz, L) to zero within a region
around kz = 0, corresponding to the observation of a “gap” for
T (|kz|, L) in Fig. 3. Meanwhile, the bowl-shaped vz(kz, L)
outside this gap region decreases with increasing N value due
to enhanced randomness or the weak-localization effect in the
system, similar to the observation of T (|kz|, L) in the right
panel of Fig. 3.

The calculations of forward I (loc)(t, L | E0) and back-
ward I (rej)(t, L | E0) currents in the SL system are given in
Eqs. (6) and (7), respectively. Here, in spite of the fact that
both I (loc)(t, L | E0) and I (rej)(t, L | E0) depend on T (|kz|, L),
I0(t, E0) ≡ I (loc)(t, L | E0) + I (rej)(t, L | E0) remains indepen-
dent of T (|kz|, L) or the randomness of a SL system, and
it is solely determined by the nonequilibrium occupation
function �n(kz, t ), which depends on interface-roughness
parameters, DC-field strength, and temperature. In this way,
randomness in the system only controls the ratio of forward
to backward currents, while the interface roughness in this
system determine their sum. Therefore, the interplay between
weak-localization and interface-roughness effects on nonlin-
ear electron transport within a SL is expected to be varied
by different choices for intrinsic sample parameters, such as
s1, s2, N , as well as �0, �0, along with external conditions,
e.g., ρ0, T , and E0. This becomes the focus of our current
study.

From Eqs. (3) and (11), we know that T (|kz|, L) ≡
1 if s1 = s2 is assumed. Therefore, the backward current
I (rej)(t, L | E0) ≡ 0, and the total current is solely determined
by the interface-roughness scattering of electrons, as dis-
played by the dotted curve in the upper-left panel of Fig. 5
and reported in our previous study [9]. For fixed N = 50,
s1 = 0.01, and E0 = 0.5 kV/cm, we find from the upper-left
panel that the transient I (loc)(t, L | E0) reaches its steady-state
value at t = 0.1 ps for all cases considered, where steady-
state I (loc)(t, L | E0) becomes larger if s2 approaches s1 value
and retains its value as small as possible. This reflects the
randomness effect in the SL system on nonlinear electron
transport. On the other hand, we also find from the lower-left
panel of Fig. 5 that the steady-state I (loc)(t, L | E0) increases
with the DC-field strength E0 in a nonlinear way, which re-
sults from the interface-roughness effect on electron transport
within a SL.

To explore further the randomness effect in the SL system,
we fix s1 as one of two random parameters, and we study
the dependence of currents on another randomness parame-
ter s2. From Fig. 6 we find the steady-state forward current
I (loc)(t, L | E0), as well as the steady-state backward current
I (rej)(t, L | E0), as a function of s2 (one of two randomness pa-
rameters) for fixed s1 = 0.01, N = 50, E0 = 0.5 kV/cm, and
T = 4 K. From this figure, we discover that I (loc)(t, L | E0) <

I (rej)(t, L | E0) is always maintained, which agrees with the
observation in Fig. 3 that T (|kz|, L) < R(|kz|, L) for the
occupied electronic states within the region of |kz| < π/2d .

085303-8



CONTROLLING INTERPLAY BETWEEN WEAK … PHYSICAL REVIEW B 110, 085303 (2024)

FIG. 6. Plots for forward I (loc)(t, L | E0) (blue) and backward
I (rej)(t, L | E0 ) (red) steady-state electrical currents as a function of
s2 for N = 50, E0 = Ẽ0, T = 4 K, and s1 = 0.01.

Moreover, I (loc)(t, L | E0) and I (rej)(t, L | E0) get their max-
imum and minimum values, respectively, as s2 = s1 = 0.01
is reached. Furthermore, I (loc)(t, L | E0) decays to zero as s2

moves far away from s1 = 0.01, which is accompanied by the
rise of I (rej)(t, L | E0) to its full value I0(t, E0) (i.e., the dotted
curve in the upper-left panel of Fig. 5) at the same time.

