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Topological inverse Anderson insulator
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A different type of topological phase dubbed topological inverse Anderson insulators is proposed, which is
characterized by the disorder-induced extended bulk states from the flat-band localization and topological edge
states. Based on the topological invariant, the behaviors of the localization length of the zero-energy modes,
and quantum transport, we identify its existence in several all-band-flat models with the disordered potentials
or hopping including the π -flux Creutz ladder, the fully dimerized Su-Schrieffer-Heeger chain, and the π -flux
diamond chain. Unlike the topological Anderson insulator, where disorder induces localization and exponential
suppression of transport, the disorder-assisted quantum ballistic coherent transport can appear in the topological
inverse Anderson insulator. In addition, our proposal and results could be realized by the current experimental
techniques.
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I. INTRODUCTION

Quantum matter with single-electron flat bands [1–5] has
become an ideal quantum platform to investigate the vari-
ous strongly correlated electronic states. In particular, moiré
superlattice systems such as magic-angle twisted bilayer
graphene [6,7] with topological flat bands have been inten-
sively studied, where the fractional Chern insulators have
been experimentally demonstrated recently [8–11]. Due to the
quenched kinetic energy in the complete flat bands, the wave
group velocity of the electrons is strictly zero for all momenta
in the Brillouin zone. The eigenstates of these dispersion-
less flat bands are characterized by the compact localized
states, which are sharply localized within a small finite num-
ber of lattice sites. The compact localized states are caused
by destructive interference and the local spatial symmetries.
When the magnetic field is incorporated, the complete flat-
band localization phenomenon called Aharonov-Bohm caging
[12] appears, where the eigenstates are completely localized
due to Aharonov-Bohm destructive interference. When the
electron-electron interaction is further considered, the vari-
ous many-body phases can emerge such as ferromagnetism
[13–16], Wigner crystal [17,18], superconductivity [19,20],
fractional Chern insulators [21,22], and quantum many-body
scars [23–26].

According to the band-crossing singularity of Bloch states,
the flat bands can be classified into two classes: singular and
nonsingular flat bands [27–29]. In the singular flat band, the
compact localized states do not form a complete set spanning
the singular flat band, and the noncontractible loop states
with the robust boundary modes exhibiting the nontrivial real-
space topology can appear. The singular flat band becomes a
another platform to investigate the geometrical (curvature and
metric) properties of Bloch states. On the other hand, the dis-
ordered flat bands display rich quantum behaviors including
inverse Anderson transitions [30–34], multifractality [35], and
localization lengths diverging with unconventional exponents
[36–38].

The topological phases of matter with exotic bulk phe-
nomena and robust boundary effects have become a surging
field in condensed-matter physics [39–45]. Disorders and im-
purities are ubiquitous in real quantum matter, playing an
important role in the appearance of the different quantum
phases. The interplay of disorder and topological states is
extensively explored. For example, strong disorder can in-
duce the trivial systems into topological Anderson insulator
phases [46–51], which have been the subject of exten-
sive experimental and theoretical studies [52–58]. When the
quasiperiodic potentials and/or spatially correlated disorders
are added, various remarkable features such as re-entrant
localization-delocalization transition appear [59–65]. By ap-
plying a magnetic field or introducing various symmetries, the
different types of topological flat bands can be constructed
[21,22,66–68].

The interplay of disorder and topological flat bands is an
intriguing subject. In this paper, we theoretically investigate
the complex competition of the Anderson localization and the
flat-band localization in several all-band-flat models and find
a different kind of topological phase termed the topological
inverse Anderson insulator, where the disorders induce the
localized bulk states in the dispersionless flat bands into ex-
tended states and the topological edge states are located at
the two ends. We provide a detailed demonstration of this
topological phase by the disordered π -flux Creutz ladder,
fully dimerized Su-Schrieffer-Heeger (SSH) chain, and the
π -flux diamond chain using the topological invariant, the be-
haviors of the localization length of the zero-energy modes,
and quantum transport. By tuning the disorder strength, we
show that the system undergoes a phase transition from the
topological insulator with flat-band localization to the topo-
logical inverse Anderson insulator. The extended bulk states
are demonstrated by rigorous analytic proof and quantum
transport. The disorder-assisted quantum ballistic coherent
transport becomes possible in this topological phase. This
work opens another direction in the search for topological
quantum matter, where the disordered systems are topological
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FIG. 1. (a) Sketch of the disordered π -flux Creutz ladder with
on-site disorders V a

