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Recent scanning tunneling microscopy experiments in twisted bilayer [K. P. Nuckolls et al., Nature (London)
620, 525 (2023)] and trilayer [H. Kim et al., Nature (London) 623, 942 (2023)] graphene have revealed the
ubiquity of Kekulé charge-density wave order in magic-angle graphene. Most samples are moderately strained
and show “incommensurate Kekulé spiral” (IKS) order involving a graphene-scale charge density distortion
uniaxially modulated on the scale of the moiré superlattice, in accord with theoretical predictions. However,
ultralow strain bilayer samples instead show graphene-scale Kekulé charge order that is uniform on the moiré
scale. This order, especially prominent near filling factor ν = −2, is unanticipated by theory which predicts a
time-reversal breaking Kekulé current order at low strain. We show that including the coupling of moiré electrons
to graphene-scale optical zone-corner (ZC) phonons stabilizes a uniform Kekulé charge ordered state at |ν| = 2
with a quantized topological (spin or anomalous Hall) response. Our work clarifies how this phonon-driven
selection of electronic order emerges in the strong-coupling regime of moiré graphene.
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I. INTRODUCTION

The interplay of strong electron correlations, gate-tunable
superconductivity, and band topology in “magic-angle”
twisted bilayer graphene (MA-TBG) has been the subject of
extensive experimental [1–36] and theoretical investigation
[37–72]. Although aspects of the phenomenology superfi-
cially resemble that of the cuprate high-temperature (high-Tc)
superconductors, the nontrivial topology of the eight bands
straddling charge neutrality, and the existence of Stoner-
like transitions indicative of the formation of flavor-polarized
broken-symmetry states, challenge the applicability of the
Hubbard-type models familiar from high-Tc to the narrow
bands in MA-TBG. This has stimulated a distinct perspective
[40,50] rooted instead in the physics of quantum Hall ferro-
magnets (QHFM), best motivated by the approximation of
initially ignoring the single-particle dispersion and working in
the “chiral limit” [73] of vanishing interlayer same-sublattice
tunneling. In the resulting strong-coupling problem, flavor-
polarized insulators minimize the interaction energy (owing
to Pauli exclusion) at densities of |ν| = 0, 1, 2, 3 electrons per
moiré unit cell, corresponding to filling ν + 4 of the eight
central bands. Single-particle terms and realistic interlayer
tunneling perturbatively lift the large degeneracy of the re-
sulting manifold of broken-symmetry states, selecting specific
correlated insulators at integer ν [40,45,50].

Strong-coupling approaches predict gapped insulators at
charge neutrality (ν = 0) and time-reversal breaking quan-
tized anomalous Hall (QAH) behavior or stripe order at odd
ν [46,75]. This is in contradiction to many experiments,
that often find semimetallic behavior ν = 0 [1–3,5–13], little
transport evidence for gaps at ν = ±1, and no QAH response
at ν = ±3 unless aligned with a hexagonal boron nitride
substrate [14,15]. Spurred by this mismatch of theory and

experiment, Ref. [54] proposed a new type of broken-
symmetry order, dubbed the incommensurate Kekulé spiral
(IKS), as the ground state for MA-TBG at intermediate cou-
pling. For modest uniaxial heterostrains [32–35] (where layers
are strained relative to each other) sufficient to stabilize a
semimetal at neutrality [65], IKS is the unique Hartree-Fock
ground state for all nonzero integer |ν| < 4. It exhibits a clear
gap and vanishing QAH response for |ν| = 2, 3, and is gapless
for |ν| = 1, consistent with most transport experiments. IKS
order also persists to finite doping away from integer ν, seed-
ing Fermi surfaces [76] consistent with Landau fans observed
in magnetotransport [1–9,14–18]. Most strikingly, IKS in-
volves a specific graphene-scale Kekulé charge density order
that triples the graphene unit cell but is slowly modulated on
the moiré scale. This multiscale spatial symmetry-breaking
is a sharp signature of IKS order, recently used to diagnose
its presence via scanning tunneling microscopy (STM) in
MA-TBG [19] and its closely related cousin mirror-symmetric
twisted trilayer graphene (TTG) [77].