To demonstrate the interplay from interface-roughness
scattering in the same system, we have fixed two ran-
dom parameters s1 and s2 so as to investigate the DC-field
dependence in steady-state forward I (loc)(t, L | E0) and back-
ward I (rej)(t, L | E0) currents. After s1 = 0.01, s2 = 0.05, and
T = 4 K are set, we display currents I (loc)(t, L | E0) and
I (rej)(t, L | E0) as functions of field strength E0 in Fig. 7.
It is clear from the left panel of Fig. 7 that, for a fixed
value of E0, the magnitude of I (loc)(t, L | E0) decreases as
the number of barrier layers N increases due to the en-
hanced randomness effect in the SL system. As expected,
the opposite feature is observed for the backward current
I (rej)(t, L | E0) presented in the right panel of Fig. 7 since
the sum I0(t, E0) = I (loc)(t, L | E0) + I (rej)(t, L | E0) is always
independent of N . Interestingly, as E0 becomes strong, the
nonlinear dependence of currents on E0 shows up due to a
full account of nonlinear electron transport beyond the usual

linear-response theory, and it is a result of the exactly solved
reduced Boltzmann transport equation in Eq. (13) for in-plane
roughness scattering of electrons within a superlattice [9].
Here, the conductance, proportional to ∂I (loc)(t, L | E0)/∂E0,
decreases with increasing field strength E0 and is fully caught
by two plots for both I (loc)(t, L | E0) and I (rej)(t, L | E0) in this
strong E0 limit. This unique N-dependent non-Ohmic behav-
ior reflects clearly the interplay between in-plane roughness
scattering of electrons and vertical scattering of electrons due
to the existence of randomness in the SL system.

In fact, the contributions to the E0 field dependence of cur-
rents I (loc)(t, L | E0) and I (rej)(t, L | E0) come not only from
the interface-roughness scattering, as discussed in Fig. 7, but
also from the random scattering strengths distributed to pe-
riodically arranged finite number of barrier layers. In Fig. 8,
we have fixed two random scattering-strength parameters s1 =
0.01 and s2 = 0.005 and displayed the dependence of cur-
rents I (loc)(t, L | E0) and I (rej)(t, L | E0) on the total number
of barrier layers N for various strengths of a dc field. It is
clear that the average transmission coefficient of electrons
will rely on the total number of barrier layers if the ran-
domness effect has been introduced to a SL system. As seen
in Fig. 8, the increase of E0 values changes both forward
current I (loc)(t, L | E0) as well as the total current I0(t, E0) =
I (loc)(t, L | E0) + I (rej)(t, L | E0), as pointed out in the discus-
sion at the beginning of Sec. IV B. Here, the variation of the N
value corresponds to the change in the amount of randomness
within the SL system. As anticipated, we find from Fig. 8 that
the forward current I (loc)(t, L | E0) decreases with increasing
N , but the backward current I (rej)(t, L | E0) increases with N ,
since the sum of these two should be a constant for a fixed
value of E0, independent of the selected N value.

C. Dependence of localization length of electrons
on sample length

The localization length ξloc(L | E0), which directly results
from the existing randomness in a SL system, can be ex-
tracted from the calculated forward current I (loc)(t, L | E0)
based on Eq. (12). Here, ξloc(L | E0)/L = 1 specifies a critical
value Lc for the SL length beyond which I (loc)(t, L | E0) will
start an exponential decay with respect to increasing L. As

FIG. 7. Comparison of computed results for forward I (loc)(t, L | E0 ) (left) and backward I (rej)(t, L | E0) (right) steady-state electrical
currents as a function of dc field E0 at T = 4 K for s1 = 0.01, s2 = 0.005, and various values of N .
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FIG. 8. Calculated forward I (loc)(t, L | E0 ) (left) and backward I (rej)(t, L | E0 ) (right) steady-state electrical currents at T = 4 K as a
function of the number of barriers N for s1 = 0.01, s2 = 0.005, and various dc field strengths of E0.

