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Improved real-space parallelizable matrix-product state compression and its application
to unitary quantum dynamics simulation
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Towards the efficient simulation of near-term quantum devices using tensor network states, we introduce
an improved real-space parallelizable matrix-product state (MPS) compression method. This method enables
efficient compression of all virtual bonds in constant time, irrespective of the system size, with controlled accu-
racy, while it maintains the stability of the wave-function norm without necessitating sequential renormalization
procedures. In addition, we introduce a parallel regauging technique to partially restore the deviated canonical
form, thereby improving the accuracy of the simulation in subsequent steps. We further apply this method
to simulate unitary quantum dynamics and introduce an improved parallel time-evolving block-decimation
(pTEBD) algorithm. We employ the improved pTEBD algorithm for extensive simulations of typical one- and
two-dimensional quantum circuits, involving over 1000 qubits. The obtained numerical results unequivocally
demonstrate that the improved pTEBD algorithm achieves the same level of simulation precision as the
current state-of-the-art MPS algorithm but in polynomially shorter time, exhibiting nearly perfect weak scaling
performance on a modern supercomputer.
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I. INTRODUCTION

Owing to the recent rapid advancement of synthetic
quantum devices [1–4], quantum computing is becoming
a competitive candidate for next-generation computing. It
utilizes these controllable quantum systems for quantum in-
formation processing and to address challenging problems
beyond the capability of classical computing [5]. Due to the
principles of quantum mechanics, a quantum computer main-
taining a quantum state composed of N qubits can access a
total of 2N dimensions in its working space, i.e., the Hilbert
space, hence providing ample computational resources for ad-
dressing problems with comparable exponential complexity,
such as the quantum many-body problem [6]. An ideal quan-
tum computer can encompass the entire Hilbert space, thereby
offering indisputable exponential resources compared to a
classical computer, which thus establishes the quantum ad-
vantage. However, currently available quantum computers are
hindered by strong decoherence noise, allowing only a small
fraction of the Hilbert space to be explored [7]. These noisy
quantum computers are referred to as a noisy intermediate-
scale quantum (NISQ) [8] device. The central challenge in
near-term development of quantum computing is determin-
ing efficient strategies for utilizing NISQ devices to achieve
a practical quantum advantage in meaningful computational
tasks [6,9–11].

In parallel, to validate the attainment of practical quantum
advantage and to establish a reliable and readily accessi-
ble testing environment for quantum algorithm development,

extensive research has been focused on developing classical
simulations of quantum computing. For exact simulations,
two primary methods are employed: the state-vector method
and the tensor contraction method. The state-vector method
can simulate quantum circuits with any circuit depth (in poly-
nomial time with respect to the circuit depth) and provides
the complete amplitudes of the wave function. However, sim-
ulating a quantum circuit with more than 50 qubits using
currently available classical computers is considered im-
possible [12,13]. On the other hand, the tensor contraction
method [14–18] can simulate quantum circuits with up to
around 100 qubits, but the arrangement of gates and the circuit
depth are severely restricted, allowing only a limited portion
of the wave-function amplitudes to be obtained [19]. There-
fore, to efficiently simulate current NISQ devices with over
400 qubits [20], it is essential to develop more specialized
simulation algorithms. These algorithms should consider the
limitation that NISQ devices can only generate limited quan-
tum entanglement.

Inspired by their great successes in the study of quantum
many-body problems [21,22], tensor network states, particu-
larly the matrix-product state (MPS) [23] and the projected
entangled-pair state (PEPS) [24], have been employed to sim-
ulate quantum computing and have achieved accurate results
in faithfully simulating NISQ devices [7,25,26]. In this pa-
per, our focus will be on MPS-based simulation algorithms.
Presently, MPS-based methods can perform full-amplitude
approximate simulations for quantum circuits with over 100
qubits and moderate circuit depth, benefiting from its efficient
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representation of quantum entanglement [27]. Nevertheless,
restricted by the real-space sequential nature of these al-
gorithms [7,25], efficiently simulating a NISQ device with
hundreds, or even thousands, of qubits remains elusive.

In general, an MPS-based algorithm for quantum circuit
simulations includes two main procedures. One involves ap-
plying quantum gates, and the other involves compressing
the MPS to a computable size. Regarding the former, we
can parallelly apply multiple gates as long as they do not
have spacetime overlap. For the later, it has been realized
that even if all the MPS virtual bonds are compressed in
parallel, the error induced by this parallel compression is still
manageable [27]. These observations imply the feasibility of
developing a real-space parallelizable algorithm to simulate
quantum circuits. In fact, in the study of the time evolution
of a quantum many-body system, a similar parallel scheme
has been proposed and has obtained promising results [28]
(see also Ref. [29] for an alternative parallel approach to
simulating Hamiltonian dynamics and Ref. [30] for a parallel
algorithm of searching the ground state). However, a crucial
issue that remains in this scheme is the fast-decaying wave-
function norm caused by parallel MPS compression, which
might result in serious numerical instability. This instability
necessitates the renormalization of the wave function after
simulating a certain period of time evolution [28]. Being a
sequential procedure, this additional wave-function renormal-
ization significantly diminishes parallelism and hampers the
efficient utilization of the parallel computing environment.

Here we introduce an improved real-space parallelizable
MPS compression (IPMC) method that can stabilize the wave-
function norm without compromising parallelism. For an
MPS in the canonical form, we prove that the wave-function
norm, after undergoing the IPMC, stabilizes within an inter-
val with two bounds uniformly converging to 1 from both
sides, and the convergence improves as the compression er-
ror decreases. Moreover, we integrate an additional parallel
regauging procedure into the IPMC to generate a better start-
ing point for the next simulation step, thereby enhancing the
simulation accuracy. Based on this IPMC method, we pro-
pose the parallel time-evolving block-decimation (pTEBD)
algorithm to simulate unitary quantum dynamics in a fully
parallelizable manner. We benchmark the pTEBD algorithm
by extensively simulating typical random and parametrized
quantum circuits on both one-dimensional (1D) and 2D qubit
arrays. These numerical results demonstrate that the pTEBD
algorithm achieves a comparable simulation precision to the
previous sequential MPS algorithm proposed in Ref. [7] and
can attain the same accuracy in polynominally shorter time.
Meanwhile, the wave-function norm stabilizes to approach
1, instead of decaying exponentially to zero, throughout the
entire simulation period with a circuit depth exceeding 1000.
Consequently, we successfully achieve nearly perfect weak
scaling performance in the pTEBD simulation, involving over
1000 qubits with over 250 computational nodes on the Super-
computer Fugaku installed at RIKEN.

The rest of the paper is organized as follows. First,
we briefly summarize the MPS representation of quantum
many-body states, the properties of the canonical form,
and the time-evolving block-decimation (TEBD) algorithm
(also denoted as the simple update algorithm) in Sec. II.

Next, we systematically describe the real-space parallelizable
MPS compression method in Sec. III, where we introduce
a wave-function norm stabilization method with a proof of
its bounding theorem, explore the parallel regauging tech-
nique through the trivial simple update, and finally explain
the IPMC method. In Sec. IV, we propose the pTEBD algo-
rithm and demonstrate its accuracy, numerical stability, and
performance through extensive simulations of random and
parametrized quantum circuits in one and two dimensions.
Finally, in Sec. V, we summarize the results of this paper and
briefly discuss their impact on the development of near-term
quantum computing. The details of the quantum circuits used
for the simulations are described in Appendix A. An addi-
tional result regarding the accuracy of the pTEBD algorithm is
provided in Appendix B. Furthermore, the pTEBD algorithm
is applied to the simulation of the quantum Fourier transfor-
mation in Appendix C.

II. MPS REPRESENTATION OF QUANTUM
MANY-BODY STATES

A. Matrix-product state

The Hilbert space H for an N-site quantum many-body
system composed of qubits is described by the tensor product
of N local Hilbert spaces Hi (spanned by orthogonal states
|0〉i and |1〉i with the dimension d = 2) located on each qubit
site i, i.e.,

H = H1 ⊗ H2 ⊗ · · · ⊗ HN . (1)

Therefore, the dimension of H is dim(H) = 2N , increasing
exponentially with N . Any quantum many-body state |�〉
living on H can be represented using a complete many-body
basis formed by a direct product of local states |σi〉i with σi =
0 or 1 on each Hi, i.e., |σ1 · · · σN 〉 = |σ1〉1 ⊗ |σ2〉2 ⊗ · · · ⊗
|σN 〉N . With this basis, the quantum state |�〉 is represented
as

|�〉 =
∑

σ1,...,σN

�σ1,...,σN |σ1 · · · σN 〉 , (2)

where the coefficients �σ1,...,σN can be regarded as a rank-N
tensor. Note that, without specifying, the normalization con-
dition 〈�|�〉 = 1 is always maintained.

