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Anomalous induced density of supercritical Coulomb impurities in graphene
under strong magnetic fields
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The Coulomb impurity problem of graphene, in the absence of a magnetic field, displays discrete scale
invariance. Applying a magnetic field introduces a new magnetic length scale � and breaks discrete scale
invariance. Moreover, a magnetic field is a singular perturbation as it turns complex energies into real energies.
Nonetheless, the Coulomb potential must be regularized with a length R at short distances for supercritical
impurities. We investigate the structure of the induced density of a filled Landau impurity band in the supercritical
regime. The coupling between Landau level states by the impurity potential is nontrivial and can lead to several
anomalous effects. First, we find that the peak in the induced density can be located away from the center of
the impurity, depending on the characteristics of the Landau impurity bands. Second, the impurity charge is
screened, despite the Landau impurity band being filled. Third, anticrossing impurity states lead to additional
impurity cyclotron resonances.
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I. INTRODUCTION

Recently, the supercritical Coulomb impurity problem has
been revived [1–9] in two-dimensional graphene [10]. (The
problem of Coulomb impurity in three-dimensional systems
was intensively investigated many years ago. For a compre-
hensive review, see Ref. [11].) It has been experimentally
demonstrated that single-atom vacancies in two-dimensional
graphene can stably host local charge. Using various exper-
imental techniques, the supercritical regime can be achieved
[12,13]. In the absence of a magnetic field, the induced den-
sity [2–5,7] has several interesting properties. However, how
electron-electron interactions would affect these results is not
well known. The purpose of this paper is to investigate the
induced density of the Coulomb impurity in the presence of
magnetic fields. The advantage of applying a magnetic field
is that, in some cases, due to an excitation gap between the
Landau levels, it reduces the effect of electron-electron inter-
actions. We find that impurity states exhibit several unusual
properties and give rise to an anomalous induced density, in
addition to anticrossings that lead to new impurity cyclotron
resonances. Before we present our main findings, we provide
a brief introduction of the Coulomb impurity problem both in
the absence and in the presence of a magnetic field.

The continuum model Hamiltonian of the two-dimensional
Coulomb impurity model in the absence of a magnetic field
takes the following form:

H0 = vF �σ · �p − Ze2

κr
+ �σz, (1)

where vF ≈ 106 m/s is the Fermi velocity, �σ = (σx, σy) rep-
resents the Pauli spin matrices, Ze is the impurity charge, κ
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is the effective dielectric constant, and σz is the Pauli matrix
in the z direction. Additionally, � represents a finite mass
gap. In the presence of a strong Coulomb potential, to avoid
pathological oscillations of wave functions towards the im-
purity origin, the impurity charge is introduced with a size
of R. This breaks continuous scale symmetry into discrete
scale symmetry (see Appendix A for an explanation of this
effect). The coupling strength is defined as the ratio between
two energy scales,

g = EC/ED = Ze2

κ h̄vF
, (2)

where EC = Ze2/κR and ED = h̄vF /R. In the absence of a
magnetic field and zero mass gap � = 0, subcritical and su-
percritical regimes separate at the critical coupling strength
gc = 1/2 [1,2,4,6].

Nishida [7] showed that, in the absence of a magnetic
field, discrete scale invariance in the induced density in the
supercritical regime |g| > gc = 1/2 has the following form:

ρ(�r) =
∑
|J|<g

FJ (r/r∗
J )

r2
+ N0δ(�r), (3)

where J is the total angular momentum and r∗
J is a J-

dependent regularization parameter. In the subcritical region,
|g| < 1/2, only the scale-independent first δ-function term is
present [2–4], with the analytical form of N0 given in Ref. [5].
The noteworthy feature is that the universal function FJ (r/r∗

J )
displays log-periodic and discrete scale invariance [7], char-
acterized by

FJ (r/r∗
J ) = FJ (enπ/

√
g2−J2

r/r∗
J ), (4)

where n is an integer. The induced density exhibits a power-
law tail, ρ(r) ∼ 1/r2, as r → ∞. The role of screening [5]

2469-9950/2024/110(8)/085156(10) 085156-1 ©2024 American Physical Society

https://orcid.org/0000-0002-1668-8984
https://orcid.org/0000-0003-3377-1859
https://ror.org/047dqcg40
https://ror.org/01n93gn67
https://ror.org/00y0zf565
https://ror.org/053fp5c05
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.085156&domain=pdf&date_stamp=2024-08-28
https://doi.org/10.1103/PhysRevB.110.085156


HOANG-ANH LE AND S.-R. ERIC YANG PHYSICAL REVIEW B 110, 085156 (2024)

in this induced density in the presence of electron-electron
interactions has not been well investigated.