seen in Fig. 9, the ratio ξloc(L | E0)/L decreases superlinearly
with increasing N or randomness in the SL system, although
L = (N + 1) d also increases linearly with N . Once the ratio
ξloc(L | E0)/L drops below the dotted line for ξloc(L | E0)/L =
1 in Fig. 9, this implies an occurrence of exponential de-
cay with L for the forward current I (loc)(t, L | E0). On the
other hand, for fixed s1 = 0.01 and N value, ξloc(L | E0)/L
decreases as s2 increases from 0.002 to 0.02 by an order
of magnitude. For s2 = 0.015 or 0.005 close to s1 = 0.01,
however, ξloc(L | E0)/L is enhanced relatively for fixed N
due to reduced randomness in the system. Eventually, a sam-
ple satisfying ξloc(L | E0)/L < 1 will be dominated by the
weak-localization effect of electrons from vertical scattering,
while the sample with ξloc(L | E0)/L > 1 will be limited by
the interface-roughness scattering effect of electrons from in-
plane scattering.

D. Controlling interplay of weak localization with
interface-roughness scattering inside a superlattice

Finally, the unique field strength E0 dependence in
ξloc(L | E0) is compared in Fig. 10 for two temperatures T = 4
and 77 K with fixed s1 = 0.01, s2 = 0.02, and N = 50. Phys-
ically, the dependence of localization length ξloc(L | E0) on E0

FIG. 9. Comparison of calculated localization lengths ξloc(L | E0 )
at T = 4 K as a function of the total number of barrier layers N for
s1 = 0.01 and E0 = Ẽ0 with different values of s2.

and T comes from its inclusion of the nonequilibrium occupa-
tion function �n(kz, t ) in the computation of I (loc)(t, L | E0),
which consists of all contributions from interface-roughness
scattering as well as their dependence on external E0 and
T through the reduced Boltzmann transport equation. When
T = 4 K is assumed, we find from Fig. 10 that ξloc(L | E0) <

L, which implies that the forward current I (loc)(t, L | E0)
in this case is dominated by the weak-localization effect
on electrons. As the temperature T is lifted up to 77 K,
on the other hand, one gets ξloc(L | E0) > L, indicating that
I (loc)(t, L | E0) in the system has already been controlled by
interface-roughness scattering of electrons in this case in-
stead of by the weak-localization effect at T = 4 K. Here,
the observed temperature-dependent feature in Fig. 10 clearly
demonstrates the capability for controlling nonlinear electron
transport and the dynamics in interplay of weak localization in
the z direction with interface roughness within the x-y plane
inside a semiconductor superlattice.

FIG. 10. Comparison for extracted localization lengths
ξloc(L | E0) at different temperatures T = 4 and 77 K as a function
of DC-field strength E0 for N = 50, s1 = 0.01, and s2 = 0.02.
Here, small but visible fluctuations in ξloc(L | E0 ) result from minor
uncertainty in performing its numerical computations associated
with randomness average given by Eq. (11) in the text for a limited
value of N = 50.
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V. SUMMARY AND REMARKS

