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Fulde-Ferrel-Larkin-Ovchinnikov phase in a one-dimensional Fermi gas with attractive
interactions and transverse spin-orbit coupling
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We examine the existence and characteristics of the exotic Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase
in a one-dimensional Fermi gas with attractive Hubbard interactions in the presence of spin-orbit coupling
(SOC) and Zeeman field. We show that a robust FFLO phase can be created in the presence of attractive on-site
interactions and Zeeman field, and that the addition of SOC suppresses the FFLO order and enhances the pair
formation. In the absence of SOC, the system shows four phases: Bardeen-Cooper-Schrieffer (BCS), FFLO,
multimode pairing, and fully polarized phases by tuning the Zeeman field h. The quantum transition between
these phases is discontinuous with respect to h. In the presence of SOC, the transition from the BCS to FFLO
phase becomes continuous. We present a complete phase diagram of this model both in the presence and in the
absence of SOC at a quarter electron filling and also explore the effect of SOC on the FFLO phase.
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I. INTRODUCTION

The presence of external magnetic and electric fields in
superconducting materials give rise to many exotic phases,
and their effects have been extensively studied [1,2] since the
discovery of superconductivity in 1911 [3]. Over the years,
discovery of superconducting materials and improvements in
their synthesis mechanism have yielded steadily increasing
superconducting transition temperatures (Tc) [4] and more
refined applications of superconducting materials in daily life
[5]. At high temperatures, strong magnetic field h destroys
the superconducting properties in materials [6], whereas at
low temperatures and low to moderate magnetic fields, these
materials give rise to many exotic phenomena like the Meiss-
ner effect [7], vortex formations [8,9], Fulde-Ferrel [10] (FF),
and Larkin-Ovchinnikov [11] (LO) phases etc. In Bardeen-
Cooper-Schrieffer (BCS) superconductors [12], electrons of
opposite spins and momenta form Cooper pairs. However, in
the presence of low h, the Fermi energies of (up spin and down
spin) electrons shift and the electron pairing process gets
affected. Fulde and Ferrel [10], and Larkin and Ovchinnikov
[11] independently showed that in presence of magnetic field,
a robust superconducting order could coexist with a magnetic
order in superconductors, and electron pairs with nonzero
momentum can be formed in an inhomogeneous superfluid
phase [13]. Since then, there has been much effort to realize
this phase in various materials [14], especially in layered
superconductors like La2−xBaxCuO4 [15], CeCoIn5 [16], and
organic salts like BEDT − TTF [17]. However, this phase is
fragile since any impurity or other perturbations can disturb
this phase in materials [18–20].
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In recent years, cold atoms confined in optical lattices have
emerged as an excellent alternative playground to explore
superconductivity in pristine conditions—to study different
pairing mechanisms in it and effects of various external fields
on the superconducting state [21]. The existence of Bose-
Einstein condensation (BEC) was demonstrated in a gas of
cooled sodium (Na) atoms by Davis et al. in 1995 [22]. Since
then, existence of superfluidity has been realized in various
Fermi and Bose gases [23–27]. The physics of these gases
trapped in optical lattices are well described by Hubbard-
like models with effective on-site interactions U < 0 that are
created by tuning Feshbach resonance in the system [28].
Synthetic spin-orbit coupling (SOC) and Zeeman fields are
created through Raman coupling [29,30]. One-dimensional
(1D) Fermi gas with attractive interactions shows a BEC phase
at very strongly attractive interactions, and a BCS phase with
s-wave-like pairings for moderate U [31]. Introduction of
Zeeman field h in this system takes the system from a BCS
phase at a low h, to a partially polarized phase at moderate h,
and a fully polarized (FP) phase for high h [32–34]. This par-
tially polarized phase at moderate h is proposed to host exotic
pairing, like Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase
[10,11]. This phase is characterized by finite momentum of the
center of mass of bound pairs, which is reflected in the twin
peaks (at ±k) in the pair density correlations in momentum
space.