j and V b
j . Blue balls denote the lattice sites. The

arrows depict the sign of the intrachain hopping iJ . The cross-link
hoppings are J . (b) Mapping of the disordered π -flux Creutz ladder
to a disordered SSH chain. (c) The phase diagram for the disordered
π -flux Creutz ladder with the J = 1 and N = 104 case.

insulators with the extended bulk state induced by disorder
and topological edge states.

This paper is organized as follows. In Sec. II A, we discuss
the topological features and localization properties of the π -
flux Creutz ladder with the antisymmetric-correlated disorder.
The phase diagram is given in Sec. II B. Then, we investigate
the quantum transport characterization of the disordered π -
flux Creutz ladder in Sec. II C. In Sec. II D, we analyze the
topological and transport properties of the π -flux diamond
chain with the antisymmetric-correlated disorder. Conclusions
and discussions are presented in Sec. III.

II. MODEL

A. Creutz ladder

Our starting point is the disordered π -flux Creutz ladder
[66] [illustrated in Fig. 1(a)], which is described by the real-
space Hamiltonian

H0 = −
N−1∑

j

[iJ (a†
j+1a j − b†

j+1b j ) + J (a†
j+1b j + b†

j+1a j )

+ H.c.] +
N∑
j

(
V a

j a†
j a j + V b

j b†
jb j

)
, (1)

in which a†
j and b†

j (a j and b j) are fermionic creation (an-
nihilation) operators on the upper (denoted by a) and lower
(denoted by b) chains, respectively. J is the parameter control-
ling the strengths of the intrachain and interchain couplings.
V a

j and V b
j are the on-site disorder potentials at the chains a

and b. Here, we consider the antisymmetric-correlated disor-
der V a

j = −V b
j case. N is the number of unit cells.

In the clean limit, the ladder possesses two complete flat
bands, E± = ±2J due to the destructive interference of the
hoppings. The compact localized eigenstates of the two highly
degenerate flat bands are given by 1

2 [ia†
j+1 + b†

j+1 ± a†
j ±

ib†
j]|0〉 (|0〉 indicates the vacuum state). Consequently, when a

particle is inserted in the system, it is localized on the four
neighbor sites, known as the Aharonov-Bohm caging phe-
nomenon. The two flat bands have disorder-free localization
and topological properties with the Berry phase π (winding
number ±1) [66,69–74]. For a finite system under an open
boundary condition (OBC), two topological zero-energy edge
states located at the ends appear.

To gain insight into the features of this disordered π -flux
Creutz ladder system, it is convenient to write the Hamilto-
nian Eq. (1) in a different basis. By performing the unitary
transformation of the following operators and defining w j =
(V b

j − V a
j )/2, we use(

f †
j

g†
j

)
= 1√

2

(
i 1

−i 1

)(
a†

j

b†
j

)
, (2)

and the Hamiltonian of this disordered π -flux Creutz ladder is
cast into the form

HSSH =
N−1∑

j

(i2J f †
j+1g j + H.c.) +

N∑
j

2w j ( f †
j g j + g†

j f j ).

(3)

It is easy to see that the disordered π -flux Creutz ladder is
mapped into a SSH chain with intercell coupling i2J and intra-
cell disordered-coupling 2w j , as shown in Fig. 1(b). Because
of the antisymmetric-correlated disorder, the chiral symmetry
of the π -flux Creutz ladder is explicitly broken. By way of the
operator transformation, the mapped disordered SSH chain
has chiral symmetry, which indicates the existence of a hidden
chiral symmetry in the disordered π -flux Creutz ladder. In
the clean limit, for the disordered SSH chain under a periodic
boundary condition, the system becomes fully dimerized and
has two complete flat bands, which is the same as the above
discussion of the clean π -flux Creutz ladder. The SSH chain
falls apart to dimers and the states become localized. Thus, an
electron in the bulk cannot move along the chain.

