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Tuning the electronic and magnetic properties of NiBr2 via pressure
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Transition metal dihalides (MX 2, M= transition metal, X= halide) have attracted much attention recently due
to their intriguing low-dimensional magnetic properties. Particular focus has been placed in this family in the
context of multiferroicity—a common occurrence in MX 2 compounds that adopt noncollinear magnetic struc-
tures. One example of helimagnetic multiferroic material in the dihalide family is represented by NiBr2. Here, we
study the evolution of the electronic structure and magnetic properties of this material under pressure using first-
principles calculations combined with Monte Carlo simulations. Our results indicate there is significant magnetic
frustration in NiBr2 due to the competing interactions arising from its underlying triangular lattice. This magnetic
frustration increases with pressure and is at the origin of the helimagnetic order. Further, pressure causes a sizable
increase in the interlayer interactions. Our Monte Carlo simulations show that a large (threefold) increase in the
helimagnetic transition temperature can be achieved at pressures of around 15 GPa. This indicates that hydro-
static pressure can indeed be used as a tuning knob to increase the magnetic transition temperature of NiBr2.

DOI: 10.1103/PhysRevB.110.085161

I. INTRODUCTION

Two-dimensional (2D) van der Waals (vdW) magnets have
been intensively studied as they provide powerful platforms to
explore novel physical phenomena and to implement intrigu-
ing applications [1,2]. Transition metal dihalides represent an
emerging class of 2D vdW magnets that can exhibit multi-
ferroic order and noncollinear spin textures [3]. Within this
family, the magnetic semiconductor NiI2 has been the subject
of much research in recent years [4–9]. In the bulk, two
magnetic phase transitions take place in this material: one at
75 K to a collinear antiferromagnetic (AFM) state and one
at 60 K to a helimagnetic state [10,11]. This noncollinear
magnetic state simultaneously hosts a spin-induced ferroelec-
tric polarization tunable with magnetic field, making NiI2 a
type-II multiferroic [12]. Recently, it has been demonstrated
that the multiferroic phase in NiI2 persists from the bulk to
the single-layer limit [6]. Further, it has been shown that a
significant enhancement of the helimagnetic order in bulk NiI2

can be achieved with hydrostatic pressure [13,14] all the way
up to 132 K at 5 GPa.

Given that 2D multiferroics would provide disruptive pos-
sibilities to electrically control magnetic order, it is interesting
to further explore other candidate materials, and analyzing the
consequences of changing the halide ion is an obvious strategy
to pursue. In this context, NiBr2 is the closest relative of NiI2

in the dihalide family. NiBr2 crystallizes in a CdCl2 structure
(space group R3m) [15,16] as depicted in Fig. 1. Its structure is
formed by edge-sharing NiBr6 octahedra (forming a triangular
lattice) that stack along the c axis with weak vdW bond-
ing. The Ni2+ (S = 1) Ni ions order antiferromagnetically at
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TN,1 = 52 K [15,17,18]. As in NiI2, this collinear AFM phase
consists of ferromagnetic planes coupled antiferromagneti-
cally out of plane. At TN,2 = 23 K, a second transition occurs
to a spin-spiral order [17,18]. Interestingly, akin to NiI2,
NiBr2 also develops a ferroelectric polarization in its he-
limagnetic low-temperature ground state [19]. Notably, the
helimagnetic transition temperature of NiBr2 is considerably
lower than that of NiI2 but hydrostatic pressure could in prin-
ciple be exploited as a means to enhance it.

Here, we study the effects of hydrostatic pressure on the
magnetic properties of bulk NiBr2 using a combination of
first-principles calculations and Monte Carlo simulations. Our
results indicate that there is a substantial magnetic frustra-
tion in NiBr2 (that increases with pressure) arising from
the competition between the intralayer ferromagnetic nearest-
neighbor interaction (J‖1) and the antiferromagnetic third
nearest-neighbor interaction (J‖3). Such magnetic frustration
is at the origin of its helimagnetic ground state whose tran-
sition temperature we can accurately reproduce at ambient
pressure using Monte Carlo simulations. We find that pressure
has a significant effect on the interlayer coupling (J⊥eff ), but
also on some of the leading intralayer interactions. Using the
first-principles-derived magnetic constants, Monte Carlo sim-
ulations reveal a threefold increase in the helimagnetic transi-
tion temperature of NiBr2 at a modest pressure of 15 GPa.

