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Entanglement of mixed quantum states can be quantified using the partial transpose and its corresponding
entanglement measure, the logarithmic negativity. Recently, the notion of partial transpose has been extended
to systems of anyons, which are exotic quasiparticles whose exchange statistics go beyond the bosonic and
fermionic cases. Studying the fundamental properties of this anyonic partial transpose, we first reveal that when
applied to the special case of fermionic systems, it can be reduced to the fermionic partial transpose or its
twisted variant depending on whether or not a boundary Majorana fermion is present. Focusing on ground state
properties, we find that the anyonic partial transpose captures both the correct entanglement scaling for gapless
systems, as predicted by conformal field theory, and the phase transition between a topologically trivial and a
nontrivial phase. For non-Abelian anyons and the bipartition geometry, we find a rich multiplet structure in the
eigenvalues of the partial transpose, the so-called negativity spectrum, and reveal the possibility of defining both

a charge- and an imbalance-resolved negativity.
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I. INTRODUCTION

While elementary particles in our three-dimensional uni-
verse are either bosons or fermions, two-dimensional quantum
matter permits more exotic varieties of emergent quasi-
particles called anyons [1-4]. These anyons are pointlike
excitations of two-dimensional intrinsic topological order
(TO) and possess nontrivial braiding statistics, a manifestation
of the long-ranged entanglement, which serves as a defining
feature setting TO apart from conventional phases that lack
such intricate order. To understand TO in realistic solid-state
systems, such as fractional quantum Hall states [5-9] and
potential topological spin liquids [10-13], accounting for the
effects of finite temperature is essential [14—18]. Furthermore,
fueled by the success of synthetic quantum matter in cold
atom platforms, there is a strong interest in non-thermal mixed
states [19-22]. Since prepared quantum states deviate from
equilibrium and contend with various sources of decoherence,
investigating mixed-state entanglement measures for TO is
indispensable.

While the standard measure for diagnosing bipartite entan-
glement in a pure state is the entanglement entropy [23], its
applicability diminishes when extending the analysis to more
general mixed states because it accounts for both quantum
entanglement and classical fluctuations within the statistical
mixture. In contrast, the logarithmic entanglement negativity
(LN), which quantifies the violation of the positive partial
transpose criterion [24,25], is more suitable for mixed-state
entanglement since the LN selectively measures quantum cor-
relations encoded in the density operator while disregarding
classical uncertainty [26-34].

Although the LN itself has been explored for TO
[15,18-20,31,35-41], most previous studies have concen-
trated on the ground state and low-lying excited states of TO,
typically involving only a few numbers of anyons. However,
in this context, there is yet another important class of systems:
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novel quantum phases of matter emerging from the inter-
action of many anyons [42—48]. When anyons are in close
proximity, the residual interactions among them can give rise
to the nucleation of new phases, such as gapped topological
phases [44,46,47] or gapless phases described by confor-
mal field theory (CFT) [43-46,48], superimposed upon the
original parent TO. In particular, a one-dimensional chain
of interacting anyons is constrained by non-invertible topo-
logical symmetries rooted in the non-trivial fusion rules of
non-Abelian anyons [45,46,48]. These unique symmetries can
prevent relevant perturbations that could otherwise gap out
the spectrum in fermionic or bosonic systems. Thus rich
families of (1 4+ 1)D CFTs can be stabilized in interacting
anyon chains, offering a plethora of emergent phases. These
phases can be considered bona fide states within the bulk
or representative exotic gapless boundary modes of topolog-
ical phases. We substantiate our theoretical insights through
numerical studies in conjunction with our broader discus-
sion on interacting anyons and their entanglement structure.
Specifically, we focus on a one-dimensional array of anyons
with nearest-neighbor interactions, providing a concrete and
illustrative context for validating and showcasing our findings.