Although the disordered SSH chain has been the subject
of extensive studies, here we provide a deeper understanding
of the topological features. From the Hamiltonian HSSH of the
disordered SSH chain, one can see that, as long as the intercell
hopping w j �= 0, the disorder-assisted quantum transport is
allowed. Therefore, the flat-band localization could be de-
stroyed by the antisymmetric-correlated disorder. This implies
that the bulk states of the disordered Creutz ladder can be
delocalized.

More specifically, the probability density function f (w) of
the disorder potential w j is chosen as [31]

f (w) =
{

1
2�

, |w j ± W | < �
2 ,

0, otherwise,
(4)

where w j is an independent stochastic variable with the same
probability density function of zero mean, W is the disorder
potential strength, and � is the uniformly distributed width of
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the disorder potential in the range (±W − �
2 , ±W + �

2 ). In
the limit � → 2W , f (w) is uniformly distributed in the range
(−2W , 2W ). In the other limit � → 0, f (w) is the Bernoulli
distribution (binary disorder) and w j takes only the two values
±W with the same probability.

First, we investigate electronic properties of the SSH
chain with the Bernoulli distribution disordered-hopping case.
Supposing that the eigenstates of one particle are given by
|ψn〉 = ∑

j (ψ
f
j,n f †

j + ψ
g
j,ng†

j )|0〉, we can solve the Hamilto-
nian Eq. (3) to obtain the difference equations

Eψ
f
j,n = i2Jψ

g
j−1,n + 2Weiπδ j ψ

g
j,n, (5)

Eψ
g
j,n = −i2Jψ

f
j+1,n + 2Weiπδ j ψ

f
j,n, (6)

where the phases eiπδ j (δ j = 0 and 1) depend on the
disorder values w j = ±W . Now we introduce the gauge
transformations ψ

f
j,n = ψ̃

f
j,n exp(−iπ

∑ j−1
l δl ) and ψ

g
j,n =

ψ̃
g
j,n exp(−iπ

∑ j−1
l δl ). Then, these phases are gauged away

and the difference equations take the following forms:

Eψ̃
f
j,n = i2Jψ̃

g
j−1,n + 2W ψ̃

g
j,n, (7)

Eψ̃
g
j,n = −i2Jψ̃

f
j+1,n + 2W ψ̃

f
j,n, (8)

which correspond to the disorder-free conventional clean SSH
chain with intercell coupling i2J and intracell coupling 2W .
So, the disorder-induced energy spectra of the disordered SSH
chain (Creutz ladder) under a periodic boundary condition
(PBC) become absolutely continuous and the two dispersive
bands E = ±2

√
J2 + W 2 + 2JW sin k, where −π < k � π

(lattice constant is set to unity) is the Bloch wave number. At
the same time, the eigenstates become perfectly extended and
of the Bloch type. Thus, the antisymmetric correlated disor-
der revives mobility in this flat-band system, which indicates
an escape from Aharonov-Bohm caging and the destruction
of the flat-band localization. This phenomenon is known as
the inverse Anderson transition [30–34]. When the coupling
amplitudes W < J , the disordered SSH chain at 1/2 filling is
in the topological insulator phase with two zero-energy edge
states. This implies that for the antisymmetric-correlated dis-
order with Bernoulli distribution, the disordered π -flux Creutz
ladder has disorder-induced extended bulk states of the Bloch
type and two topological zero-energy edge states, which is
a counterintuitive phenomenon. We dub such a disordered
topological insulator with disorder-induced extended states
and topological edge states the topological inverse Anderson
insulator. Due to this intriguing feature, we next investigate
the phase diagram and the quantum transport properties of this
disordered π -flux Creutz ladder. A comment is in order. Be-
cause the disordered π -flux Creutz ladder in the clean limit is
in the topological phase, the topological phase transition does
not take place when the antisymmetric correlated disorder is
added (small disorder case). The system only undergoes the
inverse Anderson transition.