II. COMPUTATIONAL METHODS

In previous work [14] we analyzed the pressure depen-
dence of the magnetic properties of NiI2 using a combination
of ab initio calculations and Monte Carlo simulations. Here,
we follow an analog methodology to study the pressure depen-
dence of the magnetic properties in the related material NiBr2

to scrutinize the changes produced by a change in the halide
ion. The details on the computational methods employed are
explained below.

2469-9950/2024/110(8)/085161(8) 085161-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7130-2098
https://orcid.org/0000-0001-8182-8851
https://ror.org/03efmqc40
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.085161&domain=pdf&date_stamp=2024-08-29
https://doi.org/10.1103/PhysRevB.110.085161


BAG, KAPEGHIAN, ERTEN, AND BOTANA PHYSICAL REVIEW B 110, 085161 (2024)

(a)

(b)

Br
Ni

FIG. 1. Crystal structure of bulk NiBr2. Out-of-plane (a) and
in-plane (b) views of the R3m structure. Ni atoms are represented
by gray spheres, while brown spheres represent Br atoms. A black
dotted line marks the unit cell boundaries.

First-principles calculations. We performed density func-
tional theory (DFT)-based calculations in NiBr2 using the
projector augmented wave (PAW) method [20] as imple-
mented in the VASP code [21,22]. The wave functions
were expanded in the plane-wave basis with a kinetic-energy
cutoff of 500 eV. We considered the 3p, 3d , and 4s orbitals
(3p63d84s2 configuration) as valence states for the Ni atoms.
Meanwhile, for the Br atoms, we considered the 4s and 4p
orbitals (4s24p5 configuration) as valence states.

Hydrostatic pressure was applied in 5 GPa increments
(up to 15 GPa), conducting full structural relaxations. The
optimization of the bulk unit cells at each pressure involved
optimizing atomic positions, cell shape, and cell volume, but
focusing exclusively on the rhombohedral phase. The energy
and force minimization tolerances were set at 10−10 eV and
10−3 eV/Å, respectively. The calculations were done us-
ing the Perdew-Burke-Ernzerhof (PBE) [23] version of the
generalized gradient approximation (GGA) functional, with
the inclusion of the DFT-D3 van der Waals correction [24].
Additionally, we incorporated an on-site Coulomb repulsion
parameter (U ) using the Liechtenstein [25] approach to ac-
count for correlation effects in the Ni-d electrons [26]. The U
and Hund’s coupling JH values utilized in all the calculations
presented in the main text (U = 3.9 eV and JH = 0.79 eV)
were derived from constrained random phase approximation
(cRPA) calculations [27]. For all of the relaxations, we fixed
the magnetic configuration to an AFM state comprised of FM
planes coupled AFM out of plane. To accommodate the AFM
ordering, we employed a 1×1×2 supercell and conducted
Brillouin zone (BZ) sampling using a 40×40×4 Monkhorst-
Pack k mesh centered on the � point. This AFM order aligns
with the c component of the magnetic propagation vector
(∼3/2) [3].

Finally, we computed the exchange couplings and
anisotropies for NiBr2 using the four-state method, exten-
sively detailed in Refs. [28–32]. This method relies on
performing total energy mappings through noncollinear mag-

netic DFT calculations with spin-orbit coupling (SOC). Each
magnetic interaction parameter is associated with the energies
of four distinct magnetic configurations, wherein the direc-
tions of the magnetic moments are constrained, and large
supercells are employed to prevent coupling between dis-
tant neighbors. Using this methodology, intralayer (interlayer)
magnetic constants were calculated for each pressure.