These experiments find robust IKS order in samples with
modest strain, with a period of approximately three moiré
unit cells, in excellent agreement with theoretical predic-
tions. However, at ν = −2 where the data are most extensive,
ultralow-strain samples reported in Ref. [19] show Kekulé
charge order that also triples the graphene unit cell, but is
at q = 0, i.e., unmodulated on the moiré scale, in sharp con-
trast to IKS. This contradicts the near-unanimous theoretical
prediction in this limit of a q = 0 Kekulé current order,
dubbed the “Kramers-Intervalley Coherent” (KIVC) state,
whose STM signature vanishes by symmetry [78,79]. Instead,
the observed order resembles the so-called TIVC state (“T”
denotes a spinless implementation of time reversal), which
can be viewed roughly as a charge counterpart of KIVC.
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FIG. 1. Competing orders at even integer filling ν. Color shows the lattice distortion energy Eph; Kekulé charge density order is present in
the electronic sector for Eph �= 0. White lines show approximate phase boundaries. All phase diagrams computed in the graphene scheme. (a),
(d) Phase diagram of electron-phonon coupling g vs twist angle θ for |ν| = 0, 2 respectively. wAA = 60 meV, wAB = 110 meV. Representative
band structures at ν = −2 are shown in Ref. [74]. (b) Dependence on sublattice mass �σz applied to the bottom layer. θ = 1.10◦, wAA =
50 meV. (c) Dependence on heterostrain with strength ε, with strain axis along x̂. θ = 1.12◦, wAA = 77 meV. [QAH: quantized anomalous
Hall, KIVC: Kramers intervalley coherent, TIVC: time-reversal IVC, VP: valley polarized, QSH: quantum spin Hall].

However, it is unclear why TIVC becomes a competitive
ground state at low strain.

Here, we show that electron-phonon coupling (EPC) pro-
vides a natural explanation for the emergence of low-strain
TIVC order. To wit, the zone-corner in-plane optical phonon
modes—which link the microscopic valleys—couple strongly
to the Kekulé density distortion, lowering the energy of TIVC
relative to KIVC. The competition is particularly transparent
at strong coupling, where EPC generates a new term in the
anisotropic nonlinear sigma model (NLSM) that describes
selection between distinct q = 0 insulators. This clarifies
that while small relative to the bare Coulomb scale, EPC
is comparable in strength to other perturbations that move
away from strong coupling. We therefore perform numeri-
cal Hartree-Fock (HF) simulations (Fig. 1) to capture this
competition in the regime of intermediate coupling that ap-
pears on leaving the chiral-flat limit by tuning interlayer
tunneling, strain, and twist angle. Our work shows that the
strong-coupling phase structure at low strain is more nuanced
than previously thought, and identifies a key role for phonons
in selecting between competing interaction-driven ordered
states.

II. MODEL

We study the Hamiltonian Ĥtot = ĤBM + Ĥint + ĤEPC +
ĤA1 . Here, ĤBM is the standard single-particle Bistritzer-
MacDonald (BM) model [80] that depends on the twist angle
θ and sublattice-dependent hopping matrix elements wAB =
110 meV and wAA, which we will tune starting from the chiral
limit wAA = 0. Ĥint describes dual-gate screened Coulomb
interactions V (q) = e2

2ε0εr q tanh qd , with screening length d =
25 nm and permittivity εr = 10 (see Ref. [74] for representa-
tive results using single-gate screened interactions). To avoid
double counting, we choose the zero of interactions to corre-
spond to the density of two decoupled graphene layers (the
so-called “graphene” subtraction scheme), though we inves-
tigate alternatives in Ref. [74]. Ĥph = h̄ω

∑
lαq â†

lα (q)âlα (q)
describes graphene zone-corner (ZC) in-plane transverse op-

tical phonons A1, B1, which couple to continuum electrons in
each layer via [59,69,81–83]

ĤEPC = F
∑

lα

∫
r
ψ̂

†
l (r)[ûlα (r)
α]ψ̂l (r) (1)

with ûlα (r) = D
∑

q eiq·r[âlα (q) + â†
lα (−q)]. Here, ψ̂l (r) is a

spinor in spin (s), valley (τ ) and sublattice (σ ) space, F ,D
absorb various phonon parameters, and we approximate the
phonon dispersion h̄ω � 160 meV as constant (since the op-
tical mode is roughly flat within the BM model cutoff). Each
layer l has two degenerate ZC modes α = a, b with intervalley
coupling matrices 
a = τxσx, 
b = τyσx. We define a charac-
teristic (dimensionful) coupling

g = A
F2D2

h̄ω
, (2)

where A is the system area. Typical estimates put g �
70 meVnm2 [59], but as these can vary widely [81], we will
view it as a tuning parameter. Ĥtot is invariant under spinless
time-reversal T̂ = τxK, U (1)V valley rotations, SU (2)s spin
rotations, and D6 point-group symmetry.