The MPS representation of |�〉 is constructed by a tensor
network decomposition, i.e., decomposing a tensor to a set of
tensors (a tensor network) such that the contraction of these
tensors restores the original tensor, as

�σ1,...,σN = Tr(M[1]σ1 M[2]σ2 · · · M[N]σN ), (3)

where M[i]σi is a rank-3 tensor on site i and it is simply a
matrix when the index σi is fixed. The row and column of
the matrix M[i]σi are associated with the virtual spaces Vi−1

and Vi, respectively, emerged from the decomposition. The
dimension of Vi, χi = dim(Vi ), is the bond dimension of bond
i connecting sites i and i + 1. Especially, bond N (also labeled
as bond 0) connects sites N and 1. Without losing generality,
we can always assign χ0 = χN = 1 in the decomposition [23].
The corresponding MPS is usually named an open MPS. In the
rest of the paper, we will only consider the open MPS.
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B. Canonical form

Although the decomposition in Eq. (3) can be carried out in
various ways, the canonical decomposition [31], known for its
additional advantageous properties, is commonly employed.
The canonical decomposition is represented as

�σ1,...,σN = Tr(�[0]�[1]σ1�[1]�[2]σ2 · · ·�[N−1]�[N]σN �[N] ), (4)

where an additional diagonal real matrix �[i] is attached to
bond i with �[0] = �[N] ≡ (1) for the open MPS, and �[i]σi

is a rank-3 tensor on site i. Here we assume that the diago-
nal elements of each �[i] are in descending order. The form
{�[i], �[ j]} in Eq. (4) is commonly known as the Vidal form.
Additionally, the MPS is considered to be in the canonical
form when �[i] and �[i] satisfy the canonical conditions:

A[i]σi ≡ �[i−1]�[i]σi with
∑
σi

Ā[i]σi A[i]σi = IVi

B[i]σi ≡ �[i]σi�[i] with
∑
σi

B[i]σi B̄[i]σi = IVi−1 , (5)

where Ā[i] (B̄[i]) denotes the complex conjugate transpose of
A[i] (B[i]) and IVi is the identity matrix on Vi.

Here we concisely list main properties of the canonical
form. First, we can straightforwardly show that under the
complete orthogonal basis

⎧⎨
⎩

∣∣Lαi

〉 =
∑

σ1,...,σi

(
�[0]�[1]σ1 · · · �[i−1]�[i]σi

)
αi
|σ1 · · · σi〉

⎫⎬
⎭ ,

(6)
the reduced density matrix ρ[1···i] of the subsystem
{1, 2, . . . , i} is simply represented as

ρ[1···i] = (�[i] )2 with
∑
αi

(
�[i]

αiαi

)2 = 1 . (7)

Note that the elements of the diagonal matrix �[i] correspond
to the singular value spectrum {λαi} obtained through the sin-
gular value decomposition (SVD) of the matrix �σ1···σi,σi+1···σN ,
where the rows and columns are formed by grouping in-
dices {σ1, . . . , σi} and {σi+1, . . . , σN }, respectively. Therefore,
(�[i] )2 is also the reduced density matrix of the subsystem
{i + 1, i + 2, . . . , N}.

Using these properties, the information of quantum entan-
glement for |�〉 can be directly extracted from the canonical
form. Naturally, the bond i provides a bipartition of the system
into two subsystems {1, . . . , i} and {i + 1, . . . , N}. Accord-
ingly, the entanglement entropy S[i]

v for this bipartition is given
by

S[i]
v = −Tr(ρ[1···i] ln ρ[1···i] ) = −

∑
αi

λ2
αi

ln λ2
αi

, (8)

and the entanglement spectrum level ξαi is given by ξαi =
− ln λ2

αi
. Therefore, truncating the bond dimension χi at bond

i on the basis of {λαi} allows for the retention of a signifi-
cant portion of the entanglement information between these
two subsystems. For practical construction of the canonical
form for a general quantum state and additional insights
into its useful properties, one can find more comprehensive
reviews [21–23].

C. TEBD algorithm

Based on the canonical form, the unitary dynamics of a
quantum state can be efficiently simulated using the TEBD
algorithm [31]. In general, a unitary quantum dynamic process
is described by applying a unitary operator Û to the state
|�〉. However, Û can be decomposed into many two-site local
unitary operators Û α

i,i+1 acting on sites i and i + 1, where α

is the index for these local operators [32]. Therefore, we can
focus on simulating |�〉 → Û α

i,i+1|�〉 at a specific moment.
The simulation of this process using the TEBD algorithm is
referred to as a TEBD procedure and will be outlined below.

A TEBD procedure consists of three steps. Starting from
the canonical form of |�〉, we contract the involved local
tensors to construct the local two-site wave function

�i,i+1 = �[i−1]�[i]�[i]�[i+1]�[i+1] . (9)

Next, we update �i,i+1 to � ′
i,i+1 by appending Û α

i,i+1 to �i,i+1.
Subsequently, we perform the SVD of � ′

i,i+1 = U [i]SV̄ [i+1]

and update the canonical form as

�[i] ← (�[i−1])−1U [i] ,

�[i] ← S ,

�[i+1] ← V̄ [i+1](�[i+1])−1 (10)

with �[i−1] and �[i+1] intact.
Ideally, the TEBD procedure can be parallelized perfectly

in the real-space to evaluate multiple local unitary operators
{Û α

i,i+1} simultaneously as long as these unitary operators
do not overlap with each other, automatically maintaining
the canonical form. However, the bond dimensions in gen-
eral increase exponentially. The TEBD algorithm has also
been applied to simulate imaginary-time evolution using an
MPS [33,34] and a PEPS [35] for ground state searches, and
has also become a fundamental technique in the research
field of tensor network states under the name of the simple
update (SU) method. Specifically, in the case where Û α

i,i+1 is
an identity operator, the TEBD or SU procedure does not alter
the underlying quantum state |�〉 and is thus denoted as the
trivial simple update (tSU) step. The repeated application of
tSU steps to an MPS or a PEPS, known as the tSU algorithm,
has been developed to construct its canonical form for an MPS
or its quasicanonical form for a PEPS [36–38].

D. Computational complexities of MPS calculations

Before concluding this section, let us discuss the spacial
and time complexities of generic MPS calculations. For an
MPS with N sites and a bond dimension χ , the spacial
complexity, i.e., the memory footprint, is O(Nχ2), increas-
ing polynomially with both N and χ . Here, for simplicity,
we assume the same bond dimension for each matrix and
maintain this convention throughout the rest of the paper.
Typically, the time complexity of local MPS operations in
MPS-based algorithms is O(χn), where, for instance, n = 3 in
the TEBD algorithm and the density-matrix renormalization
group (DMRG) algorithm [39,40]. In addition, the time cost
of real-space sequential algorithms for simulating a system
with N sites linearly increases with N , as the sweep proce-
dure is usually required in these algorithms [7,23]. Therefore,
the complexities of MPS calculations are determined by the
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bond dimension χ and the system size N for real-space se-
quential algorithms. These complexity analyses suggest that
compressing an MPS to another MPS with a smaller χ while
maintaining high fidelity is essential for accelerating MPS
calculations. Notice that we omit the dimension dloc of the
local Hilbert space in the complexity analysis since it is in
general small (in our case, dloc = 2) compared with χ and N .

III. REAL-SPACE PARALLELIZABLE
MPS COMPRESSION

In this section, we explore the real-space parallelizable
MPS compression. After introducing the concept of MPS
compression, we assess the accuracy of straightforward par-
allel MPS compression (i.e., truncating all the virtual bonds
simultaneously) and show its comparablity with a typical se-
quential compression method. Then, we propose a method to
stabilize the wave-function norm in parallel MPS compression
and provide a proof for its upper and lower bounds. Next,
we discuss the recovery of the canonical form after parallel
MPS compression by additional parallel tSU steps. Combin-
ing these insights, we ultimately propose an improved parallel
MPS compression method that is not only numerically more
stable but also more accurate for simulations in subsequent
steps.

