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Quantum error correction (QEC) codes protect quantum information from errors due to decoherence. Many
of them also serve as prototypical models for exotic topological quantum matters. Investigating the behavior
of the QEC codes under decoherence sheds light on not only the codes’ robustness against errors but also new
out-of-equilibrium quantum phases driven by decoherence. The phase transitions, including the error threshold,
of the decohered QEC codes can be probed by the systems’ Rényi entropies SR with different Rényi indices R.
In this paper, we study the general construction of the statistical models that characterize the Rényi entropies of
QEC codes decohered by Pauli noise. We show that these statistical models can be organized into a “tapestry”
woven by rich duality relations among them. For Calderbank-Shor-Steane (CSS) codes with bit-flip and phase-
flip errors, we show that each Rényi entropy is captured by a pair of dual statistical models with randomness. For
R = 2, 3, ∞, there are additional dualities that map between the two error types, relating the critical bit-flip and
phase-flip error rates of the decoherence-induced phase transitions in the CSS codes. For CSS codes with an “em
symmetry” between the X -type and the Z-type stabilizers, the dualities with R = 2, 3, ∞ become self-dualities
with super-universal self-dual error rates. These self-dualities strongly constrain the phase transitions of the
code signaled by SR=2,3,∞. For general stabilizer codes decohered by generic Pauli noise, we also construct the
statistical models that characterize the systems’ entropies and obtain general duality relations between Pauli
noise with different error rates.
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I. INTRODUCTION

Quantum error correction (QEC) is a fundamental scheme
in quantum computation to protect quantum information from
decoherence caused by errors and noise [1,2]. A general QEC
code achieves this protection by encoding the quantum infor-
mation into the “logical qubits” formed by many-body states
of physical qubits with entanglement patterns resilient against
errors. From the quantum matter perspective, a large class of
QEC codes, epitomized by the toric code [3], can be viewed
as systems with topological orders, where the long-range-
entangled and topologically protected ground states serve
as the logical qubits. Recently, there has been tremendous
progress in the experimental realizations of the toric code
and related QEC codes on noisy intermediate-scale quantum
platforms [4–7]. The preparation of a QEC code on a noisy
quantum platform is, in general, an out-of-equilibrium process
inevitably subject to decoherence. Instead of a Gibbs ensem-
ble, the prepared state is an “error-corrupted” mixed state,
i.e., a classical mixture of different error patterns on top of
the code’s logical states. Understanding such error-corrupted
mixed states brings insights into the robustness of QEC codes
against errors and the effect of decoherence on topological
orders.

An important metric for the performance of a QEC code
is the error threshold, which pertains to the “decodability”
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of the logical qubits from the error-corrupted mixed state.
The seminal work Ref. [8] pointed out that the decodabil-
ity of the 2D toric code with errors is captured by the 2D
classical random-bond Ising model, and the error threshold
is identified as a continuous phase transition. This method
that maps the QEC code’s decodability to classical statistical
models has been widely generalized to other stabilizer codes
(see Refs. [9–13] for examples).

Recent works Refs. [14–16] provide a different perspec-
tive on the error threshold of the toric code by viewing it
as a singularity intrinsic to the error-corrupted mixed state
ρ. This singularity manifests a decoherence-induced phase
transition (DIPT) of the system’s total von Neumann entropy
S1 = −Trρ log ρ as a function of the decoherence strength,
i.e., the error rate. Moreover, the error threshold naturally
belongs to the rich family of DIPTs of the Rényi entropies
SR = 1

1−R log(TrρR) (for R = 2, 3, ... and R → 1) in the de-
cohered toric code [14–16]. For a general QEC code under
decoherence, the DIPTs of the Rényi entropies probe the
singular changes in the entanglement pattern in the error-
corrupted mixed state. In light of the close relation between
QEC codes and topological orders in systems free of deco-
herence, studying the behavior of the error-corrupted mixed
state in decohered QECs and the DIPTs therein provides an
interesting path toward understanding topological orders and
other decoherence-induced exotic phases in beyond-Gibbs-
ensemble mixed states.

In this paper, we focus on developing a general framework
to study the error-corrupted mixed states in stabilizer codes
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FIG. 1. The tapestry of dualities of a general CSS code. In Sec. II B, we introduce the statistical models SM1,2 through ungauging the CSS
code and introduce the R-replica SM1,2 with randomness (rRC and iRC) as the descriptions of the Rényi entropies of the decohered CSS code.
The HLT and BPD dualities are discussed in Secs. II B and II C.

decohered by Pauli noise, including bit-flip and phase-flip
errors in particular. We systematically construct the sta-
tistical models arising from the Rényi entropies SR for a
general R and identify a rich set of duality relations that
weave these statistical models into a “tapestry of dualities.”
Our discussion contains three major parts, focusing on three
classes of translation-invariant stabilizer codes: (1) general
Calderbank-Shor-Steane (CSS) codes, (2) CSS codes with an
“em symmetry” between the X -type and the Z-type stabilizers,
and (3) general stabilizer codes.

We first investigate general CSS codes decohered by bit-
flip and phase-flip errors. The tapestry of dualities for this
class of decohered codes is shown in Fig. 1. The two error
types cause independent decoherence in a CSS code and are,
hence, studied separately. The behavior of the decohered CSS
code is intimately related to a pair of dual statistical models,
named SM1 and SM2, which are obtained from ungauging
the CSS code. Under bit-flip errors, the Rényi entropy SR

of the error-corrupted mixed state is described by a pair of
dual statistical models with randomness: (1) R-replica SM1

with real random couplings (rRC) and (2) R-replica SM2

with imaginary random couplings (iRC). These two statistical
models are dual under a high-low-temperature (HLT) duality.
Similarly, under phase-flip errors, SR is described by another
pair of random statistical models: (1) R-replica SM1 with iRC
and (2) R-replica SM2 with rRC, which are again HLT dual
to each other. The patterns of randomness in these statistical
models are interchanged as we switch from bit-flip errors to
phase-flip errors. Additionally, for R = 2, 3,∞, we discover
extra duality relations that map between (the random statisti-
cal models associated with) bit-flip and phase-flip errors. We
call these dualities the bit-phase-decoherence (BPD) dualities.
The random statistical models and the dualities provide pow-
erful tools to study the phases and the DIPTs in the decohered

CSS codes. We propose a conjecture on the monotonicity of
the DIPTs’ critical error rates as functions of the Rényi index
R, and discuss the alternative interpretation of the DIPT with
R = 2 as a quantum phase transition in the doubled Hilbert
space. We also discuss two concrete examples, the decohered
3D toric code [17] and the decohered X -cube model [18],
demonstrating the abovementioned general results.

When the CSS codes are endowed with additional symme-
tries, the duality structure under decoherence can be enriched.
We analyze the case when the CSS codes have a symmetry
that exchanges the X -type and Z-type stabilizers, which we
dub “electric-magnetic symmetry” (em symmetry). Under the
bit-flip and phase-flip errors, the tapestry of dualities of the
em-symmetric CSS code is shown in Fig. 7, which is effec-
tively the tapestry shown in Fig. 1 “folded in half” by the
symmetry. The em symmetry interchanges the bit-flip and
phase-flip errors. The original pair of dual statistical models
SM1 and SM2 become the same model, call it SM, with a self-
duality. Under either bit-flip or phase-flip errors, the Rényi
entropies SR are captured by a pair of statistical models with
randomness: (1) R-replica SM with rRC and (2) R-replica SM
with iRC. They are related by the HLT duality for any R. The
BPD dualities for R = 2, 3,∞ (combined with the em sym-
metry) become self-dualities with super-universal self-dual
error rates shared by all em-symmetric CSS codes in different
dimensions. For a given em-symmetric CSS code (and a fixed
R = 2, 3, or ∞), if there is a unique DIPT of SR as the error
rate varies, then the critical error rate must coincide with the
super-universal self-dual values. We demonstrate our general
results in the concrete settings of the decohered 2D toric code
[17], and the decohered Haah’s code in 3D [19].

For general stabilizer codes, bit-flip and phase-flip errors
are no longer special. We therefore consider the decoherence
by general Pauli noise. The general decohered stabilizer codes
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are tied to a single statistical model SM, which is self-dual
under an HLT duality. The Rényi entropy SR of the decohered
code is captured by both (1) the R-replica SM with rRC
and (2) the R-replica SM with iRC, two random statistical
models related by an HLT duality. Moreover, we find ex-
tra dualities between different error rates for R = 2,∞ and
call them “general-Pauli-noise dualities” (GPN dualities). The
GPN dualities are the generalizations of the BPD dualities
of decohered CSS codes. We obtain the surface of super-
universal self-dual error rates under the GPN dualities.

The rest of the paper is organized as follows. Section II
focuses on the general CSS codes decohered by bit-flip
and phase-flip errors. Section III discusses the decohered
CSS codes with em symmetry. Section IV analyzes general
stabilizer codes with general Pauli noise. We present our con-
clusion and outlook in Sec. V.

II. CSS CODE UNDER DECOHERENCE

In this section, we will first review the basics of general
CSS codes and introduce the decoherence model that de-
scribes bit-flip and phase-flip errors. Next, we provide the
general construction of the statistical models, the R-replica
SM1 and SM2 with randomness, that describe the Rényi en-
tropies SR of the error-corrupted mixed states of the decohered
CSS code. We will address how the R → 1 limit recovers
the disordered statistical model that captures the code’s error
threshold for decodability. Then, we present the HLT and BPD
dualities between these statistical models and the tapestry of
dualities they form. The DIPTs are signaled by the singular
behavior of the Rényi entropies SR and, hence, are identified
with the phase transitions in the random statistical models. For
R = 2, by generalizing Refs. [15,20], we give an alternative
interpretation of the DIPT as a quantum phase transition in
the doubled Hilbert space. We also propose a conjecture on the
monotonicity of the DIPTs’ critical error rates as a function of
the Rényi index R. Finally, we study the decohered 3D toric
code and the decohered X -cube model as concrete examples.

A. Introduction to CSS codes and error models for decoherence

First, we briefly review the general description of a CSS
code. Consider a set of N qubits (labeled by μ) arranged into a
lattice. A general CSS code is a stabilizer code with two types
of stabilizers: X -type and Z-type. Each X -type generator,
denoted as Ai[X ], is a product of only Pauli-X operators Xμ,
while each Z-type generator, denoted as Bj[Z], is a product of
only Pauli-Z operators Zμ. All the stabilizers commute with
each other:

[Ai[X ], Bj[Z]] = 0, ∀ i, j. (1)

The logical subspace of the CSS code is the ground-state
Hilbert space of the CSS code Hamiltonian

Hcss = −
∑

i

Ai[X ] −
∑

j

B j[Z]. (2)

Each logical state |�〉 satisfies

Ai[X ] |�〉 = Bj[Z] |�〉 = |�〉 , ∀ i, j. (3)

For this work, we work with CSS codes with the following
general properties. We assume that Hcss is translation invariant
(modulo boundary effects of the lattice if they exist) and all the
terms in Hcss are local. The number of Ai[X ] terms does not
have to equal the number of Bj[Z] terms. But we assume that
there is no local logical operator and the rate of the code Nc/N
vanishes in the large system limit. Here, Nc denotes the total
number of logical qubits. These properties are rather general.
They are broadly satisfied by commonly discussed topological
CSS codes, including the toric code [17], the surface code
[8,21], color codes [22], the X -cube model [18], Haah’s code
[19], etc.

Next, we introduce the error models for the decoherence
that we will study in this section. We consider an error model
with bit-flip errors and phase-flip errors. For a single site μ,
when a bit-flip (phase-flip) error occurs, the system’s state is
acted on by Xμ (Zμ). The classical probabilities px and pz for
the appearance of these errors on a single qubit are called
the error rates. The decoherence caused by these two types
of errors is described by the following quantum channels,
respectively:

Nx,μ(ρ) = (1 − px )ρ + pxXμρXμ,

Nz,μ(ρ) = (1 − pz )ρ + pzZμρZμ. (4)

When all the physical qubits are subject to such decoherence,
a logical state ρ0 = |�〉〈�|, initially pure, becomes an error-
corrupted mixed-state:

ρ0 → Nx ◦ Nz(ρ0), (5)

a mixture of the logical state dressed by all error patterns.
Here, we have defined the total decoherence channels Nx/z ≡
⊗μNx/z,μ. It suffices to consider the range of error rates
0 � px, pz � 1

2 because the system experiences the maximal
amount of bit-flip (phase-flip) decoherence when px = 1/2
(pz = 1/2).

The bit-flip errors only affect the Z-type stabilizers, while
the phase-flip errors only influence the X -type stabilizers.
Hence, the two error types cause independent decoherence
effects (more details in the next subsection). Without loss of
generality, it suffices to independently study the two types
of mixed states ρb and ρp corrupted only by the bit-flip and
phase-flip errors, respectively:

ρb = Nx(ρ0), ρp = Nz(ρ0). (6)

We can write these mixed states as a summation over error
chains. For example,

ρb =
∑

E

Px(E )XEρ0XE , (7)

where
∑

E is a summation over all possible error chain E . An
error chain E is the set of qubits where the errors occur and
XE ≡∏μ∈E Xμ. Px(E ) is the probability for the error chain E
to appear:

Px(E ) = p|E |
x (1 − px )N−|E |. (8)

Here, |E | denotes the number of qubits in E . Similarly, we can
write

ρp =
∑

E

Pz(E )ZEρ0ZE , (9)
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with Pz(E ) = p|E |
z (1 − pz )N−|E | and ZE ≡∏μ∈E Zμ. In the

next subsection, we develop the statistical models that capture
the behavior of the error-corrupted mixed states ρp/b.

As a preparation for the subsequent analysis, it is helpful to
introduce an N-dimensional Z2 vector space V for the lattice
of N qubits. Any subset W of qubits can be represented as an
N-component vector W ∈ V whose μth entry is 1 if the μth
site belongs to the subset W and 0 if not. Here and for the rest
of the paper, we use the same notation for a subset of qubits
and its corresponding vector. For a subset W , its cardinality
|W | counts the number of nonzero entries in the vector W .
With two vectors W1,W2 ∈ V,W1 + W2, and W1 · W2 represent
the addition and the dot product in the Z2 vector space V . In
terms of subsets, W1 + W2 represents W1 ∪ W2 − W1 ∩ W2 and
W1 · W2 is the parity of |W1 ∩ W2|.

For each stabilizer Ai[X ], we denote the subset of qubits
it includes as ai. Similarly, every Bj[Z] has a corresponding
vector b j . The commutation relation Eq. (1) is equivalent to

ai · b j = 0 ∀i, j. (10)

The collection of vectors {ai} ({b j}) span a sub vector space
denoted as Vx (Vz). The relation Eq. (10) implies that Vx

belongs to the orthogonal subspace of Vz, namely Vx ⊂ V⊥
z .

Similarly, we have Vz ⊂ V⊥
x . A logical X operator (Z oper-

ator) of the CSS code must be a product of Xμ (Zμ) on a
subset of qubits whose corresponding vector belongs to the
quotient space V⊥

z /Vx (V⊥
x /Vz). The number of logical qubits

is then given by Nc = dim(V⊥
z /Vx ) = dim(V⊥

x /Vz ). Our as-
sumption that the code rate Nc/N → 0 in the infinite system
limit conceptually implies V⊥

z (V⊥
x ) is almost the same as Vx

(Vz), which is important for the dualities we will discuss later.
The assumption that the CSS code is free of local logical
operators implies that the quotient spaces V⊥

z /Vx and V⊥
x /Vz

only contain vectors that represent nonlocal sets that involve
infinitely many qubits in the infinite system limit.

In addition to characterizing the stabilizers, it proves con-
venient to treat any error chain E as a vector in V when
analyzing the effects of decoherence. For example, the error
chains E , E ′ follow the multiplication and commutation rela-
tions,

XE XE ′ = XE+E ′ , ZE ZE ′ = ZE+E ′ ,

XE ′ZE = (−1)E ·E ′
ZE XE ′ . (11)

For any subset E , if E ∈ Vx, then XE can be written as a
product of the Ai[X ] stabilizers. Similarly, ZE is product of
the Bj[Z] stabilizers if and only if E ∈ Vz. The summation∑

E in Eqs. (7) and (9) can be viewed as a summation
∑

E∈V
over all Z2 vectors in V .

B. Statistical models for decohered CSS codes

We now develop the systematic framework to characterize
the effects of decoherence in the error-corrupted mixed state
ρ = Nx ◦ Nz(ρ0) using statistical models. These decoherence
effects are manifested in the behavior of TrρR, which are di-
rectly related to the Rth Rényi entropies SR = 1

1−R log(TrρR).
Singularities in SR (as functions of the error rates px and pz)
signal the DIPTs. In particular, the singularity in the limit
R → 1 is the error threshold of the decodability of the code.

In the following, we show that TrρR can be formulated as the
partition functions of a family of statistical models of clas-
sical Z2 spins with random couplings. The Rényi entropies
are, therefore, the respective free energies. The DIPTs can
then be identified as the phase transitions in these statistical
models. This subsection is devoted to the general construction
of these statistical models for the decohered CSS code in the
infinite-system limit. Concrete examples will be provided in
the subsequent subsections Secs. II E and II F.

For a CSS code C, decoherence effects of the bit-flip errors
decouple from those of the phase-flip errors. The reason is
that the former only affects the Bj[Z] stabilizers while the
latter only affects the Ai[X ] stabilizers. The decoupling is
manifested by the following identity in the infinite-system
limit

TrρR = TrρR
b × TrρR

p . (12)

In infinite-system limit, the absence of local logic operators
implies | 〈�| XE ZE ′ |�〉 | = | 〈�| XE |�〉 | × | 〈�| ZE ′ |�〉 | for
the logical state |�〉 and any pair of finite subsets of qubits
E , E ′. This property leads to Eq. (12). The decoupling of
the bit-flip and phase-flip errors allows us to independently
formulate the statistical models for TrρR

b and TrρR
p without

loss of generality. Also, note that the absence of local logical
operators makes all logical states locally indistinguishable.
For this reason, different choices of the error-free logical state
ρ0 = |�〉 〈�| will not affect the construction of the statistical
models in the infinite-system limit.