The localization effect on electronic transport was ob-
served experimentally before [64] within a type-I GaAs-AlAs
superlattice structure prepared by molecular-beam epitaxy.
The measured differential conductance along the superlat-
tice direction reveals a first gradually decreasing followed
by a rapid dropping to negative values, then, at high fields,
presenting an oscillatory behavior with respect to applied
voltages. Such a phenomenon is believed to be connected to
the formation and expansion of a high-field domain. Mean-
while, the voltage period of the oscillation provides the
energy of the first-excited band. By theoretically treating
perpendicular and transverse electron transports simultane-
ously, new calculations of low-temperature perpendicular and
transverse electron mobilities in type-II InAs/GaSb superlat-
tices were reported based on a relaxation-time approximation
[46], indicating an important role played by the interface-
roughness scattering in vertical transport. As a result, by
making use of the calculated mobility curves, it allows one
to extract the magnitude of a vertical mobility from mea-
surements of the horizontal mobility [38]. Very recently,
by applying effective scattering potentials, a self-consistent
quantum-kinetic transport theory was proposed [9] for study-
ing accurately both in-plane and out-of-plane scatterings of
electrons within an infinitely-long GaAs/AlGaAs superlat-
tice beyond the relaxation-time approximation. This rigorous
theory reveals the unique nonlinear dependence of a vertical
transport current on an applied dc field, temperature, and
electron concentration. In this paper, we further generalize
our previous theory [9] by considering an interplay between
weak localization and interface-roughness scattering of ver-
tical transport of electrons in a finite-length GaAs/AlGaAs
superlattice structure accompanied by random barrier-height
fluctuations in this system.

To highlight both in-plane scattering and barrier-
fluctuation enabled localization mechanisms, as well as their
interplay, we have chosen a relatively simple band struc-
ture, i.e., type-I superlattices for electrons only, instead of
complex type-II superlattices utilized in experiments for both
electrons and holes. As a result, a direct comparison of our
numerical results with available magnetoexperimental data
[38] turns out to be very difficult if not impossible. More-
over, the current study focuses on the dynamics of nonlinear
transport of electrons in a strong-field regime, while the cor-
responding magnetoexperiments [38] are usually conducted
within a weak-field regime and acquire a field-independent
conductivity at the same time. Therefore, the parameters,
such as ρ0, T, Ē0, N chosen in Table I, are only for a
demonstration of interplay and unique dynamics behind the
interface-roughness and fluctuated-barrier scatterings of elec-
trons in superlattices but not for a specific comparison with
available experimental measurements.

In summary, for electron transport within a superlattice,
we have simultaneously explored two quite different physical
aspects, including vertical scattering of electrons by randomly
distributed barrier scattering strengths in a superlattice as
well as by in-plane interface-roughness scattering of electrons
for each barrier layer of the superlattice. For these two dis-
tinctive scattering mechanisms, we employ a single-electron

transfer-matrix formalism to account for the existing random-
ness within a superlattice structure while applying the reduced
Boltzmann transport equation to take into consideration of
interface-roughness scattering of electrons within each barrier
layer of the superlattice. Here, the group velocity of a sin-
gle electron is replaced by a mean group velocity associated
with an average transmission coefficient after the random-
ness has been introduced into this system. Furthermore, the
electron transport current is obtained from another weighted
average over the obtained mean group velocity with respect
to a numerically computed nonequilibrium occupation func-
tion from the reduced Boltzmann transport equation for all
available electronic states within the first Brillouin zone. For
this case, the dynamical trapping of electrons occurs between
different barrier layers within a superlattice and it can be
included by using the single-electron transfer-matrix formal-
ism. Meanwhile, electron scattering by interface roughness on
each barrier layer is also taken into account by means of 1D
effective interface-roughness scattering potentials employed
in a reduced Boltzmann transport equation.

In this work, by including the interface-roughness scatter-
ing of electrons within each barrier layer of a superlattice, we
reveal that the electrical current flowing through a superlattice
depends on both the applied dc field strength E0 and tempera-
ture T , as seen in both Figs. 7 and 8, which further leads to a
unique dependence of localization length on them in Fig. 10.
Meanwhile, by including randomness in the barrier-scattering
strengths of a superlattice, we find that the electrical current
flowing through a superlattice also depends on the length of a
superlattice, as presented in Figs. 7 and 8.
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APPENDIX A: FULL BOLTZMANN TRANSPORT
EQUATION FOR INTERFACE-ROUGHNESS SCATTERING

OF ELECTRONS WITHIN A SUPERLATTICE

To study electrical current flowing through a superlattice
(SL) structure under the influence of interface roughness, we
apply our established nonlinear Boltzmann transport equa-
tion of electrons [55] in the form

d

dt
f (k, t ) = ∂ f (k, t )

∂t

∣∣∣∣
sc

− FDC(t )

h̄
· ∂ f (k, t )

∂k
, (A1)

where only one conduction miniband is taken into account in
the electric-quantum limit for low electron volume density,
low temperatures, and thin barrier layers in SL. In Eq. (A1),
f (k, t ) is a nonequilibrium occupation function for mini-
band electrons in a SL, k = {k‖, kz} is a 3D wave vector of
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electrons, and FDC(t ) stands for an applied dc electric-field
force on electrons.

