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Fractonic matter can undergo unconventional phase transitions driven by the condensation of particles that
move along subdimensional manifolds. We propose that this type of quantum critical point can be realized
in a bilayer of crossed Rydberg chains. This system exhibits a transition between a disordered phase and a
charge-density-wave phase with subextensive ground-state degeneracy. We show that this transition is described
by a stack of critical Ising conformal field theories which become decoupled in the low-energy limit. We also
analyze the transition using a Majorana mean-field approach for an effective lattice model, which confirms
the picture of a fixed point of decoupled critical chains. We discuss the unusual scaling properties and derive
anisotropic correlators that provide signatures of subdimensional criticality in this realistic setup.
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I. INTRODUCTION

For decades, effective field theories have provided invalu-
able insight into quantum critical phenomena [1–4]. A general
guiding principle is that the low-energy properties of a sys-
tem close to a continuous phase transition are governed by
nearly massless excitations. If these excitations propagate in
all spatial directions, one expects universal scaling behavior
once the correlation length diverges and microscopic details
become irrelevant.

The standard continuum limit inherent in effective field
theories has recently been challenged by the study of fracton
phases of matter [5–7]. Fractonic systems are characterized by
excitations that are completely immobile (fractons) or propa-
gate along lower-dimensional subspaces (lineons and planons)
[8–11]. In addition, fracton phases exhibit a subextensive
ground-state degeneracy. These properties are associated with
subsystem symmetries, which can be either exact or emergent
[12–15] and play an important role in quantum phase tran-
sitions [16–20]. In particular, continuous transitions can be
driven by the condensation of lineons and planons, leading
to the notion of subdimensional criticality [19,20]. In this
intriguing scenario, the transition is described by stacks of
lower-dimensional critical theories, which decouple at low
energies.

In continuum descriptions of fractons [21–30], physical
observables often depend on a short length scale related
to a lattice regularization. The need for this regularization
becomes apparent in theories with higher spatial deriva-
tives and anisotropic scaling, an early example of which
was the Bose metal in 2+1 dimensions [31]; see also
Ref. [32]. In this case, the dispersion ω ∼ kxky of bosonic
spin modes vanishes along lines in momentum space. As a
consequence, high-momentum modes contribute to the low-
energy physics, a phenomenon known as UV-IR mixing
[15,27]. Similar theories have been proposed for the fracton
critical point in a higher-order topological transition [33],
the fractonic Berezinskii-Kosterlitz-Thouless transition in the

plaquette-dimer model [34,35], and boundaries of fracton
models [36,37]. Crucially, UV-IR mixing imposes a modified
renormalization group (RG) analysis [12,31,34,35,38–40]. In
some contexts, the difficulties with scaling have been inter-
preted in terms of a dimensional reduction [12,38], whereby
the two-dimensional (2D) model is viewed as an array of
one-dimensional (1D) systems. Despite the enormous interest
sparked by fractonlike physics, a major obstacle to its obser-
vation is that the proposed lattice models typically contain
multispin interactions that are hard to realize experimentally.

In this work, we show that a fractonic transition can be
observed in a realistic setup with Rydberg atom arrays, a
versatile platform for the quantum simulation of long-sought
phases of matter [41–49]. Our setup consists of two layers
of parallel chains with two-body interactions only. In the
limit of decoupled chains, each chain displays a transition
between a Z2-ordered charge density wave (CDW) and a
disordered phase [50,51]. The 1D critical point is described
by the Ising conformal field theory (CFT). We consider the
regime in which the leading interchain interaction occurs at
the crossings between perpendicular chains, and its strength
can be controlled by varying the layer separation. We first
show that the ordered phase of the 2D array retains a subexten-
sive ground-state degeneracy inherited from the spontaneous
symmetry breaking of the individual chains. We refer to this
phase as the fractonic CDW (fCDW). We analyze the tran-
sition from the fCDW to the disordered phase in terms of
an array of Ising CFTs coupled at an extensive number of
crossings. Using a RG approach, we find that the interlayer
interaction in the effective (2+1)-dimensional theory behaves
as a marginally irrelevant perturbation. As a result, the critical
system displays 1D-like correlations. To confirm the nature of
the critical point, we work out a Majorana mean-field theory
for an effective lattice model. In this approach, the stability of
the fixed point of decoupled chains is signaled by the absence
of hybridization between Majorana modes in different chains
at weak interchain coupling.
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FIG. 1. Setup with Rydberg atoms placed in chains that belong to
two different planes. The atoms are toggled between the ground state
|g〉 and a Rydberg state |r〉 by the external Rabi frequency � with a
detuning �. The leading interactions are the nearest-neighbor intra-
chain coupling V1 and the interchain coupling V ′

1 around a crossing.
The lower-right panel shows the top view of a single crossing.

This paper is organized as follows. In Sec. II, we present
the lattice model and discuss the control parameters in the
proposed setup. In Sec. III, we analyze the limiting cases
of the model, describing the ground-state degeneracy and
elementary excitations that characterize the fCDW phase. In
Sec. IV we take the continuum limit and obtain the effective
field theory for the fCDW-disorder transition. The Majorana
mean-field theory that supports the conclusion of a decoupled-
chain critical point is presented in Sec. V. We draw some
conclusions in Sec. VI. Finally, details about the emergent
symmetries in the continuum limit, the perturbative RG ap-
proach, and the self-consistent mean-field equations can be
found in the Appendixes.