As the first step toward the statistical models, we use
Eqs. (7) and (9) to expand TrρR

b/p as a sum over the vector
spaces V,Vx, and Vz. Take Trρ2

b as an example. In the infinite-
system limit,

Tr
(
ρ2

b

) =
∑

E ,E ′∈V
Px(E )Px(E ′)|〈XE XE ′ 〉�|2

=
∑
E∈V

∑
C∈Vx

Px(E )Px(E + C). (13)

Here, we have used the fact that |〈XE XE ′ 〉�|2 = 0 unless
XE XE ′ = XE+E ′ can be written as a product of the Ai[X ]
stabilizers, i.e., E + E ′ ∈ Vx. When E + E ′ ∈ Vx, we have
|〈XE XE ′ 〉�|2 = 1 and E ′ = E + C for some C ∈ Vx. For gen-
eral R, we have

Tr
(
ρR

b

) =
∑
E∈V

∑
C2,..,R∈Vx

Px(E )Px(E + C2) . . . Px(E + CR)

= 1

2dimVx

∑
E∈V

⎛
⎝ ∑

C1,2,..,R∈Vx

Px(E + C1) . . . Px(E + CR)

⎞
⎠.

(14)

The last line is obtained from the second by shifting E →
E + C1,C2,...,R → −C1 + C2,...,R with C1 ∈ Vx.

Later, we will see that Tr(ρR
b ) can be mapped to the parti-

tion function of an R-replica statistical model of classical Z2

spins with random couplings. E ∈ V specifies a pattern of the
random couplings, and the partition function of each replica is
given by

∑
C∈Vx

Px(E + C) (before averaging/summing over
all randomness patterns E ). The interaction between different
replicas is only mediated by the random coupling E .
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In the R → 1 limit, the Rényi entropy SR reduces to the von
Neumann entropy S1:

S1(ρb) = lim
R→1

1

1 − R

(
Tr
(
ρR

b

)− 1
)

= −
∑
E∈V

Px(E ) log

⎛
⎝∑

C∈Vx

Px(E + C)

⎞
⎠, (15)

which turns out to be the quenched-disorder-average of the
free energy − log(

∑
C∈Vx

Px(E + C)) in the random statistical
model.

Similar to Tr(ρR
b ), we can expand Tr(ρR

p ) as

Tr
(
ρR

p

) = 1

2dimVz

∑
E∈V

⎛
⎝ ∑

C1,2,..,R∈Vz

Pz(E + C1) . . . Pz(E + CR)

⎞
⎠,

(16)

which will also be mapped to the partition function of certain
R-replica statistical models with random couplings. Conse-
quently, the von Neumann entropy S1(ρp) = limR→1 SR(ρp)
will be identified as the quenched-disorder-average free en-
ergy of the corresponding statistical model.

In the following, we present the systematic construction
of the random statistical models of classical Z2 spins whose
partition functions map to Tr(ρR

b/p). For the sake of clarity,
we introduce these statistical models in two steps. First, we
construct these statistical models without randomness. These
nonrandom statistical models naturally arise from ungauging
the CSS code. In the second step, we establish the mapping
between the multireplica version of these statistical models
(with randomness) and the quantities Tr(ρR

b/p) [which are re-
lated to the Rényi entropies SR(ρb/p)].

Now, we perform the first step of our construction. For a
general CSS code C, we introduce two (nonrandom) classi-
cal statistical models, denoted as SM1 and SM2. They can
be obtained naturally by treating the CSS code as a gener-
alized Z2 gauge theory and then ungauging it. As we will
see, this ungauging procedure is exactly the inverse of the
gauging procedure introduced in Ref. [18], which constructs
CSS codes from statistical models of classical Z2 spins. In this
step, we explain the ungauging as a procedure introduced by
hand. When we consider Tr(ρR

b/p) later in the second step, the
ungauging is effectively implemented by the errors.

The ungauging procedure follows from the intuition based
on the 2D toric code (see Fig. 2), which is equivalent to a
conventional Z2 gauge theory. The general idea is as follows.
For a general CSS code C, we can treat the Zμ’s as the gauge
field variables. The Ai[X ] terms in the CSS code Hamiltonian
Eq. (2) implement the generalized Gauss law while the Bj[Z]
terms describe the energy costs of gauge fluxes. Ungauging
the CSS code C from this perspective produces the classical
statistical model SM1. If we instead treat Xμ as the gauge field
and interchange the roles of Ai[X ] and Bj[Z], ungauging the
CSS code C results in classical statistical model SM2.

We now explicitly carry out the ungauging procedure to
construct the nonrandom version of SM1 from the general
CSS code C. We introduce a Z2 spin variable τi at the center of
each Ai[X ] term and treat it as the matter field coupled to the
generalized Z2 gauge field Zμ. The operator Ai[X ]τ x

i for each

SM1

SM2

ungauging Z

ungauging X

FIG. 2. For the 2D toric code, the two types of stabilizers A[X ]
and B[Z] are pictorially represented above. Ungauging the gauge
field Z and the gauge field ungauging X in the 2D toric code produce
the 2D Ising model on the original lattice and that on the dual lattice,
respectively. The original square lattice is depicted in gray solid lines,
and the dual lattice is depicted in gray dashed lines. Each purple dot
represents a classical Z2 spin τ/τ̃ , and the orange edge presents the
near-neighbor interactions in the Ising models. (see Sec. III B for the
microscopic details)

i generates the gauge transformation, where τ x
i is a Pauli-X

operator. The gauge field Zμ couples to the matter fields via
the gauge-invariant interaction ZμOz

μ[τ z] with

Oz
μ[τ z] =

∏
i

(
τ z

i

)(ai )μ
. (17)

Recall that ai ∈ V is the Z2 vector associated with the sta-
bilizer Ai[X ]. (ai )μ is the μth component of ai. Due to
the locality of each stabilizer Ai[X ],Oz

μ[τ z] must be a lo-
cal term as well for each μ. The commutation relation
[Ai[X ]τ x

i , ZμOz
μ[τ z]] = 0 for any i, μ implies the gauge-

invariance of the interaction ZμOz
μ[τ z]. Hence, we can write

the following Hamiltonian which describes the generalized Z2

gauge theory coupled to matter fields:

Hgt1 = −
∑

i

Ai[X ]τ x
i − K

∑
μ

ZμOz
μ[τ z] −

∑
j

B j[Z], (18)

where K > 0 is a coupling constant and the first term∑
i Ai[X ]τ x

i leads to an emergent Gauss law (with matter
fields) Ai[X ]τ x

i = 1, ∀i at low energies.
If we add an extra term −g

∑
i τ

x
i with a large positive g

to the Hamiltonian Hgt1, the matter field τi will be gapped out
and the CSS code Hamiltonian Eq. (2) will be recovered as
the low-energy theory.

However, the model Hgt1 allows us to ungauge by turning
off all the gauge fields, namely setting Zμ = 1, and removing
the Gauss-law terms −∑i Ai[X ]τ x

i . The resulting Hamilto-
nian is the Hamiltonian of SM1 (up to a constant):

HSM1 = −K
∑

μ

Oz
μ[τ ]. (19)

Here, we have suppressed the superscript z for the spin vari-
ables τi to emphasize that HSM1 is essentially a classical
Hamiltonian with commuting spin variables τi = ±1. It is
helpful to note that the lattice of the spin variable τi of SM1

differs from the lattice of the qubits labeled by μ.
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The construction of SM2 is parallel to SM1. We simply
need to interchange the roles of the Ai[X ] and Bj[Z] stabiliz-
ers. For SM2, a Z2 spin variable τ̃ j is introduced at the center
of each Bj[Z] stabilizer. With Xμ treated as the generalized Z2

gauge field, ungauging the CSS code produces the classical
Hamiltonian of SM2:

HSM2 = −K̃
∑

μ

Ox
μ[τ̃ ], (20)

where K̃ is the coupling constant of SM2 and the spin interac-
tion Ox

μ[τ̃ ] is given by

Ox
μ[τ̃ ] =

∏
j

(τ̃ j )
(b j )μ . (21)

We emphasize that each Ox
μ[τ̃ ] term is a local spin interaction

due to the locality of the Bj[Z] stabilizers.
The two (nonrandom) statistical models SM1 and SM2 are

dual to each other under a Kramers-Wannier-like HLT duality.
We defer the details of this duality to the next subsection,
where we include this duality as a component of the tapestry
of dualities.

With SM1,2 introduced, we are ready to establish the map-
ping between TrρR

b/p for error-corrupted mixed states ρb/p

and the R-replica SM1,2 with random couplings. There are
two types of random couplings: real random couplings and
imaginary random couplings, which we refer to as rRC and
iRC for short.

For the error-corrupted mixed state ρb, we obtain the fol-
lowing theorem.

Theorem 1. For the CSS code in the infinite system limit,
TrρR

b of the mixed state ρb with bit-flip errors is proportional
to the partition function of the R-replica SM1 with real random
couplings (rRC). It is also proportional to the partition func-
tion of the R-replica SM2 with imaginary random couplings
(iRC):

Tr
(
ρR

b

) ∝
∑
E∈V

(
ZSM1 (K, E )

)R ∝
∑
E∈V

(
WSM2 (K̃, E )

)R
, (22)

where the coupling constants K and K̃ are given by the bit-
flip error rate px ∈ [0, 1/2] via e−2K = tanh K̃ = px

1−px
. The

proportionality constants only depend on px smoothly and,
hence, are unimportant for potential phases and DIPTs.

On the first line of Eq. (22), ZSM1 (K, E ) is the single-
replica partition function of SM1 in the presence of the rRC
configuration labeled by the error chain E :

ZSM1 (K, E ) =
∑

{τi=±1}
exp

⎛
⎝K

∑
μ

(−1)EμOz
μ[τ ]

⎞
⎠. (23)

Here, Eμ is the μth component of the Z2 vector E ∈ V . E adds
extra sign randomness to the real coupling constant K . Hence,
the name rRC. Note that K > 0 since px ∈ [0, 1/2]. One can
show that

ZSM1 (K, E ) = [px(1 − px )]−N/2Ns

∑
C∈Vx

Px(E + C), (24)

where Ns is a factor related to internal symmetries of SM1.
We refer to Appendix A for the derivation of this expression.
The first line of Eq. (22) is an immediate consequence of

Eqs. (24) and (14). Equation (24) also shows that ZSM1 (K, E )
is proportional to the total probability of all the error chains
within the same equivalence class [E ]x ∈ V/Vx. Physically,
the error chains within the same class [E ]x differ from each
other only by elements in Vx and, hence, cause excitations on
the same set of Bj[Z] stabilizers.

To provide some heuristics, we argue that the bit-flip errors
suppress the coherent quantum fluctuations of the generalized
Z2 gauge field Zμ. Hence, in the CSS code with bit-flip de-
coherence, a modified version of Eq. (18) should appear. The
modification includes turning off the first term (that generates
coherent quantum fluctuations of the gauge field Zμ) and
treating gauge field Zμ as a classical degree of freedom with
values ±1. After this modification, SM1 with rRC as defined
in Eq. (23) emerges.

On the second line of Eq. (22), WSM2 (K̃, E ) is the single-
replica partition function of SM2 in the presence of the iRC
configuration labeled E :

WSM2 (K̃, E )

=
∑

{τ̃ j=±1}
exp
(− HSM2

)∏
μ

(
Ox

μ[τ̃ ]
)Eμ

=
∑

{τ̃ j=±1}
exp

⎛
⎝−HSM2 − iπ

2

∑
μ

Eμ

(
Ox

μ[τ̃ ] − 1
)⎞⎠, (25)

where HSM2 is the same as in Eq. (20). For px ∈ [0, 1/2], K̃
is positive. In WSM2 (K̃, E ), a nontrivial E introduces extra
imaginary coupling constants for the spin interaction Ox

μ[τ̃ ].
And hence the name iRC.

Based on Theorem 1, the phases and the DIPTs of the
decohered CSS code probed by the Rényi entropy SR(ρb)
can be investigated via studying the phases and transitions in
the R-replica SM1 with rRC and in the R-replica SM2 with
iRC. The fact that two different statistical models describe the
behavior of the same quantity TrρR

b [or SR(ρb)] indicates a
duality between them. This duality is, in fact, an HLT duality,
which we will discuss more about in the next subsection. For
the proof of Theorem 1 (including the HLT duality), we refer
to Appendix A. The applications of Theorem 1 in concrete
examples are provided in Secs. II E and II F.

Using Eq. (24) and taking the R → 1 limit of Theorem 1,
we obtain

Corollary 1. The von Neumann entropy of the error-
corrupted state ρb is given by the quenched-disorder-averaged
free energy of SM1 with rRC (up to an unimportant additive
constant):

S1(ρb) = −
∑
E∈V

Px(E ) log
(
ZSM1 (K, E )

)
, (26)

where K is given by the bit-flip error rate px via e−2K = px

1−px
.

Here, we treat the rRC configuration E as a disorder
following the probability distribution Px(E ). Therefore, the
right-hand side of Eq. (26) is interpreted as a quenched-
disorder-averaged free energy. In a general disordered spin
model, the probability distribution of disorder and the cou-
pling constant K can be independent parameters. The relation
e−2K = px

1−px
that appears in SM1 with rRC is known as the

Nishimori condition [23,24].
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We remark that the right-hand side of Eq. (26) is ex-
actly the (averaged) free energy of the disordered statistical
model introduced by Ref. [8] (and later generalized by
Ref. [13]) to study the decodability of Z2 stabilizer codes
with Pauli errors (bit-flip errors in this case). In particu-
lar, Ref. [8] established that the phase transition (where the
quenched-disorder-averaged free energy becomes singular) in
the disordered statistical model signals the decoding error
threshold for the code. From the perspective of our current
work, the error threshold is viewed as the R → 1 limit of the
family of DIPTs labeled by R. Recall that the DIPT with index
R is associated with the singularity of the Rényi entropy SR

of the decohered code. We generally expect the critical error
rate p�

x(R) of the DIPT to be a function of R. The bit-flip
error threshold for decoding is given by the limit p�

x(R → 1).
As a clarification, for a generic R, we use the term “critical
error rate” for the error rate where the Rényi entropy SR

develops singularity and the DIPT with index R occurs. The
term “(decoding) error threshold” is only associated with the
DIPT in the limit R → 1 and is hence given by the critical
error rate in the same limit. The same terminology convention
applies to all types of errors considered in this paper. We will
discuss the physical meaning of DIPTs at different R’s and the
dependence of the critical error rate p�

x(R) on R in Sec. II D.
For the mixed state ρp corrupted by phase-flip errors, we

prove a similar theorem that maps TrρR
p to the partition func-

tions of two R-replica statistical models with randomness.
Theorem 2. For the CSS code in the infinite system limit,

TrρR
p of the mixed state ρp corrupted by phase-flip errors is

proportional to the partition function of the R-replica SM2

with rRC. It is also proportional to the partition function of
the R-replica SM1 with iRC:

Tr
(
ρR

p

) ∝
∑
E∈V

(
ZSM2 (K̃, E )

)R ∝
∑
E∈V

(
WSM1 (K, E )

)R
, (27)

where the coupling constants K and K̃ are given by the phase-
flip error rate pz ∈ [0, 1/2] via e−2K̃ = tanh K = pz

1−pz
. The

proportionality constants only depend on pz smoothly and,
hence, are unimportant for potential phases and DIPTs.

Here, the partition function of the R-replica SM2 with rRC
and that of the R-replica SM1 with iRC are defined in parallel
with Eqs. (23) and (25):

ZSM2 (K̃, E ) =
∑

{τ̃ j=±1}
exp

⎛
⎝K̃

∑
μ

(−1)EμOx
μ[τ̃ ]

⎞
⎠, (28)

and

WSM1 (K, E ) =
∑

{τi=±1}
exp
(− HSM1

)∏
μ

(
Oz

μ[τ ]
)Eμ

=
∑

{τi=±1}
exp

⎛
⎝−HSM1 −

iπ
2

∑
μ

Eμ

(
Oz

μ[τ ]− 1
)⎞⎠.

(29)

Note that statistical models in Theorem 2 for the phase-flip
errors are related to those in Theorem 1 for the bit-flip errors
by interchanging the roles of rRC and iRC.

Similar to Eq. (24), we can show that

ZSM2 (K̃, E ) = [pz(1 − pz )]−N/2Ñs

∑
C∈Vz

Pz(E + C), (30)

where Ñs is a factor associated with the internal symmetries
of SM2. This equation implies that ZSM2 (K̃, E ) is the total
probability of phase-flip error within the same equivalence
class [E ]z ∈ V/Vz. All error chains within the same class [E ]z

only differ from each other by elements in Vz and, hence, lead
to the same pattern of excitations on the Ai[X ] stabilizers.

Just like the case with bit-flip errors, the two R-replica
random statistical models in Theorem 2 are dual to each other
under an HLT duality, which we will discuss more in the next
subsection.

With Eq. (30), we can take the R → 1 limit of Theorem 2
and obtain the following corollary.

Corollary 2. The von Neumann entropy of the error-
corrupted state ρp is given by the quenched-disorder-averaged
free energy of SM2 with rRC (up to unimportant additive
constants):

S1(ρp) = −
∑
E∈V

Pz(E ) log
(
ZSM2 (K̃, E )

)
, (31)

where K̃ is given by the phase-flip error rate pz via e−2K̃ =
pz

1−pz
.

Again, combining Ref. [8] and Eq. (31), we conclude that
the phase-flip error decoding threshold of the code is the
critical phase-flip error rate p�

z (R) of the DIPT in the limit
R → 1.

C. Tapestry of dualities of a general CSS code

In this subsection, we discuss the tapestry (Fig. 1) woven
by the dualities among the statistical models originating from
a general CSS code C.