The FFLO phase is more stable in 1D systems due to the
absence of eddy currents and phase separations, which are
more common in three-dimensional (3D) systems and make
it difficult for 3D systems to host the FFLO phase [13]. In
addition, the 1D FFLO phase is expected to host the nontrivial
p-wave-like pairings in the presence of a transverse SOC
field [35,36]. This phase is also proposed to host topological
edge modes whose hallmarks are reported to be exponen-
tially decaying energy gaps as a function of increasing system
size [37,38]. There are many studies of model Hamiltonians,
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ranging from simple Fermi Hubbard models with additional
interaction terms to systems with proximity-induced super-
conducting terms, for exploring the existence of the FFLO
phase. Lüscher et al. studied 1D attractive Hubbard model
in the presence of finite spin polarization and showed the
existence of the FFLO phase and its fingerprint in spatial noise
correlations [39]. Yang used a field theoretic approach to study
the nonuniform superconducting states in quasi-1D systems
and plotted a schematic phase diagram in the phase space of
Luttinger liquid parameter K and magnetic field h [40]. Rizzi
et al. also studied the attractive Hubbard model to study the
stability of the FFLO phase in optical lattices [41]. Feiguin
et al. studied this model with confining parabolic potential
in the optical lattice [34]. Most of these works focused on
systems with actual or induced superconducting order param-
eters, which yield BCS and FFLO phases with long-range
orders. However, similar studies are scant in the context of
electron number conserving systems, especially in the pres-
ence of both magnetic and SOC fields, which as already
mentioned, are expected to host nontrivial p-wave pairing
and possible topological phases [35–37]. In these systems,
the BCS, and FFLO phases are expected to show quasi-long-
range correlations and no true long-range correlations, in
accordance with the Mermin-Wagner theorem [42]. In such
a system, the superconducting order parameter vanishes in
the thermodynamic limit, and density pair correlations are
used to instead characterize the different phases [13,33,41].
In this paper, we present systematic theoretical studies of a
quantum phase diagram of the 1D attractive Fermi gas model
Hamiltonian subjected to Zeeman field and an SOC field, as
a function of on-site interactions U , and show the emergence
of various exotic quantum phases, including one with FFLO
pairings, as characterized by the pair-density correlations.

In this paper, we study a simple model of 1D Fermi gas
in the limit of attractive on-site interaction (U < 0) to explore
the FFLO phase and associated phase transitions at low filling
fraction ν = 0.25. We study this system both (i) in the absence
of SOC and (ii) in the presence of a transverse SOC. We find
that the FFLO phase spans a large area of the phase diagram
for all electronic densities, both in the absence and presence
of SOC. We present a complete phase diagram of this model
in the phase space of U and h and for SOC strengths α = 0
and 0.05.

The paper is organized into four sections. In Sec. II, we
introduce the model and the numerical technique. In Sec. III,
we discuss the main criteria used for identifying the FFLO
phase in the system. We first focus on the case with no SOC
and discuss the different phases in the h − U parameter space
of the system. Next, we add a transverse SOC field (in the
x direction) and explore its effect on the FFLO phase. We
conclude with a brief discussion of the reported results and
their possible impact on the current understanding of exotic
pairings in 1D ultracold systems and implications thereof in
Sec. IV.

II. MODEL AND METHOD

We study the 1D Fermi gas with attractive on-site interac-
tions U in the presence of a Zeeman field h and transverse

SOC field α. The model Hamiltonian of this system can be
written as

H = Ht + HU + HZ + HSOC, (1)

where

Ht = −t
∑

i,σ

(C†
i,σCi+1,σ + H.c.),

HU = U
∑

i

ni,↑ni,↓, HZ = −h
∑

i

Sz
i ,

HSOC = +iα
∑

i

(C†
i,↑Ci+1,↓ + C†

i,↓Ci+1,↑ − H.c.),

where C†
i,σ (Ci,σ ) are creation (annihilation) operators and ni,σ

is the number operator at site i, with σ =↑ up spin or ↓
down spin. We set t = 1 to define the energy scale for our
calculations. We study the system away from the half-filling
limit and in the attractive interaction regime U ∈ [−1,−4].
The quantity ν = n/2N defines the filling fraction of a system
of N sites containing n electrons. In the absence of U and
α, the spin-up and spin-down electronic bands split in the
presence of the external magnetic field h. An attractive U
induces intraband pairing correlations, whereas a transverse
SOC generates spin-momentum locking along the x axis of
the system, thus giving rise to a p-wave-like pairing [43].