The primary objective of this paper is to unravel the inher-
ent structure of the generalized definition of partial transpose
for anyonic systems, introduced in Ref. [31], and to explore its
implications, e.g., on the complex-valued eigenvalue spectrum
of the partially transposed anyonic density operator, called the
negativity spectrum [49-53]. A crucial subtlety in understand-
ing LN arises from its diverse definitions for states involving
many particles [26-29,31]. Due to the nontrivial exchange
statistics of anyons, the partial transpose introduces nontrivial
phase factors and intricate mixing of anyonic charges. There-
fore a sophisticated redefinition of the partial transpose is
essential, contingent upon the chosen local degrees of free-
dom constituting quantum phases. Furthermore, non-Abelian
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anyons possess nontrivial fusion rules, rendering the Fock
space of many-anyon systems more complex than the straight-
forward tensor product structure seen in bosonic or fermionic
systems. Considering various fusion channels becomes im-
perative even for noninteracting sets of many-anyon states,
unveiling a nontrivial structure absent in bosonic or fermionic
models. Here, we elucidate various aspects of the anyonic par-
tial transpose, investigate the LN of gapped and critical phases
in a one-dimensional chain of interacting anyons, propose a
generalization of the imbalance-resolved negativity [54,55]
for many-anyon systems, and reveal the possibility of defining
a charge-resolved negativity for bipartitions. The exploration
promises to unveil the rich and distinctive features inherent in
the entanglement structure of anyonic systems, transcending
the conventional paradigms of bosons and fermions.

The paper is structured as follows. In Sec. II, we pro-
vide a concise overview of the partial transpose and the LN
for bosons and fermions, elucidating its generalization to a
system of anyons as introduced in Ref. [31]. Section III es-
tablishes a concrete connection between the fermionic partial
transpose, its twisted version and the anyonic partial transpose
when applied to fermionic systems. In Sec. IV, we explore
how LN can characterize the low-energy properties of a criti-
cal state described by CFT and the topological phase transition
between two gapped phases in one dimension. For a bipartite
system of anyons, Sec. V discusses the generic block diagonal
structure of the anyonic partial transpose of the density oper-
ator p’4 and explores how the braiding statistics correlates
with the complex eigenvalue spectrum of p’4. To validate our
findings, numerical studies are conducted on the golden chain
and the S = 1 anyonic su(2)s spin chain. Motivated by the
block diagonal structure observed in ,Z)TA“ , Sec. VI introduces
the definition of charge- and imbalance-resolved anyonic neg-
ativity. The conclusion and a roadmap for future research are
presented in Sec. VII. Technical details concerning numerical
calculations and some analytical results are provided in the
Appendixes.

II. PARTTAL TRANSPOSES

Let us start with a quick review of the notion of separability
and motivate why the different notions of partial transpose
are necessary. We then briefly introduce the bosonic partial
transpose (BPT) [24-26] and the fermionic partial transpose
(FPT) [28-30,56-58] and finally discuss the anyonic partial
transpose (APT) [31,41].

The different notions of partial transpose are suited to
analyze the entanglement in mixed states between two generic
subsystems. Determining the entanglement then generally in-
volves partial traces over all subsystems one is not interested
in such that the partial transpose can be applied to the mixed
state associated with the two subsystems of interest. Through-
out this work, we focus on the bipartition geometry, which
means in the context of the definitions of the partial transposes
below and Sec. III that the corresponding partial traces have
already been applied. In all other contexts, we assume that the
geometry of the full system is bipartite such that no partial
traces are involved. This constraint is purely geometrical in
the sense that the state describing the system may still be
mixed.

A. Separability

In order to discuss the mixed-state entanglement between
two parties, we first need to provide a precise definition. Two
subsystems, A and B, are considered to be separable (or not
entangled) if a density operator p describing the quantum state
of A U B can be expressed as a convex combination of tensor
products of local density operators pf\’) and ,og) describing
subsystems A and B:

p=_riry ®pg. (1

where p; > 0 and ), p; = 1. This definition is motivated by
the fact that a separable state can be prepared using only local
operations and classical communications (LOCCs). If a mixed
state is not separable, the two subsystems are considered to be
entangled, and the state requires additional quantum resources
to be prepared. A
For bosonic systems, the local density operators pf")

and pg) are required to be positive semidefinite Hermitian
operators with unit trace. However, in fermionic or any-
onic systems, which exhibit nontrivial many-body exchange
statistics, the definition of separability requires additional
qualifications. '