In the Coulomb impurity problem in magnetic fields, re-
gardless of the value of the magnetic field, the critical dimen-
sionless coupling remains constant, g = gc [14]. The problem
was investigated both below [14–16] and above [14,17,18]
critical coupling gc. The continuum model Hamiltonian of the
Coulomb impurity problem in a magnetic field reads

H = vF �σ ·
(

�p + e

c
�A
)

− Ze2

κr
+ �σz. (5)

The graphene sheet lies in the xy plane, and we use a
symmetric gauge with vector potential �A = B

2 (y,−x).
The first term gives rise to graphene Landau levels with
magnetic length � ≡ √

h̄c/eB. Discrete scale invariance is
broken because of this magnetic length scale. The Landau
level energy in the absence of impurity and the gap � is
En/EM = sgn(n)

√
2|n|, where the magnetic energy scale is

EM = h̄vF /�. The probability densities of the Landau level
states in the absence of the impurity potential form rings
with width �. However, in the supercritical region, there is
another length scale, R 
 �, as the Coulomb potential must
be regularized for supercritical impurity potentials [14]. There
are now two relevant dimensionless parameters,

g = E ′
C/EM = Ze2

κ h̄vF
and R/�, (6)

where E ′
C = Ze2/κ� is the characteristic energy scale of

the Coulomb impurity. The coupling strength g is the ratio
between the Coulomb energy and the Landau level energy
spacing. Notice that despite a magnetic field being considered
here, this coupling strength is identical to the one in Eq. (2).
When g is large, many Landau levels are coupled by the
Coulomb potential. Note that g is independent of �. The other
parameter R/� characterizes the regularization parameter of
the Coulomb impurity.

In the supercritical region g > gc = 1/2, the following
properties are found. (1) No complex energy solutions (res-
onances) are possible in the Coulomb impurity problem in
magnetic fields: the effective potential does not allow resonant
states since the vector potential diverges while the Coulomb
potential goes to zero in the limit r → ∞ [19]. (2) Regardless
of the size of the mass gap �, the critical dimensionless
coupling strength remains a constant g = gc, unlike the case
of zero magnetic field [6]. (3) There can be different types of
impurity bound states in a magnetic field: quasi-log-periodic
[14] states for g � 1 and tightly bound states for g � 1, as
depicted in Fig. 1.

So far, we have briefly reviewed the basic properties of
electronic wave functions of the Coulomb impurity problem.
Now, we present our main results for the induced density
in the supercritical regime, particularly focusing on strong
magnetic fields. We consider only values of the dimensionless
coupling strength g where Landau impurity bands do not
overlap. In such a case, the Landau level mixing in a filled
impurity Landau band due to many-body effects is weak [20].
We investigate how the properties of induced density in the
presence of a magnetic field compare to those in its absence.
We find that the dimensionless induced density of such a filled
Landau impurity band N has the following structure in the

FIG. 1. The wave functions exhibit various types of behavior: log
periodic, quasi log periodic, and tightly bound. The relevant dimen-
sionless variables are g and R/� (see text for their definitions). There
is no sharp boundary between quasi-log-periodic and tightly bound
regimes. The actual shape of the “boundary” depends on Landau
impurity band index N and angular momentum J . This figure is
highly schematic.

supercritical region:

ρN (�r) = �2
∑

J

|	N,J (�r)|2

= �2
∑
|J|�g

|	N,J (�r)|2 + �2
∑
|J|>g

|	N,J (�r)|2, (7)

with �r being the vector position from the impurity charge. The
explicit form of 	N,J (�r) will be presented below in Eq. (11).
Here, the sum over J is for all the states in the N th filled
Landau impurity band. We find the following similarities
and differences in comparison to the zero-field mathematical
structure of discrete scale invariance:

(1) We find, as in the presence of discrete scale invariance,
that states with angular momentum J � g strongly contribute
to the anomalous induced density near r = 0. For N = 1
the peak in the induced density is at r = 0 and is most
pronounced. However, for N = −1 the peak in the induced
density is away from the impurity center. The induced density
displays small oscillations for r � �, but without log-periodic
oscillations for r � �.