II. THE MODEL

We consider a model for N trapped Rydberg neutral atoms,
which in general are described by the Hamiltonian [41,52]

H =
N∑

i=1

[
�

2
(bi + b†

i ) − �ni

]
+

∑
1�i< j�N

Vi jnin j, (1)

where bi, b†
i are annihilation and creation operators for hard-

core bosons for the ith atom, describing the ground state |g〉i

and the Rydberg state |r〉i = b†
i |g〉i, with ni ≡ b†

i bi . These
states are coupled by external lasers with a Rabi frequency �

and a detuning � > 0. The van der Waals interaction decays
with the distance Ri j between atoms as Vi j = C6R−6

i j , with a
coefficient C6 > 0.

The geometry of the lattice determines the leading interac-
tions. In the setup of Fig. 1, the atoms are placed in 1D chains
with lattice spacing a. Adjacent parallel chains are separated
by a distance d‖ = νa, with an integer ν � 2, and the layers
are separated by d⊥. The shortest distance between perpen-
dicular chains occurs at a “crossing” (as viewed from above)
where each atom is coupled symmetrically to a pair of atoms
in the other layer. This model respects a C4 lattice rotation
symmetry, which also exchanges the layers, and a Z2 time-
reversal symmetry defined as complex conjugation. Due to
the fast decay of the interactions, we consider only two terms,
V1 and V ′

1 , corresponding to nearest-neighbor intrachain and
interchain couplings, respectively. The ratio V ′

1/V1 = 8[1 +

2(d⊥/a)2]−3 varies rapidly with the layer separation. Impor-
tantly, we neglect direct couplings between parallel chains. In
Fig. 1 and throughout this work, we represent the array with
ν = 2 atoms between two crossings, but in practice it may be
convenient to take ν > 2 to further suppress the interaction
across the distance d‖.

We can map the Hamiltonian describing the interacting Ry-
dberg atoms to a spin model by introducing the Pauli operators

Zi = 2ni − 1, Xi = bi + b†
i . (2)

In particular, in the limit d⊥ → ∞ we can set V ′
1 = 0, and the

corresponding Hamiltonian H0 is equivalent to Ising chains
with transverse and longitudinal fields [51]:

H0 =
Lx+Ly∑
�=1

L�∑
m=1

(JZm,�Zm+1,� + hX Xm,� + hZZm,�), (3)

where J = V1/4 > 0, hX = �/2, and hZ = (V1 − �)/2. Here
we have introduced a notation which is convenient for an array
of spin chains: � is a chain index, m labels the position along
the chain, and Lx (Ly) is the number of vertical (horizontal)
chains in the upper (lower) layer. To count the number of
sites in each chain, we define L� = νLy for 1 � � � Lx and
L� = νLx for Lx + 1 � � � Lx + Ly. We also assume periodic
boundary conditions. For finite d⊥, the Hamiltonian in Eq. (3)
is perturbed by the interchain coupling

δH = J ′ ∑



∑
〈i, j〉∈


ZiZ j, (4)

where J ′ = V ′
1/4 � 0 and 
 stands for the bonds around a

crossing (see Fig. 1). In addition, V ′
1 renormalizes the lon-

gitudinal field by δhZ = V ′
1/2. Hereafter, we will discuss the

model in terms of the spin variables and the parameters hX ,
hZ , J , and J ′.

III. PHASE DIAGRAM

First, let us discuss the limit of decoupled chains J ′ = 0,
obtained by taking d⊥ → ∞. The phase diagram of a single
Ising chain has been studied numerically [53]. For suffi-
ciently large hX or hZ , the system is in a trivial disordered
phase. For hX , hZ  J , each chain locks into one of two
CDW states represented by | . . . rgrg . . . 〉 or | . . . grgr . . . 〉,
breaking translational invariance. In particular, for hZ = 0 we
recover the exactly solvable transverse-field Ising chain, for
which the critical point is well known to occur at hX /J = 1.
More generally, a critical value of hX /J exists provided that
|hZ | < J . In the ordered phase, each chain contributes with
two states to the ground-state degeneracy, which implies a
2Lx+Ly -degenerate ground-state manifold in this limit.

To see the difference from a trivial stack of 1D states, we
now turn on the interchain coupling J ′ > 0. In the following
we shall assume that hZ is fixed and discuss the phase diagram
of the 2D model as a function of hX /J and J ′/J .

For hX = 0, the Hamiltonian H = H0 + δH reduces to a
classical Ising model. For hX = J ′ = 0, we have the 2Lx+Ly

classical ground states with energy E (1)
cl = −2νJLxLy. Note

that this energy does not depend on J ′ due to the frustration of
the interchain coupling. On the other hand, for hX = 0 and
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FIG. 2. (a) Schematic phase diagram for a fixed value of hZ  J .
The local atomic states |g〉 and |r〉 in the ordered phases are rep-
resented by blue and red, respectively, while the disordered state is
depicted in purple. The square on the J ′ = 0 axis marks the critical
point of decoupled chains. Solid (dashed) lines denote second-order
(first-order) transitions. (b) Domain-wall excitations in the fCDW
phase. Given an fCDW ground state (top), reaching another ground
state (bottom) requires creating and moving domain walls around the
system.

J ′ � J , the classical ground state is only twofold degener-
ate, corresponding to CDW states in which the four atomic
states around each crossing alternate as |rgrg〉 or |grgr〉 [see
Fig. 2(a)]. These states have energy E (2)

cl = −[4J ′ + 2(ν −
2)J]LxLy. Therefore, increasing J ′ along the classical line in
the phase diagram we encounter a level crossing at J ′ = J ,
associated with a first-order transition between the two types
of ordered states.