A. MPS compression

For an MPS representing the state |�〉 with bond dimen-
sion χ , we can construct another MPS

|�T 〉 =
∑

σ1,...,σN

Tr
(
M ′[1]σ1 M ′[2]σ2 · · · M ′[N]σN

)|σ1 · · · σN 〉,
(11)

with bond dimension χ ′ � χ to approximate |�〉. Here |�T 〉
represents the compressed (or truncated) MPS representation
of the state |�〉.

It is meaningless to compress an MPS without considering
accuracy since our goal is to construct an MPS that shares
the largest similarity with the original uncompressed one. The
similarity of two MPSs is determined by the wave-function
fidelity between |�〉 and |�T 〉, i.e.,

F2 = |〈�|�T 〉|2 . (12)

Given that |�〉 and |�T 〉 are normalized, F2 should always be
in the region 0 � F2 � 1. The accuracy of MPS compression
is characterized by F2. For a given χ ′, our aim is to construct
|�T 〉 with the maximal F2. Furthermore, in this section, we
assume that the MPS representing |�〉 has been brought into
the canonical form before being compressed.

There are two typical approaches to performing MPS com-
pression. One involves locally and sequentially modifying
each of the MPS tensors (sequential MPS compression). Rep-
resentative algorithms in this approach include the sequential
SVD truncation and the sequential local variational optimiza-
tion (for details, see Ref. [23]). In this case, F2 in Eq. (12)
can be evaluated from the singular values kept in |�T 〉. Due
to the sequential nature of this approach, the time complexity
of these algorithms always linearly increases with the system
size N . The other approach involves compressing all MPS
tensors simultaneously (parallel MPS compression). Although

this real-space parallelizable approach has a promising con-
stant time complexity with increasing the system size N , it has
been rarely discussed in the literature [27,28,41]. In this paral-
lel approach, it is not straightforward to build the connection
between the fidelities in each local tensor compression and the
global fidelity in Eq. (12).

B. Fundamental theorem on parallel MPS compression

A straightforward algorithm to perform parallel MPS com-
pression (to the best of our knowledge, it is also the only
existing algorithm) involves inserting the local projector Pi =∑χ ′

α=1 |α〉ViVi〈α|, where {|α〉Vi} are orthogonal (but not com-
plete) bases in Vi, into each bond in Eq. (4) to truncate it
to dimension χ ′. The resulting compressed MPS is denoted
as |�̃T 〉. It is important to note that |�̃T 〉 is generally not
normalized, while |�〉 is always normalized. Therefore, to
obtain the normalized state |�T 〉, additional renormalization
is necessary: |�T 〉 = |�̃T 〉/|〈�̃T |�̃T 〉|1/2.

The accuracy of the above parallel MPS compression
algorithm is bounded by the following fundamental theo-
rem [22,27]:

Theorem 1.

||�〉 − |�̃T 〉|2 � 2ε(χ ′) (13)

and

F2 � 1 − 2ε(χ ′) , (14)

where ε(χ ′) = ∑N−1
i=1 εi(χ ′) is defined as the global truncation

error, and εi(χ ′) = ∑χ

α=χ ′+1(�[i]
αα )2 is the local truncation er-

ror associated with bond i. An illustration of Eq. (13) is shown
in Fig. 1.

Combining Eq. (14) with the fact that 0 � εi � 1, we can
derive a looser bound for F2 as

F2 � 1 − 2
N−1∑
i=1

√
εi(χ ′) . (15)

Note that the right-hand side of Eq. (15) can be negative, while
the wave-function fidelity F2 must be positive. The bound
in Eq. (15) has the same formulation as the exact fidelity
lower bound for the sequential SVD truncation formulated
in Ref. [7]. Although εi(χi) may slightly deviates from the
corresponding local truncation error in the sequential SVD
compression, we argue that the parallel MPS compression
algorithm could have the same order of accuracy as the se-
quential SVD compression algorithm. This argument will be
numerically confirmed in Sec. IV B 1. Also notice that, in
general, the canonical form is broken after a parallel MPS
compression, which could impact on the subsequent simula-
tion steps.

C. Wave-function norm stabilization
in parallel MPS compression

Although the norm of the wave function does not impact
the calculation of any physical observables, it strongly influ-
ences numerical stability in actual numerical simulations, as
it may vanish during the calculation process. Hence, we have
to carefully consider the possible norm deviation induced by
the parallel MPS compression.
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FIG. 1. Schematic plot illustrating the relation between the un-
truncated state |�〉 and the state after the parallel MPS compression,
|�̃T 〉, defined in Sec. III B. The red circle with a radius of

√
2ε(χ ′)

indicates the boundary of |�̃T 〉 guaranteed by Theorem 1. nmax(min)

represents the maximum (minimum) of the wave-function norm of
|�̃T 〉.

1. Decay of the wave-function norm after parallel
MPS compression

To evaluate the wave-function norm deviation after the par-
allel MPS compression, we first derive its bounds in Lemma 1.
Its proof is based on Theorem 1 and the properties of the
canonical form.

Lemma 1. The wave-function norm n = ||�̃T 〉| after the
parallel MPS compression is bounded by

1 −
√

2ε(χ ′) � n � 1 . (16)

Proof. According to the triangle inequality, we have 1 −
||�〉| � n, where |�〉 = |�〉 − |�̃T 〉, as schematically illus-
trated in Fig. 1. Then, we can derive the lower bound in
Eq. (16) by using Theorem 1 as

1 −
√

2ε(χ ′) � 1 − ||�〉| � n . (17)

As for the upper bound in Eq. (16), from the direct calcu-
lation, we have

n2 =
∑

σ1,...,σN

Tr
(
A[1]σ1 P1 · · · PN−2A[N−1]σN−1 PN−1A[N]σN

× Ā[N]σN PN−1Ā[N−1]σN−1 PN−2 · · · P1Ā[1]σ1
)
. (18)

Here we adopt the left canonical form described in Eq. (5). By
defining the quantum map

E [i](X ) =
∑
σi

A[i]σi X Ā[i]σi , (19)

where X is a (Vi × Vi ) matrix, Eq. (18) can be reformulated
as

n2 = Tr[E [1](P1 · · · E [N−2](PN−2

× E [N−1](PN−1ρ
[N]PN−1)PN−2) · · · P1)] (20)

and ρ[N] ≡ ∑
σN

A[N]σN Ā[N]σN is obviously a positive matrix.
Introducing the following recursive relation:

Y [i] = E [i](PiY
[i+1]Pi ) with Y [N] = ρ[N] (21)

for i = 1, 2, . . . , N − 1, Eq. (20) can be simply given as n2 =
Tr(Y [1] ).

Next, we define another map

Pi(X ) = PiXPi . (22)

Because E [i](X ) is a completely positive trace preserving
map [42] and Pi(X ) is a positive map, Y [i] is a positive matrix.
We can also readily show that

Tr(X ) = Tr(Pi(X )) + Tr(P̄i(X )) , (23)

where P̄i(X ) = (I − Pi )X (I − Pi ) is also a positive map.
Since Tr(P̄i(X )) � 0 for a positive matrix X , Tr(Pi(X )) �
Tr(X ). Noticing that Y [i] is a positive matrix, we can finally
obtain the following inequality:

Tr(Y [i] ) � Tr(Y [i+1]). (24)

Using this inequality, we can derive the upper bound in
Eq. (16) as

n =
√

Tr(Y [1] ) �
√

Tr(Y [N] ) = 1 . (25)

�
Lemma 1 shows that the wave-function norm necessarily

decreases, except for the ideal case, i.e., without truncating
any bonds, after a parallel MPS compression process. This
implies that if we alternatively perform TEBD procedures
and parallel MPS compression processes, as in the case of
Ref. [28], then the wave-function norm will monotonically
decay, ultimately leading to serious numerical instability. This
norm vanishing will be numerically demonstrated later in
Sec. IV B 2. To avoid the numerical instability, naively, we
can renormalize the wave function after a parallel MPS com-
pression process. However, the time cost of calculating the
wave-function norm increases linearly with the system size N ,
offsetting the benefits of parallel MPS compression. There-
fore, it is highly desired to develop an efficient method that
can suppress the norm vanishing during repeated parallel MPS
compression processes without any sequential procedure.