For fermionic systems, the physical density operators pf(")
and p(i), which can be prepared via LOCCs, must conserve
fermion number parity [29,30]. This implies that the local
density operators cannot represent a quantum superposition
of states with an even and odd number of fermions. Similarly,
in anyonic systems, a superselection rule needs to be imposed,
requiring that the physical, locally preparable density opera-
tors must conserve the subsystems’ total topological charges.
Thus the local quantum state can be mixed but cannot be a
superposition of states with different topological charges.

Therefore, even if the total system’s density operator p
can be formally decomposed into a convex combination of
positive semidefinite Hermitian operators pf(") and p, the
quantum state may not be separable if the Hermitian oper-
ators p/(;) and pg) do not preserve fermion number parity
for fermionic systems [29,30] or the topological charge for
anyonic systems. This additional constraint necessitates a gen-
eralized definition of the partial transpose to quantify the
mixed-state entanglement in fermionic and, more generally,
anyonic many-body systems.

B. Bosonic partial transpose

Consider a bipartition of the physical system (after optional
partial traces) into two subsystems A and B as depicted in
Fig. 1. Then, density matrices can be expressed as

] ) k l
p= Z,Oijkl‘fi’(l), i)l ey 2
ijkl
where p;jx = ( X), éi)|p|¢(k), g)) are the density matrix
elements and {|¢f{,)3)} denote orthonormal bases of the respec-

tive subsystems. The BPT pTAb of p is obtained by exchanging
the states in A [24-26]

Pl = Zpijkl|¢(k)’ NS o8- 3)
ik
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A B

FIG. 1. Bipartition of a chain into two subsystems A and B.

In order to quantify the entanglement of p, we can define the
logarithmic entanglement negativity (LN) £ [26,27],

& = ([o"],). “)

where ||A||; = Trv/AAT = Trv/ATA denotes the trace norm.
The LN vanishes for separable states, which thus represents
a necessary (not a sufficient) condition for separability. As the
name suggests, the BPT can be applied to bosonic systems,
such as spin chains for example.

C. Fermionic partial transpose

For fermionic systems, nontrivial phase factors arise when
performing the partial transpose. Consider the occupation ba-
sis [{nj}a, {n;}p), where {n;}4 p denotes the occupation within

the respective subsystem. The FPT ,oTAf of p can be defined in
this basis via [29,30,57]

({njla, {n;1e) ({7)}a, {ﬁj}BDT"f

= (=D 10, (n)s) ((njhas ()8l (5)
with the nontrivial phase factor
L nm+2) L@+
o({n;}, {n;}) = A A + 878
2 2
+ AT + TaTp + (T4 + 13)(T4 + T3).  (6)

Here, Y = Z'jeX nj and Ty = Z jex 11j denote the occupa-
tion numbers in subsystem X, with X € {A, B}. Analogous
to bosonic systems, the FPT can be used to compute the

fermionic LN, which is given by £; = In(]| o7 ).

ar a2 an by e bar—1 by
fan ~fB1
fan—2 fB.M—2

NTX o Z p(X7X/;f)

P Nf

x,x’, f

fan—2 B.M—2
ff4,1 - . f}l_fm
P P

ar az ** any by e bu—1by
fA,1 fB’l
fa,n—2 fB,M—2
CA B
f

FIG. 2. Basis choice for describing bipartitions of the system into
two subsystems A and B containing N and M anyons, respectively.
The anyonic charges are denoted by a;, b;, their fusion products by
Sais fBi» With ¢4 = fan—1, cg8 = fzm—1, and the total topological
charge of the system by f.