B. Phase diagram

As shown in Ref. [50], the topological phase transition of
the disordered SSH chain with chiral symmetry at 1/2 filling
is accompanied by the divergence of the localization length

of the zero-energy modes. From Eq. (3), we can obtain the
Lyapunov exponent λ−1 (the reciprocal of the localization
length) of the zero-energy modes as

λ−1 =
∣∣∣∣∣∣ lim
N→∞

1

N

N∑
j=1

ln

∣∣∣∣ J

w j

∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣ lim
N→∞

1

N

N∑
j=1

ln |w j |
∣∣∣∣∣∣, (9)

where we have set J = 1 for convenience. According to the
probability density function f (w) of disorder and Birkhoff’s
ergodic theorem, we can use the ensemble average to evaluate
the Lyapunov exponent as follows:

λ−1 = 2

(
ln

∣∣ 2W +�
2

∣∣W/�+1/2∣∣ 2W −�
2

∣∣W/�−1/2 − �

)
. (10)

Therefore, the topological phase boundary is identified by
the exact solution of the following equation:

(W + �

2
) ln

∣∣∣∣W + �

2

∣∣∣∣ − (W − �

2
) ln

∣∣∣∣W − �

2

∣∣∣∣ = �. (11)

On the other hand, the chiral symmetry of the disordered
SSH chain [Eq. (3)] is maintained, and the real-space winding
number and the electric polarization [50] can be used to recog-
nize the topological phases. Here we use another topological
invariant, Q [75,76], to characterize the topological states.
The topological invariant Q is constructed from the reflection
matrix and counts the number of stable bound states at the
ends and can be applied to the larger disordered system, which
reads

Q = 1

2

⎛
⎝1 − sign

⎡
⎣∏

j

w2
j −

∏
j

J2

⎤
⎦
⎞
⎠.

(12)

In the large N limit, we can write
∏N

j w2
j = V 2N , where

ln V = limN→∞ 1
N

∑N
j=1 ln |w j |. Compared with Eq. (10), it

is easy to see that ln V is exactly the Lyapunov exponent
except for the sign function (| ln V | = λ−1). In consequence,
the divergence points of the localization length correspond to
the phase transition of the topological invariant Q.

According to the localization length and the topological
invariant Q, the phase diagram of the disordered π -flux Creutz
ladder is shown in Fig. 1(c). The analytic boundary for the
divergence of the localization length [Eq. (10)] is depicted by
the yellow solid curve in Fig. 1(c). Thus, our numerical cal-
culations demonstrate that the critical phase transition points
of the divergence of the localization length and topological
invariant Q coincide with each other. The green line denotes
the topological inverse Anderson insulator under the Bernoulli
distribution disorder and the pink line represents the topolog-
ical Anderson insulator [50] under the uniformly distributed
disorder (� = 2W ) in Fig. 1(c). In the blue region, the system
is in the topological insulator phase with two zero-energy
modes. While in the cyan region (strong disorder case), the
system becomes topologically trivial. For a fixed disorder
strength W , as the disorder width � increases from zero, the
extended bulk states become more and more localized and the
system evolves from the topological inverse Anderson insula-
tor to conventional topological Anderson insulator phases.
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FIG. 2. The energies (red dots) and IPR (blue dots) for the dis-
ordered π -flux Creutz ladder with N = 100 and J = 1 under the
OBC. (a), (b) In the clean limit case, W = � = 0. The zoomed
inset illustrates the two topological zero-energy edge modes. (c),
(d) W = 0.5 and � = 0.02 with one disorder configuration. (e), (f)
W = 1.5 and � = 0.2 with one disorder configuration.

According to the bulk-edge correspondence, there are two
topological edge bound states in topological insulator phases.
To discern between localized and extended states, we use the
inverse participation ratio (IPR) IPRn = ∑N

