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Boosting quantum Monte Carlo and alleviating sign problem by Gutzwiller projection
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We present a scheme for projective quantum Monte Carlo (QMC) simulation that combines unbiased zero-
temperature (projective) determinant QMC with variational Monte Carlo based on the Gutzwiller projected wave
function. This approach is dubbed as Gutzwiller-projection QMC. Our numerical results demonstrate that the use
of the Gutzwiller projected trial wave function significantly accelerates the convergence of computational results,
thereby greatly reducing computational time in the simulation. Moreover, we provide an illustrative example
showing that the sign problem is substantially mitigated in the Gutzwiller-projection QMC. We believe that the
Gutzwiller-projection QMC opens up another pathway for enhancing efficiency and alleviating the sign problem
in QMC simulations of interacting fermionic systems.
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I. INTRODUCTION

Demystifying quantum many-body physics in strongly
correlated systems holds central importance in modern
condensed matter physics. Developing efficient numerical ap-
proaches to solve quantum many-body systems in more than
one dimension is particularly crucial. Among various numer-
ical algorithms for quantum many-body problems, quantum
Monte Carlo (QMC) plays a vital role because it is unbiased
and approximation free [1–6]. However, QMC encounters the
infamous sign problem [7–10], which significantly hinders
its application to many strongly correlated systems, such as
the Hubbard model at generic fillings. Therefore, solving or
alleviating the sign problem in quantum many-body models
potentially featuring intriguing physics would lead to substan-
tial progress in understanding the strongly correlated physics
of quantum many-body systems [4,11–25].

On the other hand, even for a QMC simulation free
from the sign problem, the computational complexity gen-
erally scales cubically with the system size in fermionic
systems, significantly limiting the method’s applicability to
large fermionic systems [6]. Despite recent advancements in
algorithms for fermionic QMC [26–28], simulations of inter-
acting fermionic systems are typically much more resource
intensive than those of spin or bosonic systems. Consequently,
even when a simulation is free from the sign problem, it is ex-
tremely challenging to access the accurate properties close to
the thermodynamic limit in addressing crucial issues such as
quantum criticality [29–44] and competing ordering [45–49].
Hence, the development of powerful and highly efficient
algorithms for interacting fermion models is of paramount
importance.
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To this end, we develop a scheme of QMC simulation
called Gutzwiller-projection QMC to expedite the simulation
and, more importantly, alleviate the sign problem in inter-
acting fermionic models. The fundamental concept of the
approach involves combining variational Monte Carlo (VMC)
based on the Gutzwiller projected variational wave function
[50–53] and intrinsically unbiased projective QMC (PQMC)
[6,54]. We implement a mean-field wave function under
Gutzwiller projection as the trial wave function and employ
the standard procedure of PQMC to access the ground-state
properties of an interacting Hamiltonian without involving
any uncontrolled approximations. In the framework of the
Hubbard-Stratonovich transformation utilized in PQMC, the
optimal Gutzwiller projected variational wave function with
the minimum energy is efficiently achieved. Compared with
conventional PQMC simulations that use a Slater-determinant
trial wave function, Gutzwiller-projection QMC requires a
much smaller projection parameter to ensure the convergence
of results, significantly reducing computational time. More
crucially, systematic calculations in specific models reveal
that the sign problem is greatly mitigated in Gutzwiller-
projection QMC.

II. METHOD

In this section, we briefly illustrate the methods of
Gutzwiller-projection QMC, which combines VMC based on
the Gutzwiller projected wave function and unbiased PQMC.
The main scheme of Gutzwiller-projection QMC is illustrated
in Fig. 1. To avoid complexity, we consider a typical wave
function with on-site Gutzwiller projection to illustrate our
strategy, |ψG〉 = e−g

∑
i ni↑ni↓ |ψM〉, where |ψM〉 is the Slater-

determinant wave function of mean-field order, and e−gni↑ni↓

represents the Gutzwiller projection with the projective pa-
rameter g. The first step is to minimize the ground-state
energy in terms of the Gutzwiller projected variational wave
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FIG. 1. The flow chart of Gutzwiller-projection QMC, which
illustrates the basic procedure of the approach schematically. The
approach combines the VMC methods based on the Gutzwiller pro-
jected variational wave function and intrinsically unbiased PQMC
approach, improving the efficiency and alleviating the sign problem
in QMC simulation.