One can go from the twofold-degenerate CDW to the
disordered phase by increasing hX . In the strong-coupling
limit J ′/J � 1, we can project the model onto the eigenstates
|τ z = 1〉 ≡ |rgrg〉 and |τ z = −1〉 ≡ |grgr〉 of the interaction
at each crossing. It is straightfoward to show that the effective
Hamiltonian in this limit is an Ising model (on the square
lattice for ν = 2) with transverse field h̃X ∼ h4

X /(J ′)3 at the
projected sites. As expected from the spontaneous breaking
of a global Z2 symmetry, the transition from the CDW to the
disordered phase belongs to the three-dimensional (3D) Ising
universality class, as found in other models of Rydberg arrays
[54,55].

By contrast, the ordered phase at J ′ < J has a subexten-
sive ground-state degeneracy which is robust against quantum
fluctuations induced by a weak transverse field. To see this,
note that the low-lying gapped excitations in this regime are
domain walls created in pairs by applying a string operator on
a given chain �,

S�(m1, m2) =
∏

m1�m<m2

Xm,�, (5)

where m1 and m2 are the ends of the string. Two states in the
ground-state manifold can be coupled only by nonlocal pro-
cesses that move domain walls around the system, described
by closed strings S�(m1, m1 + L�) with length L�. The action
of this operator corresponds to “sliding” the spin configuration
along the chain direction [see Fig. 2(b)]. Moreover, the do-
main walls in the subspace of low-lying excited states behave
as lineons, as their motion is restricted to the chain direction,

with dispersion

Edw(k) = 2J − 2hX cos(ka) + O
(
h2

X

)
. (6)

The motion of domain walls discussed here is reminiscent
of the sliding transformation in the quantum Hall smectic
phase [12].

Formally, the 1D nature of the excitation spectrum can be
linked to an emergent symmetry inherited from the decoupled
chains. Consider the action of a translation in the �th chain,

T� : Zm,� �→ Zm+1,�, Xm,� �→ Xm+1,�. (7)

This is not an exact symmetry since it does not commute
with the Hamiltonian in the presence of interchain cou-
plings. However, an emergent symmetry can be defined by the
condition [13]

[H,PT�P] = 0, (8)

where P is a projector onto a low-energy subspace. Both the
ground-state and two-domain-wall subspaces are stabilized
under the action of the group generated by T�. This means
that the faithful symmetry action at low energies is given by
ZLx

2 × Z
Ly

2 , yielding the 2Lx+Ly degenerate ground states. This
exponential dependence on the linear size is characteristic of
fracton models [5,6], which motivates us to call this the fCDW
phase. This symmetry argument holds provided that the
domain-wall pairs are gapped and the low-energy subspaces
are clearly separated from multiparticle continua. However,
the domain walls eventually condense as we increase the
transverse field, driving a transition to the disordered phase.
In the following we would like to understand the fate of the
emergent symmetry near this critical point.

IV. EFFECTIVE FIELD THEORY

We now move to construct and analyze an effective theory
for the transition between the fCDW and the disordered phase.

A. Continuum limit

We begin by putting all the chains at criticality in the
uncoupled regime, i.e., near the point represented by a square
in Fig. 2(a). Each critical chain is described by an Ising CFT
[51]. This theory contains two classes of nontrivial primary
operators: the energy operator ε with conformal dimensions
( 1

2 , 1
2 ) and the spin field operator σ , with dimensions ( 1

16 , 1
16 )

[56]. Lattice operators can be expanded as

Xm,� ∼ 〈Xm,�〉I + cX
σ (−1)mσ�(x) + cX

ε ε�(x) + · · · , (9)

Zm,� ∼ 〈Zm,�〉I + cZ
σ (−1)mσ�(x) + cZ

ε ε�(x) + · · · , (10)

where I is the identity, x = ma is the position along the chain,
cX,Z
σ and cX,Z

ε are nonuniversal real constants, and we omit
higher-dimension operators. The Z2 symmetry of the Ising
CFT corresponds to the 1D translation, under which the spin
field σ� changes sign.

The low-energy Hamiltonian for decoupled chains can be
written in terms of Majorana fermions. For a single chain, the
holomorphic and antiholomorphic parts of the stress tensor are
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given by

T (x) = i

2
η∂xη, T̄ (x) = − i

2
η̄∂xη̄, (11)

where η(x) and η̄(x) are chiral Majorana fermions. The 1D
Hamiltonian for a single chain near criticality is

H1D =
∫

dx [v(T + T̄ ) + mε], (12)

where v is the spin velocity and the energy operator ε(x) =
iη̄η(x) appears in the mass term. Tuning to the critical point,
we set m = 0. Summing over all chains, we have

H0 �
∑

λ∈{h,v}

Lλ∑
�λ=1

∫
dxλ v(Tλ,�λ

+ T̄λ,�λ
)(xλ), (13)

where we separate the contributions from horizontal (h) and
vertical (v) chains by defining the labels �h ∈ {1, . . . , Lh ≡
Ly}, �v ∈ {1, . . . , Lv ≡ Lx}, and the coordinates xh = x and
xv = y.

Next, we add interchain couplings. Note that the interaction
at a crossing has the form J ′(Zm,� + Zm+1,�)(Zm′,�′ + Zm′+1,�′ ).
In the continuum limit, this interaction selects the nonoscillat-
ing terms in Eq. (10). We obtain

δH = vg

2π

Nc∑
k=1

εh,�k
h
(xk )εv,�k

v
(yk ), (14)

where xk = (xk, yk ) are the positions of the crossings, which
form a square lattice with spacing d‖, the index �k

h,v labels
the horizontal and vertical chains which participate in the
kth crossing, and Nc = LxLy is the total number of crossings.
The coupling constant g is of order J ′/J . We note that the
interchain coupling also generates a mass term, but we can
tune the mass to zero again by adjusting the longitudinal field.

