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We study local density of state (LDOS) oscillations arising from the scattering of electrons at atomic edge
defects in topological insulator (TI) surfaces. To create edge scattering on the surface of a TI, we assume
that half of its surface is covered with a semiconductor. In addition to modifying the TI states in the covered
half, the presence of the semiconductor leads to a localized edge potential at the vacuum-semiconductor
boundary. We study the induced LDOS by imposing time-reversal (TR) invariance and current conservation
across the boundary. Additionally, we explore how the scattering of TI junctions with dissimilar spin textures
and anisotropic Fermi velocities affect the modulations of the LDOS away from the junction edge. In all cases,
for energies close to the Dirac point, we find that the decay envelope of the LDOS oscillations is insensitive
to the scattering at the atomic edge defect, with a decay power given by x−3/2. Quantitative differences in the
amplitude of these oscillations depend on the details of the interface and the spin textures, while the period of
the oscillations is defined by the size of the Fermi surface.
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I. INTRODUCTION

Topological surface states have attracted much attention
owing to their potential applications in quantum computing
and spintronics [1,2]. These novel electronic states have been
observed on the surfaces of three-dimensional topological in-
sulators (TIs) such as Bi2Se3 [3,4], Bi1−xSbx [5–7], Sb2Te3

[8], and Bi2Te3 [8,9] through angle-resolved photoemission
spectroscopy. The band structure of these topologically pro-
tected bound surface states was originally determined by
employing k · p perturbation theory, and at low energies they
possess a helical Dirac-type dispersion. In contrast, the topo-
logically protected interface states found in junctions of TIs
with topologically trivial materials such as semiconductors
(SEs) can possess more exotic nonhelical spin textures with
anisotropic Fermi velocities and spins that point out of the
plane of the interface [10–13].

The helical nature of the bound surface states implies that
the backscattering of these states by time-reversal (TR) invari-
ant impurities is greatly suppressed [7]. The consequences of
this suppression can be seen in scanning tunneling microscopy
experiments, where the quasiparticle scattering arising from
the presence of a surface step defect can lead to the obser-
vation of oscillations in the local density of states (LDOS)
[14–18]. While the LDOS oscillations about an edge defect
decay as x−1/2 in a conventional two-dimensional electron
gas (2DEG), with x being the distance from the edge, the
LDOS oscillations on TIs with energy close to the Dirac point
are found to decay as x−3/2 [18–20]. For Bi2Te3, energies
closer to the band gap edge lead to hexagonal warping effects,
resulting in longer LDOS oscillation decay envelopes such as
x−1 [18,21–24]. However, most theoretical models have so far

focused on systems where both sides of the edge defect either
have the same helical spin texture, or have mismatched Fermi
velocities [25–28].

In this paper we study the LDOS oscillations about step
edges that emerge from placing a SE over half of a TI surface,
as shown schematically in Fig. 1. This hybrid system is char-
acterized by two main features: Firstly, in the covered half, TR
preserving surface boundary effects such as lattice strain, dan-
gling bonds at the interface, and charge accumulation can lead
to the formation of elliptical energy contours and nonhelical
spin textures in the interface states, in contrast to the helical
surface states of the uncovered half [13,29]. Secondly, at the
one-dimensional boundary between the TI-vacuum and TI-SE
regions, “step-edge” scattering potentials that are related to
the presence of Dirac delta-like interface potentials emerge.
Both of these effects result in quasiparticle scattering at the
step edge giving rise to LDOS oscillations that decay away
from the boundary. We find that the decay envelope of these
LDOS oscillations is robust against the details of the step-
edge disorder, with oscillations generally decaying away from
the edge as x−3/2, while the amplitude and period of these
oscillations depend on the details of the junction.

The paper is then organized as follows: In Sec. II we intro-
duce the Hamiltonian of the lateral TI heterojunction shown in
Fig. 1 and join the wave functions of the TI-vacuum and TI-SE
regions. Using these boundary conditions, which encode both
the nonhelicity of the TI-SE region and the localized scat-
tering potential of the step edge, we set up the quasiparticle
scattering problem of incoming electrons towards the step
edge and calculate the reflection and transmission coefficients
along with the LDOS of the TI-vacuum region. In Sec. III we
focus on the special case where both sides of the step edge
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FIG. 1. Schematic of an atomic step edge created by placing a
semiconductor (SE) over half of a topological insulator (TI) sur-
face. Here we set x = 0 as the location of the “step-edge” interface
between the TI-vacuum and TI-SE regions. Arrows indicate the
possible outcomes of quasiparticle scattering at the interface. An in-
cident electron from the TI-vacuum surface approaches the interface
with an angle θ . The electron can either be reflected back towards the
TI-vacuum region as shown by r, or can be transmitted through the
interface to the TI-SE region with angle θ ′ as given by t .

admit equal helical surface states and both analytically and
numerically analyze the LDOS. In Sec. IV we analyze how
the LDOS oscillations are affected by altering the relative
sizes of the Fermi surfaces on either side of the junction. In
Sec. V we introduce examples of nonhelical spin textures and
determine possible experimental signatures, which distinguish
them from those of the helical examples considered previ-
ously. In particular, we analyze systems that exhibit arbitrarily
oriented elliptical Fermi surfaces with spin textures that point
out of the plane of the TI-SE planar interface. Finally, in
Sec. VI we discuss the experimental consequences of step-
edge disorder in TI hybrid systems.

II. BOUNDARY CONDITIONS

To study the LDOS of the TI-SE lateral heterostructure
shown in Fig. 1 we define our coordinate system such that the
the x–y plane constitutes the surface of the TI, where the x < 0
half space contains the TI-vacuum surface and the x > 0 half
space contains the TI-SE interface, with the boundary between
these two regions being along x = 0. While the TI-vacuum
surface hosts a helical TI surface state with spins confined to
the surface, the material junction of the TI-SE planar interface
can have interface states with nonhelical spin textures, giving
rise to elliptical constant energy contours and spins with com-
ponents that point out of the plane of the interface (i.e., along
the z direction). To study this heterojunction we consider a
helical surface Hamiltonian on the left and the most general
effective linear Hamiltonian that is TR invariant on the right,

H = HL�(−x) + HR�(x),

HL = h̄vF(σ × −i∇)z − μL,

HR = c · σ − μR. (1)

Here �(x) is the Heaviside step function, σ = (σx, σy, σz )T

is a vector of Pauli matrices in spin space, vF is the Fermi

velocity of the TI-vacuum surface, μL and μR are the left
and right region’s chemical potentials respectively, and c is
a three component vector defined by ci = −i

∑
j=x,y ci j∂ j .