function. This process determines the optimal parameters for
the projective parameter g and the mean-field order parameter
M in the Slater-determinant wave function |ψM〉. Here, to
calculate the expectation value of Hamiltonian, we per-
form the Hubbard-Stratonovich (HS) transformation on the
Gutzwiller-projection term,

e−gni↑ni↓ = 1

2
e−g/4

∑
si=±1

eλsi (ni↑+ni↓ ), (1)

where cosh λ = e
g
2 and si = ±1 is the auxiliary field defined

at each site i. Then the expectation value 〈Ĥ〉 = 〈ψG|Ĥ |ψG〉
〈ψG|ψG〉 is

straightforwardly obtained using the standard procedure of
PQMC. In Sec. I of the Supplemental Material (SM) [55],
we present a detailed introduction to the PQMC algorithm
for interacting fermionic systems. The reasons that we em-
ploy HS transformation on Gutzwiller terms are as follows:
(1) The calculation of observables in terms of a Gutzwiller
projected wave function through HS transformation is signifi-
cantly faster than the conventional approach in VMC. This is
because we only need to sample the configurations of discrete
auxiliary fields. (2) More importantly, as we will illustrate
later, the employment of HS transformation as presented in
Eq. (1) enables the efficient simulation of PQMC involving
projective imaginary-time evolution on a Gutzwiller projected
trial wave function. As a result, after the HS transformation as
shown in Eq. (1), we can identify the optimal parameters in the
Gutzwiller projected wave function by minimizing the energy
expectation value with high efficiency.

In the conventional PQMC algorithm, the ground-state
expectation value of an observable Ô is evaluated as 〈Ô〉 =
〈ψT |e−�Ĥ Ôe−�Ĥ |ψT 〉

〈ψT |e−2�Ĥ |ψT 〉 , where |ψT 〉 is the trial wave function, and
typically, a Slater-determinant wave function to facilitate the
simulation. Crucially, upon applying HS transformation on
the Gutzwiller-projection term as described in Eq. (1), it is

feasible to use a Gutzwiller projected wave function as a
trial wave function in PQMC. Hence, after obtaining the op-
timal values of g and M in the Gutzwiller projected wave
function |ψG〉, we compute the expectation value of ob-

servables as 〈Ô〉 = 〈ψT |e−�Ĥ Ôe−�Ĥ |ψT 〉
〈ψT |e−2�Ĥ |ψT 〉 , employing the optimal

Gutzwiller projected wave function as the initial trial wave
function |ψT 〉 = |ψG〉. We implement the standard procedures
of Trotter decomposition and HS transformation in PQMC
and decouple the Gutzwiller-projection term using Eq. (1).
Consequently, the ground-state expectation values of observ-
ables are easily accessed within the framework of the standard
PQMC algorithm. Although the computational complexity is
the same for conventional PQMC and Gutzwiller-projection
QMC, we expect that the computational time is largely saved
under the employment of the Gutzwiller projected state as
the trial state, which reduces the projective imaginary-time �

required for the convergence of observable.

III. THE HONEYCOMB HUBBARD MODEL

To demonstrate the efficiency of Gutzwiller-projection
QMC, we first apply the approach to the spin-1/2 Hubbard
model [56] on a honeycomb lattice,

H = −t
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.) + U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
,

(2)

where c†
iσ creates an electron on site i with spin polarization

σ =↑ / ↓, t is the nearest-neighbor (NN) hopping amplitude,
and U is the amplitude of on-site Hubbard repulsion. Here-
after, we set t = 1 as the unit of energy. We focus the study
on half filling, where the sign problem is circumvented by
choosing the appropriate HS transformation channel. In the
noninteracting limit, namely U = 0, the model at half filling
features Dirac fermions with Fermi energy located at the Dirac
point. With increasing Hubbard interaction amplitude, a quan-
tum phase transition between the Dirac semimetal (DSM) and
the antiferromagnetic (AFM) Mott insulator occurs at U =
Uc ≈ 3.85, and the transition belongs to the chiral-Heisenberg
universality class [57–61].