j |ψn( j)|4, where
ψn is the nth normalized eigenstate of the system. For a per-
fectly extended state, the IPR scales as 1/N and vanishes in the
thermodynamic limit, while it remains a finite value for a lo-
calized state. The energies (red dots) and IPRs (blue dots) with
the different strength disorder configurations are illustrated in
Fig. 2 for the disordered π -flux Creutz ladder with N = 100
and J = 1 under the OBC. In Figs. 2(a) and 2(b), the clean
π -flux Creutz ladder has two flat bands and two topological
zero-energy edge states located at the two ends. When the
antisymmetric-correlated disorder is switched on, the two flat
bands become dispersive, as shown in Figs. 2(c) and 2(d). The
small IPR values of the bulk eigenstates indicate that they are
extended states. At the same time, the two topological edge
states located at the two ends are still fixed to zero-energy due
to the hidden chiral symmetry and are robust against the dis-
order. As the disorder width � increases for a fixed disorder
strength W , numerical calculations demonstrate that some IPR
values become big, indicating the localized bulk states [see the
bulk eigenstates of band-edge regions in Figs. 2(d), 2(f), and
3(a)] and the coexistence of localized and delocalized bulk
eigenstates. For the uniformly distributed case � = 2W , the
bulk eigenstates become localized (Anderson insulator case).
As the disorder strength W further increases, the system enters
into a trivial insulator phase without zero-energy states [see
Figs. 2(e) and 2(f)].

Next, we analyze in detail the coexistence properties and
IPR behaviors of the localized and delocalized bulk eigen-
states in the topological phase. Figure 3(a) shows the IPR

FIG. 3. (a) The IPR values for the disordered π -flux Creutz lad-
der with N = 5000, J = 1, and W = 0.5 as a function of � under
one disorder configuration. (b)–(d) The finite-size scaling analysis
for IPR values with J = 1, W = 0.5, and � = 0.02 (b), 0.3 (c), and
0.9 (d), respectively, under one disorder configuration. (e, f) The
finite-size scaling analysis of 〈IPR〉 and 〈NPR〉 with W = 0.5 and
averaged over 100 disorder realizations under the PBC.

values associated with the bulk eigenstates as a function of
the disorder width �, when the system parameters are N =
5000, J = 1, and W = 0.5 under one disorder realization
for each �. It is easily to see that for a fixed finite-size
system, as the disorder width � increases, more and more
bulk states become localized. Second, the finite-size scaling
analysis for the IPR of the energy-dependent bulk states is
carried out in Figs. 3(b)–3(d), when the disorder strength
W = 0.5 and the disorder width � = (0.02, 0.3, 0.9) un-
der one disorder realization. For the large-size systems, it
is clearly shown that the bulk states of band-edge regions
are localized, where the IPR values become finite values in
the thermodynamic limit. On the other hand, the bulk states
for the band-center regions are extended for the small �

(up to N = 2 × 104). As the disorder width � increases,
we can see that the number of extended bulk states of
band-center regions becomes more and more sparse. At the
same time, the localization lengths of the bulk states become
shorter and shorter. For the large-size systems, almost the
bulk states become localized for larger �. In addition, we
illustrate the scaling analysis for the mean inverse participa-
tion ratio 〈IPR〉 = ∑2N

n IPRn/2N and the mean normalized
participation ratio 〈NPR〉 = ∑2N

n NPRn/2N (where NPRn =
[2N

∑N
j |ψn( j)|4]−1) with the disorder strength W = 0.5 and
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FIG. 4. The quantum mechanical time evolution of the electronic
wave packet in the disordered π -flux Creutz ladder with J = 1, W =
0.25, and N = 100 under the OBC. The electronic wave packet is
initially positioned on the center of leg a. (a) � = 0. (b) � = W/2.
(c) � = W . (d) � = 2W . (e) The log-log plot of the time evolution√〈σ (t )〉 averaged over 100 disorder realizations.

averaged over 100 disorder realizations in Figs. 3(e) and 3(f),
respectively. For the bulk extended phase (� = 0 case), the
〈IPR〉 = 0 and the 〈NPR〉 �= 0 in the thermodynamic limit.
As the disorder width � increases, the system enters into
the coexistence region characterized by nonzero values of
〈IPR〉 and 〈NPR〉. For all the localized phases (� = 2W ,
uniformly distributed disorder case), the 〈IPR〉 �= 0 and the
〈NPR〉 = 0, which implies that the bulk states are localized.
The localization length for fixed energy bulk eigenstates in
the thermodynamic limit could be, in principle, calculated by
the transfer matrix method [77–80].