The Hamiltonian is invariant under a discrete translational
symmetry, which acts on local operators in the Ising CFT as

Tx : Ov,�(y) �→ Ov,�+1(y),

Oh,�(x) �→ Oh,�(x + d‖); (15)

Ty : Oh,�(x) �→ Oh,�+1(x),

Ov,�(y) �→ Ov,�(y + d‖). (16)

The interaction in Eq. (14) perturbs the critical chains with
a macroscopic number of defects. To deal with this interac-
tion, we take a second continuum limit equivalent to sending
d‖ → 0, appropriate when the length scales of the observables
being probed are considerably larger than d‖. The continuum
limit of local operators is defined as Oh,�h (x) → d‖Oh(x, d‖�h)
and Ov,�v (y) → d‖Ov(d‖�v, y). The sums over the chains are
replaced by integrals:

Lλ∑
�λ=1

(. . . ) →
∫

dx̄λ

d‖
(. . . ), λ ∈ {h, v} (17)

where x̄h = xv = y and x̄v = xh = x correspond to the di-
rections perpendicular to horizontal and vertical chains,

respectively. The effective Hamiltonian is then given by

H �
∫

d2x v

⎡
⎣ ∑

λ∈{h,v}
(Tλ + T̄λ)(x) + g

2π
εhεv(x)

⎤
⎦, (18)

where d2x = dx dy.
To properly define a 2D field theory, we need to specify

the corresponding operator product expansions. First, let us
take the limit g → 0, in which case the fields in Eq. (18) act
as coarse-grained versions of the operators in the Ising CFT.
Before we take the d‖ → 0 limit, the two-point functions of
the nontrivial primaries read as

〈σλ,�λ
(rλ)σλ,�′

λ
(0)〉0 = δ�λ,�

′
λ

|rλ|1/4 , (19)

〈ελ,�λ
(rλ)ελ,�′

λ
(0)〉0 = δ�λ,�

′
λ

|rλ|2
, λ ∈ {h, v} (20)

where rh = (x, vτ ) and rv = (y, vτ ) are coordinates in the
(1+1)-dimensional Euclidean space-time with imaginary time
τ . All correlators of the form 〈OhOv〉0 vanish. We then take the
second continuum limit, defining R = (x, y, vτ ) and replacing
δ�λ,�

′
λ
→ δ(d‖�λ − d‖�′

λ). Now, the same correlation functions
written in the (2+1)-dimensional theory become

〈σλ(R)σλ(0)〉 = fλ(x, y)

|R|1/4
, (21)

〈ελ(R)ελ(0)〉0 = fλ(x, y)

|R|2 , λ ∈ {h, v} (22)

where fh(x, y) = δ(y) and fv(x, y) = δ(x). Similar anisotropic
correlators arise in theories of sliding Luttinger liquids
[57,58]. To recover the 1D behavior of intrachain correlators,
we must regularize the delta function at short distances as
δ(0) → 1

d‖
. Higher-point functions or correlators of other lo-

cal operators (say, involving descendants or the stress-energy
tensor) can be similarly regularized. This procedure perturba-
tively defines the 2D theory in Eq. (18).

B. Emergent symmetries

The peculiar low-energy Hamiltonian in Eq. (18) inherits
symmetries and dualities from the Ising chains. In the CFT,
these symmetries are implemented by topological defect line
operators labeled by the primary fields [59,60]. First, there
is a Kramers-Wannier duality implemented by Dσ = ⊗

� Dσ
� ,

where Dσ
� is the σ defect of the �th chain [59]. The action of

Dσ takes ε� �→ −ε�, exchanging the correlators of the fCDW
and the disordered phase, and becomes a global symmetry at
the critical point. Second and more interestingly, the emergent
ZLx

2 × Z
Ly

2 symmetry is manifested as the ε defect, which acts
on horizontal chains as

Dε
�h

σh(x, �ha) = −σh(x, �ha)Dε
�h

, (23)

and similarly for vertical chains. If we allowed for direct
couplings between the order parameters of parallel chains, the
symmetry would be lowered to a global Z2 symmetry.

The defect line operators form the following fusion
algebra [59]:

Dε
� × Dε

� = 1, (24)
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Dε
� × Dσ = Dσ × Dε

� = Dσ , (25)

Dσ × Dσ =
Lx+Ly⊗
�=1

(
1 + Dε

�

)
. (26)

Here, × denotes the fusion, ⊗ takes the tensor product of
symmetry lines on different chains, and we omit the trivial
fusion rules involving the identity line defect. A similar ver-
sion of this algebra was recently discussed in Ref. [61] on the
lattice, as an example of a noninvertible subsystem symmetry.
However, in our case, the algebra is simpler, descending from
symmetries of decoupled chains. It is a noninvertible sym-
metry since the action of the Kramers-Wannier defect does
not admit an inverse. It is known that the existence of such
operators strongly constrains the low-energy spectrum [62]:
For example, the existence of such line operators imposes
that the Hilbert space of a perturbed 1+1 CFT cannot be
trivially gapped [60]. This argument can be adapted to our
realization since the algebra comes from a tensor product of
CFTs, when the total number of chains Lx + Ly is odd (see
Appendix A). Thus, we have the guarantee that the model
defined by Eq. (18) cannot have a trivial ground state even
at strong coupling.