D. Anyonic partial transpose

Let us now focus on the partial transpose for anyonic sys-
tems, for which the formalism of fusion diagrams is used. For
an introduction to this topic see, e.g., Refs. [31,59-65]. For a
good minimal introduction containing all necessary details for
the APT, see Ref. [31]. We assume from here on that the reader
is acquainted with the basic notions of these diagrammatics.
Note that in this work, we focus on the case N, € {0, 1} for
simplicity, i.e., we do not consider higher fusion multiplicities.

For concreteness, let us choose the diagrams depicted in
Fig. 2 as a particular basis from the very beginning to describe
bipartitions of the system (cf. Fig. 1), where a;(b;) denotes the
anyons in subsystem A(B) containing N(M) anyons, fa;(f5.i)
the respective fusion products and f the total charge of the
system. The basis was chosen in a way such that the total
fusion product of each subsystem can be directly read off; this
makes the computation of the APT comparably easy, as shown
below. For convenience, let us denote the fusion product of
subsystem A(B) as ca(cg) = fan—1(fe.m—1). For a density
matrix' 7 describing some anyonic system, the APT 574 can
be defined in the basis in Fig. 2 as [31,41]

a
TA

@)

an e« az air b

eee / /
b]w—l b]\/]

"We refer to density matrices of anyonic systems as p. The reason for this is that there are two different ways to normalize anyonic density
matrices, which are usually distinguished by referring to them as p and p. See Refs. [31,41,61,62,64] for details.
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with Ny = [( [ dud,

icA

M(x,x';g) = Zp(x X /f)A;A‘B(

deyd,

where d, denotes the quantum dimension of charge e and e
its anticharge. We further introduced the superindices x and
x’ that contain all charges of the ket and bra parts of each
contribution to p. That is, x is a superindex for {a;}, {b;},
{fa.i} and {fp;}; X' similarly contains on all primed anyons.
The normalization condition of the density matrix, Trp = 1,
implies that

Yopxxf)=1. (1n)
x.f

Note the similarity of the result in Eq. (8) to the dimer case
discussed in Ref. [31], which we rederive in Appendix A for a
self-contained illustration. The fusion products of the subsys-
tems (ca, ¢}y, g, cp) take the role of the corresponding dimer
charges. In addition to that, the anyons in subsystem A are
exchanged between the bra and ket and their configurations
are spatially reversed compared to p. The APT as defined
above is not unique since we may choose to braid the anyons
either clockwise or counterclockwise. This choice does not
affect the anyonic LN (ALN), which is defined analogously to
the bosonic and fermionic LN as &, = In(||5||;). Thus this
choice is irrelevant for determining the entanglement.

III. RELATION BETWEEN THE ANYONIC
AND THE FERMIONIC PARTIAL TRANSPOSE

The aim of this section is to relate the APT applied to
fermionic systems to the FPT. As discussed below, we find
two relations, one connecting the APT to the FPT and one
relating the APT to the twisted FPT [53]. The essential differ-
ence between these two relations lies in the chosen boundary
conditions, that is, the presence or absence of a boundary
Majorana fermion. These results suggest that the APT is a
proper generalization of the partial transpose to anyonic sys-
tems since it can reproduce the limiting cases.

®)

f/B,]w—Q

B

az a1 b

/ /
M—1 bIV[

;)(Hdb db>d;]4, ©)
jeB

SO R (R[] (10)

f cyep’

Before stating the relations, we note that there is some
intuition where the correspondence between the APT and the
FPT comes from. In Ref. [31], it was pointed out that the FPT
of a Majorana fermion dimer density matrix is very similar to
the exchange operator of two vortices in p, + ip, supercon-
ductors, suggesting that the nontrivial phases in the FPT can
be interpreted as braid operations of underlying Majoranas.
In the definition of the APT in Eq. (7), we can see such
braid operations between the particles in subsystem A (the
braid operation involving the total charges can be translated
to braid operations among the individual particles, see the
definition of the APT in Ref. [31]). This intuitively suggests
that the APT applied to fermionic systems and the FPT may
be related.