Here, we employ the Boltzmann-type scattering term for
an energy-relaxation process in Eq. (A1), and we arrive at

∂ f (k, t )

∂t

∣∣∣∣
sc

= Win(k, t | f )[1 − f (k, t )]−Wout (k, t | f ) f (k, t )

≡ Win(k, t | f ) − f (k, t )

τE(k)
, (A2)

where Win(k, t | f ) and Wout (k, t | f ) represent, respectively,
the scattering-in and scattering-out rates for electrons with a
wave vector k, and they are calculated according to [55]

Win(k, t | f ) = 2π

h̄

∑
k′

|Vds(k, k′)|2 f (k′, t ) δ(εk − εk′ )

� [ε̃k − Ez(k′
z )], (A3)

Wout (k, t | f ) = 2π

h̄

∑
k′

|Vds(k, k′)|2[1 − f (k′, t )] δ(εk′ − εk )

� [ε̃k − Ez(k′
z )], (A4)

while the inverse energy-relaxation time introduced in
Eq. (A2) is written as

1

τE(k)
≡ Win(k, t | f ) + Wout (k, t | f )

= 2π

h̄

∑
k′

|Vds(k, k′)|2 δ(εk − εk′ ) �[ε̃k − Ez(k′
z )],

(A5)

which is independent of the occupation function f (k, t ).
In Eqs. (A3) and (A4), εk ≡ εk‖,kz = h̄	0/2 + h̄2k2

‖/2m∗ +
W0 sin2(kzd/2) stands for the kinetic energy of the lowest-
miniband electrons in the SL with a period d , an isotropic
in-plane effective mass m∗, a tight-binding miniband width
W0, and a harmonic frequency 	0 from the quantum-well
confinement, while ε̃k = εk − h̄	0/2. Moreover, Ez(kz ) ≡
W0 sin2(kzd/2) and �(x) is a unity-step function [44,46].
Furthermore, the electron-electron and electron-phonon inter-
actions have been ignored by assuming low doping densities
and low temperatures. Meanwhile, the summations over k′

in Eqs. (A3) and (A4) will exclude the term with k′ = k.
Furthermore, |Vds(k, k′)|2 used in Eq. (A5) is the potential for
dominant forward (k′

z > 0) and secondly backward (k′
z < 0)

elastic scatterings [65] of miniband electrons by the presence
of interface roughness within a SL structure, and it is given
by [46]

|Vds(k, k′)|2 = 2πV 2
0 �2

0�
2
0

A e−q2
‖�

2
0/4

∣∣φSL
k′

z
(a)

∣∣2 ∣∣φSL
kz

(a)
∣∣2

,

(A6)

where the site-correlation function for interface roughness is
taken into account by means of a Gaussian model, rough-
ness at both sides of a quantum well is also included,
q = k′ − k represents a transition wave vector for dominant

forward/secondly backward electron scattering, as illustrated
in Fig. 2, V0 is the depth of a symmetrical quantum well for
conduction electrons located at a two-edge quantum well at
z = ±a, �0 and �0 are the average amplitude and correlation
length, respectively, for interface roughness, A is the cross-
sectional area of SL, and φSL

kz
(z) is the z-component of a

full SL wave function �SL
k (r) = [exp(ik‖ · r‖)/

√
A ] φSL

kz
(z).