We have used a state-of-the-art density matrix renormal-
ization group (DMRG) method for solving the Hamiltonian
in Eq. (1). It is a versatile numerical technique for accurately
calculating the low-lying eigenvalues and eigenvectors of var-
ious low-dimensional many-body systems [44–50]. It is based
on the systematic truncation of irrelevant degrees of freedom
at every step of the infinite and finite DMRG algorithms. In
the fermionic system under study, the spin degrees of freedom
are not conserved, hence the density matrix (Hamiltonian) di-
mension is significantly large. The eigenvectors of the density
matrix of the system block corresponding to m � 700 largest
eigenvalues have been retained to maintain a reliable accuracy.
More than ten finite DMRG sweeps have been performed for
each calculation to minimize the error in per site energies
to less than 1% and the maximum system size studied is
N = 120.

III. RESULTS

In this section, we present the numerical studies investi-
gating the existence of a robust FFLO phase in 1D ultracold
atoms with intrinsic attractive on-site interactions and Zeeman
field, first in the absence of SOC and then in presence of a
transverse SOC field in the x direction. Most of the results
presented in this paper are for the quarter-filling fraction ν =
0.25, however, we found that the FFLO phase exists for a wide
range of densities. We also present a quantum phase diagram
of the model in h − U parameter space for ν = 0.25 and study
the effect of finite SOC interactions α > 0 on the FFLO phase.
We show that a robust FFLO phase exists for a wide range of
electron fillings U , h, and α, and this phase is distinct from
other phases like the BCS and a multimode pairing (MMP)
phase, which appears just before the system transitions into a
FP phase at high h.
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To characterize various phases in the system we study the
pair density correlations or singlet pair correlation function
P(i, j) and its Fourier transform (FT). The singlet pair corre-
lation is defined as

P(i, j) = 〈C†
i↑C†

i↓Cj↑Cj↓〉. (2)

Its FT of P(i, j) is given by

P(k) =
∑

k

e−ik·ri j P(i, j), (3)

where (ri j = i − j), and i, j represent site indices in the
system. The single peak in P(k) at k = 0 indicates that the
electron pairs are formed at zero momentum, i.e., opposite
electronic spins undergoing pair formation at k = 0, which is
a signature of quasiparticles in the BCS phase. Twin peaks at
finite momenta in the P(k) momentum distribution curve are a
hallmark of an underlying FFLO-like pairing where electrons
with opposite spins form pairs with a net nonzero momentum.
In a mixed BCS-FFLO phase, where both the conventional
BCS phase and the FFLO phase coexist, P(k) shows three
peaks: one at zero momentum k = 0 and twin peaks at a finite
momentum kh. At sufficiently high magnetic field, P(i, j) is
short-ranged in nature, and P(k) shows two peaks at ±kh and a
nonzero constant plateau of P(k) between these two maxima,
i.e., all the momenta between ±kh contribute towards the pair
formation. We call this phase the MMP phase. Thereafter,
at even higher magnetic field the system transitions into a
fully polarized phase; P(k) is zero. We also study two energy
gaps—the pair-binding energy (Eb) or the parity gap, and the
excitation energy gap �, defined as

Eb(n, N ) = 1
2 [E0(n + 1, N ) + E0(n − 1, N ) − 2E0(n, N )],

(4a)

�(n, N ) = E1(n, N ) − E0(n, N ), (4b)

where E0(n, N ) and E1(n, N ) represent the ground-state en-
ergy and the first excited-state energy, respectively, with n
electrons in the system of N sites. The finite binding energy
Eb is the signature of the BCS phase, whereas the exponential
decay of �(n, N ) may indicate the existence of a topological
phase.

The other calculated quantities include local charge density
with up spin n↑(i), down spin n↓(i), and local spin density
Sz(i). We notice that the spatial distributions of these quan-
tities are different for each of the observed phases. In the
BCS phase, n↑(i) and n↓(i) have an overlapping spiral nature.
For the partially polarized phases, FFLO and MMP, n↑(i) and
n↓(i) are separated and a difference in the wavelength or pitch
angle of the spiral oscillations is observed.

A. In absence of SOC

In the absence of any magnetic field, the system remains in
the trivial BCS phase, which is characterized by quasiparticle
pairs with zero net momentum. In the presence of a finite
magnetic field h, the system can transition into the FFLO
phase, where the electron pairs are formed with net nonzero
momentum due to the population imbalance between the up
and down spins created by the magnetic field. This phase is
expected to retain quasi-long-range correlations, especially in

FIG. 1. FT of singlet pair density correlations, P(k) vs k for
(a) different h = 0.20, 1.20, 3.00, and 4.00, at U = −2.00 and for
(b) different U = −0.50, −2.00, −3.00, and −4.00, at h = 1.20 for
ν = 0.25, α = 0. The inset within (a) shows that the finite momen-
tum, kh, varies linearly a function of h for U = −2.00, and N = 60.