The Hamiltonian HR preserves TR symmetry so long as the
ci j coefficients are all real. From this description the helical
TI surface state (the case in which there is no SE) may be
modeled by setting cD = −ih̄vF(∂y,−∂x, 0)T . Examples of
nonhelical spin textures may be found in Refs. [10–13,29,30],
and are thus encoded in the choice of the ci j coefficients.

Because we are primarily interested in low-energy con-
ductance signatures, in Eq. (1) we neglect the typical k3

momentum terms that give rise to the hexagonal warping
of the Fermi surface [31]. Without loss of generality, we
may write the eigenstates of the Hamiltonian in Eq. (1) as
ψ (x) = �(−x)ψL(x) + �(x)ψR. Consequently, the effective
long wavelength description of Eq. (1) cannot account for
the rapid variations of the wave function in the vicinity of
the SE edge at x = 0. The proper TR preserving boundary
condition for the wave function at the x = 0 interface is given
by ψL(0) = M(β )ψR(0), where [10,11,30]

M(β ) =
√

v

vF

[
eiσyβ + i

2h̄v
(cxxσz − czxσx )e−iσyβ

]
. (2)

Here we have that v = (
√∑

i=x,y,z c2
ix − cyx )/2h̄ and β is

an arbitrary parameter such that β ∈ [0, 2π ). For additional
details on the derivation of this boundary condition, see
Appendix A. For illustrative purposes, we may first focus on
the case that HL = HR; this is equivalent to writing c = cD

and μL = μR, and the boundary value matrix takes the form
M(β ) = eiσyβ . For this case in particular, it was shown that β

is proportional to the strength of a Dirac delta edge potential
localized at x = 0 [25,30]. From the form of M(β ) = eiσyβ we
see that this results in a rotation of the spin’s expectation value
about the y axis, conserving the x component of the electric
current across the junction. In the case that HR �= HL, Eq. (2)
describes the proper transformation of the wave function’s
spin expectation value, and the value of the parameter β is
not simply related to the strength of a localized edge potential
as it can break inversion and chiral symmetries. Hence, the
free parameter of the general boundary condition in Eq. (2)
captures the effects of all TR symmetry allowed disorder at
the step edge.

A. Local density of states of the lateral heterojunction

We may then we calculate the LDOS oscillations that
emerge because of the quasiparticle interference patterns
about the junction. To do this, we must first solve the quasi-
particle scattering problem about the x = 0 interface. We
therefore consider an incoming electron from the left half
space of Fig. 1 with momentum k1 = (kx, ky)T and in-plane
momentum angle θ = tan−1 ky/kx, a reflected electron with
momentum k2 = (−kx, ky)T , and a transmitted electron in the
right-half space with momentum k′

1 = (k′
x, ky)T . The outgoing

angle θ ′ is solved for in terms of the incoming angle because
of conservation of energy and ky momentum. The wave func-
tion of HL is given by

ψL(r) = eik1·r
√

2

(
1

−ieiθ

)
+ r

eik2·r
√

2

(
1

ie−iθ

)
. (3)
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Similarly, the wave function of HR is given by

ψR(r) = teik′
1·r

(
cos(ϑc(k′

1 )/2)

e
iϕc(k′

1 ) sin(ϑc(k′
1 )/2)

)
. (4)

Here ϑc(k′
1 ), ϕc(k′

1 ) are the polar and azimuthal angles of the
vector c(k′

1) respectively, where c(k) is defined by ci(k) =∑
j=x,y ci jk j , and r and t are the coefficients for the re-

flected and transmitted parts of the wave function respectively.
Matching the solutions at x = 0 [Eq. (2)] we may solve for
both the reflection and transmission coefficients, for details
see Appendix B. Using these wave functions we can then
calculate the LDOS from the spectral function of the exposed
TI surface. The LDOS then takes the form

ρ(r, ω) = 1

(2π )2

∫ ∞

0
dkx

∫ ∞

−∞
dky|ψL(r)|2δ(ω − ξk)

= ρ0

2π

∫ π/2

−π/2
dθDkωθx.

(5)

Here ξk = h̄vF

√
k2

x + k2
y − μL is the energy of the x < 0 elec-

trons, kω = ω+μL

h̄vF
is the magnitude of the momentum at energy

ω, ρ0 = kω

2π h̄vF
is the constant LDOS of a single TI surface slab

with no semiconducting material on the x > 0 side, and the
integrand is given by

Dkθx = 1 + |r(θ )|2 + Re[e−2ik cos θxr(θ )]

− Re[e−2ik cos θxe−2iθ r(θ )]. (6)

In the following sections we consider some specific examples
of HR which will allow us to obtain both analytic and numer-
ical results for r(θ ), Dkωθx, and ρ(r, ω).

III. STEP-EDGE SCATTERING: EQUAL FERMI SURFACES

We first analyze the LDOS oscillations when both regions
of our junction admit equal helical TI surface states. As
previously described, this case can be described within our
model by setting c = cD and μL = μR, and the boundary
value matrix of Eq. (2) has the form M = eiσyβ , where the free
parameter β is proportional to the strength of a localized edge
potential. By solving the scattering problem shown schemati-
cally in Fig. 1 we find the reflection coefficient of the reflected
electrons to have the form

r(θ, β ) = eiθ sin θ

−i + cos θ cot β
. (7)

This expression may also be found by setting θ ′ = θ in
Eq. (B12) of Appendix B 1 a. In Fig. 2 we numerically in-
tegrate Eq. (5) and plot the LDOS as a function of position
and edge potential strength β. Unique LDOS profiles are
observed for β ∈ [0, π ), beyond which they become periodic.
As expected, a constant LDOS profile is observed in the ab-
sence of any edge potential because of the lack of scattering.
This is evident as when β vanishes, we have that r(θ ) = 0
and Dkωθx = 1, giving rise to ρ(x, ω) = ρ0/2. As the edge
potential strength increases, oscillations develop and increase
as a result of electrons scattering at the edge and a minimum
in the global local density occurs at a finite distance away
from the x = 0 interface. The oscillations are largest when
β = π/2, which corresponds to the largest strength of the

FIG. 2. LDOS oscillations of the TI-vacuum region shown in
Fig. 1. Here the TI-SE region is assumed to have the same surface
Hamiltonian of the TI-vacuum region. (a) LDOS oscillations given
as a function of position and β, where in this case β has been shown
to be proportional to the strength of an edge potential localized at the
x = 0 interface. The LDOS is normalized by its value as x → −∞,
which need not be the same for each value of β. (b) Examples of the
LDOS profile are plotted for chosen values of β, along with the x−3/2

decay envelope.

edge potential, and in this case the minimum of the LDOS
profile approaches x = 0. As the potential strength increases
in the region β ∈ [π/2, π ) the oscillations diminish, although
the minimum of the global local density remains fixed at
x = 0.