First, there is a Kramers-Wannier-like high-low-
temperature (HLT) duality between the nonrandom SM1

and SM2 obtained from the same CSS code C through
ungauging. For bit-flip errors, Theorem 1 shows that two
R-replica statistical models with random couplings describe
the same quantity TrρR

b associated with the Rth Rényi entropy
SR(ρb) of the error-corrupted mixed state ρb. As shown in the
bottom left corner of Fig. 1, these two statistical models are
also dual to each other under an HLT duality, a generalization
of the HLT duality that relates the nonrandom SM1 and
SM2. Similarly, for phase-flip errors, the Rth Rényi entropy
SR(ρp) of the mixed state ρp is described by another pair of
R-replica statistical models with random couplings as stated in
Theorem 2. These two R-replica statistical models are also
dual under an HLT duality, as shown in the bottom right corner
of Fig. 1. In addition to these HLT dualities, we find that there
are extra dualities, dubbed the BPD (bit-phase-decoherence)
dualities, that map the random R-replica statistical models
associated with the bit-flip errors to those associated with
phase-flip errors. In the following, we provide a general
discussion and the physical intuition for these dualities. The
full technical details of the proofs of these dualities are
presented in the Appendices A and B.
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Now, we discuss the HLT duality between the nonrandom
SM1 and SM2. We provide below the physical intuition of this
duality by comparing the high-temperature expansion of the
partition of SM1 and the low-temperature expansion of the
partition function of SM2. The partition function of the non-
random SM1 can be written as a high-temperature expansion:

ZSM1 (K ) =
∑

{τi=±1}
exp

⎛
⎝K

∑
μ

Oz
μ[τ ]

⎞
⎠

=
∑

{τi=±1}
(cosh K )N

∏
μ

(
1 + Oz

μ[τ ] tanh K
)
. (32)

Recall that N is the number of qubits in the original CSS code,
which equals the number of Oz

μ[τ ] terms in SM1. After we
expand the product over μ and sum over all the spin config-
urations {τi = ±1}, the nonvanishing contribution must come
from the products of Oz

μ[τ ] terms that equal identity. Based on
Eqs. (10) and (17), we know that

∏
μ(Oz

μ[τ ])(b j )μ = 1 for any
j. In fact, we can readily see that

∏
μ(Oz

μ[τ ])Cμ = 1 for a local
set C ∈ V implies C ∈ Vz (in the absence of any local logical
operators in the code C which we have assumed). Hence, in
the infinite system limit, we can write

ZSM1 (K ) ∝ (cosh K )N
∑
C∈Vz

(tanh K )|C|, (33)

with a proportionality constant only depending on the system
size. Strictly speaking, the summation here should run over
the space V⊥

x instead. Note that the space V⊥
x /Vz is associ-

ated with the logical-Z operators of the code which are all
nonlocal. Also, the number of logical-Z operators Nc obeys
Nc/N → 0 as N → ∞. Hence, replacing

∑
C∈V⊥

x
by
∑

C∈Vz

does not change the free energy density of SM1 in the infinite
system limit.

For SM2, we perform a low-temperature expansion of the
partition function. A classical ground state of the SM2 Hamil-
tonian HSM2 Eq. (20) is the state with τ̃ j = +1 for all j. The
ground-state energy is −NK̃ . The energy cost of a single spin
flip τ̃ j → −1 at the site j is +2K̃|b j |. The low-temperature
expansion is a summation over all possible spin flips on top of
the classical ground state:

ZSM2 (K̃ ) ∝ eNK̃
∑
C∈Vz

e−2K̃ |C|, (34)

where the proportionality constant is given by the degeneracy
of the classical Hamiltonian HSM2 , which is independent of K̃
but related to the internal symmetry of HSM2 . By comparing
Eqs. (34) and (33), we establish the HLT duality between the
nonrandom SM1 and SM2 under the condition

tanh K = e−2K̃ . (35)

This condition relates a large (small) positive value of K to a
small (large) positive value of K̃ , which is natural for an HLT
duality. Another way to obtain this HLT duality is to apply
Wegner’s general approach for dualities in Ising-type models
[25].

Now, we discuss the dualities among the random statistical
models appearing in the decohered CSS code. In the case of
bit-flip errors, as shown in Theorem 1, the R-replica SM1 with

rRC is dual to the R-replica SM2 with iRC under an HLT
duality. The duality relation between the coupling constants
K and K̃ is the same as Eq. (35) for the nonrandom case. The
proof of the HLT duality between the two R-replica random
statistical models generalizes the discussion above for the
nonrandom case. The mathematical details of the proof are
provided in Appendix A. For the case of phase-flip errors, a
parallel analysis can be made for the two different R-replica
random statistical models that describe TrρR

p , as shown in
Theorem 2. These two statistical models are also dual to each
other under a similar HLT duality.

Next, we introduce the BPD dualities between the random
statistical models associated with bit-flip errors and those
associated with phase-flip errors. The statement of these BPD
dualities is the following.

Theorem 3. For R = 2, 3, and ∞, the R-replica random
statistical models that describe the Rényi entropy SR(ρb)
caused by the bit-flip errors are dual to the statistical models
that describe the Rényi entropy SR(ρp) caused by the phase-
flip errors. We can summarize these BPD dualities as

Tr
(
ρR

b

) ∝ Tr
(
ρR

p

)
, for R = 2, 3, and ∞ (36)

(up to unimportant proportionality constants), when the error
rates 0 < px,z < 1

2 satisfy the duality relations

[
(1 − px )R + pR

x

][
(1 − pz )R + pR

z

] = 1

2R−1
. (37)

In particular, in R → ∞ limit, the duality condition re-
duces to

(1 − px )(1 − pz ) = 1
2 (38)

for the range of error rates px,z ∈ (0, 1/2) under consideration.
Note that duality relation Eq. (37) maps the weak bit-flip de-
coherence (px close to 0) to the strong phase-flip decoherence
(pz close to 1/2), and vice versa. Hence, the BPD duality is
a “strong-weak” duality for the strength of decoherence. We
provide the mathematical details of the proof of this duality
in Appendix B. Here, we sketch the general idea that leads
to these BPD dualities. Based on Theorems 1 and 2, we can
use the R-replica SM1 with rRC to describe SR(ρb) and the
R-replica SM1 with iRC to describe SR(ρp). Integrating out
the randomness, rRC or iRC, results in the interactions be-
tween the R replicas of SM1 (see Appendix C). For a general
R, the interreplica interactions mediated by rRC differ from
those mediated by iRC. However, the cases with R = 2, 3
are exceptions. The interreplica interactions mediated by rRC
and iRC are identical when the error rates px,z satisfy the
relations Eq. (37). Therefore, there are BPD dualities between
the R-replica random statistical models for SR(ρb) and SR(ρp)
when R = 2, 3.

We can also understand the BPD duality with R = 2 us-
ing the HLT duality between the nonrandom SM1 and SM2.
Combining Eqs. (13), (23), and (24), we can integrate out the
randomness E (see Appendix C) and obtain

Trρ2
b ∝ ZSM1 (K ′) with K ′ = arctanh((1 − 2px )2), (39)

where ZSM1 (K ′) is the partition function of the nonrandom
SM1. Essentially, integrating out the real random-coupling
“renormalizes” the coupling constant from K = − 1

2 log px

1−px
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to K ′. Similarly, we can show that

Trρ2
p ∝ ZSM2 (K̃ ′) with K̃ ′ = arctanh((1 − 2pz )2). (40)

The BPD duality with R = 2 shown in Theorem 3 is equiv-
alent to the HLT duality between the nonrandom statistical
models in Eqs. (39) and (40).

The BPD duality at R → ∞ can also be justified using the
HLT duality between the nonrandom SM1 and SM2. From

Eq. (22), we notice that TrρR
b |R→∞ is dominated by the ran-

domness pattern E ∈ V that maximizes the partition function
ZSM1 (K, E ). A high-temperature expansion similar to Eq. (33)
implies that the maximum of ZSM1 (K, E ) can be reached by
the trivial randomness pattern E = 0. Therefore, the behavior

of TrρR
b |R→∞ is dominated by (the Rth power of) the par-

tition function ZSM1 (K )R of the nonrandom SM1. Similarly,

TrρR
p |R→∞ is dominated by the partition function ZSM2 (K̃ )R

without randomness. Therefore, the HLT duality between the
nonrandom SM1 and SM2 leads to the BPD duality between
the Rényi entropies SR(ρb) and SR(ρp) in the limit R → ∞.

We comment that a technically similar approximate duality
was discovered first in the spin glass context using the “replica
trick” [26] and later applied to the error threshold of stabilizer
codes [10,12] (at R → 1 in our language). In contrast, the
dualities at R = 2, 3,∞ discussed in this paper are exact and
are directly associated with the Renyi entropies SR, which are
physical quantities by themselves instead of models appearing
in the intermediate steps of the replica trick.

D. Discussion on the interpretation of DIPTs and the
monotonicity of critical error rates

In this subsection, we briefly discuss the physical interpre-
tation of DIPTs with different values of R. Also, we present
a conjecture on the monotonicity of the critical error rates
p�

x,z(R) of the DIPTs as functions of the Rényi index R.
As discussed in the previous subsections, the critical error

rates p�
x,z of the DIPT in the limit R → 1 matches the error

threshold for the decodability of the logical information in
the error-corrupted CSS code. For the DIPT with R = 2, in
addition to the singularity of the second Rényi entropy, we
can also view it from the perspective of a quantum phase
transition in the doubled Hilbert space, which we explain in
the following.

The discussions of bit-flip errors and phase-flip errors are
completely parallel. Let us take the former as an example.
Using the Choi-Jamiołkowski isomorphism [27,28], we can
map the mixed-state density matrix ρb to a pure state |ρb〉〉,
called the Choi representation of ρb, in the doubled Hilbert
space. |ρb〉〉 is related to its error-free counterpart |ρ0〉〉 via

|ρb〉〉 ∝ (eK̃
∑

μ Xμ⊗Xμ
)|ρ0〉〉, (41)

with K̃ = arctanh( px

1−px
). One can show that |ρb〉〉 is a ground

state of the following parent Hamiltonian in the doubled
Hilbert space

HD
b = Hcss ⊗ 1 + 1 ⊗ Hcss + 2

∑
j

e−2K̃
∑

μ(b j )μXμ⊗Xμ, (42)

where Hcss is the CSS-code Hamiltonian given in Eq. (2).
The construction of this parent Hamiltonian generalizes the

construction for the decohered cluster states studied in
Ref. [20]. A similar construction for the decohered 2D toric
code was given in Ref. [15]. Appendix F contains the details
of the construction of Eq. (42) in the most general setting. An
interesting property is that HD

b is frustration-free up to additive
constants. In other words, we can decompose this Hamiltonian
into a sum of positive-semidefinite local terms, and each of
such local terms annihilates the ground state |ρb〉〉.

Let us analyze the phase diagram of this model Eq. (42)
in the doubled Hilbert space. When px is close to 0, we can
treat the last term of HD

b as a perturbation. Since Hcss by itself
is a gapped Hamiltonian, the ground state |ρb〉〉 for small px

is smoothly connected to |ρ0〉〉 which contains two decoupled
copies of the same CSS code (in the doubled Hilbert space).
Another regime is represented by the limit px = 1/2. The
ground state at px = 1/2 is a stabilizer state with stabilizers,

Ai[X ] ⊗ 1, 1 ⊗ Ai[X ], Xμ ⊗ Xμ, and Bj[Z] ⊗ Bj[Z].

This stabilizer state at px = 1/2 is equivalent to a single
copy of the original CSS code C (embedded inside the dou-
bled Hilbert space). If two copies of the original CSS codes
represent a quantum phase of matter different from a single
copy, there must be a quantum phase transition between them.
This quantum phase transition must occur at the critical er-
ror rate p�

x(R = 2) of the DIPT with R = 2. Note that this
quantum phase transition lives in the same spatial dimension
as the statistical model but has nontrivial temporal dynamics
in the doubled Hilbert space. The spatial correlation of this
quantum phase transition can be equivalently captured by the
random statistical models with R = 2 discussed in previous
subsections. For example, the equal-time correlation function
〈〈ρb|O1 ⊗ O2|ρb〉〉 ∝ Tr(ρbO1ρbOT

2 ) can be translated into a
correlation function of the 2D random statistical models with
R = 2. Here, OT

2 is the transpose of the operator O2. When
the statistical models for R = 2 exhibit critical behavior, the
same critical behavior appears in the spatial correlation of the
quantum system in the doubled Hilbert space, indicating a
quantum phase transition.

The physical implications of the DIPTs with a general R
(beyond the singularities of the Rényi entropies) and the rela-
tions among the DIPTs with different R’s are both interesting
future research directions. Pertaining to the latter, we present
the following conjecture.

Conjecture: The critical error rates p�
x,z(R) are both mono-

tonically increasing functions of R.
Here, we have assumed that for every error type, bit-flip or

phase-flip, and for every Rényi index R, there is a unique DIPT
in the range of error rates px,z ∈ (0, 1/2). The associated
critical error rates are the subject of the conjecture above.

A piece of evidence for this conjecture is given by the
relation

p�
x,z(R = 2) < p�

x,z(R → ∞), (43)

which we prove in the following. Take the case of bit-flip
errors as an example. As discussed in Sec. II C, the behavior of
SR for both R = 2 and R → ∞ are related to the nonrandom
SM1. The “renormalized” coupling constant in the R = 2 case
is K ′ = arctanh((1 − 2px )2) [see Eq. (39)] and the coupling
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FIG. 3. Stabilizers of the 3D toric code. Qubits live on the edges
of the lattice. An X -type stabilizer (red) is a product of 6 Pauli-X
operators on the edges connected to the same site. A Z-type stabilizer
(blue) is a product of 4 Pauli-Z operators on the edges of a plaquette.

constant in the R → ∞ case is K = 1
2 log 1−px

px
. The fact

K > K ′ for px ∈ (0, 1
2 ) implies p�

x(R = 2) < p�
x(R → ∞).

As we will see in Sec. III, for the class of CSS codes
with an em symmetry, the critical error rates p�

x,z(R) for
R = 2, 3,∞ are exactly fixed [see Eq. (63)] by the dualities
[assuming the uniqueness of DIPT for each R in the range
px,z ∈ (0, 1/2)]. These exact critical error rates also obey our
conjecture.

More evidence of our conjecture will be provided when
we discuss specific examples, including the 3D toric code, the
X -cube model, and the 2D toric code. In particular, we will see
that our conjecture is consistent with the error thresholds, i.e.,
p�

x,z(R → 1), of these models obtained in previous literature.
If true, our conjecture establishes a general relation be-

tween DIPTs with different Rényi indices R. It would
provide an interesting method to upper bound the error
threshold p�

x,z(R → 1) using p�
x,z(R = 2). Note that study-

ing the limit R → 1 requires the averaging over quenched
disorders/randomness in the corresponding statistical models,
while the R = 2 case is essentially captured by the same
statistical model (with a renormalized coupling) but without
randomness. We expect the latter to be generally simpler to
analyze than the former.

Additionally, we remark that, since the statistical models
for R = 2,∞ can be mapped to the nonrandom SM1 (see
Sec. II C), the DIPTs at R = 2 and R = ∞ share the same
universality class as the phase transition of the nonrandom
SM1 (when such phase transition exists).

E. Example: 3D toric code

As a pedagogical example, let us apply our formalism to
the decohered toric code model. The 2D toric code belongs
to a special class of CSS codes with an em symmetry, which
we will focus on in Sec. III. Here, we consider the random
statistical models that describe the 3D toric code with bit-flip
and phase-flip errors.

The 3D toric code is a CSS code defined on a cubic lattice
where the qubits, labeled by μ, are located on the edges of the
lattice. As shown in Fig. 3, the 3D toric code has an X -type
stabilizer Ai[X ] for every site i and a Z-type stabilizer Bp[Z]
for every plaquette p. Each Ai[X ] is a product of the Pauli-X
operators on the six edges connected to the site i, while each

cubic lattice

(a) SM1:

(b) SM2:

dual cubic lattice

FIG. 4. Statistical models associated with the 3D toric code:
(a) The 3D Ising model has a spin on each site of the cubic lattice and
nearest-neighbor interactions (depicted as the two spins (purple dots)
“coupled” by the orange edge). (b) Classical 3D Z2 gauge theory on
the dual cubic lattice has a spin per dual edge (dashed lines). Each
spin interaction involves the four classical spins on the boundary of
a dual plaquette (orange).

Bp[X ] is a product of the Pauli-Z operators on the four edges
that belong to the plaquette p:

(44)

Now we construct SM1 following the recipe in Sec. II B.
We introduce a classical spin τi on each site i (where the
Ai[X ] stabilizer is located). Equation (17) tells us that the spin
interaction Oz

μ is a product of τi’s whose associated stabilizers
Ai overlap with the edge μ. Hence, we have

Oz
μ=〈i,i′〉 = τiτi′ , (45)

where μ = 〈i, i′〉 means μ is the edge between the nearest-
neighbor pair of sites i and i′ [see Fig. 4(a)]. The classical
Hamiltonian of the nonrandom SM1 is then given by

HSM1 = −K
∑
〈i,i′〉

τiτi′ , (46)

which is exactly the Hamitlonian of the 3D classical Ising
model (with the nearest-neighbor interaction).

For SM2, we introduce a classical spin τ̃p for each plaquette
p. Each spin interaction Ox

μ is the product of the four spins
τ̃p on the four plaquettes bordering the edge μ. Hence, the
Hamiltonian of SM2 is given by

HSM2 = −K̃
∑

μ

∏
p s.t. μ∈∂ p

τ̃p, (47)

where “
∏

p s.t. μ∈∂ p” represents the product over the plaquette
p such that the edge μ belongs to the boundary ∂ p of the
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plaquette. As shown in Fig. 4(b), each spin interaction term
in HSM2 , when depicted on the dual cubic lattice, involves
four classical spins on the four dual edges that form a dual
plaquette. Hence, HSM2 describes a 3D classical Z2 gauge
theory on the dual lattice. It is well-known that the nonrandom
3D Ising model and the 3D classical Z2 gauge theory are
dual to each other under an HLT duality (or Kramers-Wannier
duality) [25].