2. Parallelizable wave-function norm stabilization

To stabilize the wave-function norm, a straightforward
possibility is to locally multiply �[i] by a factor νi = [1 −
εi(χ ′)]−1/2 after a parallel MPS compression process. Con-
sequently, the wave-function norm changes to

n∗ = n
N−1∏
i=1

νi . (26)

Now we shall prove that n∗, denoted as stabilized norm, is
bounded in an interval that includes 1, and the two boundaries
of this interval uniformly converge to 1 as ε(χ ′) approaches 0.
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Theorem 2. The stabilized norm n∗ is bounded by

n∗
lower = (1 −

√
2ε(χ ′))

N−1∏
i=1

νi , (27)

n∗
upper =

N−1∏
i=1

νi , (28)

with n∗
lower � 1 and n∗

upper � 1. Moreover, they uniformly con-
verge to 1 as ε(χ ′) → 0.

Proof. Equations (27) and (28) follow directly from
Eq. (16) in Lemma 1. Let us now prove that these quantities
satisfy n∗

lower � 1 and n∗
upper � 1. Noticing that ε(χ ′) � 0 and

1 − 2ε(χ ′) = (1 + √
2ε(χ ′))(1 − √

2ε(χ ′)), we have the fol-
lowing inequalities:

1 −
√

2ε(χ ′) � 1 − 2ε(χ ′) � 1 − ε(χ ′) , (29)

when 2ε(χ ′) � 1. On the other hand, since 0 � εi(χ ′) � 1,
we can show that

N−1∏
i=1

ν−1
i �

N−1∏
i=1

[1 − εi(χ
′)] � 1 − ε(χ ′). (30)

Combine Eqs. (29) and (30), we can obtain that
1 − √

2ε(χ ′) � ∏N−1
i=1 ν−1

i and thus n∗
lower = (1 −√

2ε(χ ′))
∏N−1

i=1 νi � 1. This is trivial when 2ε(χ ′) � 1.
It is also straightforward to show that n∗

upper � 1 because
εi(χ ′) � 1.

Since both quantities 1 − √
2ε(χ ′) and

∏N−1
i=1 νi converge

to 1 as ε(χ ′) → 0, the two boundaries n∗
lower and n∗

upper con-
verge to 1 from both sides. �

Theorem 2 implies that the local renormalization method
can indeed effectively mitigate the decay of the wave-function
norm during the parallel MPS compression. While the proof
provided above assumes that the uncompressed MPS is in
its canonical form, we argue that this wave-function norm
stabilization method remains applicable even when the un-
compressed MPS deviates slightly from the canonical form.
The numerical demonstration supporting this assertion will be
presented in Sec. IV B 2.

D. Parallel recovery of the canonical form through parallel tSU

Because of its many advantages, almost all MPS-based
algorithms developed previously employ the canonical form.
Therefore, it is important to maintain an MPS in the canonical
form or close to the canonical form also in a parallel MPS
algorithm. In this respect, it is well known that the right-left
sweeps of tSU, which is a sequential procedure, can converge
an arbitrary MPS to its canonical form. However, how the
canonical form is recovered with a parallel procedure has been
rarely investigated thus far. In this section, we first prove that
at most N

2 ( N−1
2 ) parallel tSU steps can converge an arbitrary

MPS to its canonical form when N is even (odd), and then
we discuss how it approaches the canonical form with fewer
operations.

Similarly to the TEBD algorithm, which is exactly paral-
lelizable in the case of no truncation [31], we can define a
single parallel trivial simple update (PtSU) step as applying
tSU on all the odd MPS bonds and then on all the even

MPS bonds. First, we prove the convergency of an MPS to
its canonical form through PtSU steps with the following
theorem.

Theorem 3. For an MPS with N sites, at most N
2 ( N−1

2 )
PtSU steps are required to convert it to its canonical form
when N is even (odd).

Proof. Before presenting the proof, let us first introduce
an equivalent definition of the canonical form. We define
the following left tensor L[i] and right tensor R[i] for bond i,
respectively:

L[i]σ1···σi ≡ �[0]�[1]σ1 · · · �[i−1]�[i]σi , (31)

R[i]σi+1···σN ≡ �[i+1]σi+1�[i+1] · · ·�[N]σN �[N] . (32)

Then, asserting that an MPS composed of {�[i]σi ,�[ j]} is in
the canonical form, satisfying the conditions in Eq. (5), is
equivalent to saying that L[i]σ1···σi and R[i]σi+1···σN satisfy∑

σ1,...,σi

L̄[i]σ1···σi L[i]σ1···σi = IVi , (33)

∑
σi+1,...,σN

R[i]σi+1···σN R̄[i]σi+1···σN = IVi , (34)

for ∀i ∈ [0, N], where L[0] ≡ (1) and R[N] ≡ (1). The proof of
this equivalence follows from straightforward calculations.

Using this equivalent definition of the canonical form,
we can prove the theorem inductively. As the starting
point, L̄[0]L[0] = (1) = IV0 is trivially satisfied. Then, if we
assume that

∑
σ1,...,σi−1

L̄[i−1]σ1···σi−1 L[i−1]σ1···σi−1 = IVi−1 is sat-
isfied, then one additional tSU on sites i and i + 1 can realize∑

σ1,...,σi
L̄[i]σ1···σi L[i]σ1···σi = IVi . This is simply because, after

this tSU, �[i−1]�[i]σi = A[i]σi satisfies
∑

σi
Ā[i]σi A[i]σi = IVi and

thus∑
σ1,...,σi

L̄[i]σ1···σi L[i]σ1···σi

=
∑

σ1,...,σi

Ā[i]σi L̄[i−1]σ1···σi−1 L[i−1]σ1···σi−1 A[i]σi = IVi . (35)

At the same time, by definition, any tSU involving sites
in {1, . . . , i} does not change the left tensors {L[k]σ1···σk }i−1

k=0.
Therefore, L̄[N−1]L[N−1] = IVN−1 is established after N

2 ( N−1
2 )

PtSU steps for even (odd) N . Note that Eq. (33) is satisfied for
i = N because of the wave-function normalization condition.

Similarly, we can prove that the same PtSU steps also
establish Eq. (34) for ∀i ∈ [1, N − 1]. For i = 0, Eq. (34)
is automatically satisfied because of the wave-function nor-
malization condition. Finally, since this proof is inductive,
it provides an upper bound on how many PtSU steps are
required to restore the canonical form. �

Theorem 3 shows that the PtSU, a real-space parallelizable
algorithm, can recover the canonical form with only locally
operating tensors, implying the potential of its utilization
on modern supercomputers where communication between
neighboring nodes is highly optimized [43]. Moreover, we can
simply skip applying the identity gate in the tSU procedure to
further optimize the performance in practice.

Now, we explore the behavior of approaching the canon-
ical form by applying the PtSU. To measure how an MPS
approaches its canonical form with PtSU steps, we first define
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FIG. 2. Semilog plot of C as a function of PtSU steps for N = 20
and 24. The initial MPS is prepared by simultaneously truncating all
the virtual bonds of a canonicalized random MPS to half of the bond
dimension and manually normalizing the norm of the resulting MPS
to 1. The results are averaged over 100 initial MPSs with different
sets of random parameters.

the following distance to the canonical form:

C = 1

2N

N∑
i=1

∥∥Ā[i]A[i] − IVi

∥∥ + ∥∥B[i]B̄[i] − IVi−1

∥∥, (36)

where || · || represents the Frobenius norm of the matrix. This
quantity is zero if and only if an MPS is in the canonical form.
Note that, in Eq. (36), we assume that the norm of the MPS is
1. Notice that a similar quantity has been proposed in a recent
study to examine the regauging of general tensor networks,
where the nuclear norm is considered [44].

We investigate how C changes with the application of PtSU
steps. To closely mimic the actual calculation task, we prepare
the initial MPS as follows: We first construct a canonicalized
random MPS with the bond dimension χ . Each tensor element
in this MPS is initialized to a complex number z = a + ib with
a and b chosen randomly from [−1, 1], and then its canonical
form is constructed with the norm properly normalized to
1. Subsequently, we truncate all the virtual bonds to χ/2,
i.e., disregarding the χ/2 smallest elements in each �[i], and
renormalize the wave-function norm to 1. We then perform
PtSU steps on this MPS and calculate C after each PtSU step.
The results are summarized in Fig. 2. Here we choose N = 20
and 24 and examine the cases of χ = 32, 128, 256, and 512.