Monte Carlo simulations. We employed the Matjes [33]
code to conduct Monte Carlo simulations in NiBr2 to further
investigate its magnetic response with pressure. Around ∼106

thermalization steps were executed at each temperature, fol-
lowed by ∼104 Monte Carlo steps for statistical averaging.
The simulations utilized a standard metropolis algorithm on
supercells with dimensions L×L×4 and periodic boundary
conditions. To determine the supercell size L, we adopted
the criterion L � nLm.u.c., where n is an integer, and Lm.u.c.

represents the minimum lateral size of the magnetic unit cell.
The length of the magnetic unit cell Lm.u.c. was estimated as
Lm.u.c. ∼ 1/q‖, where q‖ denotes the magnitude of the in-plane
component of the magnetic propagation vector derived as
q‖ = 1

2π
arccos [(1 +

√
1 − 2(J‖1/J‖3))/4] [34,35].

III. RESULTS

We start by introducing the microscopic model that we
will follow to obtain the relevant magnetic interactions for
NiBr2, given by the following Heisenberg Hamiltonian be-
tween localized spins Si that we split into intra and interlayer
contributions expressed as H‖ and H⊥, respectively,

H‖ = 1

2

∑
i �= j

Si · J‖
i j · S j +

∑
i

Si · Ai · Si, (1)

H⊥ = 1

2

∑
i, j

J⊥
i j Si · S j . (2)

Here, the indices i and j refer to the Ni atom sites. In Eq. (1),
Ai denotes the on-site or single-ion anisotropy (SIA) and
Ji j represents the intralayer exchange coupling interaction
tensor. The latter can be decomposed into two contributions
for NiBr2: an isotropic coupling term, and an anisotropic
symmetric term (the antisymmetric term which corresponds
to the Dzyaloshinskii-Moriya interaction vanishes in NiBr2

due to the presence of inversion symmetry). J⊥
i j in Eq. (2)

represents the isotropic interlayer exchange constant between
spins Si, j . We consider up to third nearest-neighbor isotropic
exchanges both in-plane and out-of-plane. The full tensor
is only taken into account for the in-plane nearest-neighbor
exchange interaction. The factors of 1/2 are used to account
for double counting. The sign conventions used here are as
follows: a positive (negative) isotropic exchange interaction
favors an antiparallel (parallel) alignment of spins and a
positive (negative) scalar single-ion parameter indicates an
easy-plane (easy-axis) anisotropy.

Before moving into the evolution of the relevant magnetic
parameters, we start by describing the evolution of the struc-
tural properties of NiBr2 under pressure. Figure 2 displays
the relaxed lattice parameters of NiBr2 as a function of pres-
sure obtained from our first-principles calculations using the
computational parameters described in Sec. II. Upon applying
hydrostatic pressure, both the in-plane (see Fig. 2(a)) and
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FIG. 2. First-principles derived (a) in-plane and (b) out-of-plane
relaxed lattice parameters as a function of pressure (P) for bulk
NiBr2.

out-of-plane (see Fig. 2(b)) lattice parameters decrease mono-
tonically, with a much larger decrease in the out-of-plane
lattice parameter, as expected for a van der Waals material.
Specifically, a decreases from 3.67 Å at ambient pressure to
3.44 Å at 15 GPa while c decreases from 18.27 Å to 16.09 Å
at 15 GPa.

The basic evolution of the electronic structure is shown in
Appendix A. Up to the highest pressures studied here, NiBr2

remains insulating within our GGA + U calculations (the
gap can only be closed at ∼80 GPa). The derived magnetic
moment for the Ni atoms is ∼1.54 μB at all pressures,
consistent with high-spin Ni2+ but with a slightly reduced
value with respect to the nominal one due to hybridization
with the Br ligands (with moments ∼0.17 μB at all pressures).
Our first-principles derived magnetic moments are in good
agreement with the ordered experimental Ni moment values
obtained at ambient pressure ∼1.5 μB [3,36].