In the following, we discuss the DIPTs in the decohered 3D
toric code using the multireplica SM1 and SM2 with random
couplings. We will focus on the cases with R → 1 and R =
2, 3,∞. Note that the rRC in the Ising model is also known as
the random-bond disorder, while the rRC in the 3D Z2 gauge
theory is often referred to as the random-plaquette disorder.

For R → 1, it follows from Corollary 1 and 2 that, the
von Neumann entropy S1(ρb) of the error-corrupted mixed
state ρb is the quenched-disorder-averaged free energy of
the 3D random-bond Ising model, while S1(ρp) is quenched-
disorder-averaged free energy of the 3D random-plaquette Z2

gauge theory. The respective disorder distribution satisfies the
Nishimori condition. As mentioned earlier, these quenched-
disordered statistical models are exactly the ones previously
used to study the bit-flip and phase-flip error thresholds
p�

x/z(R → 1) for the 3D toric code [8,11,29]. The phase di-
agram of the 3D random-bond Ising model (in the R → 1)
was studied numerically in Refs. [30,31]. The 3D random-
plaquette Z2 gauge theory was numerically investigated in
Refs. [11,29]. These numerical studies obtained the following
error thresholds for the 3D toric code:

p�
x(R → 1) ≈ 0.233, p�

z (R → 1) ≈ 0.033. (48)

For R = 2, as described around Eqs. (39) and (40), the
two-replica random statistical models that describes the sec-
ond Rényi entropy S2(ρb/p) can be reduced to the nonrandom
SM1,2 with renormalized couplings K ′ = arctanh((1 − 2px )2)
and K̃ ′ = arctanh((1 − 2pz )2). The critical point of SM1, i.e.,
the 3D classical Ising model in this case, has been numerically
studied (see Ref. [32], for example), which allows us to extract
the critical bit-flip error rate p�

x(2) for the DIPT with R = 2.
The critical phase-flip error rate p�

z (2) is related to the p�
x(2)

via the BPD duality Eq. (37). Therefore, we conclude

p�
x(2) ≈ 0.266, p�

z (2) ≈ 0.099, (49)

for the DIPTs with R = 2. These DIPTs belong to the 3D Ising
universality class and, hence, share the same critical expo-
nents. These transitions at R = 2 can also be understood from
the perspective of the spontaneous breaking of Z2 higher-form
symmetries. A counterpart with continuous higher-form sym-
metries was studied in Ref. [33].

For R = 3, the three-replica disordered statistical mod-
els that describe the behaviors of S3(ρb/p) can be reduced
to Askin-Teller-type statistical models, namely two coupled
copies of SM1,2, after the rRC or iRC are integrated out (see
general discussions in Appendix C). For bit-flip errors, S3(ρb)
is captured by the 3D Askin-Teller model on the cubic lattice:

HAT,b = −K ′′∑
〈ii′〉

(
τ

(1)
i τ

(1)
i′ + τ

(2)
i τ

(2)
i′ + τ

(1)
i τ

(1)
i′ τ

(2)
i τ

(2)
i′
)
.

(50)

TABLE I. Critical error rates of the DIPTs in the decohered 3D
toric code.

R p�
x (R) p�

z (R)

1 0.233 0.033
2 0.266 0.099
3 0.288 0.135
∞ 0.391 0.179

Here, the coupling constant K ′′ is given by the relation
tanh K ′′ + (tanh K ′′)−1 = (1 − 2px )−2 + 1. τ

(1)
i and τ

(2)
i are

the classical Z2 variables on the two copies of cubic lat-
tices, respectively. Previous numerical studies showed that
this model exhibits a first-order transition between the para-
magnetic and the ferromagnetic phase at the critical coupling
K ′′

c ≈ 0.157 [34]. This result implies that, with R = 3, the
DIPT driven by bit-flip errors is a first-order transition occur-
ring at the critical bit-flip error rate

p�
x(3) ≈ 0.288. (51)

For phase-flip errors, S3(ρp) is described by a 3D Askin-
Teller-type Z2 gauge theory with the Hamiltonian

HAT,p = −K̃ ′′∑
μ

⎛
⎝∏

μ∈∂ p

τ̃ (1)
p +

∏
μ∈∂ p

τ̃ (2)
p +

∏
μ∈∂ p

τ̃ (1)
p τ̃ (2)

p

⎞
⎠.

(52)
To the best of our knowledge, this model has not been studied
before. The BPD duality implies that this model is dual to
the model in Eq. (50). Therefore, the DIPT with R = 3 driven
by phase-flip errors is also first order. It occurs at the critical
phase-flip error rate

p�
z (3) ≈ 0.135. (53)

As shown in Sec. II C, in the limit R → ∞, the behavior
of the Rényi entropies S∞(ρb/p) are effectively described by
the nonrandom SM1,2 with the couplings K = −1

2 log px

1−px
and

K̃ = −1
2 log pz

1−pz
. Hence, we can obtain the critical error rates:

p�
x(∞) ≈ 0.391, p�

z (∞) ≈ 0.179. (54)

The corresponding DIPTs belong to the 3D Ising universality
class.

We have discussed the critical error rates of the DIPTs
with several different R’s in the decohered 3D toric code. The
results are summarized in Table I. As we can see, these critical
error rates agree with our conjecture that p�

x,z(R) monotoni-
cally increase as functions of R.

F. Example: X-cube model

Our second example is the X -cube model, which is a CSS
code that exhibits fracton topological order [18]. The X -cube
model is defined on a 3D cubic lattice with a qubit located
on each edge of the lattice. Each X -stabilizer involves four
nearby edges forming a cross, while each Z-stabilizer involves
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FIG. 5. X -type stabilizers (red) and Z-type stabilizers (blue) of
the X -cube model.

12 edges of a unit cube (see Fig. 5):

(55)

where +i,a denotes a cross formed by the four edges centered
at site i, and a = x, y, z labels the perpendicular direction to
the cross. denotes the cube labeled by c.

In SM1, there should be one classical spin per Ai,a sta-
bilizer. Hence, we introduce three colors of classical spins
τi,a=x,y,z for each site i on the cubic lattice and represent them
as the purple arrows in Fig. 6(a). The ungauging procedure
in Sec. II B produces the following SM1 Hamiltonian, which

(a) SM1:

(b) SM2:

FIG. 6. Two statistical models originate from the X -cube model.
(a) SM1 is a model with three colors of classical spins (depicted
by the purple arrows along the three directions) per site on a cu-
bic lattice. Each nearest-neighbor interaction (orange) involves the
four spins on the two neighboring sites whose colors (arrow direc-
tions) are perpendicular to the edge connecting the neighboring sites.
(b) SM2 is a plaquette Ising model on the dual cubic lattice. There is
one classical spin per dual site. Each spin interaction term involves
the four spins on the four corners of a dual plaquette.

describes a tricolor Ising model with the four-spin interactions

HSM1 = −K

⎛
⎝∑

〈ii′〉‖ẑ

τi,xτi,yτi′,xτi′,y +
∑
〈ii′〉‖x̂

τi,zτi,yτi′,zτi′,y

+
∑
〈ii′〉‖ŷ

τi,xτi,zτi′,xτi′,z

⎞
⎠. (56)

For each nearest-neighbor pair of sites 〈i, i′〉, only the spins
with their colors different from the direction of the edge 〈i, i′〉
are involved in the nearest-neighbor four-spin interaction [see
Fig. 6(a)].

This tricolor Ising model has a classical gauge symmetry
that changes τi,a → −τi,a independently for each site i. A
change of variables effectively imposes a gauge fixing:

ηi,x ≡ τi,yτi,z, ηi,y ≡ τi,xτi,z, (57)

where ηi,x/y = ±1 are gauge invariant classical Z2 variables.
Using these new variables, we can rewrite the Hamiltonian as
an anisotropic 3D Ashkin-Teller model [10,35],

HSM1 = −K

⎛
⎝∑

〈ii′〉‖ẑ

ηi,xηi,yηi′,xηi′,y +
∑
〈ii′〉‖x̂

ηi,xηi′,x

+
∑
〈ii′〉‖ŷ

ηi,yηi′,y

⎞
⎠. (58)

Note we can also directly obtain this statistical model if we
remove the Ai,z stabilizers from the X -cube model. Removing
the Ai,z stabilizers does not change the nature of this CSS code
because Ai,z can be expressed using the remaining stabilizers,
i.e., Ai,z = Ai,xAi,y.

For SM2, we introduce a classical spin τ̃c to each cube c.
The cube label c can also be viewed as the site index for the
dual cubic lattice. The Hamiltonian of SM2 is given by

HSM2 = −K̃
∑
�̃

∏
c∈�̃

τ̃c, (59)

where �̃ sums over the dual plaquettes �̃ on the dual lattice
and “c ∈ �̃” indicates that c is a dual site on one of the corners
of �̃. HSM2 represents a 3D plaquette Ising model with a four-
spin interaction for each dual plaquette [see Fig. 6(b)].

We are now ready to examine the DIPTs of the X -
cube model. The nonrandom anisotropic Ashkin-Teller model
[Eq. (58)] and the 3D plaquette Ising model [Eq. (59)] were
studied numerically in Ref. [36]. First-order phase transitions
were found at the critical couplings Kc ≈ 0.657 and K̃c ≈
0.276. We can convert these results into the critical error rates
of the DIPTs with R = 2 and R = ∞. The R → 1 limit was
numerically studied by Ref. [10] as the error thresholds of
the X -cube model. We summarize these results in Table II.
These numerically obtained critical error rates agree with our
conjectured monotonicity of p�

x,z(R).
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TABLE II. Critical error rates for the X -cube model. The re-
sults for R = 2, ∞ are derived from the study of the (nonrandom)
anisotropic Ashkin-Teller model and the plaquette Ising model in
Ref. [36]. The error thresholds in the limit R → 1 were obtained in
Ref. [10].

R p�
x p�

z

1 0.075 0.152
2 0.120 0.241
∞ 0.212 0.365

The R = 3 case requires the consideration of two coupled
copies of plaquette Ising models on the dual cubic lattice:

HAT,p = −K̃ ′′∑
�̃

⎛
⎝∏

c∈�̃
τ̃ (1)

c +
∏
c∈�̃

τ̃ (2)
c +

∏
c∈�̃

τ̃ (1)
c τ̃ (2)

c

⎞
⎠ (60)

and its BPD dual. To our knowledge, this model has not been
studied before.

III. DECOHERED CSS CODE WITH
ELECTRIC-MAGNETIC SYMMETRY

In this section, we study the consequences of the dualities
for the CSS codes with an electric-magnetic (em) symmetry,
a symmetry relating the X -type and Z-type stabilizers. We
will see that the em symmetry effectively folds the tapestry
of dualities in Fig. 1 in half, resulting in a new tapestry
shown in Fig. 7. The new tapestry allows us to pin down the

FIG. 7. The tapestry of dualities of an em-symmetric CSS code.
The ungauging procedure leads to SM with a self-duality. Under
bit-flip or phase-flip decoherence, R-replica SM with rRC and R-
replica SM with iRC emerge as the description of the system’s Rényi
entropy. These random statistical models are related by HLT dualities
for a general R. For R = 2, 3, ∞, the BPD dualities (combined with
the em symmetry) relate different values of error rates.

super-universal self-dual error rates for the Rényi entropies
SR(ρb/p) with R = 2, 3,∞. These super-universal self-dual
error rates must coincide with the critical error rates p�

x/z of
the DIPTs if there is a unique DIPT for each R. We will
also discuss concrete examples of em-symmetric CSS codes,
including the 2D toric code and Haah’s code in 3D.

A. Tapestry of dualities and self-dual error rates
in em-symmetric CSS codes

Let us first define the em symmetry. A CSS code is em-
symmetric if there is a unitary transformation Uem such that

UemAi[X ]U†
em = Bj= f (i)[Z],

UemBj[X ]U†
em = Ai=g( j)[Z]. (61)

Here, Uem is a product of the Hadamard gate 1√
2
(1 1
1 −1) on

each qubit, which exchanges the Pauli-X and the Pauli-Z
operators, and a spatial action that permutes the locations of
the qubits. The functions f and g are bijections between the
locations of X - and Z-type stabilizers induced by the spatial
action in Uem.

Since the em symmetry maps between the X -type and Z-
type stabilizers, the two statistical models SM1,2 produced by
the ungauging procedure in Sec. II B become identical (up to
some spatial rearrangement of the classical spins) in an em-
symmetric CSS code. Hence, we will not distinguish SM1,2 in
this section and call them both SM. The original HLT duality
between the nonrandom SM1 and SM2 becomes an HLT self-
duality of the nonrandom SM.

The em symmetry maps the bit-flip errors and the phase-
flip errors into each other. Therefore, the decoherence effects
caused by the two error types are effectively identical. We re-
mark that the em symmetry is an intrinsic property of the CSS
code under the current discussion. We do not require the error
model to respect this symmetry. As followed from Theorems 1
and 2, the Rth Rényi entropies SR(ρb/p) are described by both
the R-replica SM with rRC and R-replica SM with iRC. The
two types of the R-replica random statistical models are dual
to each other under the HLT dualities.

The BPD duality leads to profound consequences for em-
symmetric CSS codes. Combining the em symmetry action
and the BPD duality, both of which map between bit-flip
errors and phase-flip errors, we conclude that the random
statistical models for SR(ρb) with R = 2, 3,∞ are self-dual,
and so are those for SR(ρp).

Corollary 3. For an em-symmetric CSS code with deco-
herence, the Rényi entropies SR(ρb/p) with R = 2, 3,∞ are
described by R-replica random statistical models with self-
dualities. The dualities map between the two error rates 0 <

p, p̃ < 1
2 related by

[(1 − p)R + pR][(1 − p̃)R + p̃R] = 1

2R−1
. (62)

Here, both of the error rates p and p̃ can be either the bit-flip
error rates or the phase-flip error rates, depending on the error
type considered.

Similar to Theorem 3, the duality relations Eq. (62) are
dualities between weak and strong decoherence strength. By
solving the self-dual condition p = p̃ together with Eq. (62),
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square lattice dual square lattice

FIG. 8. The em symmetry of the 2D toric code is evident from
the pictorial representations of the X - and Z-type stabilizers on the
square lattice and its dual. The unitary operator Uem is a product of
Hadamard gates on all sites and a translation action by half of a lattice
spacing in both the horizontal and vertical directions.

we obtain the super-universal self-dual error rates (listed be-
low) shared by all em-symmetric CSS codes. If we further
assume that there is a unique DIPT for each R [within the
range p ∈ (0, 1/2)], then the self-dual error rates must coin-
cide with the critical error rates of the corresponding DIPTs:

p�(R) =

⎧⎪⎨
⎪⎩

1
2 (1 −

√√
2 − 1) ≈ 0.178 for R = 2,

1
6 (3 − √

3) ≈ 0.211 for R = 3,
1
2 (2 − √

2) ≈ 0.293 for R → ∞.

(63)

It is worth noting that these super-universal critical error rates
are consistent with the conjectured monotonicity of p�

x/z(R).
Also, we called these values super-universal because they
encompass DIPTs of different universality classes and in dif-
ferent dimensions, as demonstrated by the examples discussed
below.

If there is more than one DIPT for p ∈ [0, 1/2], the val-
ues given Eq. (63) should be viewed as the self-dual error
rates. The critical error rates that differ from the self-dual
error rates must form pairs. For every pair, there must be a
critical error rate smaller than the self-dual value. Therefore,
in the case of an em-symmetric CSS code with multiple DIPTs
for p ∈ [0, 1/2] and at a given R, the self-dual error rate in
Eq. (63) upper bounds the critical error rate of the first DIPT
encountered as the error rate increases from 0.

The tapestry summarizing all the dualities of an em-
symmetric CSS code is shown in Fig. 7. Conceptually, this
tapestry is Fig. 1 folded in half in the middle by the em
symmetry.

In subsequent subsections, as demonstrations, we dis-
cuss two concrete models where our general results of
em-symmetric CSS codes apply.

B. Example: 2D toric code

The 2D toric code is a familiar example of an em-
symmetric CSS code. It is defined on a 2D square lattice with
a qubit on each edge. As shown in Fig. 8, each X -type stabi-
lizer is a product of four Pauli-X operators on the four edges
forming a cross while each Z-type stabilizer is a product of
four Pauli-Z operators on the four edges forming a plaquette:

Ai =
∏
μ∈+i

Xμ Bp =
∏

μ∈�p

Zμ, (64)

where +i labels the cross centered at the site i and �p is the
plaquette labeled by p.

It is straightforward to visualize the em symmetry by com-
paring the pictorial representations of the stabilizers on the
square lattice and their representations on the dual square
lattice (see Fig. 8). This em symmetry is generated by the
unitary operator Uem that interchanges the X and Z operators
on each qubit and translates the system both in the horizontal
and vertical directions by half of the lattice spacing.

For the 2D toric code, SM is the 2D classical Ising model
with the nearest-neighbor coupling:

HSM = −K
∑
〈i,i′〉

τiτi′ , (65)

where the classical spins τi are located on the site of the
square lattice. The HLT self-duality of this model (without
randomness) is the well-known Kramers-Wannier duality.

Now, we discuss the Rényi entropies SR(ρb/p) in the deco-
hered 2D toric code. The R → 1 limit is described by SM with
quenched random-coupling disorder, which exactly recovers
the random-bond Ising model introduced in Ref. [8] for the
study of the error thresholds p�(R → 1). The cases with R = 2
and R = ∞ can be effectively captured by the nonrandom
SM (see Appendix C). Hence, there is a unique DIPT for
R = 2,∞, whose universality class is equivalent to the Ising
critical point in 2D. The corresponding critical error rates,
fixed by the self-dualities, are given by Eq. (63).

For R = 3, integrating out the randomness in the statisti-
cal model yields the 2D square-lattice Ashkin-Teller model,
whose Hamiltonian is given by

HAT = −K ′′∑
〈ii′〉

(
τ

(1)
i τ

(1)
i′ + τ

(2)
i τ

(2)
i′ + τ

(1)
i τ

(1)
i′ τ

(2)
i τ

(2)
i′
)
.

(66)
This Ashkin-Teller model tuned by the coupling constant K ′′
has a unique second-order transition [37], corresponding to
p�(3).