In Fig. 2, we observe that C rapidly and monotonically de-
creases with PtSU steps, especially at the beginning of several
PtSU steps. Additionally, the canonical form is attained more
rapidly when the bond dimension is larger. This implies that
we can drive the MPS closer to the canonical form by ap-
pending a few PtSU steps after the parallel MPS compression.

Also notice that the canonical form is exactly restored after
N/2 PtSU steps, justifying Theorem 3.

E. Improved parallel MPS compression

Inspired by the new insights from Theorems 2 and 3, we
propose the IPMC method: starting from an MPS in the Vidal
form, which is usually the resulting MPS of the previous
TEBD evolution and has the bond dimension dlocχ (dloc is
the dimension of the local Hilbert space, i.e., dloc = 2 for the
qubit case), we perform a parallel MPS compression process
(discussed in Sec. III B) followed by a norm stabilization step
(discussed in Sec. III C 2) to compress the bond dimension
back to χ . Then, we perform g PtSU steps to partially recover
the canonical form. This parallel MPS compression method is
fully real-space parallelizable, requiring only communication
between neighboring sites [also see Fig. 3(d)]. In the next
section, we will apply this method to simulate unitary quan-
tum dynamics and examine its efficiency through extensive
numerical experiments.

IV. APPLICATION TO THE SIMULATION OF UNITARY
QUANTUM DYNAMICS

The time evolution operator Û (t ), which describes the uni-
tary quantum dynamic process of evolving a state from time
0 to t , |�(t )〉 = Û (t )|�(0)〉, can always be decomposed into a
quantum circuit composed of layers of local unitary operators

Û (t ) =
D∏

d=1

m(d )∏
i=1

Û d
i , (37)

where Û d
i is the ith local unitary operator in the dth layer,

m(d ) is the number of local unitary operators in the dth layer,
and D is the total number of layers (i.e., depth) of the quantum
circuit [32]. Notice that there exist other simulation ap-
proaches when Û (t ) is associated with a Hamiltonian [29,41].

The above decomposition is, in general, approximate and,
moreover, it is not unique. Therefore, for the convenience of
applying MPS-based algorithms, one usually constructs {Û d

i }
only involving adjacent qubits in a 1D path going through all
the qubits in the system [see Fig. 3(b) as an example and also
Appendix A]. Therefore, in the rest of this section, we discuss
the simulations of unitary quantum dynamics by considering
their 1D quantum circuit representations.

A. Parallel time-evolving block decimation algorithm

A unitary quantum dynamic process represented by a 1D
quantum circuit with N qubits can be efficiently simulated
using a sequential TEBD-type [7] or time-dependent DMRG-
type [25] algorithm. The time cost of these two algorithms
is always proportional to N . Here, incorporating the IPMC
method introduced above, we propose a pTEBD algorithm
that can reduce the time complexity to a constant with increas-
ing N .

The pTEBD algorithm along with the IPMC is illustrated in
Fig. 3. The initial state |�(0)〉 can be represented as a canoni-
calized MPS with bond dimension χ0 [see Fig. 3(a)]. To sim-
ulate quantum circuits for a circuit-based quantum computer,
generally one chooses |�(0)〉 = |00 · · · 0〉 with χ0 = 1. In the
pTEBD algorithm, to simulate one layer of gates represented
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FIG. 3. Illustration of the pTEBD algorithm for a quantum circuit simulation. Starting from an MPS in (a), which is allowed to be slightly
deviated from the canonical form, the state is evolved using the standard TEBD procedure but with all gates in the same layer treated parallelly
in (b), and then truncate the state using the IPMC (see Sec. III E) in (c) to update the MPS, which is subsequently used to simulate the quantum
circuit with the next layer of gates. A possible realization of the distribution of data to each MPI process Pl and the data transfer among MPI
processes in the pTEBD algorithm is schematically shown in (d). As multiple PtSU steps may be executed in the IPMC, the data transfer
is consequently required several times, as indicated here simply by two arrows pointing forward and backward between neighboring MPI
processes. Note also that single-qubit gates can be treated exactly without increasing the bond dimension by any MPS-based simulations,
including the pTEBD algorithm.

by
∏m(d )

i Û d
i in Eq. (37), the standard TEBD procedure is uti-

lized to simulate each gate operation in parallel [see Fig. 3(b)].
The bond dimension of the resulting MPS increases to χ̃ ,
which can be larger than the maximum bond dimension χ

predetermined in the algorithm. Then, the IPMC is performed
to truncate the increased bond dimension back to χ [see
Fig. 3(c)] and it returns to the first step to simulate the next
layer of gates in the quantum circuit. As indicated in Fig. 3(d),
the data transfer in the pTEBD algorithm is strictly local.

After completing the simulation of all D layers of gates
in the quantum circuit, the resulting MPS approximates the
final state of the unitary quantum dynamic process |�(t )〉. We
can then use standard MPS techniques to exactly evaluate the
expectation values of observables [23] or perfectly sample bit
strings from this state [45] to mimic quantum devices after
restoring the canonical form of the obtained MPS representing
|�(t )〉. The flow chart of the pTEBD algorithm is provided in
Algorithm 1.

ALGORITHM 1. pTEBD.

Input: |�(d = 0)〉 = {�[p], �[q]}, {Û d
i }, χ , g

for m = 1, . . . , D do
{�̃[p], �̃[q]} ← TEBD({�[p], �[q]}, {Û m

i }) � In parallel
if χ̃ > χ then

{�[p], �[q]} ← IPMC({�̃[p], �̃[q]}, χ, g)
else

{�[p], �[q]} ← {�̃[p], �̃[q]}
end if

end for
{�[p],�[q]} ← Canonicalize({�[p], �[q]})
|�(d = D)〉 ← {�[p], �[q]}
Do measurements or sampling on |�(d = D)〉

B. Accuracy, numerical stability, and performance of pTEBD

To comprehensively benchmark the accuracy, numerical
stability, and performance of the pTEBD algorithm, we per-
form intensive simulations of typical 1D and 2D quantum
circuits and compare the results with those obtained by se-
quential MPS simulations. For this purpose, we consider both
random quantum circuits (RQCs) on 1D and 2D qubit ar-
rays (RQC-1D and RQC-2D, respectively) and parametrized
quantum circuits (PQCs), which are widely adopted in the
variational quantum eigensolver [46], on 1D and 2D qubit
arrays (PQC-1D and PQC-2D, respectively). These four types
of quantum circuits cover representative cases, providing con-
crete demonstrations for the practical feasibility of the pTEBD
algorithm. The details of each circuit are described in Ap-
pendix A. Note also that in the sequential algorithm described
in Ref. [7], which we employ as the benchmark algorithm,
referred to as the sequential MPS algorithm, in the following
numerical experiments, an MPS is always in the canonical
form and normalized to one, which is generally not the case in
the pTEBD algorithm. We also provide an additional bench-
mark test of the pTEBD algorithm applied to simulate the
quantum Fourier transformation algorithm in Appendix C.

1. Accuracy

First, we assess the simulation accuracy of the pTEBD
algorithm and demonstrate its ability to achieve precision
comparable to that of the sequential MPS algorithm. Here
the simulation precision is determined by the wave-function
fidelity

F = |〈�exact|�(χ )〉|2 , (38)

where |�exact〉 represents the state obtained by the exact sim-
ulation and |�(χ )〉 is the state obtained using an MPS with
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FIG. 4. Wave-function fidelity F as a function of physical circuit depth D (for the definition, see Appendix A) obtained using the sequential
MPS algorithm and the pTEBD algorithm with a fixed MPS bond dimension χ : (a) RQC-1D with N = 25, (b) PQC-1D with N = 24, (c) RQC-
2D with Lx = 5 and Ly = 5 (i.e., N = 25), and (d) PQC-2D with Lx = 4 and Ly = 6 (i.e., N = 24). The dashed lines (crosses) represent the
average fidelity F̄MPS(pTEBD) over 10 simulations of the same quantum circuit but with different sets of random parameters obtained using
the sequential MPS (pTEBD) algorithm. The shades (bars) indicate the minimal and maximal fidelities among these 10 simulations using the
sequential MPS (pTEBD) algorithm. The color intensities of crosses and bars represent the pTEBD results with g = 0, 1, and 2 (from light to
dark).

the fixed bond dimension χ . We perform the simulations for
quantum circuits with up to 100 (60) physical circuit layers,
i.e., before recompiling a quantum circuit to fit an MPS 1D
path, in the 1D (2D) cases. The definitions of the physical
and compiled circuit depth can be found in Appendix A.
Each simulation is repeated 10 times with different sets of
random parameters to evaluate the average fidelity, denoted
as F̄MPS(pTEBD) in the sequential MPS (pTEBD) simulations.
These results are summarized in Fig. 4.