We implement the Gutzwiller-projection QMC algorithm
to study the ground-state properties of Eq. (2) at half filling.
Because AFM is the dominant instability in the model, it is
natural to choose the AFM mean-field wave function with
Gutzwiller projection as the trial wave function in the sim-
ulation,

|ψT 〉 = e−g
∑

i ni↑ni↓ |ψN 〉, (3)

where g is the parameter of the Gutzwiller projection and ψN

is the mean-field wave function featuring Néel AFM order.
More explicitly, ψN is generated as the ground-state wave
function of the Hamiltonian HN = H0 + MN

∑
i(−1)δi (ni↑ −

ni↓), where H0 is the noninteracting part of Eq. (2), MN is
the Néel AFM order parameter, and δi = ±1 if site i belongs
to the A(B) sublattice. Employing the procedure introduced
in the last section is straightforward to access the expectation
value of energy in terms of the trial wave function Eq. (3)
under the choice of g and MN. Figure 2 depicts the expecta-
tion value of energy with varying Néel order parameter MN
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FIG. 2. The contour plot shows the energy vs variational pa-
rameters in the Gutzwiller projected wave function for (a) U = 3.5
and (b) U = 4.0. The parameters (g, MN ) with minimum energy are
indicated by the red circles. The optimal parameters are g = 0.55 and
MN = 0.07 for U = 3.5, and g = 0.62 and MN = 0.11 for U = 4.0.

and Gutzwiller-projection parameter g for different choices
of Hubbard interaction strength U = 3.5 and U = 4.0 located
in the DSM phase and AFM ordered phase, respectively. We
obtain the optimal values of parameters g and MN by mini-
mizing the expectation value of Eq. (2) and achieving the trial
wave function utilized in the PQMC simulation, as introduced
in the last section.

We compare the convergence of results against the pro-
jection parameter � using distinct choices of trial wave
functions. The ground-state energy and AFM structure factor
(the definitions are shown in Sec. II of SM [55]) are evaluated
versus �, as depicted in Fig. 3. The results unambiguously
demonstrate that accurate ground-state energy is achieved
at a much smaller value of � in Gutzwiller-projection
QMC compared to conventional PQMC simulations, which

use a Slater-determinant wave function as the trial wave
function. In conventional PQMC simulations, two differ-
ent Slater-determinant trial wave functions are employed:
the ground-state wave function of the noninteracting part
in Eq. (2) and the AFM mean-field wave function with-
out Gutzwiller projection. The ground-state energy and
AFM structure factor SAFM exhibit much slower convergence
against the projection parameter � in both cases. Surpris-
ingly, within the same number of Monte Carlo samplings, the
statistical errors of observables are significantly reduced in
Gutzwiller-projection QMC compared to conventional PQMC
with a Slater-determinant trial wave function. The correspond-
ing results of statistical error are included in Sec. III of
the SM [55]. To further confirm the correctness of the ap-
proach, we perform an exact diagonalization (ED) calculation
on model Eq. (2) and compare the results of Gutzwiller-
projection QMC and ED, which exhibit perfect consistency
and further demonstrate the correctness of our approach. The
detailed results of ED are included in Sec. IV of the SM
[55]. Moreover, to demonstrate the efficiency of the approach
quantitatively, we perform a comparison of computational
time used in Gutzwiller-projection QMC and conventional
PQMC, as shown in Sec. V of the SM [55]. The results show
that employing the Gutzwiller projected trial wave function
reduces the computational time substantially.

IV. REPULSIVE SPINLESS HONEYCOMB MODEL

For the honeycomb Hubbard model, we have demon-
strated that employing the Gutzwiller projected trial wave
function accelerates the convergence of results concerning the