For R = 4, 5, 6, Ref. [14] numerically simulated the cor-
responding multireplica statistical models and found a unique
phase transition in each case. The values of p�(R) with R → 1
and R = 2, 3, 4, 5, 6,∞ are consistent with the conjectured
monotonicity of p�(R) as a function of R.

C. Example: Haah’s code

Haah’s code [19] provides an example of 3D em-symmetric
CSS code. It is defined on a 3D cubic lattice with two qubits
per site. There is one X -type and one Z-type stabilizer per
cube. They are pictorially represented in Fig. 9(a). Each A[X ]
stabilizer is a product of eight Pauli-X operators on the qubits
in red, while each B[Z] stabilizer is a product of eight Pauli-Z
operators on the qubits in blue. The em symmetry action Uem

of Haah’s code is the product of (1) a Hadamard gate on each
qubit, (2) a spatial inversion �r → −�r, and (3) a swap of the
two qubits on each site.

Apply the ungauging procedure in Sec. II B, we obtain a 3D
SM with a classical Z2 spin per site on the dual cubic lattice.
The Hamiltonian of this SM contains two types of four-spin
interaction per unit cell, each associated with a tetrahedron
inside a cube. They are pictorially represented in Fig. 9. This
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(a) Haah’s code:

(b) Spin interactions in SM:

FIG. 9. (a) Haah’s code is defined on a 3D cubic lattice with
two qubits (depicted as the red, blue, and dashed circles) per site.
For each cube, the X -type stabilizer is the product of the Pauli-X
operators on the eight red qubits, and the Z-type stabilizer is the
product of the Pauli-Z operators on the eight blue qubits. (b) In SM,
which originates from Haah’s code, there are two types of four-spin
interactions in each unit cell. Each type is a product of the four
classical spins (purple dots) on the corners of the corresponding
tetrahedron (orange).

SM is also known as the “fractal Ising model.” It was intro-
duced in Ref. [18] as the classical model that produces Haah’s
code after gauging. The (nonrandom) fractal Ising model was
recently shown through numerical studies to exhibit a unique
first-order transition [38].

Following the recipe in Sec. II B, the Rényi entropies
SR(ρb/p) are mapped to the R-replica random fractal Ising
models. As discussed earlier, the cases with R = 2 and R →
∞ can be effectively reduced to the nonrandom fractal Ising
model, which has a unique first-order transition. Therefore,
the DIPTs with R = 2 and R = ∞ are first-order transitions
occurring at the self-dual error rates listed in Eq. (63). For
R = 3, the three-replica random fractal Ising model can be
reduced to an Ashkin-Teller-type model after integrating out
the randomness (see Appendix C). The phase diagram of this
model and the nature of the self-dual error rate p�(3) are both
interesting problems that we leave for future investigation.

IV. GENERAL STABILIZER CODES UNDER
DECOHERENCE

The mapping from the Rényi entropies to statistical mod-
els can be generalized to general stabilizer codes subject to
a general Pauli noise channel (to be explained below). As
we will see, we can associate a statistical model SM with a
general stabilizer code without the CSS structure. The non-
random version of SM has an HLT self-duality. The Rth Rényi
entropy of the decohered stabilizer code is mapped to both the
R-replica SM with rRC and the R-replica SM with iRC, which
are related by an HLT duality. For R = 2 and R → ∞, there
is a general-Pauli-noise (GPN) duality that maps between two

different Pauli noise channels with different sets of error rates.
We obtain the self-dual conditions of the Pauli noise channels
and discuss their relations to DIPTs. We also include the
Chamon model [39] as a concrete example to demonstrate our
general construction.

A. Stabilizer codes and general Pauli noise

Let us start our discussion with the basics of stabilizer
codes and the model for general Pauli noise. We still focus
on the stabilizer code defined on a system of qubits (with each
carrying a twofold local Hilbert space).

For a general stabilizer code, each stabilizer AJ [X, Z] can
be written as a product of the Pauli-X and Z operators. In this
convention, any Pauli-Y operator in AJ [X, Z] is decomposed
into iXZ . The subscript J of AJ [X, Z] labels the stabilizer’s
center location (and the species of stabilizers if applicable).
Each stabilizer AJ [X, Z] can be represented by a pair of Z2

vectors (aJ , bJ ) with aJ , bJ ∈ V:

AJ [X, Z] = (i)aJ ·bJ
∏
μ

(Xμ)(aJ )μ
∏
μ

(Zμ)(bJ )μ . (67)

Recall V = ZN
2 , the Z2 vector space associated with a system

of N qubits. The prefactor (i)aJ ·bJ ensures that AJ [X, Z]2 = 1.
The fact that all the stabilizers commute with each other is
equivalent to the condition

aJ · bJ ′ + aJ ′ · bJ = 0, ∀J, J ′. (68)

Note that the “·” above is the dot product in the Z2 vector
space V . This Z2-vector-based representation of the stabilizers
is called “binary symplectic representation” in the literature
[40]. Equation (68) defines the binary symplectic inner prod-
uct between (aJ , bJ ) and (aJ ′ , bJ ′ ). The binary symplectic
representation is applicable to any Pauli strings. In other
words, any product of Pauli operators can be represented by a
pair of Z2 vectors (e, f) ∈ V ⊕ V .

In this section, we consider the general Pauli noise that
induces the Pauli noise channel E = ⊗μEμ, a product of the
local Pauli noise channel Eμ on each qubit μ:

Eμ[ρ0] = (1 − px − py − pz )ρ0 + pxXμρ0Xμ

+ pyYμρ0Yμ + pzZμρ0Zμ, (69)

where px,y,z > 0 are the probability/error rates of the X -, Y -,
Z-type errors on each qubit. The general Pauli noise channel
E includes the two quantum channels Nx,z induced by the
bit-flip and the phase-flip errors and studied in Secs. II and
III. E reduces to the depolarizing channel when we set px =
py = pz. For the following analysis, we make a technical as-
sumption that (1 − px − py − pz ) > px,y,z without the loss of
generality. For a general Pauli noise channel, one can always
combine it with an appropriate choice of unitary global action∏

μ Xμ,
∏

μ Yμ, or
∏

μ Zμ to construct a new quantum channel
that satisfies the condition (1 − px − py − pz ) > px,y,z. Since
this global action does not change the system’s entropy, study-
ing the decoherence effect of the new channel is equivalent to
studying the original channel.

In what follows, we investigate the Rényi entropies SR(ρm )
of the error-corrupted mixed state ρm = E (ρ0) where ρ0 is a
pure logical state of the stabilizer code. Like the case of CSS
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codes, we will construct the statistical models associated with
SR(ρm ) and study their dualities.

B. Statistical models for general stabilizer codes
under general Pauli decoherence

To motivate the statistical model associated with a general
decohered stabilizer code C, it is useful first to consider the
setting of CSS code with the general Pauli noise channel E
defined above. In the case where the decoherence channel
is generated by independent bit-flip and phase-flip errors,
namely when E = Nx ◦ Nz, we have

px = (1 − qz )qx, py = qxqz, pz = (1 − qx )qz, (70)

where qx/z are the respective rates of the bit-flip and phase-flip
errors in Nx/z. The Y -type error, now occurring with probabil-
ity py = qxqz, is the consequence of a bit-flip and a phase-flip
error occurring on the same qubit. As discussed in Sec. II, the
effects of independent bit-flip and phase-flip errors decouple
on a CSS code. Therefore, the entropy of the entire system
can be captured by two decoupled (random and multireplica)
statistical models SM1 and SM2. The former lives on the
lattice formed by the centers of the X -type stabilizers, while
the latter lives on the lattice formed by the Z-type stabilizers.

It turns out that, when py deviates from qxqz, namely when
the Y -type errors start to become independent from the bit-flip
and phase-flip errors, SM1 couples to SM2 forming a single
statistical model, which will be called SM in the following,
living on the lattice formed by the centers of all stabilizers.
The duality between SM1 and SM2 becomes the self-duality
of SM. In fact, as we show below, even for a general stabilizer
code C with Pauli decoherence, there is a corresponding self-
dual SM whose R-replica random versions describe the Rényi
entropies of the error-corrupted mixed state.

Like Sec. II, we first introduce the nonrandom version of
the statistical model SM associated with the general stabilizer
code C. We assign one classical Z2 spin τJ to each stabilizer
AJ [X, Z]. The Hamiltonian of SM is given by

HSM = −
∑

μ

KxOx
μ[τ ] + KyOy

μ[τ ] + KzOz
μ[τ ], (71)

which contains three types of spin interactions

Oz
μ[τ ] =

∏
J

(τJ )(aJ )μ,

Ox
μ[τ ] =

∏
J

(τJ )(bJ )μ, (72)

Oy
μ[τ ] =

∏
J

(τJ )(aJ+bJ )μ,

with coupling constants Kx,y,z. These spin interactions are the
generalizations of Eqs. (17) and (21). They satisfy the relation

Ox
μ[τ ]Oy

μ[τ ]Oz
μ[τ ] = 1. (73)

For the nonrandom SM, the comparison of the high-
temperature and low-temperature expansion of the partition

function ZSM =∑{τJ=±1} e−HSM yields a self-duality of SM

that maps the coupling constants K = (Kx, Ky, Kz ) to K̃ =
(K̃x, K̃y, K̃z ),

e−2(K̃x+K̃y ) = tanh Kz + tanh Kx tanh Ky

1 + tanh Kx tanh Ky tanh Kz
,

e−2(K̃z+K̃x ) = tanh Ky + tanh Kz tanh Kx

1 + tanh Kx tanh Ky tanh Kz
, (74)

e−2(K̃y+K̃z ) = tanh Kx + tanh Ky tanh Kz

1 + tanh Kx tanh Ky tanh Kz
.

The detailed derivation of this duality in presented in Ap-
pendix D.

Under the Pauli noise channel, the error-corrupted mixed
state of the stabilizer code is denoted as ρm. We prove the fol-
lowing theorem pertaining to the Rth Rényi entropy SR(ρm ) =

1
1−R log Tr(ρR

m ) of the decohered stabilizer code.
Theorem 4. For the general stabilizer code in the infinite

system limit, TrρR
m of the error-corrupted mixed state ρm

generated by the Pauli noise channel is proportional to the
partition function of the R-replica SM with the rRC. TrρR

m is
also proportional to the partition function of the R-replica SM
with iRC:

Tr
(
ρR

m

) ∝
∑

E∈V⊕V
(ZSM(K, E ))R (75)

∝
∑

E∈V⊕V
(WSM(K̃, E ))R, (76)

with the coupling constants K and K̃ given by the error rates
px,y,z via

e−2(Kx+Ky ) = tanh K̃z + tanh K̃x tanh K̃y

1 + tanh K̃x tanh K̃y tanh K̃z

= pz

1 − px − py − pz
,

e−2(Ky+Kz ) = tanh K̃x + tanh K̃y tanh K̃z

1 + tanh K̃x tanh K̃y tanh K̃z

= px

1 − px − py − pz
,

e−2(Kx+Kz ) = tanh K̃y + tanh K̃x tanh K̃z

1 + tanh K̃x tanh K̃y tanh K̃z

= py

1 − px − py − pz
. (77)

Here, E ≡ (e, f) ∈ V ⊕ V is the pair of Z2 vectors that
represents the random couplings in the statistical models. We
have defined the partition function of SM with the rRC pattern
E (and the coupling constants K) as

ZSM(K, E ) =
∑

{τJ=±1}
exp

⎛
⎝∑

μ

(
Kx(−1)fμOx

μ[τ ] + Ky(−1)(e+f)μOy
μ[τ ] + Kz(−1)eμOz

μ[τ ]
)⎞⎠, (78)
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and the SM partition function with the iRC pattern E (and the coupling constants K̃) as

WSM(K̃, E ) =
∑

{τJ=±1}
exp(−HSM(K̃))

∏
μ

(
Ox

μ[τ ]
)eμ
(
Oz

μ[τ ]
)fμ

=
∑

{τJ=±1}
exp

⎛
⎝−HSM(K̃) − iπ

2

∑
μ

eμ

(
Ox

μ[τ ] − 1
)− iπ

2

∑
μ

fμ
(
Oz

μ[τ ] − 1
)⎞⎠. (79)

The two types of R-replica random SM are dual to each
other under the HLT duality. The proof of Theorem 4 (and the
HLT duality) is provided in Appendix D.

The phase diagram of the decohered stabilizer code C has
three tuning parameters px,y,z, which can potentially lead to
even richer physics than the case of CSS codes with only
bit-flip and phase-flip errors. The DIPTs of the decohered
stabilizer code C, indicated by the singularities in the Rényi
entropy SR(ρm ), corresponds to the phase transitions in these
R-replica random statistical models.

Taking the limit of R → 1 of Theorem 4, we obtain the
relation between the von Neumann entropy S1(ρm ) and the
quenched-disorder-average partition function of SM with ran-
dom couplings (derivation summarized in Appendix D):

Corollary 4. The von Neumann entropy of the error-
corrupted state ρm is given by the quenched-disorder-averaged
free energy of SM with rRC (up to an unimportant additive
constant):

S1(ρm ) = −
∑

E∈V⊕V
P(E ) log(ZSM(K, E )), (80)

with the generalized Nishimori condition Eq. (77) relating the
probability distribution of the randomness and the coupling
constant K.

Here, the error chain E ∈ V ⊕ V represents a Pauli string
in a similar fashion as Eq. (67). The probability P(E ) of the
error chain is given by

P(E ) = p
N−Nx (E )−Ny (E )−Nz (E )
0 pNx (E )

x p
Ny (E )
y pNz (E )

z , (81)

where Nx/y/z(E ) are the number of Pauli X/Y/Z operators con-
tained in the Pauli string E , p0 ≡ (1 − px − py − pz ), and N
is the total number of qubits. Similar to the cases of CSS code,
the R → 1 limit recovers the statistical models introduced in
the previous literature to specifically study the decodability
and the error thresholds in stabilizer codes (see Ref. [12], for
example).

At this point, we have finished the general construction
of the random statistical models for SR(ρm ). These statisti-
cal models offer tools to study emergent quantum matters in
decohered stabilizer codes and the DIPTs between them. The
physical implication of the DIPTs for a general R will be left
for future studies.

For R = 2, based on the same reasoning as in Sec. II D, we
can use the Choi-Jamiołkowski isomorphism to map the error-
corrupted matrix state ρm to its Choi representation |ρm〉〉 in
the doubled Hilbert space. We can show that

|ρm〉〉 ∝
⎛
⎝∏

μ

eK̃xXμ⊗Xμ−K̃yYμ⊗Yμ+K̃zZμ⊗Zμ

⎞
⎠|ρ0〉〉, (82)

where K̃x,y,z are given by px,y,z through Eq. (77). The negative
sign in front of the Yμ ⊗ Yμ terms is the consequence of Y T

μ =
−Yμ under the Choi-Jamiołkowski isomorphism. The spatial
correlation function on |ρm〉〉 is identical to the correlation
functions in the two-replica random SM. One can construct
a frustration-free parent Hamiltonian similar to Eq. (42) for
which |ρm〉〉 is an exact ground state (see Appendix F for
details). Therefore, the R = 2 DIPT for a decohered stabilizer
code is related to a quantum phase transition in the doubled
Hilbert space.

As a simple illustration of the general construction of the
statistical models, we briefly discuss its application to the
Chamon model [39] decohered by the Pauli noise channel.
The Chamon model is defined on a cubic lattice with a sin-
gle qubit per site. There is one stabilizer for each cube on
the lattice. Each stabilizer is a product of six Pauli opera-
tors [see Fig. 10(a)]. The SM associated with the decohered
Chamon model is defined on the dual cubic lattice with
one classical Z2 spin per site. The interactions Ox,y,z in the
classical Hamiltonian of SM are four-spin interactions il-
lustrated in Fig. 10(b). To the best of our knowledge, the
phase diagram of SM (with or without randomness) has not
been studied before. It is interesting to study the possible
phases of the decohered Chamon model using SM in the
future.

(a) Stabilizers in Chamon model:

(b) Spin interactions in SM:

FIG. 10. (a) The stabilizer of Chamon model. (b) Three types
of interaction Ox,y,z in SM: Each term (orange) is a product of four
classical spins (purple dots). The dashed lines represents the edges
of the dual cubic lattice.
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C. Dualities for general decohered stabilizer codes

Now, we discuss the GPN (general Pauli noise) duality,
a generalization of the BPD dualities (associated with the
decohered CSS codes) to more general stabilizer codes. The
statement of the GPN duality is the following.

Theorem 5. For R = 2, and ∞, the R-replica random sta-
tistical models that map to the Rényi entropy SR(ρm ) at the
error rates (px, py, pz ) are dual to those statistical models at
the error rates ( p̃x, p̃y, p̃z ). The two sets of dual error rates
obey

(1 − 2py − 2pz )2 = 2 p̃0 p̃x + 2 p̃y p̃z

p̃2
0 + p̃2

x + p̃2
y + p̃2

z

,

(1 − 2pz − 2px )2 = 2 p̃0 p̃y + 2 p̃z p̃x

p̃2
0 + p̃2

x + p̃2
y + p̃2

z

, for R = 2,

(1 − 2px − 2py)2 = 2 p̃0 p̃z + 2 p̃x p̃y

p̃2
0 + p̃2

x + p̃2
y + p̃2

z

.

(83)

and

1 − 2py − 2pz = p̃x/p̃0,

1 − 2pz − 2px = p̃y/p̃0, for R = ∞,

1 − 2px − 2py = p̃z/p̃0.

(84)

Here, p0 ≡ 1 − px − py − pz and p̃0 ≡ 1 − p̃x − p̃y − p̃z.
A proof of this theorem is given in Appendix E. Conceptu-

ally, the GPN dualities with R = 2 and ∞ can be effectively
viewed as the descendants of the self-duality of the non-
random SM. For R = 2, after we integrate out the random
couplings E , the two-replica random SM reduces to a single
copy of nonrandom SM. For the limit R = ∞, the partition
function of the R-replica random SM is dominated by the triv-
ial random coupling configuration, i.e., E = 0. Therefore, the
self-duality of the nonrandom SM implies the GPN dualities
for R = 2,∞. We caution that Theorem 4 is applicable only
when the error rates px,y,z and p̃x,y,z are both physical, namely
they are between 0 and 1. In Appendix E, we also discuss how
the GPN duality recovers the BPD duality for R = 2,∞ for
CSS codes.