The simulations for all these four types of quantum cir-
cuits show consistent results: for a given bond dimension
χ , the accuracy of the pTEBD simulation is comparable to
the sequential MPS simulation. In most cases, we find that
F̄pTEBD ≈ F̄MPS and F̄pTEBD improves with an increase in the
number g of PtSU steps, while we observe that the PtSU
steps have the opposite effect in some rare cases. Moreover,
in cases with relatively small χ (for example, χ = 16 and
64), we notice that F̄pTEBD significantly increases with ap-
plying more PtSU steps. Since F is highly sensitive to the
random parameters used in each quantum gate in the quantum
circuit, we also shown its minimum and maximum among
the 10 simulations with different sets of random parameters.

These extremes obtained in the sequential MPS simulations
and the pTEBD simulations are consistent with each other.
In some cases [see Fig. 4(b)], the maximum value obtained
in the pTEBD simulation can be larger than that obtained in
the sequential MPS simulation. To present more clearly the
fidelities obtained using these two algorithms, we also show
the results for a quantum circuit with the same single set of
random parameters in Appendix B.

For the unitary quantum dynamics described by a quantum
circuit with local gates, the quantum entanglement propagates
only within a finite range of space after applying each single
layer of gates. Therefore, in the pTEBD algorithm, �[i−1] and
�[i+1] are still expected to be a good approximation for the
environments of each local two sites i and i + 1, although the
canonical form deviates globally in general. This is probably
the reason for the high precision of the pTEBD algorithm and
the improvement with additional PtSU steps that suppress the
deviation of the canonical form.

2. Numerical stability

After establishing the accuracy of the pTEBD algorithm,
let us now demonstrate the crucial role of the wave-function
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FIG. 5. Wave-function norm of the MPS as a function of physical circuit depth D (for the definition, see Appendix A) obtained using
the pTEBD algorithm with a fixed MPS bond dimension χ : (a) RQC-1D with N = 101, (b) PQC-1D with N = 100, (c) RQC-2D with
Lx = Ly = 12 (i.e., N = 144), and (d) PQC-2D with Lx = Ly = 12 (i.e., N = 144). The open diamonds (squares) represent the averaged results
of the wave-function norm n∗ (n) over 10 simulations of the same quantum circuit but with different sets of random parameters, evaluated with
(without) the wave-function norm stabilization procedure. Black dashed lines indicate the norm equal to 1. Here we set g = 0, i.e., no PtSU
since it does not affect the wave-function norm. Note that the results obtained using the pTEBD algorithm with the wave-function norm
stabilization procedure are almost completely overlapped to each other in this scale.

norm stabilization procedure introduced in Sec. III C 2 in
maintaining numerical stability during pTEBD simulations.
To this end, we systematically evaluate the wave-function
norm in the simulations of 1D (2D) quantum circuits, contain-
ing up to 1000 (100) physical circuit layers, with and without
the wave-function norm stabilization procedure. The results
are summarized in Fig. 5.

In cases without the wave-function norm stabilization pro-
cedure (see open squares in Fig. 5), the wave-function norm
monotonically and exponentially decays with increasing D.
While it slightly increases with the bond dimension χ , a tiny
value, as small as 10−14, is reached after simulating a quantum
circuit with around 200 and 20 physical circuit layers both in
1D and 2D cases, respectively. This indicates that a renor-
malization procedure, involving sequential calculations and
thus breaking the real-space parallelism, must be employed to
prevent the exponentially decaying wave-function norm and
stabilize the simulation.

In sharp contrast, in cases with the wave-function norm
stabilization procedure (see open diamonds in Fig. 5), the
wave-function norm consistently remains close to one, re-
sisting decay with increasing D, even when χ is small. This
demonstrates that, in the simulation of unitary quantum dy-
namics, the numerical stability of the pTEBD algorithm can
be maintained by the IPMC, particularly the wave-function
norm stabilization procedure, even though the MPS deviates
from its canonical form. Hence, no sequential procedure is
required throughout the entire pTEBD simulation, implying

the achievement of scalability, i.e., perfect weak scaling, as
will be examined in the next section.

3. Performance and week scaling

Finally, let us assess the performance of the pTEBD algo-
rithm from two perspectives. On the one hand, we examine the
simulation elapsed time per circuit layer, which is defined as
the total simulation elapsed time divided by compiled circuit
depth (for more details, see Appendix A), versus the system
size N , evaluating its performance in weak scaling. We always
distribute tensors of each four adjacent sites in an MPS on
one computational node. When N is not divisible by 4, the
remaining tensors are distributed on the last node. On the other
hand, we compare the elapsed time required to achieve a given
simulation precision, measured by wave-function fidelity F ,
in both sequential MPS and pTEBD simulations.

As illustrated in Fig. 6, for a fixed bond dimension χ ,
the pTEBD algorithm consistently exhibits nearly constant
simulation times for quantum circuits with various system
sizes, achieving excellent weak scaling performance. This
is attributed to the absence of any real-space sequential
procedures and the lack of a need for global data commu-
nication in the pTEBD algorithm [also see Fig. 3(d)]. In
contrast, the elapsed time per circuit layer in the sequential
MPS algorithm increases linearly with the system size due
to its unavoidable sweep procedure. We also expect good
strong scaling since, compared with the previous approach
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FIG. 6. Elapsed time per circuit layer (averaged over 10 simulations with different sets of random parameters) versus the system size N
(Lx = Ly in 2D cases) obtained using the sequential MPS algorithm (open circles) and the pTEBD algorithm (crosses) with a fixed MPS bond
dimension χ : (a) RQC-1D with 300 physical circuit layers, (b) PQC-1D with 300 physical circuit layers, (c) RQC-2D with 100 physical circuit
layers, and (d) PQC-2D with 100 physical circuit layers. Note that the number of circuit layers in (c) and (d) is the total number of layers of the
quantum circuit after recompiling it to fit an MPS 1D path, i.e., the compiled circuit depth (for more details, see Appendix A). We set g = 0
for the pTEBD simulations since the performance showing the almost perfect weak scaling does not depend on g.

in Ref. [28], the IPMC does not increase the computational
complexity.

It might be more insightful to compare the performance
between these two algorithms by studying their elapsed time
to achieve the same simulation precision, a measure similarly
adopted in a recent study of a 2D tensor network algo-
rithm [47]. This measure demonstrates the practical speedup
of the pTEBD algorithm over its sequential counterpart. For
this purpose, we reinterpret the fidelity results shown in Fig. 4
and replot these results as a function of the elapsed time of
the simulation in Fig. 7. Remarkably, in all cases, the pTEBD
simulation reaches the same F in polynomially shorter time
than the corresponding sequential MPS simulation (as also
expected from Fig. 6), indicating its efficient utilization of the
parallel computing environment.

V. SUMMARY AND DISCUSSION

In summary, we have proposed an improved parallel MPS
compression method that can accurately compress the dimen-
sions of all the virtual bonds in a constant time, regardless
of the system size. Simultaneously, it stabilizes the wave-
function norm of the MPS, converging to a value around 1
that is bounded from both sides. Although both the accuracy
and the norm stabilization are mathematically proved under
the assumption of the canonical form, we have demonstrated
its feasibility in simulating unitary quantum dynamics, where
the canonical form slightly deviates globally. Moreover, we
have numerically shown that the deviated canonical form

resulting from the parallel truncation procedure in the parallel
MPS compression can be gradually restored through the sub-
sequent PtSU steps. Additionally, we have provided a proof
that at most N

2 PtSU steps can drive any MPS to its canonical
form.

Utilizing the IPMC method, we have proposed a fully
real-space parallelizable pTEBD algorithm for efficiently
simulating unitary quantum dynamics. Furthermore, we sys-
tematically benchmarked the pTEBD algorithm by simulating
typical 1D and 2D quantum circuits. Our results demonstrate
that the pTEBD algorithm achieves nearly perfect weak scal-
ing performance even for very deep quantum circuits with
hundreds of circuit layers. Additionally, it achieves the same
simulation precision in polynomially shorter time compared
to the sequential MPS algorithm.