C. Perturbative RG analysis

We proceed to analyze the model perturbatively at weak
coupling g  1, corresponding to J ′  J . The fate of the
theory relies on the RG flow of the effective coupling g(s)
at length scale s [63]. Power counting based on the correlator
in Eq. (22) indicates that the coupling has effective scaling di-
mension � = 3 and is marginal at tree level. We calculate the
beta function β(g) to leading order using the lattice spacing
a as a short-distance cutoff and introducing the large-distance
cutoffs Dx and Dy for the x and y directions (see Appendix B).
The leading contribution appears at two-loop level and is
strongly affected by the 1D nature of the correlators. We find
that g behaves as a marginally irrelevant coupling, with beta
function

dg

dl
= − ln

(
DxDy

a2

)
g3 + · · · , (27)

where l = ln(s/a) in the regime a  s  min(Dx, Dy).
Remarkably, the beta function depends explicitly on the

ratio between the infrared and ultraviolet cutoffs, as found in
models with UV-IR mixing [35,39]. Physically, we expect the
scales Dx and Dy to be of the order of the linear system size
in the x and y directions, respectively. For Dx,y ∼ Lx,ya, the
coefficient in Eq. (27) is proportional to ln(Nc), with Nc � 1
being the number of crossings. Here we adopt the perspective
that experiments with Rydberg atoms must be performed on
a finite system where ln(Nc) is a constant of order 1, but
there are notorious subtleties in taking the continuum and
thermodynamic limits in the presence of UV-IR mixing (see
Refs. [15,40]).

Since the effective interchain coupling decreases at low en-
ergies, correlation functions can be calculated by perturbation
theory. In particular, the leading contribution to correlators of
crossed chains comes from the interaction at their crossing.
Consider, for instance, the equal-time correlator for the energy

operator in a pair of horizontal and vertical chains. Taking a
position x along the �h = 0 horizontal chain and position y
along the �v = 0 chain, we obtain to first order in g

〈εh(x, 0)εv(0, y)〉 � − g

2π

∫
d3R 〈εh(x, 0)εh(R)〉0

×〈εv(0, y)εv(R)〉0. (28)

Using the intrachain correlator in Eq. (22) and integrating over
the spatial and temporal coordinates, we obtain

〈εh(x, 0)εv(0, y)〉 ∼ − g

2(x2|y| + |x|y2)
+ O(g3). (29)

Note the unusual spatially anisotropic power-law decay, a
prominent feature of fractonic behavior [34]. The homoge-
neous function of degree 3 in the denominator is consistent
with the energy operator having an effective scaling dimen-
sion �ε = 3

2 in the (2+1)-dimensional theory, as expected
from Eq. (22). However, the correlator is singular for x → 0
or y → 0, which corresponds to taking two points on the same
chain. When one of the coordinates is of the order of the
lattice spacing, say x ∼ a, we recover the correlator of the
Ising CFT by 〈εh(a, 0)εv(0, y)〉 ∼ 1/y2 for |y| � a. The result
in Eq. (29) captures the long-distance behavior of the corre-
lation for the operator Zj,� + Zj+1,�, which can be measured
by means of snapshots of the atomic states in Rydberg arrays
[42,43].

V. MAJORANA MEAN-FIELD THEORY

The perturbative RG analysis indicates that the fixed point
of decoupled chains, g = 0, is stable against the interchain
coupling. To test this picture, we study a lattice model that
reduces to Eq. (18) in the continuum limit but also regular-
izes the short-distance behavior. We consider the effective
Hamiltonian

H̃ =
∑
�,m

(JeZ̃m,�Z̃m+1,� + heX̃m,�) + J ′
e

∑



∑
〈i, j〉∈


X̃iX̃ j, (30)

where the parameters Je, he, and J ′
e can be chosen so as to tune

to the critical point and to match v and g in the continuum
limit. We denote the new Pauli operators by X̃i and Z̃i to avoid
confusion with the original lattice model. One advantage of
Eq. (30) over the original model is that the 1D symmetry is
now manifest and onsite. This symmetry can be implemented
by applying

∏L�

m=1 X̃m,�, which takes Z̃m,� �→ −Z̃m,� for all
sites that belong to a given chain �.

Moreover, we can perform a generalized Jordan-Wigner
transformation [3] and map the intrachain terms of Eq. (30)
onto a stack of crossed Kitaev chains [64], in close connec-
tion with the Majorana representation in the field theory. We
introduce two Majorana fermions at each site so that

X̃m,� �→ iγ 0
m,�γ

1
m,�, (31)

with the anticommutation relation {γ b
m,�, γ

b′
m′,�′ } =

2δbb′
δm,m′δ�,�′ . The other components of the local spin

operator are written as

Ỹm,� = η�Bm,�γ
0
m,�, (32)

Z̃m,� = η�Bm,�γ
1
mi,�. (33)
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FIG. 3. Energy gap for Majorana fermion excitations calculated
by solving the mean-field equations for the model in Eqs. (30) and
(35) with he = Je tuned to the critical point of the Ising chains.
Here we focus on the lattice with ν = 2. The vanishing gap at weak
coupling is expected for a fixed point of decoupled chains. Inset:
unit cell with eight Majorana modes γ a

R,α . Each site α ∈ {1, 2, 3, 4}
contains two modes, b ∈ {0, 1}, represented by white and black dots,
respectively.