(2) There is no sharp change in the peak value of ρN (r)
near the critical strength gc = 1/2. The transition is smooth,
but the peak value increases rapidly as g exceeds gc.

(3) The second term of Eq. (7) leads to a unique effect
present in a magnetic field: the induced density approaches a
constant value 1/(2π�2) for r > ds, where ds is the screening
length. (In the absence of an impurity, the density of a filled
Landau level is independent of r and equal to this constant
value.)
In addition, Landau impurity band states 	N,J (�r) display
anticrossings that lead to anomalous impurity cyclotron res-
onances.

Our paper is organized as follows. In Sec. II, we explain
how our numerical method is implemented using a Hamilto-
nian matrix. Its eigenvalues and eigenstates that are relevant
to the induced density are also explained. The properties of
Landau impurity bands are explained in Sec. III. The induced
density is computed in Sec. IV, and its properties are eluci-
dated. Section V explains some unusual features of impurity

085156-2



ANOMALOUS INDUCED DENSITY OF SUPERCRITICAL … PHYSICAL REVIEW B 110, 085156 (2024)

TABLE I. For a given value of J , the allowed values of n
are displayed. For example, for J = 3/2 the allowed values are
n = ±2, ±3, . . ., and for J = 1/2, the possible values are n =
±1, ±2, . . .. Results are shown for values of J � +3/2, with gen-
eralization to other values being obvious.

Allowed values n for a given J

J � −1/2 0 ±1 ±2 ±3 ±4 · · ·
J = +1/2 ±1 ±2 ±3 ±4 · · ·
J = +3/2 ±2 ±3 ±4 · · ·

...
...

cyclotron resonances due to the anticrossing of Landau im-
purity states. Finally, discussion and a summary are given in
Sec. VI.

II. HAMILTONIAN MATRIX AND EIGENSTATES

We find the eigenstates and eigenvalues of the problem
numerically by converting it into the diagonalization of the
Hamiltonian matrix.

We introduce the following wave functions to construct the
basis states of the Hamiltonian:

ψn,m(�r) = cn

(−sgn(n)iφ|n|−1,m(�r)
φ|n|,m(�r)

)
, (8)

where n = . . . ,−2,−1, 0, 1, 2, . . . and m = 0, 1, 2, . . . are,
respectively, the inter-Landau-level index and intra-Landau-
level index. These two-component states ψn,m(�r) are graphene
Landau level states in the absence of an impurity, and their
energy is given by En [see below Eq. (5)]. The wave function
of each component φp,q(�r) is defined in Appendix B. These
wave functions are defined only for p � 0 and q � 0 and are
widely used in ordinary two-dimensional gases in a magnetic
field [21]. In Eq. (8), when |n| − 1 < 0 (equivalently, n = 0),
φ|n|−1,m(�r) = 0 by definition. In this case, only the second
component is nonzero, and the wave function is chiral. The
normalization condition of ψn,m requires c0 = 1 and cn =
1/

√
2 for n = 0. Note that sgn(0) = 0.

In constructing the basis states of the impurity problem in
a symmetric gauge, it is useful to utilize the z component of
the total angular momentum,

J = |n| − m − 1/2, (9)

as it is a good quantum number. Using |n| = J + m + 1/2,
we find that the possible values of J are half integers:
±1/2,±3/2,±5/2, . . .. (The z component of the total angular
momentum operator is Ĵ = −i∂/∂θ + σz/2, where θ is the
polar angle.) Table I lists possible values of n for a given value
of J .

By relabeling ψn,m(�r) using index J instead of m, we now
introduce the basis states of the Hamiltonian matrix:

ψ ′
n,J (�r) = ψn,m(�r) = ψn,|n|−J−1/2(�r). (10)

The eigenstate wave function of the Hamiltonian with
eigenenergy EN,J can be expressed as a linear combination of
graphene Landau level states as follows:

	N,J (�r) =
∑

n

CN,J
n ψ ′

n,J (�r), (11)

where N is defined as the Landau impurity band index. For-
mally, it is defined by taking the limit g → 0, where an
impurity state reduces to a basis state: 	N,J = ψ ′

n,J . In other
words, only one term exists in Eq. (11), and N = n. The
expansion coefficients {CN,J

n } are column eigenvectors.
For a given value of J , using these basis states ψ ′

n,J (�r),
we form the total Hamiltonian matrix in the Hilbert subspace
labeled by J . The relevant Hamiltonian consists of a Dirac
term, the Coulomb potential, and a mass term:

Hn,n′ = Tn,n′ + Vn,n′ + Dn,n′ . (12)

Since the graphene Landau level states are the basis, the ma-
trix of the Dirac Hamiltonian in a magnetic field is a diagonal
matrix with Landau level energies:

Tn,n′ = sgn(n)
√

2|n|δn,n′ . (13)

Here, the energy is measured in units of the magnetic energy
EM . Note that employing the orthogonality in Eq. (B2), the
matrix elements of the mass term can be computed as

Dn,n′ = �

EM
〈ψn,m|σz|ψn′,m′ 〉 = − �

EM
δn,−n′ . (14)

Matrix elements of the Coulomb potential are written as

Vn,n′ = 〈ψn,m| −Ze2

κrEM
|ψn′,m′ 〉 = −〈ψn,m|g�

r |ψn′,m′ 〉, (15)

which eventually can be simplified to the following form:

Vn,n′ = −2πgcncn′

[
sgn(nn′)2α1−1/2A|n|−1,mA|n′|−1,m′ Iβ1−α1/2,β ′

1−α1/2

(
α1 − 1

2
, α1, α1

)

+ 2α2−1/2A|n|,mA|n′|,m′ Iβ2−α2/2,β ′
2−α2/2

(
α2 − 1

2
, α2, α2

)]
, (16)

where α1 = |J − 1/2|, β1 = 2|n|−J−3/2
2 , β ′

1 = 2|n′|−J−3/2
2 , α2 = |J + 1/2|, β2 = 2|n|−J−1/2

2 , and β ′
2 = 2|n′|−J−1/2

2 . Here, An,m is the
normalization factor defined in Appendix B [see Eq. (B3)].

To derive the above analytical form, we use the following identity of Laguerre polynomials [22]:

In,m(μ, α, β ) =
∫ ∞

0
tμ exp(−t )Lα

m(t )Lβ
n (t )dt

= �(μ + 1)
(β − μ)n(α + 1)m

m!n!
3F 2(−m, μ + 1, μ − β + 1; μ − β + 1 − n, α + 1; 1), (17)
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FIG. 2. Expansion coefficients CN,J
n of Landau impurity band

states as a function of n: (N, J ) = (0,−1/2) (top) and (N, J ) =
(−1, −1/2) (bottom). With g = 0.9, the largest contribution to impu-
rity level N comes from graphene Landau level state with n = N − 1.

where �(x) is the gamma function, the Pochhammer
symbol is defined as (a)n ≡ �(a + n)/�(a), and
3F2(a1, a2, a3; b1, b2; 1) is the generalized hypergeometric
function.

In the supercritical region we must regularize the Coulomb
impurity potential by introducing the radius of the impurity
charge R. For each value of J , inter-Landau-level numbers
within |n| � (Nc − 1)/2 are included (we will call Nc the
Landau level cutoff). The regularization parameter is related
to the matrix dimension Nc as follows:

R ∼ �
√

2/Nc. (18)

This comes from the fact that the Landau level state with the
highest index Nc has this minimum length scale, namely, the
distance between adjacent nodes in the wave function.

Some examples of the expansion coefficients {CN,J
n } are

given in Fig. 2. Various plots of the probability densities of
these eigenstates are shown in Appendix C.

III. LANDAU IMPURITY BANDS

Plots of eigenvalues of Hamiltonian H as a function of
coupling strength g are presented in Fig. 3. Figure 3(a) cor-
responds to a smaller value of R/� compared to Fig. 3(b).
The following points can be observed from the plot. First,
an impurity splits Landau level degeneracy. This splitting,
measured in units of the magnetic energy EM , increases as
coupling strength g increases. The Landau levels n = 0 and

FIG. 3. Landau impurity band states with (a) Nc = 2501 and (b)
Nc = 201, which correspond to two different values of regularized
parameter R. LL0 stands for the Landau impurity band originating
from the n = 0 unperturbed Landau level described by Eq. (8). LL1,
LL2, and LL3 are similarly defined. Small numbers written next
to several lines with the same color correspond to their angular
momentum J . For each Landau level, many more energy levels are

not shown, indicated by
.... In certain cases, there exist values of g

where Landau impurity bands do not overlap; these values of g are
below the critical values indicated by the arrows.