Strong electron-electron interactions lead to closely com-
peting candidate ground states. Treating ĤEPC at mean-field
level, the phonons will experience a linear bias term ∼tr 
αP,
where P is the electron density matrix, and lower their en-
ergy by shifting their vacuum. The resulting energy gain
from lattice distortion Eph ∼ g|tr 
αP|2 � 0 is quadratic in
P, and, crucially, depends on the pattern of flavor symmetry
breaking. For the ZC phonons of interest here, this effect is
only operative for certain forms of U (1)V -breaking intervalley
coherence (IVC). Since at the noninteracting level, the remote
bands are highly dispersive and separated by moiré gaps to
the central bands, we expect the relevant electronic ordering
to be concentrated in the latter. Hence, in the following, we
consider Ĥtot projected to the flat bands, though we caution
that precise positions of phase boundaries may be sensitive
to the inclusion of remote bands. Expressions for Eph in the
projected theory are given in Ref. [74].
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FIG. 2. Sigma model energy scales. Strong-coupling sigma
model parameters for g = 70 meVnm2 in the graphene scheme. Eα =
αAUC (dashed circles) measures twice the lattice distortion energy for
a single intervalley coherent Chern band. Note the different scale for
EJ (solid triangles).

III. STRONG-COUPLING LIMIT AND NLSM

To understand the qualitative impact of EPC on ground
state selection, we first consider a nonlinear sigma model
(NLSM) description [68,84,85]. In the chiral-flat limit with
κ = wAA

wAB
= 0 and vanishing bandwidth, we can rotate to the

Chern basis which is sublattice polarized and has Chern num-
bers C = τzσz (the polarization is imperfect for κ �= 0). At
integer ν ≡ ν+ + ν− − 4, the exact ground states are Slater
determinants constructed by filling ν+ bands with C = 1 and
ν− bands with C = −1, allowing arbitrary rotations within
each Chern sector. These “generalized ferromagnets” spon-
taneously break the U (4) × U (4) symmetry of the chiral-flat
limit to U (ν+) × U (4 − ν+) × U (ν−) × U (4 − ν−), which
sets the NLSM target space. Deviations from the chiral-flat
limit explicitly break U (4) × U (4), leading to anisotropies in
the NLSM energy density

E[Q] = J

4
tr (Qγx )2 − λ

4
tr (Qγxηz )2

− α

8
[(tr Qηx )2 + (tr Qηy)2], (3)

where we have defined the Pauli triplets γx,y,z =
(σx, σyτz, σzτz ), ηx,y,z = (σx τx, σx τy, τz ). Q = diag (Q+,

Q−) is the 8 × 8 single-particle density matrix. Q is block
diagonal in Chern sectors C = ±, which satisfies Q2 = 1 and
tr Q = 2ν. J and λ are previously-computed [40,85] terms
arising from inter-Chern tunneling (superexchange) and finite
κ, respectively. The α term is new, and represents the phonon
energy from coupling to the Kekulé charge density. We
argue that its inclusion is necessary since its magnitude is
comparable to the other anisotropies (Fig. 2).

In Table I, we list the candidate strong-coupling states at
even integers focusing on uniform valley-unpolarized orders
[86]. Prior theory has consistently favored the KIVC at even ν

on the grounds that it maximally satisfies both J and λ terms
[40,50]. However, despite its IVC, it does not benefit from
EPC. This is due to its T̂ ′ = τyK symmetry, which forces the
Kekulé charge density to vanish [78,79]. The TIVC is usually
ignored due to its energy penalty under J and λ, but it can
gain from the α term since the Kekulé densities of its bands
interfere constructively. This could be anticipated from the
phonon coupling matrices ηx, ηy in Eq. (3) which are precisely
the order parameters of the TIVC. For finite chiral ratio, this
effect decreases as the sublattice polarization of the Chern
bands is reduced, but α remains appreciable [Fig. 2(a)].

For |ν| = 2, which is of most relevance to Ref. [19], the
case for TIVC is strongest, due to nontrivial interplay with
spin physics. The prevailing theoretical expectation for the
ground state is the spin-polarized KIVC [up to SUK (2) ×
SUK̄ (2) spin rotations]. The J and λ terms are antagonistic
toward the spin-polarized TIVC. However, by flipping the
spin in one Chern sector, we can construct instead a new
state, the TIVC-QSH, which does not incur the energy cost
J (Table I). This is because inter-Chern tunneling is no longer
Pauli-blocked, allowing superexchange. Therefore, it suffices
only that α > λ for this phase with Kekulé charge order to
emerge; from Fig. 2 we see that these are indeed comparable.
Note that the TIVC-QSH satisfies spinful time-reversal and
is a quantum spin Hall insulator (hence the name). Apply-
ing spinless T̂ on one spin species produces a degenerate
IVC order with |C| = 2 quantized anomalous Hall (QAH)
response, which we dub the IVC-QAH [83]. Both this and
the TIVC-QSH exhibit quantized topological responses.