After establishing the basics of the evolution of the struc-
ture and electronic structure in the AFM collinear phase, next
we move on to the calculations of the magnetic coupling
constants for NiBr2 using the four-state method (we followed
the implementation used for other dihalides as described in
Refs. [4,14,37]). Table I presents the computed intralayer and
interlayer magnetic parameters introduced in Eqs. (1) and
(2), as well as relevant ratios between magnetic couplings
for pressures up to 15 GPa. Figure 3(a) shows the evolu-
tion of these relevant magnetic exchange ratios as a function
of pressure while Fig. 3(b) shows the paths for the domi-
nant exchange interactions. At ambient pressure, the largest
exchange interaction in NiBr2 is the ferromagnetic (FM) in-
tralayer first nearest-neighbor exchange (J‖1 ∼ −3.2 meV).
The second nearest-neighbor exchange is vanishingly small
and FM, while the third nearest-neighbor intralayer exchange
is AFM and sizable (J‖3 ∼ 1.6 meV). In comparison to NiI2

[14], the FM nearest-neighbor exchange is smaller (−3.2 meV
for NiBr2 vs −4.5 meV for NiI2) but it is the AFM third
nearest-neighbor exchange that gets further reduced by the
change in the ligand p states (1.6 meV for NiBr2 vs 3.7 meV
for NiI2). Note that derivation of a large J for third (vs
second) nearest-neighbors is consistent with previous results
obtained for dihalide monolayers in Ref. [27]: for second
nearest-neighbors, only the t2g-eg hopping is relevant at d8

filling, leading to a weak FM interaction, while for third near-
est neighbors, there are large eg-eg hoppings that arise from

TABLE I. Calculated NiBr2 isotropic intralayer exchange inter-
actions (top panel), interlayer isotropic interactions (bottom panel),
SIA (A), and first-nearest neighbor in-plane two-site anisotropy
(TSA) constants (middle panel) in a cartesian x, y, z reference system
where x was chosen to be parallel to the Ni-Ni bonding vector for
different pressures (P). J⊥eff represents the effective interlayer ex-
change and is obtained as J⊥1 + J⊥2 + 2J⊥3, where the coefficient in
the last term arises because there are twice as many out-of-plane third
nearest-neighbors as first and second nearest-neighbors. Pressure is
in units of GPa, and exchange constants are given in units of meV.

Isotropic intralayer exchanges

P J‖1 J‖2 J‖3 J‖3/J‖1

0 −3.19 −0.05 1.56 −0.49
5 −3.71 −0.06 2.25 −0.61
10 −4.24 −0.14 2.92 −0.69
15 −4.68 −0.17 3.74 −0.8

SIA and intralayer TSA
P A JS‖1

xx JS‖1
yy JS‖1

zz JS‖1
yz JS‖1

yz /J‖1

0 0.0 −0.04 0.04 0.0 −0.06 0.019
5 0.0 −0.05 0.04 0.0 −0.07 0.018
10 0.0 −0.05 0.05 0.0 −0.07 0.018
15 0.03 −0.2 0.13 0.07 −0.08 0.017

Isotropic interlayer exchanges

P J⊥1 J⊥2 J⊥3 J⊥eff J⊥2/J‖1

0 0.01 0.62 0.17 0.96 −0.19
5 0.01 1.7 0.42 2.54 −0.46
10 0.02 2.84 0.67 4.19 −0.67
15 0.12 4.02 0.9 5.94 −0.85

hopping paths that are ligand assisted. Importantly, the com-
petition between intralayer FM J‖1 and AFM J‖3 (measured
by the ratio J‖3/J‖1 = −0.5) gives rise to magnetic frustra-
tion which favors the realization of the noncollinear magnetic
ground state of NiBr2 [38] (in a similar fashion to NiI2 [14] but
with a smaller J‖3/J‖1 ratio being obtained [−0.5 for NiBr2

vs −0.8 for NiI2]). Another critical parameter in the context
of magnetic exchanges is the ratio JS‖1

yz /J‖1 which gauges the
canting of the two-site anisotropy axes from the direction per-
pendicular to the layers [4]. This ratio is estimated to be very
small in NiBr2 JS‖1