In the special case that β = π/2 the LDOS can be ex-
pressed analytically. From Eq. (7) the reflection coefficient is
r(θ ) = ieiθ sin θ , and the integrand of the LDOS is Dkωθx =
1 + sin2[1 − 2 cos(2kωx cos θ )]. Using the Jacobi-Anger ex-
pansion we can then calculate the LDOS

ρ(x, ω) = ρ0

[
3

4
− J1(2kωx)

2kωx

]
. (8)

Here Jn(z) in the nth Bessel function of the first kind. Be-
cause the Bessel functions asymptotically decay as z−1/2 we
can see that the second term in ρ(x, ω) decays as z−3/2.
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Then for x → −∞ we find ρ(−∞, ω) = 3ρ0/4. Conse-
quently, ρ(x, ω)/ρ(−∞, ω) asymptotically decays as 1 +
(−2kωx)−3/2 as shown in Fig. 2(b) (recall that x < 0). The
oscillations of the quasiparticle interference pattern have a
wave length determined by π/kω. From the interpretation
that β controls the strength of a localized edge potential at
the x = 0 interface (Fig. 1), we may observe that increasing
the strength of this edge potential increases the amplitude
of the LDOS oscillations until they reach their maximum
at β = π/2. After this, the oscillations must decrease with
increasing potential strength in order to maintain the peri-
odicity of β in the interval β ∈ [0, π ). The suppression of
backscattering in TI junctions because of the helical nature of
their charge carriers, and the fact that the boundary conditions
encoded by the matrix M(β ) relate incoming and outgoing
quasiparticles through rotations of their spin expectation value
at the x = 0 step edge, leads to LDOS oscillations that decay
as x−3/2, which is qualitatively shorter than those mediated by
nonhelical Schrödinger electrons in 2DEGs [18–20].

IV. STEP-EDGE SCATTERING: UNEQUAL
FERMI SURFACES

In this section we once again consider the case that both re-
gions of the junction admit helical TI surface states. However,
this time we allow the TI-SE interface to alter the size of the
Fermi surface. This can be accomplished either by changing
the chemical potential or by changing the Fermi velocity on
the x > 0 side of the junction. To study the scattering of TI
surface states with unequal Fermi surfaces, we may rewrite
the junction described in Eq. (1) and consider the Hamiltonian

HL = h̄vL(σxky + iσy∂x ) − μL,

HR = h̄vR(σxky + iσy∂x ) − μR.
(9)

Here vL, μL and vR, μR are the Fermi velocities and the
chemical potentials of the left and right sides of the junction
respectively. In this setup the boundary value matrix of Eq. (2)
now has the form M(β ) = √

vR/vLeiσyβ . Before solving the
scattering problem to find the reflection coefficient and the
resulting LDOS oscillations, we first must calculate the out-
going angle θ ′ in terms of the incoming angle and system
parameters. Because of the translational invariance along the
y direction, the conservation of the ky momentum yields the
condition

μL

vL
sin θ = μR

vR
sin θ ′, (10)

which is analogous to Snell’s law in optics. Defining
the parameter a = μR

vR

vL
μL

, the outgoing angle is then θ ′ =
arcsin(a−1 sin θ ).

The value of a determines the relative sizes of the Fermi
surfaces. As shown schematically in Fig. 3, when a > 1 the
Fermi surface of the TI-SE interface is larger than that of the
TI-vacuum surface. Conversely, when 0 < a < 1 the Fermi
surface of the TI-SE interface is smaller than that of the
incident side. In this case, electrons can only propagate into
the TI-SE region as long as the incoming angle is less than the
critical angle θc = arcsin a. For incoming angles greater than
θc, total internal reflection occurs and there are only decaying
modes within the TI-SE region.

FIG. 3. Schematics of the Fermi surfaces of the TI-vacuum sur-
face (left) and the TI-SE interface (right). The relative sizes of the
two Fermi surfaces are controlled through the parameter a = μR

vR

vL
μL

.
(a) When a > 1, the Fermi surfaces of the TI-SE region is larger
than the TI-vacuum region. (b) When 0 < a < 1, the Fermi surface
of the TI-SE region is smaller than that of the TI-vacuum region. In
this case, incident electrons from the TI-vacuum region can only be
transmitted into the TI-SE region if they have an incoming angle less
than the critical angle θc = arcsin a.

At this level we can numerically obtain the LDOS profile
using Eq. (5). We note, however, that the quasiparticle scatter-
ing problem is slightly modified for angles greater than θc, as
the wave functions ψR(x) described by Eq. (4) must instead be
replaced by evanescent modes. In Fig. 4 we plot the LDOS as
a function of the TR invariant edge perturbations for three sets
of Fermi surfaces with different relative sizes, such that a = 5,
0.5, and 0. In Fig. 4(a), with a = 5, the Fermi surface of the
TI-SE interface is larger than that of the TI-vacuum surfaces.
As before, the LDOS oscillations as a function of position are
still present, and are periodic with edge potential strength in
the interval β ∈ [0, π ). However, there is less variability in
the LDOS profiles, and oscillations are now always present. In
the extreme scenario when a → ∞, the variability is gone and
we obtain a single LDOS profile independent of the strength
of the edge potential. In Fig. 4(b), when a = 0.5, the Fermi
surface of the TI-SE interface is now smaller than the TI-
vacuum surface’s Fermi surface. In this case as well, LDOS
oscillations are now always present, and the system is periodic
in the interval of length π . Finally, in Fig. 4(c) when a = 0,
i.e., when the right-hand Fermi surface vanishes, the LDOS
spectra suddenly and uniquely become periodic in the smaller
interval of length π/2. For β = ±π/4 the LDOS is constant
and the oscillations vanish, while the β ∈ (−π/4, π/4) region
strongly resembles the LDOS spectra obtained in Sec. III
for equal Fermi surfaces. For the cases when a < 1 we
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FIG. 4. LDOS as a function of β in the case of unequal Fermi surfaces across the junction. Here the parameter a = μR
vR

vL
μL

represents the
ratio of the relative sizes of the Fermi surfaces. When a > 1 (a < 1) the Fermi surface of the TI-SE interface is larger (smaller) than that of the
TI-vacuum surface.

observe that the presence of evanescent modes in the TI-SE
region does not affect the x−3/2 decay envelope of the LDOS
oscillations.