At neutrality, the superexchange mechanism that stabilizes
TIVC-QSH is Pauli blocked and KIVC dominates TIVC or-
ders due to the large J , inevitably present in the graphene
subtraction scheme. However, the choice of scheme influences

TABLE I. Valley-unpolarized strong-coupling states at even integer filling. All states are moiré translation symmetric. Orders at neutrality
are spin unpolarized. E denotes energy in the sigma model. “Current” can refer to charge and spin currents. ∗ indicates a degenerate manifold
of states obtained via valley-resolved SUS (2) rotation. Density matrices Q are shown in Ref. [74]. VH: valley Hall.

Phase |ν| |ψ〉 E Kekulé C Spin pol.

KIVC 0 (|KA〉 + |K̄B〉)(|KB〉 − |K̄A〉) −2J − 2λ Current 0 0
TIVC 0 (|KA〉 + |K̄B〉)(|KB〉 + |K̄A〉) 2J + 2λ − 8α Charge 0 0
VH 0 |KA〉 |K̄A〉 −2J + 2λ ✗ 0 0
KIVC 2 (|KA ↑〉 + |K̄B ↑〉)(|KB ↑〉 − |K̄A ↑〉) −2λ Current 0 *
TIVC-SP 2 (|KA ↑〉 + |K̄B ↑〉)(|KB ↑〉 + |K̄A ↑〉) 2J − 2α Charge 0 2
TIVC-QSH 2 (|KA ↑〉 + |K̄B ↑〉)(|KB ↓〉 + |K̄A ↓〉) −2α Charge 0 0
IVC-QAH 2 (|KA ↑〉 + |K̄B ↑〉)(|KA ↓〉 + |K̄B ↓〉) −2α Charge 2 0
VH 2 |KA ↑〉 |K̄A ↑〉 0 ✗ 0 *
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the interaction-renormalized bandwidth, with a particularly
strong effect on J . In the “average” scheme [74], J = λ = 0
at the magic angle in the chiral-flat limit, ensuring Kekulé
charge order for any α > 0 [74]; away from this limit, J re-
mains small, suggesting a qualitatively different ν = 0 phase
diagram.

IV. HARTREE-FOCK RESULTS

To study the phase competition beyond the NLSM, we
perform HF calculations for a realistic chiral ratio. Phonons
are included self-consistently by optimizing over products of
electronic Slater determinants and phonon coherent states. We
assume moiré translation symmetry and diagonal spin struc-
ture. Since our model has approximate particle-hole symmetry
[87–89], we only show data for ν � 0.

At ν = −2, the ground state is the KIVC for small val-
ues of g (Fig. 1). As expected from its T̂ ′ symmetry, it
has vanishing Kekulé charge density and does not couple
linearly to the ZC phonons. For larger EPC, we find a
first-order transition to a gapped phase with finite Kekulé
charge order, which either satisfies spinful TRS (TIVC-QSH)
or is a |C| = 2 Chern insulator (IVC-QAH). These are de-
generate at HF level, exhibit identical Kekulé patterns, and
possess nearly perfect IVC across the moiré Brillouin zone
(mBZ). The fact that Eph ≈ 2Eα [Fig. 2(a)] strongly suggests
that these states are quantitatively similar to those in the
NLSM limit.

At ν = 0, we find only KIVC order for the same parameter
window, with no competing Kekulé charge orders.

We also study the phase diagrams for odd ν [74]. For a
single Chern band, the anisotropy that selects valley polariza-
tion over IVC is much smaller than the terms in Eq. (3) [50].
Therefore, the transition to states with Kekulé charge density
occurs for weaker EPC.

Finally, we comment that in the average scheme [74] at
ν = 0, a first-order KIVC-TIVC transition with increasing g
reappears, whereas the phase boundaries at |ν| � 2 are largely
unchanged. These observations are consistent with the NLSM
discussion above.

Alignment of MA-TBG to the hBN substrate breaks Ĉ2z

symmetry, and can be modeled via a sublattice mass �σz

[63,90,91] (though there are likely additional complicated
effects [20,92–100]). As shown in Fig. 1(b) for ν = −2, the
sublattice bias competes with intervalley coherence, and both
IVC orders give way to the valley Hall (VH) phase for mod-
est values of �. This is a smooth crossover between states
on the pseudospin Bloch sphere, driven by the sublattice
potential.