yz /J‖1 = 0.019, in contrast to NiI2 where
a ratio one order of magnitude larger is derived JS‖1

yz /J‖1 =
0.19. Moving to the interlayer exchange interactions, they are
all AFM in nature with the second nearest-neighbor J⊥2 being
the dominant one ∼0.6 meV, similar to NiI2 but once again
with a considerably reduced value (0.6 meV vs 1.5 meV). If
we look at the ratio between the dominant intra vs interlayer
interactions in NiBr2 J⊥2/J‖1 ∼ −0.2 at ambient pressure, in
contrast to the larger J⊥2/J‖1 for NiI2 of −0.32.

As in NiI2, the signs of the dominant intra and in-
terlayer interactions do not change with pressure but the
magnitude of the isotropic magnetic constants increases con-
siderably. For the first nearest-neighbor isotropic exchange
J‖1

15GPa = 1.5 J‖1
0GPa, for the third nearest-neighbor isotropic

exchange J‖3
15GPa = 2.4 J‖3

0GPa, while the second nearest-
neighbor J‖2 remains vanishingly small at all pressures. The
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FIG. 3. (a) Pressure evolution of the three relevant ratios of ex-
change couplings J‖3/J‖1, J⊥2/J‖1, JS‖1

yz /J‖1 for bulk NiBr2. (b) The
paths for the dominant exchange interactions J‖1, J‖3, and J⊥2 are
shown over the triangular arrangement of Ni atoms in NiBr2 (with
gray spheres corresponding to Ni atoms in the bottom layer and blue
spheres to those in the top layer).

pressure-dependent response of the dominant intralayer
isotropic exchanges can be understood by looking at the rele-
vant hopping amplitudes, as we showed before for NiI2 [14].
For J‖1 there are two primary contributions, one being FM
(mainly arising from the hopping process between t2g and eg

states via the ligand p states) and the other AFM (mainly
arising from direct d-d overlap between Ni t2g-like states).
With increasing pressure, the FM contribution increases at a
faster rate resulting in an overall increase of J‖1 even though
the competition due to the AFM hoppings still persists. In
contrast, J‖3 exhibits solely AFM contributions originating
from eg-eg hoppings, as mentioned above, without FM contri-
butions. In this manner, the J‖3/J‖1 ratio undergoes a sizable
increase with pressure from −0.5 at ambient pressure to −0.8
at 15 GPa [see Fig. 3(a)]. In NiI2 this change is signifi-
cantly larger (from −0.81 to −2.16) due once again to the
broader I-p states. The single-ion anisotropy is negligible at all
pressures, and the intralayer anisotropic exchanges (JS‖1

yz )
exhibit minimal changes with pressure as well. The ratio
JS‖1

yz /J‖1 remains nearly constant (and small) up to 15 GPa,
as depicted in Fig. 3(a).

Regarding the interlayer exchanges, the signs of the domi-
nant interlayer isotropic exchange interactions persist as well
(as they do in NiI2 [14]): both J⊥2 and J⊥3 remain antiferro-
magnetic in the pressure range studied here, even though they
increase sizably with pressure (J⊥1 remains small in com-
parison). This substantial increase is particularly noticeable
for the dominant second nearest-neighbor interlayer exchange
J⊥2

15GPa = 6.5 J⊥2
0GPa. Such a large increase can be attributed to

the significant decrease in the c lattice parameter with pressure
described above, as expected in a vdW material. Importantly,
J⊥2 at 15 GPa becomes the second largest interaction overall,
closely competing in value with J‖1 [see Fig. 3(a)]. In NiI2 the
situation is, once more, quantitatively different: the sevenfold
increase in J⊥2 causes it to quickly surpass the dominant
in-plane exchange already at 10 GPa.