C. Transport properties

To further analyze the electronic properties of the topo-
logical inverse Anderson insulator, the experimental quantum
mechanical time evolution of the electronic wave packet is
used to investigate the characterization of the quantum trans-
port. First, we put an electron in the center of chain a. The
state vector of the electron at time t = 0 is given by |ψ0〉 =
a†

N/2|0〉. The mean square displacement of the electronic

wave packet can be calculated by 〈σ (t )〉 = ∑N
j j2(|a j (t )|2 +

|b j (t )|2) as a function of time t , where a j (t ) and b j (t )
are the occupation amplitudes of the dynamical evolution
state |ψ (t )〉 = e−iH0t |ψ0〉 in the jth unit cell. Figures 4(a)–
4(d) shows the time-dependent density distribution of the
electronic wave packet when the system parameters in the
topological phase are J = 1, W = 0.25, and N = 100 under
the OBC. One can observe that due to the different param-
eters of the probability density function for the disorder, the
electronic wave packet displays different evolution dynam-
ics. In consequence, the disorder-assisted quantum transport

becomes possible. For the Bernoulli distribution disorder case
[illustrated in Fig. 4(a)], the ballistic coherent transport takes
place. As shown in Refs. [81,82], the overall behavior of
the diffusion width

√〈σ (t )〉 at long times can be described
by the power law

√〈σ (t )〉 ∼ tα . The index α continuously
decreases from 1 to 0 when the eigenstates of the system
change from extended to localized cases. For the Bernoulli
disorder (� = 0) case, the bulk states are perfectly extended
and of the Bloch type. Numeral calculations demonstrate that
the diffusion linearly grows with time (make sure the wave
fronts do not reach the boundaries), i.e.,

√〈σ (t )〉 ∼ t (α =
1), indicating that the ballistic coherent transport appears,
as marked by the blue curve in Fig. 4(e). We can also see
that as the disorder width � increases, the diffusion width
obeys the power-law behavior for small times. (The oscillating
behaviors of the diffusion width in the initial time are due
to the different initial disorder configurations). As the time
further increases (longer time) and � < 1, the diffusion width
deviates from the straight line and saturates a stable value,
which indicates the existence of a finite localization length for
the system. For the uniformly distributed disorder � = 2W ,
the diffusion width

√〈σ (t )〉 ∼ tα (α → 0) highlighted by the
red curve in Fig. 4(e) converges to a stable constant, which
shows that the wave diffusion is prevented and most bulk
eigenstates are localized [see Fig. 4(d)]. Thus, as the disorder
width � increases, the electron motion undergoes ballistic
transport, superdiffusive transport, normal diffusive transport,
subdiffusive transport, and, finally, localized transport, which
consists of the IPR behaviors in Fig. 2.

It should be noted that a conventional disordered SSH
chain can emerge as the topological inverse Anderson insu-
lator phase from the trivial phase, if we choose the intracell
hopping J with the intercell hopping w j . This type of disor-
dered SSH chain with the Bernoulli distribution disordered
hopping would be changed from a trivial fully dimerized
insulator with two complete flat bands to a trivial insulator
with two dispersive Bloch bands when the hopping strengths
W < J . As the strength of the disordered hopping further
increases, a topological phase transition takes place and the
system enters into the topological inverse Anderson insula-
tor phase with two zero-energy edge modes, where the bulk
states are extended, even in the presence of strong disorder.
Thus, the conventional disordered SSH chain with Bernoulli
distribution disordered hopping reveals the topological inverse
Anderson insulator phase.

D. Diamond chain

The next concrete example is the disordered π -flux dia-
mond chain [see Fig. 5(a)] [31–33,83,84], whose Hamiltonian
can be written as

H0 = J
N−1∑

j

[a j+1(b†
j+1 + c†

j+1 − b†
j + c†

j ) + H.c.]