Additional physical insights can be gained when consid-
ering the limiting values of the parameter a, which can be
analytically solved for. Let us first study the a → ∞ case
(i.e., when μR � μL or vL � vR), in which the TI-SE Fermi
surface is much larger than the incident side. From Snell’s law
in Eq. (10), we see that the outgoing angle is always θ ′ = 0
and the reflection coefficient becomes

r(θ ) = ieiθ tan(θ/2). (11)

This expression may also be found by setting θ ′ = 0 in
Eq. (B12) of Appendix B 1 a. Note that in this case the re-
flection coefficient, and thus the LDOS, is independent of the
free parameter β controlling the edge potential strength in the
boundary value matrix. To understand this, recall from Sec. II
that in the presence of a localized edge potential the spin of the
transmitted electrons is rotated about the y axis by an angle of
β. Generally, every incoming state with angle θ corresponds
to a transmitted state with angle θ ′. However, in the a → ∞
limit, all outgoing states are fixed to have an outgoing angle
of θ ′ = 0. From the Hamiltonian in Eq. (9), we can see that
the spin of these outgoing states is similarly fixed to point
directly along the y axis. Therefore these states are unaffected
by the rotations arising from the localized edge potential, as
demonstrated in the reflection coefficient in Eq. (11).

The integrand of the LDOS is Dkωθx = 1 + tan2(θ/2) −
4 cos(2kωx cos θ ) sin2(θ/2). Using the Jacobi-Anger expan-
sion the LDOS may be integrated to give

ρ(x, ω) = 2

π
ρ0 −

(
1 − 2

π

)
ρ0J0(2kωx)

− 4

π
ρ0

∞∑
n=1

J2n(2kωx)

4n2 − 1
. (12)

For x → −∞ we find ρ(−∞, ω) = 2ρ0/π . Moreover,
asymptotically expanding ρ(x, ω) up to order x−3/2 we notice
that the x−1/2 terms are equal and opposite in sign, rendering
x−3/2 as the leading decay power of ρ(x, ω).

We also find an analytic solution for the opposite limit
where a = 0. In this case the Fermi surface of the TI-SE
region is vanishingly small, and the critical angle is θc =
0. Because of this, electrons with any arbitrary angle are
reflected in what mimics total internal reflection in optics.
Here the scattering problem must be solved again with the
assumption that there are only evanescent states in the x > 0
side, modifying the wave function of Eq. (4). The reflection
coefficient is given by

r(θ, β ) = − cos β + ieiθ sin β

cos β − ie−iθ sin β
, (13)

and naturally |r(θ, β )|2 = 1, consistent with total internal re-
flection. In this limit the LDOS can be analytically derived
for multiple values of the edge potential strength β. When
β = π/4, it can be demonstrated that the LDOS has a constant
profile, ρ(x, ω) = ρ0. The largest LDOS oscillations occur
when β = 0 and β = π/2, which both have the same analytic
solution for the LDOS given by

ρ(x, ω) = ρ0

[
1 − J1(2kωx)

2kωx

]
. (14)

For x → −∞ we find ρ(−∞, ω) = ρ0. Once again, the decay
power of this LDOS profile is given by x−3/2. The LDOS
oscillation patterns of both the a → ∞ and a = 0 limits, as
given by Eq. (12) and Eq. (14), are plotted in Fig. 5 along
with the results of the equal Fermi surface case of Sec. III.
While both the a = 1 and a = 0 cases can give rise to constant
LDOS profiles, the largest oscillations are only possible in
the system with equal Fermi surfaces. In contrast, the LDOS
oscillations of the a → ∞ case are robust and insensitive to
the Dirac delta-like scattering of the x = 0 interface. For all
sizes of Fermi surfaces considered (that is, for all values of a),
the decay envelope is always found to be given by x−3/2.

V. CONSEQUENCES OF NONHELICAL SPIN TEXTURES

Lastly, we study how the LDOS oscillations are affected
by the presence of nonhelical spin textures within the TI-SE
interface. Nonhelical interface states at low energies result
from inversion symmetry breaking interface potentials within
TIs and topologically trivial materials, and can introduce
elliptical constant energy contours in momentum space as
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FIG. 5. Comparison of the analytical solutions for the maximum
LDOS oscillations in the different limits of a.

well as out-of-plane spin textures [10,11]. To account for
these types of spin textures, we may rewrite HR in Eq. (1)
such that

HR = vF
[
(σ × −i∇)z + 1

3 (σ · ē)(−i∇ · e) + 2
3σzi∇ · e

] − μ.

(15)

Here, the unit vectors e = [sin(ζ ), cos(ζ ), 0]T and ē =
[− cos(ζ ), sin(ζ ), 0]T within the x–y plane point along the
semi-major and semi-minor axes of the elliptical Fermi sur-
face respectively, with the angle ζ being defined from the
y axis, and we have set μL = μR = μ. An illustration of
how the Fermi surface of HR compares to that of HL, along
with the resulting spin texture of HR, are shown in Fig. 6.
In the case that ζ = 0 [Fig. 6(b)], electrons traveling along
the y direction have spin expectation values that contain an
out-of-plane component, in contrast to the helical case stud-
ied previously. We also note that even though the nonhelical
interface state defined by Eq. (15) is distinct from the heli-
cal surface state, the system under consideration is still TR
invariant.