For both R = 2 and R = ∞, there is a surface of self-dual
error rates. The error rates (px, py, pz ) that satisfy the follow-
ing equations map back to themselves under the GPN duality

(1 − px − py − pz )2 + p2
x + p2

y + p2
z = 1

2 , for R = 2,

px + py + pz = 1
2 , for R = ∞.

(85)

Note that these self-dual conditions are derived within the
regime with px,y,z < p0 = 1 − px − py − pz. As commented
earlier, the roles of p0, px, py, and pz can be permuted once
the Pauli noise channel is followed by a global unitary action∏

μ Xμ,
∏

μ Yμ, or
∏

μ Zμ. With these permutations taken into
account, the surfaces of self-dual error rates are depicted in
Fig. 11.

The surfaces of self-dual error rates are expected to con-
strain the phase diagram of the decohered stabilizer codes.
One can argue that the renormalization group flow cannot
cross this self-dual surface. A possible scenario is that this
self-dual surface matches the critical surface of the DIPTs.
The specific role of this self-dual surface in the phase diagram

FIG. 11. The surfaces of self-dual error rates for R = 2 and
R = ∞. The shaded area is the physical parameter regime with
p0,x,y,z > 0.

of the decohered stabilizer code should depend on the details
of the model.

V. CONCLUSIONS AND OUTLOOK

In this paper, we systematically develop the formalism that
studies the stabilizer codes decohered by Pauli noise/errors
using statistical models. We focus on the Rényi entropies
SR of the decohered codes as a probe of the systems entan-
glement structure. We find a general mapping between the
SR’s and classical statistical models that can be systematically
constructed from the code’s defining data. The phase tran-
sitions in these statistical models indicate nontrivial DIPTs
in the decohered code. We discover intricate tapestries of
dualities emerging among these statistical models. These du-
alities cast strong constraints on the phase diagram of the
decohered quantum matter hosted in the stabilizer codes with
noise. More specifically, this paper focuses on three general
cases: (1) CSS codes decohered by bit-flip and phase-flip
errors; (2) em-symmetric CSS codes under bit-flip and phase-
flip decoherences; (3) general stabilizer codes under generic
Pauli-noise decoherence.

First, for generic CSS codes, we construct a pair of sta-
tistical models SM1 and SM2, related to each other by an
HLT duality [Eq. (35)], through an ungauging procedure. We
show that the Rth Rényi entropy SR(ρb) for the error-corrupted
mixed state ρb under the bit-flip decoherence is described by
(1) R-replica SM1 with rRC and (2) R-replica SM2 with iRC.
The two R-replica statistical models with different types of
randomness are dual to each other through an HLT duality.
Similarly, SR(ρp) for the error-corrupted mixed state ρp under
phase-flip decoherence is described by (1) R-replica SM2 with
rRC and (2) R-replica SM1 with iRC. These two models are
also the HLT dual of each other. Moreover, for R = 2, 3,∞,
we find BPD dualities that relate SR(ρb) and SR(ρp), con-
necting the decoherence effects from the two error types.
It is a “strong-weak” duality in that it maps strong bit-flip
decoherence to weak phase-flip decoherence and vice versa.
The tapestry of dualities associated with a general CSS code
is illustrated in Fig. 1.

The classical statistical models that describe SR provide
us with powerful tools to investigate the phase diagrams of
decohered CSS codes. In particular, the DIPTs in a deco-
hered CSS code are identified as the phase transitions in the
corresponding statistical models. The DIPTs with R = 2,∞
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are particularly simple as we have shown their equivalence
to the phase transitions of SM1,2 without randomness. In
general, DIPTs for different R’s happen at different critical
error rates p�

x/z(R). The universality classes with different R’s
are also different. Thus, there is a family of DIPTs indexed
by R for a single CSS code. p�

x/z(R → 1) corresponds to
the decoding error thresholds of the decohered CSS code,
which has been extensively studied in many earlier works (for
example, Refs. [8,11,29]). The DIPTs for R � 2 reveal other
interesting singularities in the entanglement structure of the
error-corrupted mixed states. For R = 2, the DIPT can also be
interpreted as a quantum phase transition in a doubled Hilbert
space. The nature and physical implication of the DIPTs at
p�(R) for R � 3 are interesting questions for the future. We
also propose a conjecture on the monotonicity of the critical
error rates p�

x/z(R) as a function of R and present several pieces
of evidence for this conjecture.

Second, for CSS codes with an em symmetry between
the X -type and Z-type stabilizers, the corresponding SM1

and SM2 become the same model SM. The tapestry of du-
alities of em-symmetric CSS code becomes Fig. 7, which
is effectively the tapestry of a general CSS code (Fig. 1)
folded in half. The Rényi entropy SR under either bit-flip
or phase-flip decoherence is described by (1) R-replica SM
with rRC and (2) R-replica SM with iRC. The two R-replica
statistical models with iRC and rRC are related to each other
through an HLT duality. The BPD duality for R = 2, 3,∞
becomes a self-duality that relates strong bit-flip (phase-flip)
decoherence to weak bit-flip (phase-flip) decoherence. Re-
markably, these dualities yield super-universal self-dual error
rates for R = 2, 3,∞ [Eq. (63)]. If there is a unique DIPT
(at a given R), the self-dual error rate must coincide with the
critical error rate of the transition. In the two examples we
examined, 2D toric code and Haah’s code in 3D, the self-dual
error rates indeed match the critical error rates of the DIPTs.
The properties of the DIPTs in these two codes are very
different, demonstrating that the self-dual error rates encom-
pass different universality classes of phase transitions and are
super-universal. For cases with multiple DIPTs for single R,
the BPD self-duality implies that the DIPT away from the self-
dual error rates must appear in pairs, and the self-dual error
rates are upper bounds to the transition with the lowest error
rate.

Finally, we extend our analysis to general stabilizer codes
under decoherence of general Pauli noises, i.e., independent
X -, Y -, Z-errors with error rates px, py, pz. The description
of the decohered code is centered around a single statistical
model SM. For a CSS code, SM is the previously constructed
SM1,2 coupled together. The entropy SR(ρm ) caused by the
general Pauli noise is mapped to (1) R-replica SM with rRC
and (2) R-replica SM with iRC. The two R-replica statistical
models with randomness are related to each other by an HLT
duality. In addition, we find a GPN self-duality that relates dif-
ferent error rates for R = 2,∞, analogous to the BPD duality.
Super-universal self-dual surfaces of error rates are identified
for R = 2,∞ (Fig. 11). These self-dual surfaces exist for a
general stabilizer code and constrain the possible universal
properties of the decohered code. One potential scenario is
that the self-dual surfaces of error rates are exactly the phase
boundary between different phases of the decohered code. A

possible next step of investigation is to understand the phys-
ical meaning of these self-dual surfaces in specific stabilizer
codes.

Our systematic construction of the statistical models pro-
vides powerful tools to investigate the DIPTs of QEC
codes. For future research, an important question to address
concerns the quantum-information-theoretic interpretation of
these DIPTs indexed by R. As explained, in the R → 1 limit,
the DIPT is associated with the decodability of the logical
information from the decohered code. Does the DIPT with
a given R > 1 mark the limit of decoherence for some con-
crete R-dependent quantum information processing protocol?
Finding such protocols will deepen our understanding of the
physical meaning of this family of DIPTs and will help refine
the notion of topological order in error-corrupted mixed states.
Moreover, such protocols will provide guidance on how to ex-
perimentally observe the DIPTs in a noisy intermediate-scale
quantum platform. Additionally, it is an interesting future di-
rection to establish more detailed relations between the critical
behavior of statistical models at different R, including the
critical correlation functions and scaling exponents, and the
quantum-information-theoretic properties of the decohered
code.

Another topic for future research pertains to our conjec-
tured monotonic dependence of the critical error rates for
DIPTs on the Rényi index R. The current conjecture concerns
the bit-flip and phase-flip errors. If the conjecture is true, it
will offer a tool to bound the critical error rates for a specific
R, particularly the error threshold (in the limit of R → 1),
using results for larger R values. We have presented a few
pieces of evidence of the conjecture. Developing a deeper
understanding of the relationship between statistical models
at different R will be important for resolving this conjecture.
Moreover, it is also interesting to investigate if there is a
similar relation between the critical error rates at different R
for other types of errors, such as the general Pauli noise.

In this work, we have focused on the decoherence effects
caused by Pauli noise/errors on the physical qubits of the
QEC code. Investigating the effect of coherent errors, such
as random-angle X or Z rotations, is a natural direction to
generalize our framework. It was found that 2D surface code
with coherent errors can be mapped to a 2D Ising model with
complex couplings [41]. It would be interesting to generalize
the systematic construction of the statistical models and the
tapestry of dualities to general QEC codes with coherent
errors. For a QEC code, another type of error that affects
its performance is the measurement read-out error. For the
decodability problem, taking the read-out error into account
results in a statistical model living in one higher dimension
than the spatial dimension of the QEC code [8]. An interesting
open question is whether the measurement read-out errors can
be investigated from the perspective of decohered quantum
matter and if there is also a family of phase transitions similar
to the family of DIPTs indexed by R.

Considering the decoherence-induced phases and transi-
tions beyond stabilizer codes of qubit systems is another
natural direction for future expeditions. For instance, it should
be feasible to generalize our study to decohered stabilizer
codes with qudits (each having a local Hilbert space of dimen-
sion d > 2). Exploring the decoherence effect in subsystems
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codes [42,43] and the recently discovered Floquet codes [44]
can potentially uncover new forms of decoherence-induced
quantum matter.

Note added. While completing this manuscript, we noticed
the independent related works [45,46].
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APPENDIX A: PROOFS OF THEOREM 1
AND COROLLARY 1

Let ρb be the error-corrupted mixed state after bit-flip de-
coherence with error rate p. Combine Eqs. (8) and (14),

Tr
(
ρR

b

) = (1 − p)NR

2dimVx

∑
E∈V

∑
C1,2,..,R∈Vx

λ|E+C1| · · · λ|E+CR|, (A1)

where λ = p
1−p .

We will use two key observations. (1) the low-temperature
expansion (LTE) of SM1 generates Vx; (2) the high-
temperature expansion (HTE) of SM2 generates V⊥

z [see
Eqs. (33) and (34)]. Take 3D toric code as an example (see
Sec. II E). The corresponding SM1 is the 3D Ising model,
and SM2 is the 3D lattice Z2 gauge theory. Vx consists of
boundary (in the sense that it bounds a volume) surfaces on the
dual lattice. LTE of Ising model gives domain walls which are
precisely those surfaces, while HTE of lattice Z2 gauge the-
ory gives closed surfaces (not necessarily a boundary) which
corresponds to V⊥

z .
We will also substitute

∑
V⊥

z
→∑

Vx
. This substitution es-

sentially ignores the vectors in V⊥
z /Vx, which corresponds to

the logical operators. Under our assumption, there are no local
logical operators. Hence, we argue that the contributions to the
partition function from the vectors V⊥

z /Vx are exponentially
suppressed as the system size goes to infinity. Additionally, we
know that Nc = dim(V⊥

z /Vx ) is the number of logical qubits.
And we have assumed the code rate Nc/N → 0 in the large
system limit. Hence, when we substitute

∑
V⊥

z
with

∑
Vx

,
the change in the free energy density of the corresponding
statistical model is negligible in the infinite-system limit.

Since free energy density is the standard diagnosis for
phase transitions, we can do this substitution safely for the
construction of the statistical models that target the DIPTs. In
the following, we will use N → ∞ whenever this substitution
happens.

We now have all the ingredients for the proof.
Proof of Theorem 1.
First consider LTE of SM1,

ZSM1 (K, E ) =
∑

{τi=±1}
exp

⎛
⎝K

∑
μ

(−1)EμOz
μ[τ ]

⎞
⎠

= Ns

∑
C∈Vx

exp

⎛
⎝K

∑
μ

(−1)Eμ+Cμ

⎞
⎠

= Ns

∑
C∈Vx

exp(K (N − 2|E + C|))

= λ−N/2Ns

∑
C∈Vx

λ|E+C|. (A2)

In the second line, the summation is over all possible “domain
walls” C generated by spin flips. The interaction term flips the
sign on the domain walls and takes the value Oz

μ[τ ] = (−1)Cμ .
The symmetry factor Ns results from different spin flips giv-
ing the same domain walls when symmetry is present in the
system. For instance, Ns = 2 for the Ising model because of
the global Z2 symmetry. And Ns = 3L for the plaquette Ising
model, where L is the length of the lattice, due to a planar Z2

symmetry (flipping all the spins on any planes) [18]. In the
third equality, we used the identity,

∑
μ(−1)Eμ = N − 2|E |.

Compared with Eq. (A1), we obtain

Tr
(
ρR

b

) = [p(1 − p)]RN/2

NR
s 2dimVx

∑
E∈V

(
ZSM1 (K, E )

)R
. (A3)

Second, consider HTE of SM2,

WSM2 (K̃, E ) =
∑

{τ̃ j=±1}
eK̃
∑

ν Ox
ν [τ̃ ]
∏
μ

(
Ox

μ[τ̃ ]
)Eμ

= (1 − λ2)−N/2
∑

{τ̃ j=±1}

∏
ν

(
1 + λOx

ν[τ̃ ]
)

×
∏
μ

(
Ox

μ[τ̃ ]
)Eμ

= (1 − λ2)−N/22NB
∑

C∈V⊥
z

λ|E+C|

N→∞== (1 − λ2)−N/22NB
∑

C∈Vx

λ|E+C|. (A4)

In the second equality, we used λ = tanh(K̃ ). In the third
equality, we kept the products of Ox

ν which cancel all the spins
in the random insertion

∏
μ(Ox

μ[τ̃ ])Eμ . Such products are
necessarily of the form

∏
ν (Ox

ν[τ̃ ])(E+C)ν ,C ∈ V⊥
z . NB is the

number of Bj[Z] stabilizers or number of spins τ̃ j . Compared
with Eq. (A1), we obtain

Tr
(
ρR

b

)N→∞== (1 − 2p)RN/2

2(dimVx+NBR)

∑
E∈V

(
WSM2 (K̃, E )

)R
. (A5)

As a side note, Eqs. (A2) and (A4) demonstrate the HLT
duality between the random statistical models ZSM1 (K, E ) ∝
WSM2 (K̃, E ).

Finally, to obtain von Neumann entropy, combine Eqs. (15)
and (A2):

S1(ρb) = −
∑
E∈V

Px(E ) log(ZSM1 (K, E ))

− N

2
log(p(1 − p)) + log(Ns). (A6)

�

085158-20



TAPESTRY OF DUALITIES IN DECOHERED QUANTUM … PHYSICAL REVIEW B 110, 085158 (2024)

APPENDIX B: PROOF OF THEOREM 3

Let us first consider bit-flip decoherence with error rate p and λ = p
1−p (ignoring subscripts x for clarity). Start with Eq. (14),

Tr
(
ρR

b

) = (1 − p)RN
∑
E∈V

λ|E | ∑
C2,..,R∈Vx

λ|E+C2| · · · λ|E+CR|. (B1)

Now let us sum over E . Observe,

|E + Cα| =
N∑

μ=1

(Eμ + Cα,μ − 2EμCα,μ), (B2)

where all arithmetic is done in Z.

Tr
(
ρR

b

) = (1 − p)RN
∑

C2,..,R∈Vx

∑
{Eμ=0,1}

λ
∑

μ[(R−2
∑R

α=2 Cα,μ )Eμ+∑R
α=2 Cα,μ]

= (1 − p)RN
∑

C2,..,R∈Vx

N∏
μ=1

∑
Eμ=0,1

λ[(R−2nμ )Eμ+nμ]

= (1 − p)RN
∑

C2,..,R∈Vx

N∏
μ=1

(λnμ + λR−nμ ) (B3)

= (1 − p)RN (1 + λR)N
∑

C2,..,R∈Vx

N∏
μ=1

(
λnμ + λR−nμ

1 + λR

)
, (B4)

where we have defined the “occupation number” nμ ≡∑R
α=2 Cα,μ. In the last step, we normalized the product so that unoccupied

links contribute a weight of 1.
To prove the duality, we rearrange the sum in Vx into a sum in Vz. Introduce an indicator function:
Lemma 1.

δ(C ∈ Vx ) = 1

2dimV⊥
x

∑
C̃∈V⊥

x

(−1)C·C̃ .

Proof. If C ∈ Vx, then C · C̃ = 0 ∀C̃ ∈ V⊥
x . Thus,

RHS = 1

2dimV⊥
x

∑
C̃∈V⊥

x

1 = 1.

If C /∈ Vx = (V⊥
x )⊥, then ∃C̃0 ∈ V⊥

x , s.t. C · C̃0 = 1. We can rewrite

RHS = 1

2 · 2dimV⊥
x

∑
C̃∈V⊥

x

(
(−1)C·C̃ + (−1)C·(C̃+C̃0 )) = 0.