1D. To ascertain that, in Fig. 1 the FT of singlet-pair density
correlations, P(k) vs k, are plotted for different h and U , for
ν = 0.25 and in absence of SOC, i.e., α = 0. It shows a single
peaked structure at k = 0 at low h, as expected from a trivial
BCS phase. Increasing h, a two-peaked P(k) with maxima at
±kh are observed, indicating the presence of an FFLO phase.
In the FP phase at high h, P(k) is vanishingly small and no
peak is observed in P(k). Between the FFLO and FP phase,
there exists a narrow regime of the MMP phase. In this phase,
P(k) shows a plateaulike structure between the twin peaks,
i.e., P(k) is uniformly distributed between the momenta ±kh,
which indicates that the momentum of center of mass of the
condensate is distributed between ±kh around the Fermi mo-
mentum. P(i, j) is a fast and algebraically decaying function
and the pairing is short-ranged in this phase. The peak height
of P(k) is significantly smaller in this phase as compared to
the FFLO phase.

In Fig. 1(a), variations of P(k) for four values of h are
shown for U = −2.00. In Fig. 1(b), the magnetic field h =
1.20 is kept fixed and P(k) is plotted for four values of U .
A larger value of |U | increases binding energy, therefore,
the BCS phase is favored at a higher magnitude of U , and
FFLO-like pairing is observed at weakly attractive U at com-
paratively lower to intermediate values of h (scaled with t =
1). For larger |U |, a larger magnetic field is required to break
the bound electron pairs, hence we notice that U = −0.50 is
already in the FP state for the given h (Fig. 1). The inset in
Fig. 1 shows that the finite momentum of pairing kh varies
linearly with h through the FFLO and MMP phases, as ex-
pected, whereas for U = −4.00, the BCS phase remains intact
up to a large h. We also plot the peak height of [Pmax(k)] as a
function of h for U = −2.00 in Fig. 2, and find that the four
phases in this system can be easily identified by the respective
plateaus in [Pmax(k)] corresponding to each phase. We also
notice that the transition from one phase to the other occurs
through discontinuous jumps, with increasing h. We plotted
[Pmax(k)] as a function of 1/N in the inset of Fig. 2 and notice
that the effect of the finite size is weak in the FFLO and MMP
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FIG. 2. The maxima of FT of singlet pair density correlations,
[P(k)]max as a function of h at U = −2.00, ν = 0.25, and α = 0.
Inset: [P(k)]max as a function of inverse system size 1/N for different
h at U = −2.00, ν = 0.25, and α = 0.

phases, but [Pmax(k)] increases with the system size in the
BCS phase.

For further understanding of the different phases, the be-
havior of local charge and spin densities are analyzed for three
values of magnetic field h = 0.20, 1.20, and 3.00, correspond-
ing to the three phases BCS, FFLO, and MMP, respectively,
at at U = −2.00. Here we have omitted the fully polarized
regime where all spins are polarized along the direction of
magnetic field h and the charge is uniformly distributed, which
is fairly easy to understand and is expected at high h. Figure 3
shows the spatial profile of the spin densities nσ (i) and local
magnetization, Sz(i) = n↑(i) − n↓(i), for different h. At low
h = 0.20 [Fig. 3(a)], the up- and down-spin densities overlap
and the system is in a trivial BCS phase, which is a non-
magnetic state. Above a threshold magnetic field hc1 , some
of the singlet pairs are broken, leading to a partial magnetic
polarization Sz(i) �= 0 in the system as shown in Figs. 2(b)
and 2(c). The charge-density wave oscillations have a maxi-
mum amplitude for low h = 1.20 [Fig. 3(a)] and its amplitude

FIG. 3. Spatial profile of local up-charge density n↑(i), local
down-charge density n↓(i), and local spin density Sz(i) at (a) h =
0.20, (b) h = 1.20, and (c) h = 3.00 for U = −2.00, ν = 0.25, α =
0, and N = 120.