Using the boundary value matrix of Eq. (2) we numeri-
cally solve the quasiparticle scattering of the interface and
calculate the LDOS for several Fermi surface angles ζ . In
Figs. 7(a) and 7(b) we plot the LDOS as a function of both
edge potential strength β and position for the angles ζ = π/4
and ζ = 0, respectively. We note that in the case of ζ = π/2
the scattering of the x = 0 junction is identical to that of the
equal Fermi surface case in Sec. III, and we obtain the same
results as shown in Fig. 2(a). We demonstrate this analytically
in Appendix B 1 b, where we calculate the transmission of
the junction for ζ = π/2 and show its equivalence to the two
equal circle system. As ζ deviates from π/2, however, the
resulting LDOS spectra is modified. While the system is still
periodic for edge perturbations β ∈ [0, π ), the relative pattern
of the LDOS oscillations with respect to β begins to shift
upward, as can be seen in the upwards shift of the blue regions
in Figs. 7(a) and 7(b). In addition to this shift, the character of
the LDOS oscillations themselves also change. When ζ = 0

FIG. 6. Nonhelical dispersion and spin texture of the TI-SE inter-
face as given by Eq. (15). (a) Schematics of the Fermi surfaces of the
TI-vacuum surface (left) and the nonhelical TI-SE interface (right).
The angle ζ controls the overall tilt of the elliptical Fermi surface,
and is measured from the y axis. (b) Spin texture of the nonhelical
interface state as ζ = 0. The semi-major axis of the elliptical Fermi
surface is parallel to the x = 0 boundary, and when ky �= 0, there is
an out-of-plane spin component.

(or equivalently, the “equal circle” case), the LDOS does not
oscillate and is constant as β = βmin = 0, for all x. Here we
define βmin as the value of the edge potential for which the
transmission is maximized and consequently the LDOS has no
oscillations because of the extremely weak scattering from the
edge potential. When ζ decreases, βmin beings to shift upward
and reaches a maximum of βmin/π = 1/8 when ζ = 0. How-
ever, at these values of β = βmin, the LDOS is not constant.
For both cases, there is a minimum of the LDOS at the x = 0
interface, and the LDOS monotonically rises to ρ(−∞, ω) as
x → −∞. This behavior is different to what we have observed
in Sec. III, where the LDOS never monotonically rises as
x → −∞. In Appendix B 1 b we also analytically derive the
transmission of the junction when ζ = 0 and show that it is
maximized as β = βmin = π/8. This is in strong contrast to
the “equal circle” case, where the scattering of the junction
was minimized as β = 0. For a general angle ζ , the scattering
at the x = 0 edge is minimized and the LDOS oscillations
disappear whenever β = βmin(ζ ). In Fig. 7(c) we plot how
βmin(ζ ) changes as a function of ζ . From this, we see that the
direction of the overall shift of the LDOS oscillation pattern
depends on the value of ζ . However, for all angles of the
elliptical Fermi surface, we find that the decay envelope of
the LDOS oscillations is robust against the details of the non-
helical spin texture and strength of the x = 0 edge potential,
always taking the value x−3/2.

085301-6



LOCAL DENSITY OF STATE OSCILLATIONS IN … PHYSICAL REVIEW B 110, 085301 (2024)

FIG. 7. LDOS oscillations of the TI-vacuum region shown in Fig. 1, where the TI-SE region is assumed to have a nonhelical interface
Hamiltonian exhibiting an elliptical Fermi surface. Panels (a) and (b) showcase the results for the angles ζ = π/4 and ζ = 0 respectively. In
(c), βmin(ζ ) is defined as the value of β in which the LDOS oscillations disappear for all x. When ζ = π/2, (which in Appendix B 1 b we show
is identical to the equal circle case of Sec. III) this is simply βmin(π/2) = 0. When ζ = 0, it reaches a maximum value of βmin(0) = π/8.

VI. DISCUSSION AND CONCLUSIONS

In this paper we analyzed the effects of step-edge disorder,
dissimilar Fermi surfaces, and nonhelical spin textures on the
LDOS oscillations of quasiparticle interference patterns in lat-
eral heterostructures. It has earlier been shown that the LDOS
oscillations emerging from purely helical systems decay away
from the atomic step edge as x−3/2, as opposed to 2DEG
systems that decay as x−1/2, where x is the distance from the
step defect. Strikingly, we find that the decay envelope of the
LDOS oscillations is robust to the interfacial disorder that may
arise in the TI-SE junction. For all effective models studied for
the TI-SE interface that are linear in momentum, we find that
this decay power remains x−3/2 regardless of the type of TR
preserving disorder at the edge.

We find that the qualitative nature of the oscillations result
from the linearity of the bands and the TR invariance of the
wave functions, while the wave length of the oscillations is de-
fined by the size of the Fermi surface in the TI-vacuum region.
Quantitative differences in the amplitude of the oscillations
depend on the helicity variations between the two regions and
the strength of localized edge potentials at the x = 0 boundary.
We derived the boundary conditions for wave functions on
either side of the x = 0 step-edge interface, and found that the
quasiparticle scattering of the junction is controlled by two
distinct effects: First, the spin texture of the TI-SE interface
state, as parametrized by the ci j coefficients of Eq. (1). Sec-
ond, the strength of an edge potential localized at the x = 0
step edge, represented by the parameter β in the boundary
value matrix of Eq. (2). We then solved for the reflection and
transmission of electron scattering at the x = 0 boundary and
derived the LDOS.

The characteristic energy scale of hexagonal warping for
Bi2Se3 (Bi2Te3) is 590 meV [32] (260 meV [24,31]), while its
band gap is ∼350 meV [32] (∼250 meV [16]). This implies
that, for Bi2Se3, the transport properties that arise uniquely
from the surface states are accurately captured by a linear
Hamiltonian, as the energy values at which hexagonal warping
affect transport signatures are above its semiconducting gap.
As such, the surface state mediated LDOS oscillations are
well described by our linear effective model. However, for

Bi2Te3, the in-gap surface states display a relatively stronger
hexagonal warping for energies close to, but still below, the
semiconducting edge. Therefore, for this material, our model
is valid for energies that are sufficiently close to the � point.
For Bi2Te3 with simple step-edge disorder in particular, these
higher energy corrections have earlier been demonstrated to
result in larger LDOS oscillation decay envelopes such as x−1

[24]. The model presented in this paper is thus best suited for
Bi2Se3-SE lateral heterostructures.