To ensure the Pauli algebra of physical operators, we have
introduced the string operators

Bm,� =
∏

m′�m

iγ 0
m′,�γ

1
m′,�, (34)

and the chain-dependent Klein factors η� [65] that obey
{η�, η�′ } = 2δ�,�′ and commute with the “dynamical” Majo-
rana modes γ b

m,�. The Hamiltonian is written in terms of
Majorana fermions as

H̃ =
∑
�,m

(
iJeγ

1
m,�γ

0
m+1,� + iheγ

0
m,�γ

1
m,�

)

− J ′
e

∑



∑
〈i, j〉∈


γ 0
i γ 1

i γ 0
j γ

1
j . (35)

The unit cell for the effective Majorana model on the ν = 2
lattice is shown in the inset of Fig. 3. We denote the eight
Majoranas within each unit cell by γ b

R,α , where b ∈ {0, 1}, R is
the position of the unit cell, and α ∈ {1, 2, 3, 4} labels the sites
around the crossing. The symmetries act projectively due to
the gauged fermion parity. Time reversal conjugates complex
numbers and takes γ b

R,α �→ (−1)b+1γ b
R,α , while the C4 symme-

try acts as γ b
R,α �→ γ b′

R′,α+1, where b′ = b + cos2( πα
2 ) (mod 2)

and R′ is the rotated position.
We treat the quartic interaction in the fermionic repre-

sentation of Eq. (35) using a Majorana mean-field approach
[46,66,67]. In this approach, a departure from the decoupled-
chain fixed point is signaled by a spontaneous hybridization
between modes in perpendicular chains. We assume that the
mean-field ansatz at criticality respects time-reversal invari-
ance because this symmetry is preserved both in the fCDW
and in the disordered phase. Imposing time-reversal as well as
translation invariance, we obtain eight mean-field parameters
allowed by symmetry:

Aα = 〈
iγ 0

R,αγ 1
R,α+1

〉
, Bα = 〈

iγ 1
R,αγ 0

R,α+1

〉
. (36)

Note that the mean-field decoupling of the interaction also
generates the onsite amplitudes 〈iγ 0

R,αγ 1
R,α〉, but the latter can

be absorbed into a renormalization of the transverse field he,
which must be tuned to the critical point.

We diagonalize the quadratic mean-field Hamiltonian and
solve the self-consistency equations numerically (see Ap-
pendix C for details). For he = Je and small J ′

e, we find that
both Aα and Bα vanish and the fermionic spectrum is equiva-
lent to critical Kitaev chains. As a consequence, the Majorana
fermions are restricted to move within the respective chains.
As we increase J ′

e, the hybridization parameters eventually
become nonzero and the 2D system develops an energy gap
(see Fig. 3). In this regime, the C4 symmetry is spontaneously
broken. Note, however, that the gapped regime occurs at
strong coupling J ′

e > Je, where the connection with the orig-
inal model via the effective field theory in Eq. (18) breaks
down. While we cannot rule out additional phases around the
tricritical point in Fig. 2(a), the mean-field theory confirms
that the transition at weak to intermediate coupling is gov-
erned by the decoupled-chain fixed point. As characteristic of
subdimensional criticality, at this fixed point we obtain further
emergent 1D symmetries. In the effective field theory with
g → 0, the symmetry associated with the Kramers-Wannier
defect Dσ is enlarged, and the resulting symmetries are gener-
ated by both Dσ

� and Dε
� for each chain.

VI. CONCLUSIONS

We proposed a model for a fractonic quantum phase transi-
tion in Rydberg arrays. The setup consists of two layers of
Rydberg chains in which the dominant interchain coupling
occurs between pairs of perpendicular chains. If we neglect in-
teractions between parallel chains, the ordered phase at weak
coupling corresponds to a fCDW phase whose ground-state
degeneracy increases exponentially with the number of chains
or with the linear system size.

Starting from the fCDW phase and increasing the quantum
fluctuations, we cross a transition to a disordered phase. We
studied the critical point using an effective field theory in
2+1 dimensions that inherits properties of the Ising CFT. We
also constructed a Majorana mean-field approach for a lattice
model that reduces to the same field theory in the contin-
uum limit. Our analysis shows that the critical point exhibits
particles with restricted mobility, emergent symmetries, and
anisotropic correlators that manifest the UV-IR mixing.

Moving forward, it would be interesting to explore
nonequilibrium dynamics near criticality, extensions to Zn-
ordered phases [50], and to apply numerical methods [68,69]
to study the fCDW phase and the associated transitions. Our
work represents a significant step towards the realization of
fractonlike physics in quantum simulation platforms.
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APPENDIX A: NONINVERTIBLE EMERGENT
SYMMETRY AND NONTRIVIALITY

OF THE GROUND STATE

We will argue that the noninvertible symmetry implies
a nontrivial ground state for an odd number of chains. As
discussed in the main text, there is a ZLx

2 × Z
Ly

2 symmetry

generated by the line operators {Dε
�}Lx+Ly

�=1 and a noninvertible
symmetry generated by a Kramers-Wannier line Dσ at low
energies for g �= 0. We note that the fusion rules in Eqs. (24)–
(26) depend on the number of chains, and therefore are not
well defined in the thermodynamic limit. Similar behavior has
been observed in the construction of the Kramers-Wannier
defect (and the corresponding algebra with the Z2 symmetry)
in the transverse-field Ising chain [62] and in a related lattice
model [61].

The expectation values of line operators are invariant under
the RG flow. The reason is as follows. Given a vacuum |�〉,
we define the quantum dimensions

dσ ≡ 〈Dσ 〉 = 〈�|Dσ |�〉, (A1)

dε
S ≡ 〈 ⊗�∈S Dε

�

〉 = 〈�| ⊗�∈S Dε
�|�〉, (A2)

for any subset S of the total set of chains. It follows from the
fusion ring that {dσ , {dε

S }} satisfy polynomial equations with
integer coefficients. Therefore, they must be RG invari-
ants. This is completely analogous to the argument made in
Ref. [60] in the context of (1 + 1)-dimensional QFTs.