The magnetic constants derived from the four-state method
for NiBr2 were subsequently used in Monte Carlo simulations.
At low temperatures, we confirm that the derived magnetic
ground state is a spin spiral (this is consistent with previous
DFT-based studies that reported a spin-spiral ground state
in monolayer NiBr2 [39–41], see the corresponding mag-
netic texture and structure factor in Appendix B). From our
pressure-dependent specific heat calculations we can clearly
observe a magnetic transition at a temperature TN, indi-
cated by the dashed vertical line in Fig. 4(a), that increases
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FIG. 4. (a) Specific heat C of bulk NiBr2 as a function of temperature T for various pressures P = 0, 5, 10, and 15 GPa obtained from
Monte Carlo simulations. The dashed lines indicate the critical temperature TN at each pressure: 29, 58, 83, and 105 K for 0, 5, 10, and 15 GPa,
respectively. (b) Ambient-pressure-normalized critical temperature values for bulk NiBr2 as a function of pressure P.
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monotonically with pressure. Although some double-peak
structure can be observed (that was also obtained in similar
calculations for NiI2 [14]), we focus here on a qualitative
understanding of the trends in the magnetic response with
pressure, rather than pursuing a quantitative description of
the two magnetic transitions. Figure 4(b) clearly shows the
monotonic increase of TN as a function of pressure, with the
data points being normalized relative to the value calculated at
ambient pressure [TN(0 GPa)=29 K, very close to the experi-
mentally derived value of ∼23 K]. Notably, our calculated TN

undergoes a threefold increase between 0 and 15 GPa (rising
from 29 to 105 K). Such an increase is almost identical to
the one achieved for NiI2 at the same pressure, in spite of
the quantitative differences in magnetic parameters described
in detail above, obtained as a consequence of the change in
halide ion.

Importantly, the increase in the J‖3/J‖1 ratio with pressure
we have found in NiBr2 has important implications for the
helimagnetic propagation vector and likely for the related
spin-induced ferroelectric polarization, as we also showed for
NiI2. As mentioned in Sec. II, the in-plane component of
the magnetic propagation vector can be determined as q‖ =
2 arccos [(1 +

√
1 − 2(J‖1/J‖3))/4], the related spin-induced

ferroelectric order can be estimated as P ∝ sin(q) by the
generalized Katsura-Nagaosa-Balatsky model [6,12,42]. The
observed increase in J‖3/J‖1 with pressure favors a larger q
(shorter in-plane spiral pitch) which, potentially, can then give
rise to a larger spin-induced polarization (see Appendix C for
further details).

Overall, the magnetic ground state of NiBr2 (and its evo-
lution under pressure) is qualitatively similar to that of NiI2

[13,14]. Both compounds have the same dominant exchange
couplings (J‖1, J‖3, and J⊥2) and exhibit spin spiral order
governed by the magnetic frustration arising from the com-
petition between J‖1 and J‖3. Some quantitative differences
are obtained in the absolute values of the dominant exchanges
(dictated by the larger spatial extent of I-p vs Br-p states)
but, in spite of those differences, the estimated change in
magnetic transition temperature with pressure ends up being
almost identical in the two materials (threefold at 15 GPa).
One important distinction is that in NiI2 the magnetic transi-
tion temperature saturates already at 10 GPa (in both theory
and experiments [13,14]) but in NiBr2, saturation is not yet

achieved at 15 GPa in our calculations. This, together with
the higher stability of NiBr2, make this system a promising
platform to study in the context of helimagnetism (and multi-
ferroicity) in 2D vdW materials.

IV. SUMMARY

To summarize, we employed first-principles calculations
combined with Monte Carlo simulations to investigate the
impact of hydrostatic pressure on the magnetic properties of
bulk NiBr2. Using the four-state method, we computed the
intralayer and interlayer exchange parameters (up to third
nearest neighbors) of the low energy effective spin model
for bulk NiBr2. The low-temperature magnetic ordering
corresponds to a spin spiral that is governed by the
magnetic frustration between the two dominant in-plane
exchange terms (J‖1 and J‖3), exhibiting different signs
(ferro and antiferromagnetic, respectively). The interlayer ex-
changes were identified as antiferromagnetic, with J⊥2 being
the dominant interaction. With increasing pressure, all the
dominant exchange couplings (J‖1, J‖3, and J⊥2) increase
monotonically, and consequently, the (heli)-magnetic ordering
temperature increases. These results suggest that hydrostatic
pressure holds promise as a means to enhance the magnetic
response of NiBr2. Even though we do not analyze here the
corresponding induced electric polarization, we anticipate that
pressure could also potentially enhance the concomitant mul-
tiferroic response of NiBr2.
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APPENDIX A: BAND STRUCTURE EVOLUTION
WITH PRESSURE FOR NiBr2