Reference [13] has recently predicted that strain control
can be used to manipulate the spin degree of freedom via
the spin-orbit coupling in TIs, resulting in spin textures and
energy dispersions like those shown in Figs. 6(a) and 6(b).
Controlling strain in the TI-SE region of the experimental ap-
paratus suggested in Fig. 1 will therefore consequently affect
the observed LDOS oscillations in the TI-vacuum region. We
predict that the observation of decay envelopes different from
x−3/2 will indicate that the TI-SE interface is not faithfully
described by the presence of interface disorder alone.

Our results demonstrate that a careful analysis of the
boundary effects on TI interface states is vital in understand-
ing the behaviors of scattering experiments in TIs. In this
article we have shown that the boundary value matching of
TI interface states is more complex than has been commonly
assumed, and that the decay envelope of LDOS oscillations
about atomic step edges is insensitive to the presence of sym-
metry breaking interfacial disorder in TI-SE junctions. Our
study thus constitutes a crucial step towards the characteri-
zation of robust signatures associated with TI surface state
transport, and in understanding the consequences of symmetry
breaking and nonhelical spin textures in TI-based devices.
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APPENDIX A: SELF-ADJOINT BOUNDARY CONDITIONS

To arrive at the self-adjoint boundary conditions in a junc-
tion containing two Dirac-like systems, we consider

HL(p) = −μLσ0 +
∑
i=x,y,z
j=x,y

ai jσi p j and HR(p)

= −μRσ0 +
∑
i=x,y,z
j=x,y

ci jσi p j . (A1)

HL (HR) describes the left (right) side of the junction, and
both Hamiltonians are TR symmetric so long as the ai j and
ci j coefficients are all real. Note that at this level HL does not
necessarily describe a helical TI-vacuum surface state, but is
instead a general effective linear Hamiltonian that is TR in-
variant. Hermiticity requires that the inner product of the total
Hamiltonian H = HL + HR with respect to any wave func-
tion in our Hilbert space must satisfy 〈ψ1|Hψ2〉 = 〈Hψ1|ψ2〉.
Since translational invariance is broken only along the x axis,
we only need to consider the terms in H that depend on the
momentum operator px = −i∂x. (Here and throughout these
Appendices we set h̄ = 1.) Labeling this part of the Hamilto-
nian as Hx, we have that

〈ψ1|Hxψ2〉 =
∫ 0

−∞
ψ

†
1,L(x)

⎛⎝ ∑
i=x,y,z

aixσi(−i∂x )

⎞⎠ψ2,L(x)dx

+
∫ ∞

0
ψ

†
1,R(x)

⎛⎝ ∑
i=x,y,z

cixσi(−i∂x )

⎞⎠ψ2,R(x)dx.

(A2)

Integrating by parts and assuming the wave functions are well
behaved at infinity, this implies that 〈ψ1|Hψ2〉 = 〈Hψ1|ψ2〉 is
satisfied if

ψ
†
1,L(0)

⎛⎝ ∑
i=x,y,z

aixσ j

⎞⎠ψ2,L(0)

= ψ
†
1,R(0)

⎛⎝ ∑
i=x,y,z

cixσ j

⎞⎠ψ2,R(0) . (A3)

Since this condition must hold for any pair of wave functions
in the Hilbert space we can solve it by demanding

ψL(0) = MψR(0) (A4)

at the interface. Here M is a 2 × 2 matrix with arbitrary
elements. If we substitute Eq. (A4) in Eq. (A3), we obtain

∑
i=x,y,z

cixσi = M†

⎛⎝ ∑
i=x,y,z

aixσi

⎞⎠M . (A5)

For linearly dispersing systems, the self-adjoint boundary
condition as expressed by Eq. (A5) can also be obtained
through the consideration of current conservation across the
junction. The x-component of the current in the left and right

Dirac-like systems are given by

jL,x = ψ
†
L

⎛⎝ ∑
i=x,y,z

aixσi

⎞⎠ψL and jR,x = ψ
†
R

⎛⎝ ∑
i=x,y,z

cixσi

⎞⎠ψR.

(A6)

Making use of the boundary condition in Eq. (A4), we re-
cover the expression in Eq. (A5). This shows that for linearly
dispersing systems both Hermiticity and current conservation
lead to equivalent self-adjoint boundary conditions.

1. Discrete symmetries

While the boundary matrix condition obtained in Eq. (A5)
is generic, its form can be constrained by physical consid-
erations. Discrete symmetries such as time reversal (TR)
symmetry T = iσyK (K being the complex conjugation op-
erator), particle hole (PH) symmetry P = σxK , and chiral
symmetry C = T P impose restrictions on the matrix elements
introduced in Eq. (A4). To demonstrate this, let us suppose
that the system possesses an arbitrary discrete symmetry de-
fined by O. For any wave function ψ1 of our Hilbert space
H, there exists a wave function ψ2 = Oψ1 such that ψ2 ∈ H.
Because Eq. (A4) must hold for all wave functions in the
Hilbert space, it follows that

ψ1,L(0) = Mψ1,R(0) and ψ2,L(0) = Mψ2,R(0) . (A7)

If we apply the operator O to the first equation in Eq. (A7),
we obtain

Oψ1,L(0) = OMψ1,R(0) . (A8)

Comparing this to the second equation in Eq. (A7), we ob-
serve that [M,O] = 0. We note that while T , P , and C all
commute with the boundary value matrix M, these discrete
symmetries need not all commute with the Hamiltonians HL

and HR. For TR symmetric systems, we obtain [HL,R, T ] = 0.
However, for PH and chiral symmetric systems, we obtain
{HL,R,P} = {HL,R, C} = 0.

2. TR invariant self-adjoint boundary conditions

Consider the following TR invariant Hamiltonians

HL(p) = vF(σ × p)z − μL and HR(p) =
∑
i=x,y,z
j=x,y

ci jσi p j − μR.

(A9)

In this case M satisfies∑
i=x,y,z

cixσi = −vFM†σyM . (A10)

Moreover, if we assume that the system is TR invariant it
follows that [M, T ] = 0. This condition constrains the matrix
elements of M such that

M = γ0σ0 + i
∑

i=x,y,z

γiσi , (A11)

where γ0, γx, γy, γz ∈ R (here R is the set of real numbers).
Substituting Eq. (A11) in Eq. (A10) and solving for the
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coefficients we find

(γ0, γx, γy, γz ) =

⎧⎪⎨⎪⎩
(
γ0,

|cx |−cyx

c2
xx+c2

zx
[czxγ0 ± cxxγy],±

√
−( |cx |+cyx

2vF
+ γ 2

0

)
,

|cx |−cyx

c2
xx+c2

zx
[cxxγ0 ∓ czxγy]

)
,(

γ0,
|cx |+cyx

c2
xx+c2

zx
[±czxγ0 + cxxγy],±

√
|cx |−cyx

2vF
− γ 2

0 ,
|cx |+cyx

c2
xx+c2

zx
[cxxγ0 ∓ czxγy]

)
.