While existing MPS-based quantum computing simulation
methods have been recognized as highly efficient for simu-
lating NISQ devices, their applications to quantum circuits
with hundreds of qubits and circuit layers remains challenging
due to the inherent limitation of linear time complexity with
the system size. In contrast, the pTEBD algorithm proposed
in this study can harness the abundant computing resources
offered by current supercomputing systems to address these
demanding tasks, providing a practical way for exploring
quantum computing on large NISQ devices.

As we have demonstrated, the pTEBD algorithm ex-
hibits the same simulation capability as other sequential
MPS algorithms. However, due to the inherent limitation of
MPS expressibility, simulating quantum circuits with higher-
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FIG. 7. Wave-function fidelity F versus elapsed time obtained using the sequential MPS algorithm (open circles) and the pTEBD algorithm
(crosses) with a fixed physical circuit depth D (for the definition, see Appendix A): (a) RQC-1D with N = 25, (b) PQC-1D with N = 24,
(c) RQC-2D with Lx = Ly = 5 (i.e., N = 25), and (d) PQC-2D with Lx = 4 and Ly = 6 (i.e., N = 24). These results are averaged over 10
simulations of the same quantum circuit but with different sets of random parameters. We set g = 0 for the pTEBD simulations. Note that the
elapsed time increases simply because of the increase of bond dimensions.

dimensional structures and/or rapidly accumulating large
entanglement remains challenging [2,9,48]. Therefore, it is
of great interest to extend the present parallel approach to
recently developed approximate contraction algorithms for
more complex tensor networks [49,50] or to integrate the
pTEBD algorithm with other levels of parallelization, such as
those utilized in quantum chemistry simulations [51], which
are feasible on current supercomputers.
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APPENDIX A: DETAILS OF THE QUANTUM CIRCUITS
ADOPTED IN THE BENCHMARKING SIMULATIONS

To benchmark the pTEBD algorithm, we select RQCs and
PQCs, the latter being commonly used in variational quantum
algorithms, as the simulation tasks. RQCs have been widely
employed in benchmarking NISQ devices [2,53] and quan-
tum computing simulations [19]. PQCs, being more featured
circuits, can reflect the practical performance of devices and
simulations for more realistic computational tasks. Therefore,
these benchmarks allow for a thorough evaluation of the
pTEBD algorithm’s performance in the most realistic and rep-
resentative cases. In this Appendix, we provide explanations
for the construction of these quantum circuits. More detailed
features and applications of these quantum circuits can be
found in the corresponding references cited below.

1. Physical circuit depth vs compiled circuit depth

Physical circuit depth is defined as the total number of
physical circuit layers. Typically, for a given quantum circuit
featuring repeating structural units, as observed in the cases
of RQCs and PQCs considered in this study, a physical circuit
layer is determined by a single type of repeating unit. For
instance, in the cases of RQCs, a single physical circuit layer
is formed by applying single-qubit random gates to each qubit,
followed by the application of two-qubit entangling gates
with a specific covering pattern. The specific definition of the
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FIG. 8. Schematic figures for (a) RQC-1D and (b) PQC-1D. In
(a), the colored squares represent single-qubit random gates. In (b),
the first layer of the quantum circuit is dedicated to initializing the
state as a product of singlet dimers. Dashed lines indicate each
physical circuit layer.

physical circuit layer in each quantum circuit adopted in this
study will be provided in the following subsections.

To enable a classical simulation of a quantum circuit
with an MPS representation using a TEBD-type algorithm,
a physical circuit layer must be recompiled to one (or sev-
eral) compiled circuit layer(s), wherein all two-qubit gates
exclusively apply to neighboring qubits aligned on the MPS
1D path. In this study, for 1D quantum circuits, one physical
circuit layer is directly mapped to one compiled circuit layer.
However, for 2D quantum circuits, a portion of physical cir-
cuit layers (details provided below) must be mapped to several
compiled circuit layers, thereby increasing the effective cir-
cuit layers in the simulation. The total number of compiled
circuit layers is denoted as the compiled circuit depth. As
a single-qubit gate can always be contracted exactly into a
nearby two-qubit gate during the recompiling procedure in the
quantum circuit, we only consider two-qubit gates in defining
and counting compiled circuit layers.

2. One-dimensional random quantum circuit

The circuit structure of RQC-1D is illustrated in Fig. 8(a).
Here we adopt the same construction as in Ref. [7]. The
single-qubit random gate at qubit r in the lth circuit layer,

denoted by squares in the figure, is defined as

U (l )
r = exp

[−iθ (l )
r

(
σ x

r sin α(l )
r cos φ(l )

r

+ σ y
r sin α(l )

r sin φ(l )
r + σ z

r cos α(l )
r

)]
, (A1)

where σ x
r , σ

y
r , and σ z

r are Pauli matrices, and α(l )
r , θ (l )

r , and
φ(l )

r are uniformly distributed real random numbers. After
applying U (l )

r to all qubits in the lth circuit layer, the quan-
tum entanglement is generated by subsequently applying a
layer of controlled-Z (CZ) gates, completing one physical
layer of the circuit construction. The CZ gates apply to
(0, 1), (2, 3), . . . , (N − 3, N − 2) qubit pairs for odd physical
layers and on (1, 2), (3, 4), . . . , (N − 2, N − 1) qubit pairs
for even physical layers. The total number N of qubits is
restricted to odd, and the total number D of physical circuit
layers is restricted to even. Note that these RQCs (including
the RQC-2D introduced below) are different from those used
in Google’s quantum supremacy experiment [2], in which
fSim gates are adopted to generate larger entanglement. More
detailed discussion of these two kinds of RQCs can be found
in Refs. [7,54].

3. One-dimensional parametrized quantum circuit

For a more practical setting, we also consider the Hamil-
tonian variational ansatz (HVA) [55], which has been widely
studied in quantum computing for quantum many-body sys-
tems, and apply it to the nearest-neighbor spin S = 1/2
Heisenberg model. Initializing the qubit register to form a
product of singlet dimers on (0, 1), (2, 3), . . . , (N − 2, N −
1) qubit pairs [see Fig. 8(b)], a layer of eSWAP gates [56–62],
U (l )

i j (θ (l )
i j ) = exp(−iθ (l )

i j Pi j/2) with Pi j being the SWAP gate
acting at qubits i and j, is applied to (1, 2), (3, 4), . . . , (N −
3, N − 2) [(0, 1), (2, 3), . . . , (N − 2, N − 1)] qubit pairs for
the lth physical layer with odd (even) l . In using the HVA for
variational quantum algorithms [61,62], {θ (l )

i j } is a set of vari-
ational parameters to be optimized. Here we assign uniformly
distributed real random numbers to these parameters {θ (l )

i j } in
our benchmark simulations. The resulting circuit structure of
PQC-1D is illustrated in Fig. 8(b). The total number N of
qubits and the total number D of physical circuit layers are
both restricted to even.

4. Two-dimensional random quantum circuit

RQC-2D is the direct extension of RQC-1D on a 2D square
lattice with the number of qubits N = Lx × Ly. The physical
circuit layers are applied in an ABCDABCD · · · pattern, as
illustrated in Fig. 9, where each rectangle indicates the qubits
on which a CZ gate acts. Additionally, single-qubit random
gates {U (l )

r (θ (l )
i j )} are applied to all qubits in each physical

circuit layer, similar to the case of RQC-1D. The number of
physical circuit layers is restricted to a multiple of 4. However,
there are no specific restrictions on Lx and Ly. In cases when
Lx (Ly) is odd, no two-qubit gates are applied on qubits at
the right and left (top and bottom) edges in physical circuit
layers C and D (A and B), respectively, as shown in Fig. 9 for
Lx = Ly = 5.