FIG. 4. Phase diagram of the model described by Eq. (1) in the
phase space of magnetic field h and on-site attractive interactions,
|U |, at α = 0 and ν = 0.25.

decreases with increasing h [Figs. 3(b) and 3(c)]. At h = 3.00
[Fig. 3(c)], the system is in the MMP phase and the density
modulations vanish at the middle of the chain. Above another
threshold value of magnetic field hc2 , the system transitions
from the MMP phase to the FP phase. Figure 9 in the Ap-
pendix shows that the dominant interactions are s wave in the
BCS phase, triplet p wave in the FFLO phase, and of compet-
ing s-wave, singlet, and triplet p-wave types, as expected from
the mean-field predictions for a spin-imbalanced system with
SOC interactions.

Further analyzing the oscillations in the local charge den-
sity, we find that at low h, where the system is in a BCS phase,
oscillations in nσ (i) are described by a sinusoidal function
with its amplitude decaying from the edges towards the cen-
ter. The functional form of n(i)σ in this regime is given by
Asin(γ x + A0)x−η + C. The charge density profile does not
change appreciably with increasing h in the BCS phase. For
h > hc1 , another sinusoidal length scale sets in for the partially
polarized phases—FFLO and MMP phases—and n(i) can be
fitted with the charge density profile: Asin(γ x + A0)sin(βx +
B0)x−η + C. The power-law exponent remains η ∼ 1 for all
h < hc2 . Whereas the wavelength of one of the sinusoidal
function λ2 = 2π

β
decreases with increasing h, the wavelength

of the other sinusoidal function λ1 = 2π
γ

does not vary with h
in the FFLO phase. In the MMP phase, the wavelength λ2 =
2π
β

becomes very large, whereas the other wavelength λ1 = 2π
γ

decreases significantly to approximately ∼2 − 4 lattice units.
In Fig. 4, we present the quantum phase diagram of the

model Hamiltonian described by Eq. (1), in the absence of
SOC (α = 0) and for ν = 0.25, based on information ex-
tracted from P(k), their maxima, charge- and spin-density
profiles. All the phase boundaries are based on the N = 96
system size and we note that the finite-size scaling of the
boundary is very weak, meaning that smaller system sizes
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FIG. 5. Binding energy as function of N for different α at U =
−1.00, ν = 0.25, and h = 1.00. Inset: First excitation energy gap �

as a function of h for α = 0.05 at U = −1.00 and ν = 0.25

are also sufficient to predict phase boundaries accurately. In
the absence of any h, the BCS phase is observed for all
values of |U |. Upon increasing h, the system goes from a
BCS phase to the partially polarized FFLO phase, then from
the FFLO phase to the MMP phase, and finally to the FP
phase at high h. The FFLO phase is a dominant phase in the
quantum phase diagram and the width of this phase increases
with |U |. The magnetic field required for the transition from
the BCS to the FFLO phase, hc1 , is smooth and linear with
|U |. Similarly, the h required for the FFLO to the MMP
phase transition also varies linearly with |U |, especially in
the small |U | < 2.5 limit. We also explored the quantum
phase diagram at lower fillings ν (the lowest filling studied
was ν = 0.10) and found that the phase boundaries shift to-
wards lower h, i.e., slope of the hc curves increases with
decreasing electron filling ν < 0.25. This is because, at lower
densities, lower h is sufficient to break the bound pairs in the
system.

B. In presence of SOC

In this section, we explore the effect of small SOC strength
α = 0.05, which is expected to produce a phase similar to
p-wave pairing in a superconducting phase for attractive U
interactions. This exotic p-wave-like phase is proposed to host
topological edge modes [36,51], which is important for appli-
cations in quantum computation. One way of distinguishing
phases in the presence of SOC is the binding energy, defined in
Eq. (4a). In the superconducting BCS state, the binding energy
of the system should be finite, whereas in the FFLO, the MMP
and the FP phase unpaired electron should have zero binding
energy.

The binding energy is plotted as a function of system size N
in Fig. 5 for different α = 0, 0.05, 0.10, and 0.40 at ν = 0.25,
at h = 1. We find that Eb vanishes algebraically with N for low
α, which corresponds to the FFLO phase. For higher α, the
system goes to the BCS phase and Eb has a finite value in the
thermodynamic limit. The inset of Fig. 5 shows the variation
of the lowest excitation energy gap � with h. The inset of
Fig. 5 shows fluctuations at the phase boundaries of the � − h

FIG. 6. FT of singlet pair density correlations, P(k) vs k for
different U , at h = 1.00, ν = 0.25, α = 0.05. Inset: The maxima of
FT of singlet pair density correlations, [P(k)]max as a function of h,
at U = −2.00, ν = 0.25, and α = 0.05.

plot for a given system size. The fluctuations at the boundary
can be utilized to determine the phase boundaries and we
notice that the boundaries determined by this method agree
well with those indicated by the pair correlation structure
factor P(k) in Fig. 6.