(A12)

Here we have defined the vector

ci = cxîx + cyîy + czîz , (A13)

and thus |ci| =
√

c2
xi + c2

yi + c2
zi. Note that this definition of ci

is distinct from the definitions of c, ci, c(k), and ci(k) given
earlier in the manuscript. We discard the first set of solutions
in Eq. (A12) since in order to have γx,y,z ∈ R, the remaining
coefficient γ0 must be purely imaginary and thus breaks TR.
The second set of solutions in Eq. (A12) satisfies TR (i.e.,
γ0, γx, γy, γz ∈ R) if

−
√

|cx| − cyx

2vF
� γ0 �

√
|cx| − cyx

2vF
, equivalently,

γ0 =
√

|cx| − cyx

2vF
cos(β ), (A14)

where β is a free real parameter. Hence the boundary matrix
that grants the TR constraint is given by

M =
√

|cx| − cyx

2vF
eiσyβ

+ i√
2vF(|cx| − cyx )

(cxxσz − czxσx )e−iσyβ. (A15)

APPENDIX B: SCATTERING IN LATERAL JUNCTIONS

If we consider the junction described by Eq. (A9) and if we
assume an incoming plane wave from the left, then the spinor
wave function for x < 0 can be written as an incoming and
reflected electron

ψL(r) = ei(kxx+kyy)

√
2

(
1

−ieiθ

)
+ r

ei(−kxx+kyy)

√
2

(
1

ie−iθ

)
, (B1)

where k = (kx, ky) = |k|[cos(θ ), sin(θ )] is the momentum of
the incoming plane wave, θ = tan−1(ky/kx ), and r is the
reflection coefficient. Considering that translational invari-
ance along the y direction requires the conservation the
y-component of the momentum we can express the electrons
transmitted to the right as

ψR(r) = tei(k′
xx+kyy)

⎛⎜⎜⎝
√

ε(k′ )+hz (k′ )√
2ε(k′ )

hx (k′ )+ihy (k′ )√
2ε(k′ )

√
ε(k′ )+hz (k′ )

⎞⎟⎟⎠, (B2)

where t is the transmission coefficient. Here we have defined

ε(k′) =
√ ∑

i=x,y,z

h2
i (k′) and hi(k

′) = cixk′
x + ciyky , (B3)

with k′ = (k′
x, ky). Additionally, the conservation of energy

vF

√
k2

x + k2
y − μL = ε(k′) − μR along with the requirement

that the momentum must lie on the Fermi surface as
vF

√
k2

x + k2
y − μL = 0 allows us to find the k′

x component of
the transmitted momentum, i.e.,

k′
x =

−cx · cyky +
√

(cx · cyky)2 + |cx|2
(
μ2

R − |cy|2k2
y

)
|cx|2 .

(B4)

Now that we have determined the outgoing momenta in
Eq. (B2) we can find the coefficients r and t [Eqs. (B1)
and (B2)] through the boundary condition at x = 0, ψL(0) =
MψR(0), and the matrix M in Eq. (A15). The boundary value
problem can be expressed by the matrix equation

( −1 ν[hx(k′) + ihy(k′)] + η[ε + hz(k′)]
−ie−iθ η∗[hx(k′) + ihy(k′)] − ν∗[ε + hz(k′)]

)(
r

t[ε2 + εhz]−1/2

)
=

(
1

−ieiθ

)
. (B5)

In Eq. (B5) we have defined

η = κ cos(β ) + i

(
cxx cos(β ) − czx sin(β )

2vFκ

)
, ν = κ sin(β ) − i

(
czx cos(β ) + cxx sin(β )

2vFκ

)
, and κ =

√
|cx| − cyx

2vF
. (B6)

Solving for r we find

r(θ ) = eiθ [η(ε + hz ) + ν(hx + ihy)] + i[ν∗(ε + hz ) − η∗(hx + ihy)]

e−iθ [η(ε + hz ) + ν(hx + ihy)] − i[ν∗(ε + hz ) − η∗(hx + ihy)]
. (B7)

In order to define the reflection and transmission probability amplitudes we use the fact that the current in the left side of the
junction must be equal to the current in the right side of the junction

jx[incoming] + jx[reflected] = jx[transmitted], i.e., 1 = jx[transmitted]

jx[incoming]
− jx[reflected]

jx[incoming]
= T (θ ) + R(θ ), (B8)
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where T (θ ) [R(θ )] are the transmission (reflection) probability amplitudes. Making use of the incoming, reflected, transmitted
states, Eqs. (B1) and (B2), and the definition of the currents in Eq. (A6), we obtain

R(θ ) = − jx[reflected]

jx[incoming]
= |r(θ )|2 and T (θ ) = jx[transmitted]

jx[incoming]
= ψ

†
R

(∑
i=x,y,z cixσi

)
ψR

vF cos θ
= 1 − R(θ ) (B9)

since jx[incoming] = vF cos(θ ) and jx[reflected] = −vF|r(θ )|2 cos(θ ) [33].

Special cases

Here we analyze the transmission amplitudes for two distinct cases,

HR1 = λ1vF(σ × p)z − μ and HR2 = vF[(σ × p)z + λ2(σ · ē)(p · e) − λ3σz p · e] − μ.