Figure 5 shows the evolution of the band structure along
high-symmetry directions for NiBr2 in the collinear and AFM
state (consisting of ferromagnetic planes coupled antiferro-
magnetically out-of-plane) under hydrostatic pressure. The
band gap can only be closed at ∼80 GPa.
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FIG. 5. GGA-PBE+D3+U band structure plots for bulk NiBr2 (calculated with AFM order and U = 3.9 eV) at ambient pressure (a),
65 GPa (b), and 80 GPa (c) where the energy band gaps are indicated in the insulating 0 and 65 GPa cases. Reciprocal space coordinates:
� = (0, 0, 0), M = (1/2, 0, 0), K = (1/3, 1/3, 0), A = (0, 0, 1/2), L = (1/2, 0, 1/2), and H = (1/3, 1/3, 1/2).
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TABLE II. Indirect band gap Egap of bulk NiBr2 as a function of
pressure. Here, a zero band gap value corresponds to a metallic state.

P (GPa) Egap

0 1.8737
5 1.7282
10 1.5999
15 1.4630
40 0.8075
65 0.2137
80 0.0

Table II contains the corresponding indirect band gap Egap

of bulk NiBr2 as a function of pressure.

APPENDIX B: MAGNETIZATION TEXTURES
OF MONOLAYER NiBr2

Figure 6(a) shows the magnetization texture of monolayer
NiBr2 (10×10 supercell) at P = 0 and T = 1 K, which exhibits
a spin-spiral structure along the x direction. The spin-spiral
structure along the x direction is confirmed by the spin struc-
ture factor data shown in Fig. 6(b). The spin structure factor
for momentum q is defined as

S(q) = 1

N

∑
α=x,y,z

〈∣∣∣∣∣
∑

i

siαe−iq·ri

∣∣∣∣∣
2〉

, (B1)

where N = L2 is the total number of spins and siα denotes the
α component of the spin at site i with position of site ri. This

TABLE III. Ratio of the leading intralayer exchanges J‖1/J‖3,
in-plane component of the magnetic propagation vector magnitude
q‖, and magnetic unit cell length Lm.u.c. for bulk NiBr2 at pressures
(P) up to 15 GPa.

P (GPa) J‖1/J‖3 q‖ Lm.u.c.

0 −2.05 0.098 10.14
5 −1.65 0.110 9.05
10 −1.45 0.116 8.59
15 −1.25 0.122 8.16

calculated spin structure factor is nonzero at two q points in
momentum space.

APPENDIX C: MAGNETIC PROPAGATION VECTOR

Table III contains the important exchange interaction
ratio between J‖1 and J‖3 for bulk NiBr2 for pressures
up to 15 GPa. As mentioned in the main text, these ex-
change interactions are calculated using the four-state method.
From this exchange interaction ratio, we calculate the in-
plane component of the magnetic propagation vector q‖ =

1
2π

arccos [(1 +
√

1 − 2(J‖1/J‖3))/4] which gives the mag-
netic unit cell size Lm.u.c. ∼ 1/q‖ [34,35]. With increasing
pressure, the ratio |J‖1/J‖3| decreases, resulting in an increas-
ing q‖ with pressure. Such an increase in q‖ with pressure
corresponds to a decreasing Lm.u.c., which means that the
magnetic unit cells gets smaller with increasing pressure.
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FIG. 6. (a) Magnetization texture: black arrows represent the in-plane sx , sy spin components; the colormap indicates the out-of-plane sz

spin component and (b) spin structure factor of monolayer NiBr2 at ambient pressure at 1 K.
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