Different from the in-plane transport, the interface-roughness
scattering for vertical transport of electrons is intrinsically a
3D process. Within the 1D tight-binding model, φSL

kz
(z) takes

the form [66]

φSL
kz

(z) = 1√
N0 + 1

N0∑
j=0

eikz jd χ
QW
0 (z − jd ) = [

φSL
−kz

(z)
]∗

,

(A7)
where N0 + 1 is the total number of quantum wells
in a SL, and the individual quantum-well ground-state
wave function takes the Gaussian form |χQW

0 (z)|2 =
(1/σ

√
2π ) exp(−z2/2σ 2) with σ � a < d/2 for weak tun-

neling. In Eqs. (A3)–(A5), the umklapp-scattering process
[67] for |k′

z − kz| > π/d could occur. To include this
umklapp-scattering effect, we must replace k′

z by k′
z ± 2π/d

to ensure that the new final scattering-state wave number
k′

z ± 2π/d always remains within the first Brillouin zone
[−π/d, π/d].

In Eq. (A6), we have assumed that the dominant contri-
bution for scattering of electrons in a SL is the interface
roughness, while the other intrinsic electron-electron [68] and
electron-phonon [69] scatterings are expected to be small for
the case with a low doping density and low temperatures. To
investigate the vertical transport of miniband electrons in a
SL, we consider the total transient force FDC(t ) = FDC(t ) êz

pointing towards the SL (or z) direction. Importantly, in order
to cut down numerical computations, we will use an effective
1D occupation function n(kz, t ) for nonequilibrium miniband
electrons, written as

n(kz, t ) ≡ 2

nqwA
∑

k‖

f (k, t )

≈ 1

2π2ρ0d

∫
d2k‖ f ({k‖, kz}, t ), (A8)

where the spin degeneracy of electrons has already been
included, the areal density nqw ≈ ρ0d for electrons in each
quantum well is given by Eq. (23) since the total number of
electrons in a SL remains as a constant, and ρ0 is the volume
density of doped electrons in a SL.

APPENDIX B: EFFECTIVE 1D INTERFACE-ROUGHNESS
SCATTERING POTENTIALS

By means of Eqs. (18) and (19), we are able to calculate
the effective 1D elastic-scattering potential Usc(kz, k′

z ), used
by Eqs. (18) and (19), with the help of conservation of the
total kinetic energy of electrons, yielding
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U (in)
sc (kz, k′

z ) = 2

nqwA
∑
k‖,k′

‖

|Vds(k, k′)|2 δ(εk − εk′ ) �
[
ε̃k‖,kz − Ez(k′

z )
]

[1 − f0[Exy(k‖) − μ0]] f0[Exy(k′
‖) − μ0]

≈ 4πV 2
0 �2

0�
2
0

nqw

∣∣φSL
k′

z
(a)

∣∣2 ∣∣φSL
kz

(a)
∣∣2 1

A2

∑
k‖

[1 − f0[Exy(k‖) − μ0]] �
[
ε̃k‖,kz − Ez(k′

z )
]

×
∑

k′
‖

exp

(
−1

4
|k‖ − k′

‖|2�2
0

)
δ(εk‖,kz − εk′

‖,k′
z
) f0[Exy(k′

‖) − μ0]

≈ V 2
0 �2

0�
2
0

2π2nqw

∣∣χQW
0 (a)

∣∣4
∫ ∞

0
dk‖ k‖ [1 − f0[Exy(k‖) − μ0]] �[ε̃k‖,kz − Ez(k′

z )]

×
∫ ∞

0
dk′

‖ k′
‖L0(εk‖,kz − εk′

‖,k′
z
, 0)

∫ 2π

0
dθ0 exp

[
−P0(k‖, k′

‖, θ0)�2
0

4

]
f0[Exy(k′

‖) − μ0], (B1)

U (out)
sc (kz, k′

z ) = 2

nqwA
∑
k‖,k′

‖

|Vds(k, k′)|2 δ(εk − εk′ ) �
[
ε̃k‖,kz − Ez(k′

z )
]

f0[Exy(k‖) − μ0] [1 − f0[Exy(k′
‖) − μ0]]