(B10)

In the following we set μL = μR = μ. The first case corresponds to a system with a different Fermi velocity. The second case
in nonhelical and corresponds to a system with no inversion symmetry, resulting an elliptical Fermi surface and spins that point
out of the x − y plane. In this case, the unit vectors e = [sin(ζ ), cos(ζ ), 0] and ē = ẑ × e = [− cos(ζ ), sin(ζ ), 0] are defined to
be within the x − y plane, and point along the semi-major and semi-minor axes of the elliptical Fermi surface respectively, with
the angle ζ being defined from the y axis. Details of their description can be found in Ref. [11].

a. Two different velocities

Consider a junction described by HL = vF(σ × p)z − μ and HR1 = λ1vF(σ × p)z − μ, where 0 < λ1 � 1. The incoming
and reflected states for x < 0 are given in Eq. (B1). The outgoing momentum can be expressed as k′ = |k′|[cos(θ ′), sin(θ ′)],
where θ ′ = tan−1(ky/k′

x ) is the transmitted angle. Since the momentum along y is conserved the relation between the incoming
and transmitted angles is given by sin(θ ′)/λ1 = sin(θ ) (electronic Snell’s law). For HR1 we have cyx = −cxy = −λ1vF and

cxx = cyy = czx = czy = 0, giving us hx(k′) = ε(k′) sin(θ ′), hy(k′) = −ε(k′) cos(θ ′), and ε(k′) = λ1vF

√
k2

y + k
′2
x [Eq. (B3)]. The

transmitted states in Eq. (B2) are then given by

ψR(r) = t
ei(k′

xx+kyy)

√
2

(
i

eiθ ′

)
. (B11)

Moreover, the x component of the transmitted momentum in Eq. (B4) reduces to k′
x = [μ/(vFλ1)]

√
1 − [λ1 sin(θ )]2. Hence, with

θ ′ and k′
x we can find r(θ ) in Eq. (B7) to be

r(θ ) = eiθ
[
i sin

(
θ−θ ′

2

)
cos(β ) + sin

(
θ+θ ′

2

)
sin(β )

]
cos

(
θ+θ ′

2

)
cos(β ) − i cos

(
θ−θ ′

2

)
sin(β )

. (B12)

From r(θ ) the transmission probability amplitude T (θ ) = 1 − |r(θ )|2 is given by

T (θ ) = cos(θ ′) cos(θ )

cos2
(

θ+θ ′
2

)
cos2(β ) + cos2

(
θ−θ ′

2

)
sin2(β )

=
2 cos(θ )

√
1 − λ2

1 sin2(θ )

1 − cos(2β ) sin2(θ ) + cos(θ )
√

1 − λ2
1 sin2(θ )

. (B13)

b. Nonhelical spin textures

In this section we shall analyze a generalized version of Eq. (15). For a system described by HL = vF(σ × p)z − μ and
HR2, where 0 < λ2,3 � 1, the incoming and reflected states for x < 0 are given in Eq. (B1). For HR2 we have cx = (cxx, cyx, czx ) =
vF[−λ2 cos(ζ ) sin(ζ ),−1 + λ2 sin2(ζ ),−λ3 sin(ζ )] and cy = (cxy, cyy, czy ) = vF[1 − λ2 cos2(ζ ), λ2 cos(ζ ) sin(ζ ),−λ3 cos(ζ )].
Since ky is conserved we have hx(k′) = vF(ky − λ2 cos(ζ )[ky cos(ζ ) + k′

x sin(ζ )]), hy(k′) = vF(−k′
x + λ2 sin(ζ )[ky cos(ζ ) +

k′
x sin(ζ )]), and hz(k′) = −vFλ3[ky cos(ζ ) + k′

x sin(ζ )]. Additionally, k′
x can be found from energy conservation such that

k′
x =

k
(√

4 cos2(θ ) − 2
[
(λ2 − 2)λ2 + λ2

3

]
[cos(2ζ ) − cos(2θ )] − sin(2ζ ) sin(θ )

[
(λ2 − 2)λ2 + λ2

3

])
− cos(2ζ )

[
(λ2 − 2)λ2 + λ2

3

] + (λ2 − 2)λ2 + λ2
3 + 2

. (B14)

Here k = |k| =
√

k2
x + k2

y . Now by substituting in Eq. (B7) we can write r(θ ) for arbitrary values of ζ .
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In order to gain physical insight into the dependence of the
transmission on ζ we explore two limiting cases. First, we
set ζ = π/2, i.e., the axis of conserved reflections is parallel
to the lateral edge, and the major axis of the elliptical Fermi
surface points along the x direction. In this case hx(k′) = vFky,
hy(k′) = vF(−1 + λ2)k′

x, hz(k′) = −vFλ3k′
x, and k′

x reduces to

k′
x = kx/

√
(λ2 − 1)2 + λ2

3. Hence, by substituting in Eq. (B7)
and calculating T (θ ) = 1 − |r(θ )|2, where here r(θ ) is equal
to Eq. (7), we obtain

T (θ ) = cos2(θ )

cos2 (θ ) cos2(β ) + sin2(β )
. (B15)

It is important to notice that in this case T (θ ) becomes
identically unity as β = 0, i.e., when there is no interface

scattering, and displays perfect transparency for all incoming
angles. Moreover, we can notice that Eq. (B15) is identi-
cal to Eq. (B13) for θ ′ = θ , which is satisfied whenever
λ1 = 1, i.e., equal Fermi velocities. Additionally, setting
θ ′ = θ in Eq. (B12) allows us to recover Eq. (7). This is
to say, the transmission in this ζ = π/2 case is identical
to that of a junction of two helical and equal-sized Fermi
surfaces.

Second, if ζ = 0 the axis of reflection of the system
is orthogonal to the lateral-edge, and the major axis of
the elliptical Fermi surface points along the y direction.
In this case hx(k′) = vF(1 − λ2)ky, hy(k′) = −vFk′

x, hz(k′) =
−vFλ3ky, and k′

x = k
√

1 − [(λ2 − 1)2 + λ2
3] sin2(θ ), and we

find

T (θ ) =
2 cos(θ )

√
1 − sin2(θ )

[
(λ2 − 1)2 + λ2

3

]
sin2(θ )[(λ2 − 1) cos(2β ) − λ3 sin(2β )] + cos(θ )

√
1 − sin2(θ )

[
(λ2 − 1)2 + λ2

3

] + 1
. (B16)

For brevity, in this case we only provide T (θ ). Unlike the pre-
vious cases, we notice that maximum transmission does not
occur at β = 0. Here the value of β that maximizes the trans-
mission (βmax) satisfies the condition λ3 cos(2βmax) + (λ2 −

1) sin(2βmax) = 0. Hence in this case βmax = 1
2 tan−1( λ3

1−λ2
).

Thus, when λ2 = 1/3 and λ3 = 2/3 as is the case for Eq. (15),
we have that βmax = π/8. This results in the LDOS given in
Fig. 7(b).
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