n = 1 are mostly affected. The small magnetic field B limit is
approached with Nc → ∞, i.e., R/� → 0 [see Eq. (18)]. (Our
numerical approach is not suited for investigating this limit
because it requires a prohibitively large value of Nc, meaning
a prohibitively large Hamiltonian matrix.) Second, there are
values of g where Landau impurity bands do not overlap, and
we will focus on these ranges of g, specifically to the left of the
black arrows. Finally, in this range of g, the n = 0 and n = 1
Landau levels are strongly affected by the change in R/�. In
addition, the Landau level splitting is smaller for a smaller
value of R/�.

IV. INDUCED DENSITY OF A FILLED
LANDAU IMPURITY BAND

Suppose that states of a Landau impurity band are filled and
they do not overlap in energy with other Landau impurity band
states. (There are values of g for which Landau impurity bands
do not overlap, positioned to the left of the black arrows in
Fig. 3.) In such cases, mixing of Landau impurity band states
with other band states due to many-body effects is weak, as
demonstrated in Refs. [20,23].

A. Zero mass gap � = 0

We first investigate the massless case with � = 0. The
behavior of the induced density of a Landau impurity band can
be rather different from that of zero magnetic field because
discrete scale invariance is not present. We computed the
induced density in the supercritical regime g = 0.55 for the
values of N = 0 and N = 1, as shown in Fig. 4. We find that
no δ function exists at r = 0, but a sharp narrowing of the
induced density near the location of the impurity is present.
This phenomenon is a precursor of the “fall to the center”
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FIG. 4. The induced charge densities at g = 0.55 are represented
by red lines for the impurity bands (top) N = 0 and (bottom) N = 1.
All charge densities are computed with Nc = 101. Blue and black
lines correspond the first and second terms of the charge density in
Eq. (7), respectively. The y axes of the two plots have a similar scale.

of the electron bound to the impurity charge. Moreover, the
position of the peak value of the induced density depends on
the Landau impurity band index N . For N = 0 and N = 1
the peak is near r = 0, as shown in Fig. 4. The red curves
in Fig. 4 represent ρ0(r) and ρ1(r), while the blue and black
curves represent the first and second terms of the induced
density given by Eq. (7). Note that impurity band states with
|J| = 1/2 do not contribute to the induced density at r = 0.
The peak value of ρ1(r) is much larger than that of ρ0(r). This
is because both Landau band impurity states with J = ±1/2
channels, 	1,−1/2(�r) and 	1,1/2(�r), contribute to it; however,
for ρ0(r), only the state with J = −1/2, 	0,−1/2(�r), does. For
large r � � the induced density of a filled Landau impurity
band is 1/(2π�2). This corresponds precisely to the value of
a filled graphene Landau level [23]. There is no sharp change
in the induced density as a function of g near gc = 1/2. How-
ever, the peak value increases rapidly as g exceeds gc. These
properties of the induced density’s peak are illustrated in
Fig. 5.

For some other values of N , the peak is located away
from r = 0. This effect becomes stronger for larger values
of g. An example with impurity band N = −1 is illustrated
in Fig. 6: The induced density is somewhat depleted near
the center but accumulates near r ∼ 2�. We can explain this

FIG. 5. The peak value of ρN (r) is computed as a function of g
with Nc = 101. The vertical dashed line indicates critical value gc =
0.5. The horizontal dashed line is the constant value 1/(2π�2).

effect by qualitatively analyzing the contributions of angular
momentum channels to the induced density. We observe that
the peak in the induced density originates from 	−1,1/2(�r).
According to our numerical results, this impurity state may be
approximated as

	−1,1/2(�r) ≈ C−1,1/2
−1 ψ ′

−1,1/2(�r) + C−1,1/2
−2 ψ ′

−2,1/2(�r), (19)

where ψ ′
n,J (�r) are the basis states given in Eqs. (8) and

(10). These basis states are visualized by black lines in
Figs. 7(a) and 7(b): ψ ′

−2,1/2(�r) is peaked near r ∼ 2.5�, while
ψ ′

−1,1/2(�r) is peaked at r = 0. [Equation (B4) provides in-
formation about the location of the wave functions.] Hence,
the combination of these two states causes the impurity state
	−1,1/2(�r) to peak at r ∼ 2l . The mixing between Landau
levels induced by the impurity potential thus pushes these
states ψ ′