≈ 4πV 2
0 �2

0�
2
0

nqw

∣∣φSL
k′

z
(a)

∣∣2 ∣∣φSL
kz

(a)
∣∣2 1

A2

∑
k‖

f0[Exy(k‖) − μ0] �
[
ε̃k‖,kz − Ez(k′

z )
]

×
∑

k′
‖

exp

(
−1

4
|k‖ − k′

‖|2�2
0

)
δ
(
εk‖,kz − εk′

‖,k′
z

)
[1 − f0[Exy(k′

‖) − μ0]]

≈ V 2
0 �2

0�
2
0

2π2nqw

∣∣χQW
0 (a)

∣∣4
∫ ∞

0
dk‖ k‖ f0[Exy(k‖) − μ0] �

[
ε̃k‖,kz − Ez(k′

z )
]

×
∫ ∞

0
dk′

‖ k′
‖L0

(
εk‖,kz − εk′

‖,k′
z
, 0

) ∫ 2π

0
dθ0 exp

[
−P0(k‖, k′

‖, θ0)�2
0

4

]
[1 − f0[Exy(k′

‖) − μ0]]. (B2)

In Eqs. (B1) and (B2), P0(k‖, k′
‖, θ0) = k2

‖ + k′2
‖ −

2k‖k′
‖ cos θ0 � 0, and θ0 is the angle between two

in-plane wave vectors k‖ and k′
‖, U (out)

sc (kz, k′
z ) =

U (out)
sc (kz,−k′

z ) = U (out)
sc (−kz, k′

z ) for randomized in-plane
scattering, and |χQW

0 (a)| = |χQW
0 (−a)| for a symmetrical

quantum well. In Eqs. (B1) and (B2), Usc(kz, k′
z ) � 0,

L0(a, b) = b/[π (a2 + b2)] is a Lorentz-shape function,
0 (much smaller than W0) is the inverse lifetime
of conduction electrons, ε̃k‖,kz ≡ εk‖,kz − h̄	0/2 =
Exy(k‖) − h̄	0/2 + W0 sin2(kzd/2) ≡ Ẽxy(k‖) + Ez(kz ) is
the total-energy dispersion for miniband electrons with
nearest-neighbor coupling in a 1D tight-binding model, and
the variable in Lorentz-shape function is given explicitly
by ε̃k‖,kz − ε̃k′

‖,k′
z
= [Ez(kz ) − Ez(k′

z )] + [Ẽxy(k‖) − Ẽxy(k′
‖)].

Importantly, only the total kinetic energy of scattering
electrons in Eqs. (B1) and (B2) is required to be
conserved but not the individual ones in either the

longitudinal or transverse direction. Furthermore, we
will employ the relations k‖dk‖ = (m∗/h̄2) dẼxy(k‖) and
dk′

z = (2/W0d ) dEz(k′
z )/

√
1 − {1 − (2/W0)[Ez(k′

z ) + 0]}2

for the calculations included in Eqs. (B1) and (B2), where
Ẽxy(k‖) = h̄2k2

‖/2m∗ and Ez(k′
z ) = W0 sin2(k′

zd/2). From
Eqs. (B1) and (B2), we know that such a 3D scattering
process, as illustrated in Fig. 2, can be viewed effectively as
a quasi-1D process after an average with respect to in-plane
scatterings of electrons has been performed.

Here, we emphasize that the obtained reduced 1D scat-
tering potentials U (in)

sc (kz, k′
z ) and U (out)

sc (kz, k′
z ) in Eqs. (B1)

and (B2), which are associated with initial-/final-state elec-
tron wave numbers kz and k′

z in a quasi-1D superlattice
system, actually correspond to an inelastic-scattering pro-
cess for electrons in a superlattice, although its original
form with an anisotropic energy dispersion remains as
an elastic-scattering process for electrons in a 3D bulk
system.
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