First, for g = 0, consider the (Ising)⊗(Lx+Ly ) theory. By
radial quantization, the ground state of this theory is |�0〉 ≡
⊗Lx+Ly

�=1 |1〉�, where |1〉� is the state corresponding to the iden-
tity operator of the �th chain. It is also known that the
Kramers-Wannier defect has a quantum dimension of

√
2

since Dσ
� |1〉� = √

2|1〉�. Therefore,

Dσ |�0〉 ≡ 〈Dσ 〉0|�0〉 = 2(Lx+Ly )/2|�0〉. (A3)

Thus, even for g �= 0, we have dσ = 〈Dσ 〉 = 〈Dσ 〉0 =
2(Lx+Ly )/2 by the arguments above.

Suppose now that there is a unique ground state in
the infrared described by a Hilbert space HIR such that
dim(HIR ) = 1. In this case,

dσ = 〈Dσ 〉 = trHIR (Dσ ). (A4)

Physically, we can understand this equation in the path-
integral approach where the trace corresponds to taking
periodic boundary conditions in the time direction. Thus, dσ

computes the expectation value of Dσ on a time slice. The
same amplitude can be computed by inserting the mesh in
the time direction. In the path-integral picture, this works by
slicing the Euclidean time direction into either T = �xτLx or
T = �yτLy, depending on whether the mesh is positioned in
the x or y direction, making the action of Dσ well defined (see
Fig. 4).

As a consequence, one can interpret the quantization of dσ

as counting the dimension of a twisted Hilbert space HDσ ,
where the operators (and corresponding states) have twisted

FIG. 4. Two ways of inserting the Kramers-Wannier defect Dσ in
the path integral. On the left, the defect is defined on a constant-time
slice, and its expectation value is computed in the infrared state. On
the right, the defect is placed along the time direction, on a constant-
x slice. In this case, Lτ is taken such that Lτ = Lx to compute the
dimension of the Hilbert space of the defect. At low energies, the
results should match.

boundary conditions with the action of Dσ . But this is the
same as computing the corresponding quantum dimension:

dσ = 〈Dσ 〉 = trHDσ (1), (A5)

leading to a contradiction for Lx + Ly odd, since the right-
hand side is a non-negative integer and the left-hand side is
not. Therefore, the infrared Hilbert space must have more than
one state.

APPENDIX B: DERIVATION OF THE RG EQUATION

We now derive the beta function for the coupling constant
in the (2+1)-dimensional theory. Consider the partition func-
tion associated with the Hamiltonian in Eq. (18). The path
integral can be written in terms of the free partition function
Z0, defined at g = 0, as

Z

Z0
= 〈e− g

2π

∫
d3R εhεv(R)〉0

= 1 − gI (1) + g2

2!
I (2) − g3

3!
I (3) + · · · , (B1)

where d3R = dx dy d (vτ ) is the volume element in Euclidean
space-time, 〈. . . 〉0 denotes the expectation value in the free
theory, and in the second line we expressed the ratio in a
perturbative expansion. The corresponding integrals up to the
third order are given by

I (1) = 1

2π

∫
d3R 〈εhεv(R)〉0,

I (2) = 1

(2π )2

∫
d3R1d3R2 〈εhεv(R1)εhεv(R2)〉0,

I (3) = 1

(2π )3

∫
d3R1d3R2d3R3

×〈εhεv(R1)εhεv(R2)εhεv(R3)〉0. (B2)

The integrals must be regularized by imposing a UV cutoff.
We choose a specific cutoff scheme following the approach
explained in Ref. [63]. The three steps behind the pertur-
bative renormalization group are as follows: (1) perform an
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infinitesimal RG transformation, where the short-distance
cutoff a is renormalized as a → a(1 + dl ), (2) discard all
contributions which are O(dl2) or higher; (3) impose that the
partition function must remain invariant, reading off the cor-
responding renormalization conditions. This is the standard
approach in the study of scale-invariant fixed points, but we
will encounter difficulties related to UV-IR mixing when we
perturb around the fixed point of decoupled crossed chains.

The first-order term is invariant under the scaling, implying
that the perturbation is tree-level marginal as mentioned in
the main text. The second-order term only contributes to the
renormalization of irrelevant interactions, such as εh∂xεh and
εv∂xεv. The renormalization of the coupling appears at third
order or two-loop level. By Wick’s theorem, the contribution
in Eq. (B2) can be written as

I (3) = 3

(2π )3

∫
d3R1d3R2d3R3 〈εh(R1)εv(R3)〉0

× 〈εv(R1)εv(R2)〉0〈εh(R2)εh(R3)〉0 + (h ↔ v),

(B3)

where the combinatorial factor comes from exchanging the
positions of the interaction vertices. Taking the leading con-
tributions as R3 → R1 and using the correlator for decoupled
chains in Eq. (22), we obtain

I (3) = 6

(2π )3

∫
d3R 〈εhεv(R)〉0

×
∫

dy12d (vτ12)dx23d (vτ23)[
y2

12 + (vτ12)2
][

x2
23 + (vτ23)2

] , (B4)

where τ12 = τ1 − τ2, τ23 = τ2 − τ3, x23 = x2 − x3. and y12 =
y1 − y2. This is the point where the calculation departs from
the standard scheme for conformally invariant fixed points.
Note the anisotropic dependence of the integrand in the four-
dimensional space spanned by (x12, y23, τ12, τ23). Since the
integrand is singular for y12 = τ12 = 0 or x23 = τ23 = 0, we
cannot simply integrate out a spherical shell in the four-
dimensional space. This dependence can be traced back to
the 1D nature of the correlators at the decoupled-chain fixed
point. We proceed by integrating out arbitrary time differences
−∞ < τ12, τ23 < ∞, while keeping a short-distance cutoff.
We obtain