−2,1/2(�r) and ψ ′
−1,1/2(�r) outward from the impurity

center.
Another noteworthy feature is that for an impurity band

with a larger |N | and stronger coupling strength g, the impor-
tance of the first term of Eq. (7) becomes clearer. The slope
of the induced density near r = 0 is accurately computed only

FIG. 6. The induced density ρ−1(r) of impurity band N = −1 at
g = 0.55 is shown by the red line.
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FIG. 7. (a) The probability density |	−2,1/2(�r)|2 is plotted at
g = 0 (black line) and 0.55 (blue line). (b) The same as (a) for
|	−1,1/2(�r)|2. Note that at g = 0, the impurity state 	N,J (�r) is reduced
to the graphene Landau level state ψ ′

n,J (�r) with N = n.

when all the states 	N,J (�r) with J � g are included, as shown
in Fig. 8 for N = 3 and g = 2.

B. Finite mass gap � �= 0

The induced densities display the same qualitative be-
haviors when the gap value is finite: states with channels
|J| � g contribute to the peak, while other terms cause the
corresponding induced density to approach a constant value
of 1/(2π�2) at large distances. Figure 9 displays induced
densities for N = 0 and N = 1 for � = 0.1EM .

FIG. 8. Induced density ρ3(r) for impurity band N = 3 at cou-
pling strength g = 2.

FIG. 9. Induced densities of impurity bands N = 0 and N = 11
with a finite mass gap � = 0.1EM . The coupling strength is g = 0.55,
and matrix dimension Nc = 101.

C. Screening

In this section, we study the screening of the impurity
charge. It is convenient to examine the accumulated induced
charge from the Landau impurity band N within distance d
from the origin, defined as QN (d ) ≡ 2π

∫ d
0 ρN (r)rdr. Sub-

tracting it from the total charge within the same distance in the
absence of impurity, we obtain a charge difference that mea-
sures how much the impurity affects charge profiles within
distance d:

�QN (d ) = 2π

∫ d

0

(
ρN (r) − 1

2π�2

)
rdr. (20)

For a large distance ds, the influence of the impurity vanishes,
�QN (ds) ≈ 0. Hence, ds may be interpreted as the screening
length. As coupling strength g increases, screening length
ds is expected to increase. A numerical result of the charge
difference �QN (d ) for the impurity band N = 1, plotted in
Fig. 10, supports this expectation. Also, we observe that there
is no sudden change in �QN (d ) near the critical coupling
strength gc = 1/2, similar to the peak behavior in the induced
density.

V. IMPURITY CYCLOTRON RESONANCE

Impurity cyclotron resonance [24] may be used to detect
the discrete energy levels in the energy spectrum. The optical
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FIG. 10. �Q1(d ) for several values of coupling strength
g, computed with Nc = 201. Included J values are
1/2, −1/2, −3/2, . . . ,−139/2. To accurately calculate �Q1(d )
for large distances, the inclusion of numerous angular momentum
channels J is necessary.

matrix elements between the graphene Landau level states in
the absence of impurity (g = 0) are evaluated by using the
formula �j = vF �σ [25]:

〈ψn,m|σx|ψn′,m′ 〉 = Mnn′δmm′ . (21)

Here, we consider the current along the x axis. (We recall that
graphene is in the xy plane.) The explicit matrix elements for
optical selection rules are given in Table II, which implies
that Mnn′ is nonzero only for �n = n′ − n = ±1. Combined
with the implied rule of the Kronecker delta δmm′ , we can
infer that the allowed transitions must satisfy either �J = 1 or
�J = −1.

However, in the presence of a Coulomb potential, the opti-
cal matrix elements must be evaluated using Landau impurity
band states. We find

T(N,J )→(N ′,J ′ ) = 〈	N,J |σx|	N ′,J ′ 〉
=

∑
n,n′

(CN,J
n )∗〈ψ ′

n,J |σx|ψ ′
n′,J ′ 〉CN ′,J ′

n′

=
∑
n,n′

(CN,J
n )∗Mn,n′δ|n|−J,|n′|−J ′CN ′,J ′

n′

=
∑
n,n′

(CN,J
n )∗

[
M (+1)

n,n′ δJ+1,J ′ + M (−1)
n,n′ δJ−1,J ′

]
CN ′,J ′

n′ , (22)

where M (±1)
n,n′ = ±icncn′δ|n|∓1,|n′ |sgn(n) correspond to angular

momentum J increasing or decreasing by 1.