In contrast to 1D quantum circuits, where qubits naturally
align in a 1D path suitable for the MPS representation, a
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FIG. 9. Locations of two-qubit gates, indicated by rectangles, in
four distinct physical circuit layers A, B, C, and D for both RQC-2D
and PQC-2D. Solid dots represent qubits arranged in a 2D square
lattice. The two-qubit gates consist of CZ gates for RQC-2D and
eSWAP gates for PQC-2D. Additionally, single-qubit random gates
are applied to all qubits in each physical circuit layer for RQC-2D,
similar to the case of RQC-1D shown in Fig. 8(a). For PQC-2D, the
first physical layer A is dedicated to forming a product of singlet
dimers, as in the case of PQC-1D shown in Fig. 8(b). In this example,
we set Lx = 5 and Ly = 5.

mapping of qubits for 2D quantum circuits to a 1D path suit-
able for the MPS representation must be determined. Here we
choose the path shown in Fig. 10(a) to ensure that two-qubit
gates in physical circuit layers A and B act on neighboring
qubits in the sense of the MPS 1D path. Under this map-
ping, the two-qubit gates in physical circuit layers C and D
become long-distance gates, necessitating a recompilation of
these two physical circuit layers for MPS-based simulations
to ensure that gates apply only to neighboring qubits on the
MPS 1D path. As an example, the recompiling procedure for
the Lx = Ly = 4 case is illustrated in Fig. 10(b). Note that
the circuit depth increases from 2 (physical circuit depth) to
3(Ly − 1) + 2 (compiled circuit depth) after this recompiling.
The physical circuit depths and compiled circuit depths for
several 2D quantum circuits studied in Figs. 4–7 are provided
in Table I. Although we focus on the square lattice, an exten-
sion to other lattices such as the Bristlecone lattice used in
Ref. [2] is straightforward.

5. Two-dimensional parametrized quantum circuit

Similar to RQC-2D, PQC-2D is the extension of PQC-1D
on a 2D square lattice with the number of qubits N = Lx × Ly.
A slight difference from RQC-2D is found in the first physical
circuit layer A, where we prepare a product of singlet dimers,
similar to PQC-1D. Beyond this initial physical circuit layer
A, the subsequent physical circuit layers incorporate eSWAP
gates in a BCDABCDA · · · pattern with parameters {θ (l )

i j } (see

FIG. 10. (a) Mapping of qubits for a 2D quantum circuit to a 1D
path suitable for its MPS representation. Solid dots represent qubits
arranged in a 2D square lattice with Lx = Ly = 4. The numbers
beside solid dots indicate the indices of qubits. (b) Arrangement
of two-qubit gates in physical circuit layers C and D for a 2D
quantum circuit with Lx = Ly = 4 (left-hand side) and the equivalent
recompiled quantum circuit containing only two-qubit gates applying
to neighboring qubits but with many additional SWAP gates. The
number of each qubit register corresponds to that in (a). The shades
of the same color indicate the correspondence between gates in-
volved before and after the recompiling procedure for each physical
circuit layer. Although we consider the Lx = Ly = 4 case here as an
example, it is straightforward to extend to other cases.

Fig. 9). Similar to RQC-2D, we employ an MPS 1D path
as depicted in Fig. 10(a). Consequently, two-qubits gates in
physical circuit layers C and D must be recompiled to ensure
that all gates apply only to neighboring qubits, as illustrated
in Fig. 10(b). Due to the specific configuration, the value of
Ly in PQC-2D is restricted to an even number. As in the case
of RQC-2D, the total number D of physical circuit layers is a
multiple of 4.
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TABLE I. Physical and compiled circuit depths for several 2D
quantum circuits studied in Figs. 4–7. Here a 2D quantum circuit is
arranged in a square lattice with the number of qubits N = Lx × Ly.

N Lx Ly Physical circuit depth Compiled circuit depth

24 4 6 28 133
24 4 6 60 285
25 5 5 28 112
25 5 5 60 192
144 12 12 40 370
144 12 12 100 925
1024 32 32 100 2425

APPENDIX B: SIMULATION ACCURACY OF THE
pTEBD ALGORITHM FOR A SINGLE INSTANCE

OF RANDOM PARAMETERS

For a fair comparison of the wave-function fidelity F
obtained by the pTEBD algorithm and the sequential MPS
algorithm, here we compare the results for a specific set of
random parameters rather than averaging over 10 simulations
with different sets as in Fig. 4. This particular set is chosen
among the 10 different sets used in Fig. 4. The correspond-
ing results are denoted as FpTEBD and FMPS obtained by the
pTEBD and sequential MPS algorithms, respectively.

As shown in Fig. 11, in most cases, we observe behavior
consistent with that found in Fig. 4: FpTEBD ≈ FMPS, and

TABLE II. Physical and compiled circuit depths for QFT circuits
with various numbers (N) of qubits.

N Physical circuit depth Compiled circuit depth

16 136 946
20 210 1482
24 300 2219
28 406 3034
32 528 3882
48 1176 8430
64 2080 14 670
80 3240 22 514
96 4656 31 493

FpTEBD increases with the number g of PtSU steps. Addition-
ally, we note that FpTEBD outperforms FMPS in some cases
with small bond dimensions and larger circuit depths, while
FpTEBD decreases with more appended PtSU steps in certain
cases. In practice, we can adjust g to achieve optimal perfor-
mance in the pTEBD simulation.

APPENDIX C: ADDITIONAL BENCHMARK TEST
OF PTEBD

Quantum Fourier transformation (QFT) [63] is a fun-
damental algorithm in fault-tolerant quantum computing

FIG. 11. Same as Fig. 4 but showing the results for a single set of random parameters, selected from the 10 different sets of random
parameters used for averaging in Fig. 4.
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FIG. 12. Wave-function fidelity F as a function of MPS bond
dimension χ in simulations of the QFT circuit with N = 16 using the
sequential MPS algorithm and the pTEBD algorithm. We set g = 0
for the pTEBD simulations. The results for each χ are obtained from
the average over 10 different random initial states.

(FTQC) and is typically integrated into other FTQC algo-
rithms, such as Shor’s algorithm [64] and the quantum phase
estimation algorithm [65]. In this Appendix, we simulate the
QFT applied to a random state using both the sequential MPS
algorithm and the pTEBD algorithm to assess the accuracy
and scalability of the pTEBD algorithm in the simulation of
more irregularly structured quantum circuits compared with
those studied in Sec. IV B.

We initialize a random MPS with bond dimension χ0 = 10
and apply a QFT circuit to this random state. The QFT circuit
is generated and further compiled to a qubits layout with
linear connectivity using Qiskit [66]. For the compilation,
the transpile() function is used with the single-qubit rota-
tion gate U (θ, φ, λ) and the controlled-NOT gate CX as the
basis gates, and with the optimization level 3. The physical
circuit depths and compiled circuit depths of the QFT circuits
for different system sizes are summarized in Table II. We
then employ the sequential MPS algorithm and the pTEBD
algorithm to simulate these compiled circuits.

First, we examine the simulation accuracy. For this
purpose, we fix the number of qubits N = 16 with the cor-
responding compiled circuit depth being 946. The results of
the simulation accuracy, quantified by the wave-function fi-
delity F in Eq. (38), are shown in Fig. 12. We observe that

FIG. 13. Elapsed time per circuit layer versus the number N
of qubits obtained using the sequential MPS algorithm (open cir-
cles) and the pTEBD algorithm (crosses), with a fixed MPS bond
dimension χ in the simulations of QFT circuits. For the pTEBD
simulations, we set g = 0 and distribute 16 qubits to each node.

the wave-function fidelity in the pTEBD simulation always
approximates very accurately the wave-function fidelity ob-
tained from the sequential MPS simulation, even in the cases
with relatively small bond dimensions. This indicates that the
accuracy of the pTEBD algorithm is comparable to that of the
sequential MPS algorithm, as in the cases for more regularly
structured quantum circuits before recompilation, studied in
Fig. 4.

Furthermore, we compare the performance of these two
algorithms in simulating QFT circuits. Figure 13 shows the
elapsed time per compiled circuit layer against the number
N of qubits. The elapsed time per layer increases linearly
with N in the sequential MPS simulations, while it remains
approximately constant, especially for larger N , in the pTEBD
simulations. The very slowly increase in elapsed time per
layer in the pTEBD simulations might be due to the in-
crease in internode communications, as we always distribute
16 qubits to each node in these simulations. This perfor-
mance analysis demonstrates that the pTEBD algorithm can
also achieve good weak scaling even when simulating more
general, unstructured circuits, consistent with the results for
RQC-2D and PQC-2D in Figs. 6(c) and 6(d), where the quan-
tum circuits after recompilation are not perfectly regularly
structured.
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