+
N∑
j

V b
j b†

jb j + V c
j c†

j c j, (13)

where a†
j , b†

j , and c†
j are fermionic creation operators at the

lattice sites a, b, and c in the jth unit cell. The parameter J
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FIG. 5. (a) Sketch of the disordered π -flux diamond chain with
on-site disorder potentials V b

j and V c
j . (b) Mapping of the disordered

π -flux diamond chain to a disordered trimerized chain. (c) The phase
diagram for the disordered π -flux diamond chain with the neighbor-
ing hopping J = 1.

denotes the hopping strengths between neighboring sites. V b
j

and V c
j are the on-site disorder potentials at the lattice sites b

and c. We also choose the antisymmetric-correlated disorder
V c

j = −V b
j case. In the clean limit, there are three complete

flat bands at energies E = 0 and ±2J . The compact localized
eigenstates of the three flat bands are given by [b†

j + c†
j ±

2a†
j+1 − b†

j+1 + c†
j+1]|0〉 and [b†

j + c†
j + b†

j+1 − c†
j+1]|0〉. The

localization and topological properties of the clean π -flux
diamond chain have been intensely investigated [12,67,85–
87], known as square-root topological insulators. The three
flat bands have the quantized Berry (Zak) phase π for the
E = 0 band and the nonquantized Berry phase π/2 for the
two E = ±2J bands. The two in-gap topological edge states
appear at energies E = ±√

2J in a finite system under the
OBC.

The above analysis for the Creutz ladder can also be used to
describe the topological and transport properties of this disor-
dered π -flux diamond chain. Applying the transformation of
the following operators and defining w j = (V c

j − V b
j )/2, we

can get

(
f †

j

g†
j

)
= 1√

2

(−1 1

1 1

)(
b†

j

c†
j

)
, (14)

Htri =
√

2J
N−1∑

j

a j+1( f †
j + g†

j+1) +
N∑
j

2w j f †
j g j + H.c.

(15)

Thus, the disordered π -flux diamond chain is mapped into
a disordered trimerized chain with intercell coupling

√
2J and

intracell couplings
√

2J and 2w j , as shown in Figs. 5(a) and
5(b). As argued in the Creutz ladder case, for Bernoulli distri-
bution disorder, we can obtain the energy spectrum equation
E3 − 4E (J2 + W 2) + 8J2W 2 cos k = 0, where k is the Bloch
wave number. The roots of this eigenvalue equation form three
dispersive Bloch bands. This disordered system reduces to the
disorder-free traditional trimerized chain, whose topological
properties have been identified [88,89]. In consequence, for
the disordered π -flux diamond chain, the system evolves from
the square-root topological insulator phase at the clean limit
into the square-root topological inverse Anderson insulator
phase [marked by the green line in Fig. 5(c)] in the Bernoulli
distribution disorder case. For the uniformly distributed disor-
der (� = 2W ), the system enters the square-root topological
Anderson insulator phase [highlighted by the pink line in
Fig. 5(c)]. For the disordered trimerized chain, the winding
number in real space and the localization length of the topo-
logical edge states can be used to characterize the topological
phases [90]. Numerical calculations show that the energies
of the topological edge states are fixed at ±√

2J . The phase
diagram for the disordered π -flux diamond chain with J = 1
is shown in Fig. 5(c), whose phase structure is similar to
that of the disordered π -flux Creutz ladder. The localization-
delocalization (inverse Anderson) transition phenomena of the
π -flux diamond chain with antisymmetric-correlated disorder
has been theoretically investigated [31] and experimentally
confirmed [32,33].

III. CONCLUSIONS AND DISCUSSIONS

In short, we uncover a different type of disordered topolog-
ical insulator phase termed the topological inverse Anderson
insulator in several all-band-flat models including the disor-
dered π -flux Creutz ladder, the fully dimerized SSH chain,
and the π -flux diamond chain. Unlike the topological An-
derson insulator, the topological inverse Anderson insulator
possesses disorder-induced extended bulk states and topo-
logical edge states. By way of the topological invariant, the
behaviors of the localization length of the zero-energy modes,
and quantum transport, we theoretically demonstrate the ex-
istence of this phase. Furthermore, these phenomena can be
realized in current experimental techniques such as ultra-
cold atoms [32] and topoelectrical circuits [33,34]. This work
opens another direction in the search for topological quantum
matter, where the disordered systems are topological insula-
tors with extended bulk states and topological edge states.
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