TABLE II. The matrix elements Mnn′ between the basis states,
which correspond to the σx optical transition, are displayed.

n/n′ . . . −3 −2 −1 0 1 2 3 . . .

−2 . . . i
2 0 − i

2 0 − i
2 0 − i

2 . . .

−1 . . . 0 i
2 0 − i√

2
0 − i

2 0 . . .

0 . . . 0 0 i√
2

0 − i√
2

0 0 . . .

1 . . . 0 i
2 0 i√

2
0 − i

2 0 . . .

2 . . . i
2 0 i

2 0 i
2 0 − i

2 . . .

FIG. 11. Energy spectra of (a) J = −1/2, (b) J = −3/2, (c)
J = 1/2, and (d) J = 3/2 are plotted with Nc = 2501. Multiple anti-
crossings occur in the dashed oval regions. Each number attached to a
curve indicates the corresponding value of N . Thick arrows between
the plots indicate that optical transitions (�J = ±1) between the
impurity band states shown in each plot are possible.

The form T(N,J )→(N ′,J ′ ) above suggests the possibility of
anomalous transitions within the same impurity band, i.e.,
�N = 0. In the limit g = 0 the condition �N = 0 changes
into �n = 0, which is not optically allowed, as mentioned
above. However, �N = 0 is possible at numerous finite values
of g because two impurity Landau levels may cross each other
[17], as shown in Fig. 11. We compared our numerical results
with the eigenspectrum obtained using the shooting method to
solve the Dirac equation as described in Ref. [17] and obtained
similar results using Nc = 201.

Let us analyze an example of an anomalous optical tran-
sition to gain a better understanding. Its matrix element is
given by

T(1,−1/2)→(1,1/2) = 〈	1,−1/2|σx|	1,1/2〉. (23)

This transition is depicted in Fig. 12(a), and the dependence of
|T(1,−1/2)→(1,1/2)| on g is plotted in Fig. 12(b). We observe the
following properties. (1) For small values of coupling strength
g, this optical matrix element is small. It can be explained by
noting that with a small coupling strength, this optical ma-
trix element is approximated by transition between graphene
Landau level states, |ψ ′

nJ〉 = |ψ ′
1,1/2〉 → |ψ ′

1,−1/2〉, which is
forbidden because �n = 0. (2) For a strong coupling strength,
such as with g > 1.5, the transition |ψ ′

−1,1/2〉 → |ψ ′
0,−1/2〉,

which is allowed because �n = −1, contributes significantly
to T(1,−1/2)→(1,1/2). (3) There is a crossover in T(1,−1/2)→(1,1/2)

as a function of g that occurs around g = 0.8, which is a
consequence of strong Landau level mixing.

VI. DISCUSSION AND CONCLUSIONS

We investigated the induced density of the supercritical
Coulomb impurity in the regime where filled Landau impu-
rity bands do not overlap and the effect of electron-electron
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FIG. 12. (a) Illustration of forbidden (red arrow with
�J = 0) and anomalous (blue arrow with �J = ±1) optical
transitions. (b) Optical matrix element |〈	1,−1/2|σx|	1,1/2〉| as a
function of g. Both of these plots are computed with Nc = 2501.

interactions is significantly reduced. The strong coupling be-
tween graphene Landau level states by the impurity potential
is nontrivial and can lead to several anomalous effects. The
induced density of a filled Landau impurity band can exhibit
a sharp peak near the impurity center, much narrower than
the magnetic length. However, due to strong coupling between
graphene Landau levels, this peak can be located away from
the center of the impurity, depending on the properties of dif-
ferent Landau impurity bands. We found, like in the presence
of discrete scale invariance, that states with angular momen-
tum J � g strongly contribute to the induced density near
r = 0. In addition, the impurity charge is screened despite
the Landau impurity band being completely filled. We also
showed that additional impurity cyclotron resonances exist
that involve the anticrossing of Landau impurity band states.