In the EPC-heterostrain phase diagram at ν = −2
[Fig. 1(c)], all three types of IVC ordering are present. The
band gaps of the moiré translation invariant (q = 0) TIVC
and KIVC are rapidly suppressed by strain [54,65], yielding
to IKS for small strains typical of most MA-TBG devices.
Since the IKS possesses Kekulé bond order, it can directly
couple to the ZC phonons, thereby explaining its relative
stability against the TIVC for finite g. The IKS can be sharply
distinguished from the TIVC by its nonzero q, trivial spin
Chern number, and strongly inhomogeneous IVC in momen-
tum space [54,101].

V. DISCUSSION

While virtual phonons in MA-TBG have previously
been invoked to explain superconductivity [59–62,102–
104] and resolve spin degeneracies via Hund’s coupling
[23,69,105–107], the role played by zone-corner optical
phonons here is special: by triggering a physical lattice distor-
tion in response to electronic Kekulé charge order, phonons
directly participate in ground state selection. This modifies
the physics to the extent that the TIVC, usually considered
the least likely strong-coupling order, can emerge as the
ground state at even integer ν. This “valley Jahn-Teller ef-
fect” [82] has been previously studied using HF and projected
resonating-valence bond (RVB) wavefunctions [83]. How-
ever, while Ref. [83] did find that KIVC becomes unstable
to Kekulé charge order, it did not consider competition with
translational-breaking orders like IKS in the presence of strain
or substrate alignment, nor, crucially, did it apply the lens of
the strong coupling NLSM as we do here. Hence, Ref. [83]
identified the IVC-QAH state as the only possible alternative
to KIVC at ν = −2. In contrast, our NLSM analysis shows
that TIVC-QSH and IVC-QAH are degenerate (certainly at
HF level but possibly beyond). TIVC-QSH is more consistent
with the bulk of experiments, which do not see QAH at |ν| =
2, and we find that it is suppressed at moderate strain in favor
of IKS, consistent with experiments [19]. On a more technical
level, we note that Ref. [83] used an unusual subtraction
scheme, wherein Kekulé charge order appears roughly equally
stable at |ν| = 0, 2, in contrast to our graphene-scheme results
where it appears to be weaker at neutrality—again, in poten-
tial agreement with experiments [19].

Beyond offering a resolution to an immediate experimental
puzzle [19], the emergence of TIVC has ramifications for
other aspects of correlation physics in moiré graphene. It has
been argued that experiments in MA-TBG and TTG indicate
pairing between opposite spins and valleys in the supercon-
ducting dome commonly observed upon hole doping ν = −2
[105]. Both TIVC-QSH and IKS preserve spinful TRS and
accommodate such pairing (unlike KIVC or IVC-QAH). The
absence of spin polarization is already established at an energy
above the weak Hund’s coupling [23], whose sign is difficult
to compute [69].

The topology of the TIVC leads to phenomena dis-
tinct from the IKS. Topological spin/pseudospin textures
are charged, and may pair if the energetics are favorable
[68,85,108]. At |ν| = 2, the TIVC-QSH exhibits a quan-
tum spin Hall effect protected by Sz conservation. Crucially,
boundaries do not gap the edge modes, unlike the KIVC
where the protecting T̂ ′ symmetry is broken by scattering at
edges [40]. The TRS-violating IVC-QAH could explain [83]
experiments which see time-reversal symmetry breaking at
|ν| = 2 [24,29], without substrate coupling.

Optical phonon distortion is likely relevant to TTG as
well, whose bands resemble MA-TBG except for extra dis-
persive Dirac cones. TTG is phenomenologically similar to
MA-TBG, e.g., it also hosts superconducting domes prox-
imate to correlated insulators [109–114]. TTG has been
observed to form solitons [115], suggesting the emergence
of low-strain regions ideal for realizing this phonon-induced
selection of electronic order. We speculate that intervalley
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phonons may also influence the phase structure of correlated
moiréless graphene multilayers, which exhibit multiple Fermi
surface reconstructions and flavor symmetry-breaking transi-
tions [116–122], though the intralayer intersublattice EPC is
suppressed in Bernal-stacked structures [123].

We have focused on optical zone-corner phonons since
they directly couple to IVC order. There is a plethora of
other phonons, from optical zone-center modes to low-energy
moiré acoustic phonons and phasons [82,103,123–133]. In-
corporation of additional terms [134–136] in the BM model
would be useful to refine the single-particle Hamiltonian and
recover the particle-hole symmetry breaking seen in exper-
iments. It may also be interesting to examine the role of

ZC EPC in heavy fermion formulations of MA-TBG and
TTG [137–139].
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