P(k) vs k is now plotted in Fig. 6 for four values of U
at h = 1.00, α = 0.05, and ν = 0.25. The FFLO pairings are
observed for weakly attractive U , as indicated by the twin
peaks in P(k) for U = −1.00 and −2.00, whereas a single
peaked P(k) is observed for stronger U = −4.00, indicative
of a BCS phase. At U = −3.00, a three-peaked structure is
observed, which is a signature of an exotic mixture of BCS
and FFLO phases. It should be noted that this exotic mixture
state is not observed for any value of h and U in the absence
of α, i.e., a finite SOC field of the form described in Eq. (1)
creates this mixture state. [P(k)]max] is plotted as a function
of h as shown in the inset of Fig. 6. Contrasting with the inset
of Fig. 2, we find that the transition from the BCS to FFLO
phase now shows a smooth transition from the BCS phase to
the FFLO state through a mixed BCS-FFLO phase. This BCS
phase to FFLO phase transition was earlier discontinuous in
thec absence of SOC (α = 0). The transition from the FFLO
to MMP phase and from the MMP to FP phase remains dis-
continuous with increasing h, as before.

To understand the effect of α on the system, we study the
P(k) vs k characteristics for different strengths of α in Fig. 7.
We find that the FFLO phase is retained at low α [Figs. 7(a)
and 7(b)], and the BCS phase sets in for higher α [Figs. 7(d)
and 7(e)] for a fixed h. For intermediate α [Fig. 7(c)], a mixed
FFLO-BCS phase is observed.

A quantum phase diagram of this system for a fixed α =
0.05 is shown in Fig. 8 based on various criteria. It shows
that in the absence of h, the BCS phase is observed for all
attractive U . Upon increasing h, the system goes from first an
unpolarized BCS phase to a partially polarized FFLO phase
continuously, through a mixed BCS-FFLO phase which was
earlier not observed in the absence of an SOC field (Fig. 4).
The width of the BCS phase and FFLO phase shrinks in the
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FIG. 7. FT of singlet pair density correlations, P(k) vs k for
different α at h = 1.00, ν = 0.25, U = −1.00.

presence of the SOC. Thereafter, increasing h the system goes
from the FFLO to the MMP phase. The width of the MMP
phase increases in the large |U | limit, in the presence of SOC.
Further enhancing h leads to the FP phase, and the width of
this phase increases in smaller |U | in the presence of SOC.
We checked that a similar phase diagram is observed for
lower fillings ν ∈ [0.10, 0.25] as well, except that the phase
boundaries are shifted towards lower h, but the qualitative
behavior and sequence of the phases remains the same. The
phase diagram also remains qualitatively the same for higher
α, however, the phase boundaries are shifted towards higher h.

IV. DISCUSSION AND CONCLUSION

In this paper, we studied the 1D Fermi gas model with
its Hamiltonian described by Eq. (1), including attractive

FIG. 8. Phase diagram of the model described by Eq. (1) in the
phase space of magnetic field h and on-site attractive interactions,
|U |, at α = 0.05 and ν = 0.25.

on-site interactions, −|U |, SOC field, parametrized by α, and
a Zeeman field, h. We explored the existence and signatures
of the exotic FFLO phase in this system. While extensive
literature exists for the FFLO phase, especially in the con-
text of superconducting systems [14], we have focused on
studying the FFLO phase in an electron-number conserving
model, realizable via cold atomic gases. Also, the attractive
interactions considered are just on-site Hubbard interactions
tuned by −|U | and do not include actual superconducting
correlations.

We presented the quantum phase diagram of this Fermi gas
model in the h − |U | parameter space, both in the absence and
presence of the SOC field, at electron filling ν = 0.25. Most of
the earlier works explored the FFLO phase in a 1D system at
ν = 0.50 [33] and ν = 0.25 [52] and restricted their studies to
just characterizing the FFLO phase [13]. We have found the
quantum phase diagram of this model [Eq. (1)] in the phase
space of h − |U | for different α and provided different criteria
to identify the phases observed in this system, including the
different partially polarized phases at ν = 0.25. We note that
the sequence of phases are the same for lower fillings as well,
at least up to ν = 0.10.