FIG. 3. The results of simulation on spinful Hubbard model at half filling for the Gutzwiller-projection QMC and the conventional PQMC
with a Slater-determinant trial wave function. The results of ground-state energy vs projective parameter � for (a) U = 3.5, (b) U = 3.75, and
(c) U = 4. The results of AFM structure factor SAFM vs projective parameter � for (d) U = 3.5, (e) U = 3.75, and (f) U = 4. GP, SD(AFM),
and SD(NI) denote the results of the simulation employing the Gutzwiller projected wave function, AFM mean-field Slater-determinant wave
function, and noninteracting Slater-determinant wave function as the trial wave functions, respectively.
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projection parameter � significantly, thereby vastly improv-
ing the efficiency of QMC simulations. In this section,
we apply Gutzwiller-projection QMC to the spinless t −
V model, specifically the model of spinless fermions with
nearest-neighbor (NN) interactions on the honeycomb lattice.
The Hamiltonian of the model is given by

H = −t
∑
〈i j〉

(c†
i c j + H.c.) + V

∑
〈i j〉

(
ni − 1

2

)(
n j − 1

2

)
,

(4)

where ci is the annihilation operator of the fermion on site
i, t is the NN hopping amplitude, and V > 0 denotes the
density repulsive interaction between NN sites. We focus
on the model at half filling. The quantum phase diagram of
the model at half filling has been extensively investigated
in recent years, featuring a quantum phase transition from
the DSM phase to the charge-density-wave (CDW) insulating
phase with increasing NN density interaction strength [62,63].
The presence of the sign problem hinges on the schemes
of the HS transformation. Simulation encounters the sign
problem when the nearest-neighbor (NN) density interaction
is decoupled in the hopping channel. Recent studies have
revealed that despite the existence of the sign problem, the
average sign exhibits two distinct behaviors in the weak- and
strong-coupling regimes [64]. In the weak-coupling regime,
the model is asymptotically sign free; namely, the average sign
asymptotically increases to one as the system size increases.
In contrast, in the strong-coupling regime, the average sign
exhibits exponentially decaying scaling, consistent with the
conventional scaling behavior of the sign problem in QMC
simulations. Here, we decouple the interaction in the density
channel and perform Gutzwiller-projection QMC simulation
on the model, aiming to investigate the effect of the Gutzwiller
projected trial wave function on the efficiency of the sim-
ulation and, more importantly, on the behavior of the sign
problem.

In the simulation of the spinless honeycomb t − V
model, we choose the CDW mean-field wave function with
Gutzwiller projection on the NN bond as the trial wave
function,

|ψT 〉 = e−g
∑

〈i j〉 nin j |ψC〉, (5)

where g is the parameter of the Gutzwiller projection on
NN bonds. ψC is the mean-field wave function with CDW
ordering, generated as the ground-state wave function of the
mean-field Hamiltonian HC = H0 + �C

∑
i(−1)δi ni, where

H0 is the noninteracting part in Hamiltonian Eq. (4), �C is
the CDW order parameter, and δi = ±1 if site i belongs to the
A(B) sublattice. Similar to the spinful honeycomb Hubbard
model, we access the optimal variational parameters g and
�C by minimizing the expectation value of H defined in
Eq. (4). We perform a QMC simulation with the correspond-
ing Gutzwiller projected trial wave function. The results of
ground-state energy and CDW structure factor for several val-
ues of V , with the detailed definitions included in the SM [55],
are presented in Fig. 4. These results explicitly demonstrate
that a smaller value of � is sufficient to achieve accurate
ground-state results of energy and the CDW structure factor in

FIG. 4. The results of observables in the spinless t − V model at
half filling for Gutzwiller-projection QMC and conventional PQMC
with a Slater-determinant trial wave function. The results of the
CDW structure factor SCDW for (a) V = 1.6 and (c) V = 1.35. The
results of ground-state energy E0 for (b) V = 1.6 and (d) V = 1.35.
SD denotes the results of conventional PQMC with the employment
of a noninteracting Slater-determinant trial wave function, and GP
denotes the results of Gutzwiller-projection QMC. The system size
is fixed L = 15.