I (3) = 3

4π

∫
d3R1 〈εhεv(R)〉0

∫ Dy

a

dy12

|y12|
∫ Dx

a

dx23

|x23|

= 3

π
ln

(
Dx

a

)
ln

(
Dy

a

)
I (1), (B5)

where we imposed both the spatial UV cutoff a and IR cutoffs
Dx and Dy. Note the peculiar double-logarithmic dependence,
which diverges for Dx → ∞ or Dy → ∞. The scales Dx and
Dy can be interpreted as being of the order of the linear system
size in the x and y directions, respectively. As discussed in the
context of UV-IR mixing in Bose-metal-like models [15,40],
the result may depend on how we handle the thermodynamic
limit along with the continuum limit.

We can now perform the renormalization steps on the
term in Eq. (B5). Rescaling a → a(1 + dl ), we obtain I (3) →

I (3) + δI (3) + O(dl2), where

δI (3) = −6 ln

(
DxDy

a2

)
dl I (1). (B6)

The corresponding change in the perturbative expansion de-
fined in Eq. (B1) can be written as

Z

Z0
= 1 − 1

2π

[
g − ln

(
DxDy

a2

)
g3dl

]
I (1)

+ g2

2!
I (2) − g3

3!
I (3) + · · · , (B7)

where we neglected irrelevant terms stemming from I (2). Im-
posing invariance under the RG transformation, we see that
the coupling is renormalized as g → g + dg, which leads to
the beta function in Eq. (27).

APPENDIX C: MEAN-FIELD EQUATIONS

Here we discuss the diagonalization of the mean-field
Hamiltonian and the derivation of the self-consistency
equations.

We introduce momentum modes as

γ b
R,α =

√
2

Nc

∑
k∈BZ

eik·Rγ b
k,α, (C1)

where BZ ≡ [−π/d‖, π/d‖]2, with d‖ = 2a, stands for the
Brillouin zone of the square lattice with Nc = LxLy unit cells.
For Majorana fermions, we have the relation γ b

−k,α = (γ b
k,α )†,

which allows us to restrict to modes in one half of the Brillouin
zone, say HBZ ≡ [−π/d‖, π/d‖] × [0, π/d‖]. These com-
plex fermion operators satisfy {γ b

k,α, (γ b′
k′,α′ )†} = δbb′

δk,k′δα,α′ .
The mean-field Hamiltonian can be cast in the form

H̃MF =
∑

k∈HBZ

�
†
kHMF(k)�k, (C2)

where �k = (γ 0
k,1, γ 0

k,2, . . . , γ 1
k,3, γ 1

k,4)T is an eight-
component spinor and HMF(k) is an 8 × 8 Hermitian
matrix that depends on Je, he, J ′

e, as well as on the mean-field
parameters defined in Eq. (36). These parameters are to be
found by self-consistency. The amplitudes of interest have the
form

〈
iγ b

R,αγ b′
R,α+1

〉 = 1

Nc

∑
k∈HBZ

[〈
iγ b

k,α

(
γ b′

k,α+1

)†〉 + c.c.
]
. (C3)

We can find a unitary transformation U (k) such that
U †(k)HMF(k)U (k) = diag(εk,1, εk,2, . . . , εk,8). Then, the
eigenspinors �̃k ≡ (γ̃k,1, γ̃k,2, . . . γ̃k,8)T are such that �k =
U (k)�̃k. The mean-field ground state is constructed by
occupying all single-particle states with negative energy. Us-
ing the band-filling condition 〈γ̃k,A(γ̃k,B)†〉 = δAB�(εk,A) ≡
TAB(k) for A, B ∈ {1, . . . , 8}, where �(x) is the Heaviside step
function, we can rewrite Eq. (C3) in a compact form:

〈
iγ b

R,αγ b′
R,α+1

〉 = − 2

Nc

∑
k∈HBZ

tr
[
T (k)U †(k)Pb′b

α U (k)
]
, (C4)
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FIG. 5. Results from the mean-field theory. Solutions of the
eight mean-field parameters in Eqs. (C5) and (C6), computed for
Nc = 50 × 50 = 2500 unit cells. Note that the C4-related parameters
acquire different values for J ′

e/Je � 3. Inset: Finite-size scaling of the
energy gap around J ′

e/Je � 3, evaluated from Nc = 900 to 2500 unit
cells.

where we define the projector Pb′b
α , with components

[Pb′b
α ]AB = δA,α+4(b′−1)δB,α+4(b−1). Thus, the eight mean-field

parameters must satisfy the following set of equations:

Aα = − 2

Nc

∑
k∈HBZ

tr
[
T (k)U †(k)P10

α U (k)
]
, (C5)

Bα = − 2

Nc

∑
k∈HBZ

tr
[
T (k)U †(k)P01

α U (k)
]
. (C6)

Note that U (k) depends on Aα and Bα . We solved these equa-
tions numerically by standard iteration until convergence is
reached.

For Je �= he, we find that the gap in both fCDW and disor-
dered phases is stable under turning on the coupling J ′

e, as
expected. The result for the mean-field parameters at criti-
cality, J ′

e = Je, is shown in Fig. 5. We see that Aα and Bα

become nonzero only for a fairly strong interchain coupling
J ′

e/Je � 3. The solution with nonzero hybridization breaks C4

symmetry and the resulting fermionic spectrum is gapped. We
have checked that finite-size effects are significant only near
the critical coupling; see the inset in Fig. 5 for the behavior of
the energy gap.
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