�
Insert this indicator function into Eq. (B3),

Tr
(
ρR

b

) = (1 − p)RN

2(R−1)dimV⊥
x

∑
C̃2,..,R∈V⊥

x

∑
{Cα,μ=0,1}

N∏
μ=1

[(
λ
∑

α Cα,μ + λR−∑α Cα,μ
)
(−1)

∑
α Cα,μC̃α,μ

]

= (1 − p)RN

2(R−1)dimV⊥
x

∑
C̃2,..,R∈V⊥

x

N∏
μ=1

⎡
⎣ R∏

α=2

⎛
⎝ ∑

Cα,μ=0,1

λCα,μ (−1)Cα,μC̃α,μ

⎞
⎠+ λR

R∏
α=2

⎛
⎝ ∑

Cα,μ=0,1

λ−Cα,μ (−1)Cα,μC̃α,μ

⎞
⎠
⎤
⎦

= (1 − p)RN

2(R−1)dimV⊥
x

∑
C̃2,..,R∈V⊥

x

N∏
μ=1

{
(1 + λ)R−1[1 + (−1)ñμλ]

(
1 − λ

1 + λ

)ñμ

}

= 1

2(R−1)dimV⊥
x

∑
C̃2,..,R∈V⊥

x

N∏
μ=1

[
1 + (−1)ñμλ

1 + λ

(
1 − λ

1 + λ

)ñμ

]

N→∞== 1

2(R−1)dimV⊥
x

∑
C̃2,..,R∈Vz

N∏
μ=1

[
1 + (−1)ñμλ

1 + λ

(
1 − λ

1 + λ

)ñμ

]
, (B5)
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with ñμ ≡∑R
α=2 C̃α,μ. In the last equality, we replaced V⊥

x by Vz. Now let us consider phase-flip error with error rate pz, λz ≡
pz

1−pz
. Applying Eq. (B4) but swapping X and Z ,

Tr
(
ρR

p

) = (1 − pz )RN
(
1 + λR

z

)N ∑
C̃2,..R∈Vz

N∏
μ=1

(
λ

ñμ

z + λ
R−ñμ

z

1 + λR
z

)
. (B6)

Comparing Eqs. (B5) and (B6), the sum over Vz will have the same weight if we can match (restoring subscripts x),

1 + (−1)ñμλx

1 + λx

(
1 − λx

1 + λx

)ñμ

= λ
ñμ

z + λ
R−ñμ

z

1 + λR
z

, (B7)

for every ñμ = 1, . . . , R − 1, with some function λz(λx ). Note λz represents the phase-flip error rate and shall not depend on ñ.
We now show that this matching is possible for R = 2, 3.

For R = 2, Eq. (B7) gives only one equation for ñ = 1,(
1 − λx

1 + λx

)2

= 2λz

1 + λ2
z

⇔ [
(1 − px )2 + p2

x

][
(1 − pz )2 + p2

z

] = 1

2
. (B8)

For R = 3, Eq. (B7) looks the same for ñ = 1, 2. There is still only one equation,(
1 − λx

1 + λx

)2

= λz + λ2
z

1 + λ3
z

⇔ [
(1 − px )3 + p3

x

][
(1 − pz )3 + p3

z

] = 1

4
. (B9)

For R � 4, there are, in general, no solutions because the system of equations is overdetermined.
The R → ∞ duality can be readily understood with the statistical models. We observe that the partition functions with

randomness are always smaller than the nonrandom partition function:
Lemma 2.

ZSM1 (K, E ) � ZSM1 (K ), WSM1 (K, E ) � ZSM1 (K ). (B10)

Proof.
For the first part of the lemma, write ZSM1 (K, E ) with HTE,

ZSM1 (K, E ) =
∑

{τi=±1}
exp

⎛
⎝K

∑
μ

(−1)EμOz
μ[τ ]

⎞
⎠

= cosh(K )N 2NA
∑

C̃∈V⊥
x

tanh(K )|C̃|(−1)E ·C̃

� cosh(K )N 2NA
∑

C̃∈V⊥
x

tanh(K )|C̃| = ZSM1 (K ), (B11)

where NA is the number of Ai[X ] stabilizers or number of τi spins.
For the second part of the lemma, write WSM1 (K, E ) with LTE,

WSM1 (K, E ) =
∑

{τi=±1}
eK
∑

ν Oz
ν [τ ]
∏
μ

(
Oz

μ[τ ]
)Eμ = Ns

∑
C∈Vx

exp(K (−1)|C|)(−1)C·E � Ns

∑
C∈Vx

exp(K (−1)|C|) = ZSM1 (K ). (B12)

�
Now consider a bit-flip error with px

1−px
= e−2K and a phase-flip error with pz

1−pz
= tanh(K ). In both cases, the quantity

Tr(ρ∞) ≈ (ZSM1 (K ))R (up to proportionality constant), because the partition functions with E �= 0 are exponentially suppressed
by large R. Thus, the two decoherences are dual at R → ∞ with the relation,

(1 − px )(1 − pz ) = 1
2 . (B13)

Note we assumed px, pz ∈ (0, 1
2 ). We observe in all three cases R = 2, 3,∞, the BPD duality relates strong bit-flip decoherence

(px → 1/2) to weak phase-flip decoherence (pz → 0) and vice versa.

APPENDIX C: INTEGRATE OUT THE RANDOMNESS OF REPLICA STATISTICAL MODELS

In this section, we integrate out randomness from the replica statistical models. We shall see that effective interreplica
interactions emerge which are “mediated” by randomness. We also provide an understanding of the R = 2, 3 BPD dualities from
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these statistical models. Consider bit-flip error-corrupted mixed state ρb and the quantity related to Rényi entropy Tr(ρR
b ). Let us

first look at the corresponding statistical model with rRC. Combine Eqs. (14) and (A2) and the identity
∑

μ(−1)Eμ = N − 2|E |,

Tr
(
ρR

b

) ∝
∑
E∈V

exp

⎛
⎝K

∑
μ

(−1)Eμ

⎞
⎠(ZSM1 (K, E )

)R−1

=
∑

{Eμ=0,1}

∑
{τα

j =±1}
exp

⎛
⎝K

∑
μ

(−1)Eμ

(
1 +

R−1∑
α=1

Oz
μ[τα]

)⎞⎠

=
∑

{τα
j =±1}

∏
μ

∑
Eμ=0,1

exp

(
K (−1)Eμ

(
1 +

R−1∑
α=1

Oz
μ[τα]

))

=
∑

{τα
j =±1}

∏
μ

(
eK (1+∑R−1

α=1 Oz
μ[τα]) + e−K (1+∑R−1

α=1 Oz
μ[τα]))

=
∑

{τα
j =±1}

∏
μ

2(cosh(K ))R
R−1∑
r=0

∑
α1<α2<...<αr

(tanh(K ))r

(
1 + (−1)re−2K

1 + e−2K

)
Oα1 . . .Oαr , (C1)

where in the last line we abbreviated Oα ≡ Oz
μ[τα], α = 1, .., R − 1 is the replica index since we now have R − 1 copies of spin

models. The last line manifests arbitrary interreplica coupling Oα1 . . .Oαr at the same site μ. We also define Oα1 . . .Oαr = 1
when r = 0.

Let us now consider the special cases R = 2, 3. First, when R = 2, the replica theory Eq. (C1) has only a single copy,

Tr
(
ρ2

b

) ∝
∑

{τ j=±1}

∏
μ

(
1 + (tanh(K ))2Oz

μ[τ ]
) ∝

∑
{τ j=±1}

∏
μ

eK ′Oz
μ[τ ] = ZSM1 (K ′), (C2)

where tanh(K ′) = (tanh(K ))2. So upon integrating out errors E , the statistical model with randomness reduces to a clean model
with renormalized coupling K ′.

Second, when R = 3, there are now two replicas α = 1, 2,

Tr
(
ρ3

b

) ∝
∑

{τα
j =±1}

∏
μ

(1 + (tanh(K ))2(O1 + O2 + O1O2)) ∝
∑

{τα
j =±1}

∏
μ

eK ′′(O1+O2+O1O2 ), (C3)

where tanh(K ′′ )+(tanh(K ′′ ))2

1+(tanh(K ′′ ))3 = (tanh(K ))2. For Ising model, O〈i j〉 = τiτ j , Eq. (C3) becomes the partition function of Ashkin-Teller
model.

Let us now examine the case with iRC. Combine Eqs. (14) and (A4),

Tr
(
ρR

b

) ∝
∑
E∈V

exp

⎛
⎝K

∑
μ

(−1)Eμ

⎞
⎠(WSM2 (K̃, E )

)R−1

=
∑

{Eμ=0,1}

∑
{τ̃ α

j =±1}
eK
∑

μ(−1)Eμ

eK̃
∑

ν,α Ox
ν [τ̃ α]

∏
σ,α

(
Ox

σ [τ̃ α]
)Eσ

=
∑

{τ̃ α
j =±1}

∏
μ

eK̃
∑

α Ox
μ[τ̃ α]

∑
Eμ=0,1

eK (−1)Eμ

(∏
α

Ox
μ[τ̃ α]

)Eμ

=
∑

{τ̃ α
j =±1}

∏
μ

eK

cosh(K̃ )
exp

⎛
⎝K̃

⎛
⎝R−1∑

α=1

Õα +
R−1∏
β=1

Õβ

⎞
⎠
⎞
⎠, (C4)

where α, β = 1, .., R − 1 are the replica indices. In the last line, we again adopts the shorthand Õα,β ≡ Ox
μ[τ̃ α,β ]. We see that

the effective interaction in Eq. (C4) is more constrained than Eq. (C1). In the former, different replica copies only couple via
the product

∏
α Õα of all copies, while in the latter, arbitrary products are present. However, this difference disappears when

R = 2, 3, as we can observe by comparing Eqs. (C2)–(C4). This coincidence facilitates the BPD duality. We note that Eq. (C4)
was derived for the special case of 2D toric code in Ref. [14] while our result applies for any CSS code.
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APPENDIX D: PROOFS OF THEOREM 4
AND COROLLARY 4

Let us first introduce some notations. As mentioned in the
main text, on an N-qubit system, a Pauli string E representing
errors can be specified by a Z2 vector of length 2N ,

E = (e, f) ∈ V ⊕ V . (D1)

The Pauli operator acting on the μth qubit is Eμ =
I, X,Y, Z if (eμ, fμ) = (0, 0), (1, 0), (1, 1), (0, 1), respec-
tively. In each error chain E , the number of X,Y, Z operators,
Nx(E ), Ny(E ), Nz(E ) are given by

Nx(E ) = |e| − |f| + |e + f|
2

,

Ny(E ) = |e| + |f| − |e + f|
2

, (D2)

Nz(E ) = −|e| + |f| + |e + f|
2

.

Similarly, a stabilizer AJ [X, Z] is represented by a vector

AJ = (aJ , bJ ) ∈ V ⊕ V . (D3)

That all stabilizers commute amounts to aJ · bJ ′ + aJ ′ · bJ =
0,∀J, J ′. The set of stabilizers {AJ} span a subspace Vs ⊂ V ⊕
V . We also define the dual subspace

V∗
s ≡ {�W |W ∈ Vs}, (D4)

where � = ( 0 1N×N

1N×N 0 ). Note the matrix � effectively inter-
changes X and Z operators in a Pauli string. We can rewrite
the commutation relation of stabilizers as

(AJ ) · (�AJ ′ ) = 0, ∀J, J ′. (D5)

This implies Vs ⊂ (V∗
s )⊥. Similar to the case of CSS code,

the quotient space (V∗
s )⊥/Vs contains logical operators for

the QEC code. We assume that the logical operators are
nonlocal and the code rate Nc/N → 0. As in the CSS code
case, the contribution of such nonlocal operators to Tr(ρR) is
exponentially small, and the overall correction to free energy
density is negligible. We can, therefore, make the substitution

(V∗
s )⊥ → Vs in what follows. As before, we will use

N→∞== to
signal this substitution.

Let us now see how the spaces Vs,V∗
s emerge in the statis-

tical model. Recall definitions of the interaction terms,

Oz
μ[τ ] =

∏
J

(τJ )(aJ )μ,

Ox
μ[τ ] =

∏
J

(τJ )(bJ )μ, (D6)

Oy
μ[τ ] = Ox

μ[τ ]Oz
μ[τ ].

LTE of this model gives the vectors in Vs. To see this, con-
sider a single flipped spin, τJ = −1 and τJ ′ = 1,∀J ′ �= J . The
interaction terms become

Oz
μ[τ ] = (−1)(aJ )μ, Ox

μ[τ ] = (−1)(bJ )μ . (D7)

This domain wall pattern, therefore, encodes the vector AJ =
(aJ , bJ ) ∈ Vs.

However, HTE of the statistical model yields the vectors in
(V∗

s )⊥. The HTE sums over products of interaction terms that
cancel all the spins. An arbitrary product of interaction terms
has the form ∏

μ

(
Ox

μ[τ ]
)aμ
(
Oz

μ[τ ]
)bμ

, (D8)

where C ≡ (a, b) ∈ V ⊕ V . To cancel all the spins, this com-
bination of interactions must satisfy

1 =
∏
μ

(
Ox

μ[τ ]
)aμ
(
Oz

μ[τ ]
)bμ

=
∏
μ

∏
J

(τJ )(bJ )μaμ+(aJ )μbμ

=
∏

J

(τJ )C·(�AJ ). (D9)

The exponent for each τJ must be 0. This implies

C · (�AJ ) = 0,∀J ⇔ C ∈ (V∗
s )⊥. (D10)

We observe here that, for SM, the space of LTE configurations
Vs and the space of HTE configurations (V∗

s )⊥ are identical up
to nonlocal terms. This hints at the HLT self-duality of SM,
which will be evident in subsequent discussions.

Now consider the general decoherence ρ0 = |�〉 〈�| →
ρm,

ρm =
∑

E∈V⊕V
P(E )O†(E )ρ0O(E ),

P(E ) = (1 − px − py − pz )N−Nx−Ny−Nz pNx
x p

Ny
y pNz

z , (D11)

O(E ) = (i)e·f∏
μ

(Xμ)eμ (Zμ)fμ,

where O(E ) is the Pauli string specified by the error chain E = (e, f). For later convenience we rewrite the error rates with
λi ≡ pi

1−px−py−pz
for i = x, y, z,

P(E ) = (1 − px − py − pz )NλNx
x λ

Ny
y λNz

z (D12)

= (1 − px − py − pz )N

⎛
⎝
√

λyλz

λx

⎞
⎠

|f|⎛
⎝
√

λxλy

λz

⎞
⎠

|e|(√
λxλz

λy

)|e+f|

. (D13)
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The information theoretical quantity that detects DIPTs is

Tr
(
ρR

m

) =
∑

E1,..,R∈V⊕V
P(E1)P(E2) . . . P(ER) 〈O(E1)O†(E2)〉� . . . 〈O(ER−1)O†(ER)〉� 〈O(ER)O†(E1)〉�

=
∑

E∈V⊕V

∑
C2,..,R∈Vs

P(E )P(E + C2) . . . P(E + CR) 〈O(E )O†(E + C2)〉� . . .

〈O(E + CR−1)O†(E + CR)〉� 〈O(E + CR)O†(E )〉�
=

∑
E∈V⊕V

∑
C2,..,R∈Vs

P(E )P(E + C2) . . . P(E + CR)〈O(E )O†(E + C2)O(E + C2)O†(E + C3) . . . O(E + CR)O†(E )〉�

=
∑

E∈V⊕V

∑
C2,..,R∈Vs

P(E )P(E + C2) . . . P(E + CR) (D14)

= 1

2dimVs

∑
E∈V⊕V

⎡
⎣∑

C∈Vs

P(E + C)

⎤
⎦

R

. (D15)

In the second equality, we used the condition that 〈OO†〉� �= 0 iff OO† is generated by stabilizers. However, there is an ambiguity
of powers of i in 〈OO†〉� because the X,Y, Z’s do not commute. To resolve this, in the third equality, we used the fact that |�〉 is
an eigenstate of all the operators OO†. In the fourth equality, we noted that the product of all OO† is identity. In the last equality,
we symmetrized the expression in a similar way as Eq. (14). It remains to relate

∑
C∈Vs

P(E + C) to the partition functions of
the statistical models with randomness.

First, consider LTE of SM with rRC E = (e, f) ∈ V ⊕ V ,

ZSM(K, E ) =
∑

{τJ=±1}
exp

⎛
⎝∑

μ

(
Kx(−1)fμOx

μ[τ ] + Ky(−1)(e+f)μOy
μ[τ ] + Kz(−1)eμOz

μ[τ ]
)⎞⎠

= Ns

∑
C=(a,b)∈Vs

exp

⎛
⎝∑

μ

(
Kx(−1)(f+b)μ + Ky(−1)(e+f+a+b)μ + Kz(−1)(e+a)μ

)⎞⎠
= Nse

N (Kx+Ky+KZ )
∑

C=(a,b)∈Vs

(e−2Kx )|f+b|(e−2Kz )|e+a|(e−2Ky )|(e+a)+(f+b)|

= Nse
N (Kx+Ky+KZ )

∑
C=(a,b)∈Vs

⎛
⎝
√

λyλz

λx

⎞
⎠

|f+b|⎛
⎝
√

λxλy

λz

⎞
⎠

|e+a|(√
λxλz

λy

)|(e+a)+(f+b)|

= Ns[px py pz(1 − px − py − pz )]−N/4
∑
C∈Vs

P(E + C), (D16)

where Ns is a symmetry factor, in the third equality we used the identity
∑

μ(−1)wμ = N − 2|w|,∀w ∈ V , in the fourth equality
we applied generalized Nishimori condition Eq. (77), in the last equality we compared to Eq. (D13). Combine Eqs. (D15) and
(D16),

Tr
(
ρR

m

) = [px py pz(1 − px − py − pz )]NR/4

NR
s 2dimVs

∑
E∈V⊕V

(ZSM(K, E ))R. (D17)

This proves the first part of the theorem.
Now consider HTE of SM with iRC E = (e, f) ∈ V ⊕ V ,

WSM(K̃, E ) =
∑

{τJ=±1}
exp

⎛
⎝∑

μ

(
K̃xOx

μ[τ ] + K̃yOy
μ[τ ] + K̃zOz

μ[τ ]
)⎞⎠∏

ν

(
Ox

ν[τ ]
)eν
(
Oz

ν[τ ]
)fν

= f (K̃)N
∑
{τJ }

∏
μ

(
1 + λxOx

μ[τ ] + λyOy
μ[τ ] + λzOz

μ[τ ]
)∏

ν

(
Ox

ν[τ ]
)eν
(
Oz

ν[τ ]
)fν

= f (K̃)N
∑
{τJ }

∑
W =(a,b)∈V⊕V

λNx (W )
x λ

Ny (W )
y λNz (W )

z

∏
μ

(
Ox

μ[τ ]
)(a+e)μ(Oz

μ[τ ]
)(b+f)μ
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= f (K̃)N 2NA
∑

C∈(V∗
s )⊥

λNx (E+C)
x λ

Ny (E+C)
y λNz (E+C)

z

N→∞== f (K̃)N 2NA
∑
C∈Vs

λNx (E+C)
x λ

Ny (E+C)
y λNz (E+C)

z

= [(1 − 2px − 2py)(1 − 2px − 2pz )(1 − 2py − 2pz )]−N/42NA
∑
C∈Vs

P(E + C), (D18)

where f (K̃) = cosh(K̃x ) cosh(K̃y) cosh(K̃z )(1 + tanh(K̃x ) tanh(K̃y) tanh(K̃z )) and NA is the number of stabilizers AJ [X, Z]. In the
second equality we expanded the exponential for each μ into a polynomial and used Eq. (77), in the third equality W ∈ V ⊕ V
represents an arbitrary combination of interaction terms [cf. Eq. (D8)], in the fourth equality only W = E + C,C ∈ (V∗

s )⊥
survives the τJ summation and the last equality applied Eq. (D12). Combine Eqs. (D15) and (D18),

Tr
(
ρR

m

)N→∞== [(1 − 2px − 2py)(1 − 2px − 2pz )(1 − 2py − 2pz )]NR/4

2(dimVs+NAR)

∑
E∈V⊕V

(WSM(K̃, E ))R. (D19)

This completes the second part of the proof.
We now comment on the self-duality of the nonrandom SM [Eq. (74)]. Comparing Eqs. (D16) and (D18), we conclude that

an HLT duality relates ZSM(K, E ) and WSM(K̃, E ) for arbitrary E . Setting E = 0 gives the HLT self-duality of nonrandom SM,
ZSM(K) ∝ ZSM(K̃).