Gutzwiller-projection QMC. The improvement in efficiency
is particularly pronounced in the CDW ordered phase (V >

Vc ∼ 1.35).
Then, we investigate the behavior of the sign problem in

the Gutzwiller-projection QMC simulation. For simulation
of Eq. (4) with HS transformation in the density channel,
as aforementioned, the model is intrinsically sign problem-
atic only when the interaction is strong (V > V ∗ ∼ 1.2),
whereas the model displays asymptotic sign-free behavior
in the weak-coupling regime, namely the average sign in-
creases and approaches one as the system size increases
[64]. Hence, we focus on the strong-coupling regime where
the sign problem is severe. We calculate the average sign
as a function of the projective parameter � for V = 1.35
and V = 1.6, as depicted in Figs. 5(a) and 5(b), respec-
tively. For comparison, we present the results of conventional
PQMC with a Slater-determinant trial function generated as
the ground state of the noninteracting part in Eq. (4). In-
triguingly, the results show that the average sign is obviously
increased in the simulation with the Gutzwiller projected
trial wave function compared to the conventional PQMC
with the Slater-determinant trial wave function. Hence, the
sign problem is significantly alleviated in the Gutzwiller-
projection QMC. Furthermore, we plot the average sign
versus linear system size in the simulation of Gutzwiller-
projection QMC and conventional PQMC for V = 1.6 [shown
in Fig. 5(c)], which unequivocally demonstrates that the sign
problem in the spinless honeycomb t − V model at half fill-
ing is mitigated by employing the Gutzwiller projected trial
wave function, particularly when the linear system size L is
large.

085152-4



BOOSTING QUANTUM MONTE CARLO AND ALLEVIATING … PHYSICAL REVIEW B 110, 085152 (2024)

FIG. 5. The results of the sign problem in the spinless t − V model at half filling for Gutzwiller-projection QMC and conventional PQMC
with a Slater-determinant trial wave function. (a) The result of the sign problem vs the projective parameter � for L = 15 and V = 1.6. (b) The
results of the sign problem vs the projective parameter � for L = 15 and V = 1.35. (c) The results of the sign problem vs linear system size
L for V = 1.6. SD denotes the results of conventional PQMC with the employment of a noninteracting Slater-determinant trial wave function,
and GP denotes the results of Gutzwiller-projection QMC.

V. DISCUSSIONS AND CONCLUDING REMARKS

We present numerical results that Gutzwiller projection
significantly expedites the convergence against projection
imaginary time and alleviates the sign problem in PQMC in
several examples of strongly interacting fermionic models.
Very recently, a similar approach has been applied in the
Hubbard-related model and molecular systems [65–67]. In our
work, we utilize the general form of Gutzwiller projection,
and perform a more systematic investigation on the mitigation
of the sign problem in a class of strongly interacting models
through the application of the Gutzwiller projection and varia-
tional procedure on a trial wave function. We believe that it is
straightforward to apply the approach to other classes of mod-
els. The reduction of projection imaginary time required for
the convergence of results and mitigation of the sign problem
relies on the fact that the Gutzwiller projected wave function
with the appropriate choice of parameters is close to the
true ground-state wave function of the Hamiltonian. Hence,
our approach is applicable in cases in which a Gutzwiller
projected wave function can qualitatively capture the corre-
lation effect of the Hamiltonian and symmetry breaking in the
ground state. For models in which it is difficult to capture
the ground-state features through the Gutzwiiler projected
mean-field wave function, whether the Gutzwiller-projection
QMC can achieve an obvious improvement of efficiency is
elusive. The systematic investigation of the applicability of
the approach is left for future study.

In summary, we have developed a scheme of zero-
temperature (projective) determinant QMC enhanced by
Gutzwiller projection. To demonstrate its remarkable ef-
ficiency, we apply this approach to two typical quantum
many-body models. In the spinful honeycomb Hubbard
model, our results clearly demonstrate that crucial observ-
ables, such as the ground-state energy and the AFM structure
factor, converge much faster for the projection parameter
�. This leads to a significant reduction in the computa-
tional time required to achieve the desired level of accuracy.
Similarly, in the spinless honeycomb t − V model, observ-
ables converge faster with a smaller projection parameter
in Gutzwiller-projection QMC compared to the conventional
PQMC algorithm. Moreover, the Gutzwiller-projection QMC
simulation notably alleviates the sign problem of the model,
particularly in regions where it is most severe. In conclusion,
Gutzwiller-projection QMC presents a promising approach
for accelerating simulations of ground-state properties in in-
teracting fermionic models and alleviating the sign problem in
QMC simulation.
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