We found that on-site interactions U < 0 and SOC inter-
actions α promote BCS pairings, whereas the Zeeman field
h promotes the FFLO order in the system. In the h − |U |
phase space, we found four different phases: (i) the BCS
phase at low h, (ii) the FFLO phase, (iii) the MMP phase at
intermediate h, and (iv) the FP phase at high h. In the trivial
BCS phase, singlet quasiparticle pairs are formed (indicated
by a single peaked structure at k = 0 in the FT of the pair
density correlations, Fig. 1), and they show charge density
oscillations at low h, low α, and weak U . In the exotic FFLO
and MMP phases, there exist commensurate charge and spin
oscillations at moderate h, moderate U , and moderate α. The
FFLO phase is characterized by quasi-long-range order in
the system and correlated singlet pairs with finite momenta
[40]. In the FFLO phase, the pair density correlations, P(r),
have modulated quasi-long-range order with a single wave-
length, which is reflected through twin peaks in the FT of
singlet pair density correlations in the system at ±kh. We
also reported a quantum MMP at higher h in which the pair
density correlations, P(r), have a short-range order and its
FT gives a constant plateau between ±kh. It is very different
from the FFLO phase where ±kh are sharply defined. As
expected, kh varies linearly with h, in both the FFLO and
MMP phases. Figure 9 in the Appendix studies various pair
correlations in the systems and confirms that in the FFLO
phase, p-wave correlations are the most dominant, whereas the
BCS wave is dominated by s-wave correlations in the system.
We observed these phases both in the absence and presence
of the SOC field, and the FFLO phase occupies a large area
of the quantum phase diagram. In the presence of SOC, a
mixed state exhibiting both BCS and FFLO pairings is also
observed. The phase diagram of the system remains similar
for lower electronic fillings ν ∈ [0.10, 0.25], except that the
phase boundaries shift to lower h for lower ν. The phase
boundaries shift to higher h for higher α, but qualitatively
remains the same.
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FIG. 9. The following pair correlations, P(r), in various phases of the system are plotted: (i) s wave (blue), (ii) nearest-neighbor singlet
(red), and (iii) p-wave triplet (yellow) at (a) α = 0 and h = 0.20, (b) α = 0 and h = 1.20, (c) α = 0 and h = 2.30, and (d) α = 0.20 and
h = 1.00 for N = 96, U = −1, and ν = 0.25 electronic filling.

In summary, this paper presents a comprehensive study of
the quantum phase diagram of a 1D Fermi gas system with
intrinsic attractive on-site interactions, a Zeeman field, and
transverse SOC, and discusses in detail various methods of
characterizing these phases in similar 1D Fermi gas systems.
We showed that the FFLO phase dominates the phase diagram
and is robust even in the presence of the SOC. This could have
potential applications in understanding the unconventional su-
perconductivity phases in low-dimensional electron gas. This
model can be easily implemented in trapped cold atoms in
optical lattices, and the parameter values used for each of
the fields in the Hamiltonian (1) is well within experimental
reach.
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APPENDIX: COMPARISON OF DIFFERENT PAIR
DENSITY CORRELATIONS

This Appendix provides more details regarding the un-
derlying correlations in various phases of the system. We
have numerically calculated various pair correlations, P(r =
|i − j|) = �

†
j�i in the system, as described below:

(i) s-wave correlations, �
†
j = 〈c†

j,↓c†
j,↑〉,

(ii) nearest-neighbor singlet correlations, �
†
j =

〈c†
j,↓c†

j+1,↑ − c†
j,↑c†

j+1,↓〉, and

(iii) p-wave triplet correlations, �
†
j = 〈c†

j,↓c†
j+1,↑ +

c†
j,↑c†

j+1,↓〉.
i = N

2 has been kept fixed in our calculations. We see
from Fig. 9 that the s-wave correlations are dominant in
the BCS phase [Fig. 9(a)], whereas the p-wave (triplet) and
nearest-neighbor singlet correlations dominate in the FFLO
[Figs. 9(b) and 9(d)] and the MMP [Fig. 9(c)] phases, as
expected. In the MMP phase, we find that all the correlations
are of competing order and are mixed.
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