Finally, to obtain the von Neumann entropy S1(ρm ), combine Eqs. (D14) and (D16) and take the R → 1 limit for SR,

S1(ρm ) = −
∑

E∈V⊕V
P(E ) log(ZSM(K, E )) − N

4
log(px py pz(1 − px − py − pz )) + log(Ns). (D20)

APPENDIX E: PROOF OF THE GPN DUALITY (THEOREM 5)

Throughout this Appendix, we use the shorthands,

p0 ≡ 1 − px − py − pz, λi ≡ pi

p0
for i = x, y, z. (E1)

1. Derivation for R = 2

Purity Tr(ρ2
m ) can be written as ∑

E1,2∈V⊕V
P(E1)P(E2)δ(E1 + E2 ∈ Vs). (E2)

There are two ways to manipulate the δ(E1 + E2 ∈ Vs). First, one can write∑
E1,2∈V⊕V

P(E1)P(E2)δ(E1 + E2 ∈ Vs) =
∑

E∈V⊕V

∑
C∈Vs

P(E )P(E + C)

= p2N
0

∑
C∈Vs

⎛
⎝ ∑

E∈V⊕V
λNx (E )+Nx (E+C)

x λ
Ny (E )+Ny (E+C)
y λNz (E )+Nz (E+C)

z

⎞
⎠

≡ p2N
0

∑
C∈Vs

∏
μ

f (Cμ, p). (E3)

The sum on E is unconstrained and can be performed independently on each qubit with Eμ = I, X,Y, Z , giving a Boltzmann
weight,

f (Cμ, p) =

⎛
⎜⎜⎜⎝

1 + λ2
x + λ2

y + λ2
z

2λx + 2λyλz

2λy + 2λxλz

2λz + 2λxλy

⎞
⎟⎟⎟⎠ = 1

p2
0

⎛
⎜⎜⎜⎝

p2
0 + p2

x + p2
y + p2

z

2px p0 + 2py pz

2py p0 + 2px pz

2pz p0 + 2px py

⎞
⎟⎟⎟⎠, (E4)

where the four rows corresponds to Cμ = I, X,Y, Z .
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The second way to write δ(E1 + E2 ∈ V ) is through the following resolution:

δ(E1 + E2 ∈ Vs) = 1

2dim(V∗
s )⊥

∑
C∈(V∗

s )⊥
(−1)C·�(E1+E2 ). (E5)

Purity now becomes

Tr
(
ρ2

m

) = 1

2dim(V∗
s )⊥

∑
C∈(V∗

s )⊥

∑
E1,2∈V⊕V

P(E1)P(E2)(−1)C·�(E1+E2 )

= 1

2dim(V∗
s )⊥

∑
C∈(V∗

s )⊥

⎛
⎝ ∑

E∈V⊕V
P(E )(−1)C·(�E )

⎞
⎠

2

N→∞== (1 −∑i pi )2N

2dim(V∗
s )⊥

∑
C∈Vs

⎛
⎝ ∑

E∈V⊕V
λNx (E )

x λ
Ny (E )
y λNz (E )

z (−1)C·(�E )

⎞
⎠

2

≡ (1 −∑i pi )2N

2dim(V∗
s )⊥

∑
C∈Vs

∏
μ

f̃ (Cμ, p). (E6)

Again E can be summed for each link individually Eμ =
I, X,Y, Z . Note (−1)C·(�E ) tells us to insert a (−1) whenever
[Cμ, Eμ] �= 0. This gives Boltzmann weight,

f̃ (Cμ, p) =

⎛
⎜⎜⎜⎝

(1 + λx + λy + λz )2

(1 + λx − λy − λz )2

(1 + λy − λx − λz )2

(1 + λz − λx − λy)2

⎞
⎟⎟⎟⎠

= 1

p2
0

⎛
⎜⎜⎜⎝

1
(1 − 2py − 2pz )2

(1 − 2px − 2pz )2

(1 − 2px − 2py)2

⎞
⎟⎟⎟⎠. (E7)

Equating the normalized Boltzmann weights,

f (Cμ, p)

f (I, p)
= f̃ (Cμ, p̃)

f̃ (I, p̃)
, (E8)

for Cμ = X,Y, Z gives the GPN duality at R = 2.

2. Derivation for R = ∞
At R → ∞ the summation over randomness is dominated

by the clean limit E = 0,

0 � Z (K, E ) � Z (K), 0 � W (K, E ) � Z (K). (E9)

But Z (K, E ) and W (K, E ) describe decoherence channels
with error rates p and p̃, respectively,

λx = e−2(Ky+Kz ), λy = e−2(Kx+Kz ), λz = e−2(Kx+Ky ),

λ̃x = e−2(K̃y+K̃z ), λ̃y = e−2(K̃x+K̃z ), λ̃z = e−2(K̃x+K̃y ),

(E10)

where K, K̃ are related by Eq. (74). For both channels,
Tr(ρR

m ) ≈ (Z (K))R when R → ∞. This gives the R → ∞
GPN duality.

The proof of Eq. (E9) parallels that of the CSS case. Con-
sider HTE of Z (K, E ) and LTE of W (K, E ),

Z (K, E ) ∝
∑

C∈(V∗
s )⊥

λ̃Nx (C)
x λ̃

Ny (C)
y λ̃Nz (C)

z (−1)C·�E , (E11)

W (K, E ) ∝
∑
C∈Vs

λNx (C)
x λ

Ny (C)
y λNz (C)

z (−1)C·�E . (E12)

In both cases, the proportionality constant is positive and
independent of E . Thus, both lines are upper bounded by the
E = 0 case Z (K).

3. Connection to BPD duality

To make a connection to the CSS case, consider the follow-
ing setup: λx �= 0, λy = λz = 0. This describes pure bit-flip
decoherence. The matching of Boltzmann weights [Eq. (E8)]
for R = 2 gives

2λx

1 + λ2
x

=
(

1 + λ̃x − λ̃y − λ̃z

1 + λ̃x + λ̃y + λ̃z

)2

0 =
(

1 − λ̃x + λ̃y − λ̃z

1 + λ̃x + λ̃y + λ̃z

)2

0 =
(

1 − λ̃x − λ̃y + λ̃z

1 + λ̃x + λ̃y + λ̃z

)2

. (E13)

Solving the above equation, we get the error rates of the dual
theory at R = 2,

λ̃x = 1, λ̃y = λ̃z,
2λx

1 + λ2
x

=
(

1 − λ̃z

1 + λ̃z

)2

. (E14)

The dual decoherence channel E = ⊗μEμ fac-
torizes into independent bit-flip and phase-flip
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errors,

Eμ(ρ0) = Nz,μ ◦ Nx,μ(ρ0),

Nx,μ(ρ0) = 1
2ρ0 + 1

2 Xμρ0Xμ, (E15)

Nz,μ(ρ0) = (1 − p′
z )ρ0 + p′

zZμρ0Zμ,

where p′
z is defined by λ̃z = p′

z

1−p′
z

(note p′
z �= p̃z). For CSS

code, Vs = Vx ⊕ Vz and Tr(ρR) factorizes under independent
bit-flip and phase-flip errors [Eq. (12)],

Tr(ρR) = Tr
(
ρR

b

)× Tr
(
ρR

p

)
. (E16)

In this case, the bit-flip part is a constant factor while the
phase-flip error part depends on the parameter λ̃z determined
by Eq. (E14). This relation is precisely the BPD duality for

CSS code at R = 2 [cf. Eq. (B8)]. The discussion for R = ∞
is analogous.

4. Self-dual surface

The self-dual surface of R = ∞ is the set of points on px +
py + pz = 1

2 since any points on this surface satisfies

1 − 2py − 2pz = px/p0, (E17)

and similarly upon cyclic permutations of px, py, pz. In terms
of Kx, Ky, Kz, one can rediscover the duality in the statistical
model:

e−2(Kx+Ky ) + e−2(Ky+Kz ) + e−2(Kx+Kz ) = 1. (E18)

To see that this defines the self-dual surface of the statistical
model, one can apply Eq. (E18) to get

e−2(Ky+Kz ) = 1 + e−2(Ky+Kz ) − e−2(Kx+Kz ) − e−2(Kx+Ky )

1 + e−2(Ky+Kz ) + e−2(Kx+Kz ) + e−2(Kx+Ky )

= eKx+Ky+Kz + eKx−Ky−Kz − eKy−Kx−Kz − eKz−Kx−Ky

eKx+Ky+Kz + eKx−Ky−Kz + eKy−Kx−Kz + eKz−Kx−Ky

= (eKx − e−Kx )(eKy + e−Ky )(eKz + e−Kz ) + (eKx + e−Kx )(eKy − e−Ky )(eKz − e−Kz )

(eKx + e−Kx )(eKy + e−Ky )(eKz + e−Kz ) + (eKx − e−Kx )(eKy − e−Ky )(eKz − e−Kz )

= tanh Kx + tanh Ky tanh Kz

1 + tanh Kx tanh Ky tanh Kz
. (E19)

The statistical model for R = 2 is equivalent to a single copy
of the statistical model with renormalized K’s, so we would
expect a self-dual surface in that case as well. Comparing
Eqs. (E6), (E7), and LTE of ZSM(K), one can identify

(1 − 2py − 2pz )2 = e−2(Ky+Kz ), (E20)

and similarly for cyclic permutations of x, y, z. So the self-
dual surface is determined by [cf. Eq. (E18)]

(1− 2py− 2pz )2+ (1 − 2px − 2pz )2+ (1− 2px − 2py)2 = 1

⇔ (1 − px − py − pz )2 + p2
x + p2

y + p2
z = 1

2 . (E21)

APPENDIX F: PARENT HAMILTONIAN
IN THE DOUBLED HILBERT SPACE

For a general stabilizer code C, a stabilizer takes the general
form

AJ [X, Z] = (i)aJ ·bJ
∏
μ

(Xμ)(aJ )μ
∏
μ

(Zμ)(bJ )μ, (F1)

where aJ , bJ are Z2 vectors. Here, we choose to write the CSS
code Hamiltonian as a sum of projectors so that the ground
state has zero energy:

Hs =
∑

J

1 − AJ

2
. (F2)

Notice that this Hamiltonian is related to the CSS code Hamil-
tonian in the main text by a factor of 1

2 and some constant shift.
The Choi-Jamiołkowski isomorphism maps the system’s

density matrix into a state in the doubled Hilbert space. More

specifically, we can first choose the basis {|i〉} of the origi-
nal Hilbert space given by the eigenstates of all the Pauli-Z
operators. The Choi-Jamiołkowski isomorphism is specified
by the mapping |i〉 〈 j| → |i j〉〉, for all basis i, j. Therefore, if
we have a density matrix represented as

∑
i j ρi j |i〉 〈 j|, then

the Choi-Jamiołkowski isomorphism maps it to its Choi rep-
resentation |ρ〉〉 =∑i j ρi j |i j〉〉.

One can multiply a density matrix with operators to modify
it. It will, therefore, be crucial to spell out how to map these
operations in the Choi representation. The most general oper-
ator action on the density matrix can be written as a sum of
the following basic operation:

AρB = Ai jρ jkBkl |i〉 〈l| . (F3)

Therefore, in the Choi representation, the resulting action is
given by

Ai jρ jkBkl |il〉〉 = A ⊗ BT|ρ〉〉, (F4)

where the transpose is done in the eigenbasis of Z’s. For
the pure-state density matrix ρ0 of a logical state, it satisfies
Hsρ0 = 0 and ρ0Hs = 0. In the Choi representation, this state-
ment implies that |ρ0〉〉 is the ground state of the following
Hamiltonian:

HD
0 = Hs ⊗ 1 + 1 ⊗ HT

s . (F5)

For the error-corrupted density matrix, its Choi representation
in the doubled Hilbert space takes the form

|ρm〉〉 ∝ (e∑μ K̃xXμ⊗Xμ−K̃yYμ⊗Yμ+K̃zZμ⊗Zμ
)|ρ0〉〉 ≡ Ê |ρ0〉〉,
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where we have defined the operator Ê = e
∑

μ K̃xXμ⊗Xμ−K̃yYμ⊗Yμ+K̃zZμ⊗Zμ acting on the doubled Hilbert space. One can construct a
parent Hamiltonian for |ρm〉〉 by noticing that |ρm〉〉 is the ground state of the following frustration-free Hamiltonian as has been
done in Ref. [20]

HD′ =
∑

J

[
Ê−1

(
1 − AJ

2
⊗ 1

)
Ê
][

Ê
(
1 − AJ

2
⊗ 1

)
Ê−1

]
+
[
Ê−1

(
1 ⊗ 1 − AT

J

2

)
Ê
][

Ê
(
1 ⊗ 1 − AT

J

2

)
Ê−1

]
. (F6)

Note that every term in HD′ is positive-semidefinite and annihilates the state |ρm〉〉. Hence, |ρm〉〉 must be a ground state of HD′.
Recall that with a general stabilizer AJ [X, Z], we associate two binary vectors aJ,μ and bJ,μ. We can then calculate the

individual terms as

Ê
(
1 − AJ

2
⊗ 1

)
Ê−1 = 1

2
1 ⊗ 1 − 1

2
e2
∑

μ K̃xbJ,μXμ⊗Xμ−K̃y (aJ,μ+bJ,μ )Yμ⊗Yμ+K̃zaJ,μZμ⊗ZμAJ ⊗ 1.

For later convenience, we introduce the following operator:

ÊJ = e
∑

μ K̃xbJ,μXμ⊗Xμ−K̃y (aJ,μ+bJ,μ )Yμ⊗Yμ+K̃zaJ,μZμ⊗Zμ . (F7)

We remark that (aJ,μ + bJ,μ) should be understood as an addition in Z2. We thus have[
Ê−1

(
1 − AJ

2
⊗ 1

)
Ê
][

Ê
(
1 − AJ

2
⊗ 1

)
Ê−1

]
=
(

1

2
1 ⊗ 1 − 1

2
Ê−2

J AJ ⊗ 1

)(
1

2
1 ⊗ 1 − 1

2
AJ ⊗ 1Ê−2

J

)

= 1

4
1 ⊗ 1 + 1

4
Ê−4

J − 1

4

(
Ê2

J + Ê−2
J

)
AJ ⊗ 1.

Thus, we can write

HD′ =
∑

J

1

2
Ê−4

J − 1

4

(
Ê2

J + Ê−2
J

)(
AJ ⊗ 1 + 1 ⊗ AT

J

)
. (F8)

A simpler parent Hamiltonian of |ρm〉〉 can be derived by noting that the double-Hilbert space operator Ê is Hermitian and
factorizes sitewise. So, we can write down a frustration-free Hamiltonian of the following form:

HD =
∑

J

Ê−1
J

(
1 − AJ

2
⊗ 1 + 1 ⊗ 1 − AT

J

2

)
Ê−1

J . (F9)

Note that, for each J, ÊJ is so constructed that all the terms in the exponent anticommute with AJ ⊗ 1 and also 1 ⊗ AT
J . One can

then verify that

HDÊ |ρ0〉〉 =
∑

J

Ê−1
J ÊJ̄

(
1 − AJ

2
⊗ 1 + 1 ⊗ 1 − AT

J

2

)
|ρ0〉〉 = 0, (F10)

where ÊJ̄ denotes all the terms in the original Ê excluding the ones contained in ÊJ . ÊJ̄ commute with 1 ⊗ AT
J and AJ ⊗ 1. Since

each individual term of HD is positive-semidefinite, Ê |ρ0〉〉 = |ρm〉〉 must be its ground state. The explicit form of HD is obtained
by moving ÊJ across 1−AJ

2 ,

HD =
∑

J

Ê−2
J − 1

2
AJ ⊗ 1 − 1

2
1 ⊗ AT

J = Hs ⊗ 1 + 1 ⊗ HT
s +

∑
J

Ê−2
J + const. (F11)

When K̃x, K̃y, K̃z are small, HD to first order in K̃ is just HD
0 plus the interaction between two copies of the Hilbert space∑

J

∑
μ K̃xbJ,μXμ ⊗ Xμ − K̃y(aJ,μ + bJ,μ)Yμ ⊗ Yμ + K̃zaJ,μZμ ⊗ Zμ. This interaction competes with HD

0 . As we tune up the
value of K̃’s, a possible scenario is that this competition leads to a quantum phase transition in HD. Whether there is indeed a
quantum phase transition in this model needs to be examined independently for different stabilizer codes.
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