While it is desirable to conduct a Hartree-Fock calculation
[23], we do not anticipate qualitative changes in the induced
density of a filled Landau impurity band, although some
quantitative adjustments in the results are expected [26]. A
scanning tunneling microscope [27] may be useful in inves-
tigating the anomalous induced density. Impurity cyclotron
measurements [24] may also prove useful.

APPENDIX A: DISCRETE SCALE INVARIANCE

The following simple example illustrates what discrete
scale invariance is. Consider the function

f (x) = xν (A1)

FIG. 13. Probability density of the 	1,1/2(r) and 	1,−1/2(r) states
for g = 0 (black line) and 0.55 (blue line). Other states in the Landau
impurity band N = 1 undergo minimal changes.

with an imaginary scaling exponent ν = iη. This function
displays discrete scale invariance involving the exponent ν as
follows:

x → λx, λ = e±i π
ν = e± π

η . (A2)

We can rewrite the function as

xν = eiηlnx = cos(ηlnx) + i sin(ηlnx). (A3)

This function exhibits log-periodic oscillations as a function
of x. In graphene discrete scale invariance also shows up [6]

FIG. 14. Probability density |	0,−1/2(r)|2 for g = 0 (black line)
and 0.55 (blue line). Only this state is significantly affected by the
Coulomb field, while other states in the Landau impurity band N = 0
undergo minimal changes.
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FIG. 15. Probability densities of 	2,3/2(r), 	2,1/2(r), 	2,−1/2(r),
and 	2,−3/2(r) for g = 0 (black line) and 0.55 (blue line). Other states
in the Landau impurity band N = 2 barely change.

in the complex eigenenergies for g > |J|,
En = e

−π
η En−1, (A4)

where J is the half-integer angular momentum quantum num-
ber. One of the key factors of this mathematical structure is
the appearance of the same exponent as in the log periodicity
of the wave functions given by Eq. (A3), with the exponent

η =
√

g2 − J2. (A5)

For g > |J|, the exponent η is greater than zero, and the wave
functions display log-periodic oscillations. The larger the cou-
pling constant is, the more angular momentum channels are
affected.

APPENDIX B: EIGENSTATES OF AN ORDINARY
TWO-DIMENSIONAL ELECTRON GAS

IN MAGNETIC FIELDS

In polar coordinates, the two-dimensional Landau level
wave functions of an ordinary two-dimensional electron gas
[21] are given for n � 0 and m � 0 by

φn,m(�r) = An,m exp

[
i(|n| − m)θ − r2

4�2

]( r

�

)α

Lα
β

(
r2

2�2

)
,

(B1)

where Lα
β (x) are generalized Laguerre polynomials. The z

component of the angular momentum of φn,m(�r) is Lz =
−i∂/∂θ = h̄(n − m). Note that, in contrast to graphene states,
these states are one-component wave functions. Also, the def-
inition of the z component of angular momentum is different.
Using the orthogonality of Laguerre polynomials∫ ∞

0
tαe−t Lα

m(t )Lα
n (t ) = �(n + α + 1)

n!
δm,n, (B2)

FIG. 16. Probability densities of 	3,5/2(r), 	3,3/2(r), 	3,1/2(r),
	3,−1/2(r), 	3,−3/2(r), and 	3,−5/2(r) for g = 0 (black line) and 0.55
(blue line). Other states in the Landau impurity band N = 3 barely
change.

the normalization factor is derived as

An,m = 1

�

(
2π 2α �(β + α + 1)

β!

)−1/2

, (B3)

with α = |m − |n|| and β = (m + |n| − α)/2. All the states
φn,m(�r) decay exponentially as e−r2/2�2

. One can show the
following identity for the expectation value of r2:

〈φn,m|r2|φn,m〉 = 2�2(n + m + 1). (B4)

APPENDIX C: EIGENSTATES

We analyze the properties of different impurity band states.
The following points are worth noting:

(1) Probability distributions |	N,±1/2(r)|2 for J = ±1/2
are peaked at r = 0 (see Fig. 13). In some cases, they are
peaked away from r = 0, as shown in Fig. 14. As a function
of g, the wave functions do not display a sharp transition at
gc = 1/2, unlike the zero magnetic field case.

(2) Probability distributions |	N,J (r)|2 for J = ±1/2 are
peaked away from r = 0 (see Figs. 15 and 16). However,
	N,J (r) = 0 at r = 0. Only states with J = ±1/2 are nonzero
at r = 0.
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