A. Relation to the twisted fermionic partial transpose
The APT can be related to the FPT via

P = Rap™ (~DPRS, (12)

where (—1)f is the fermionic parity operator in subsystem A,
ie, Fa=Y. jealjs and R4 is the spatial reflection operator

restricted to A, with RfyR™" =ify41—; [56] (the lattice is

labeled by j = 1,...,L). Note that p4 (—1)" has already
been studied and is called the twisted FPT [53]. The derivation
of this relation can be found in Appendix B.

While this result already suggests that the APT is a gen-
eralization of both the BPT and the FPT to anyonic systems
when it comes to the LN as entanglement measure, it has
to be noted that the negativity spectrum, i.e., the eigenvalues
of p’ and p’4, do not agree w1th each other. However, the
negativity spectrum of the APT 574 does agree with the one

of the twisted FPT p’ ( 1) since the spatial reflection R4
in Eq. (12) is unitary.
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B. Relation to the fermionic partial transpose

The connection in Eq. (12) between the APT and twisted
FPT does not rely on Majorana fermions at all, despite the
intuition given in the first part of this section. It turns out
that there is yet another connection that does make use of
Majorana fermions by using them to impose certain boundary
conditions for the APT. Let p, denote the anyonic density
matrix obtained from % (which only contains fermions as
charges a\” and b\”) by adding a Majorana fermion o as
boundary condition to subsystem A, that is, we add an anyon
of charge o as qy to the basis in Fig. 2. We can relate the APT
of 9, to the FPT:?

~T¢ 9(7 —
U = d—URApTAfRAIUT. (13)
Here, we utilized the Ising anyon model [31,62] to describe
the behavior of the Majorana fermion o, see Appendix B for
details. The factor 6, = ¢™/® denotes the topological twist of

o, which arises from the fact that "Fr(ﬁg"a ) = 6, the renor-
malization by the quantum dimension d, = +/2 can be traced
back to the difference in normalization between the fermionic
and the anyonic density matrix. Finally, the unitary transfor-
mation U is given in the fermion occupation basis by

Ulinjia, {njlg) = (=)™ {n}a, {nj}p),  (14)

where we may interpret the factor (—i)*™°? as coming from
an exchange between the boundary Majorana fermion ¢ and
the total fusion product of subsystem A without the boundary.
An even t4 corresponds to a trivial exchange with a boson
and an odd t4 corresponds to an exchange with a fermion ¥
with phase RS¥ = —i. This interpretation is reminiscent of the
spatial reflection R4 that is applied to subsystem A and entails
exchanges between the fermionic creation and annihilation
operators. That is, we may interpret U as adding the exchange
phase of the boundary Majorana fermion with the rest of
subsystem A, as one would expect for a spatial reflection. The
derivation of this relation can be found in Appendix B.

With this second connection between the APT and the
FPT, we have shown again that the APT is indeed the correct
generalization of the PT to anyonic systems and that it can
even reproduce the full spectrum of the FPT. It also follows
that using different boundary charges may lead to different
notions of the APT which may have different properties, such
as the FPT and its twisted counterpart.

Note that in the case of Eq. (13), the total charge of the
system corresponds to a Majorana fermion o, which is only
physical if there is another Majorana fermion in a subsystem
that has already been traced over. This immediately raises the
question whether it is possible to find yet another connection
between the APT and the FPT when using Majorana fermions
as boundary charges for both subsystem A and B such that the
total charge is trivial again. Under this assumption, it is in fact
not possible to find such a connection. The easiest way to see

%For this relation, we ignore the boundary conditions for conve-
nience, i.e., we identify the state containing a Majorana fermion
as boundary charge in the APT with the state containing a trivial
boundary charge if the two fermion configurations agree.

this is by noting that the eigenvalues of the APT possess some
multiplet structure, which will be explained in detail later in
Sec. V. This structure implies that when o is the boundary
charge in both A and B, there need to be pairwise degeneracies
in the absolute values of the spectrum of the APT, which can
be found neither in the usual nor in the twisted FPT.

IV. LOGARITHMIC NEGATIVITY OF CRITICAL
AND TOPOLOGICAL ANYONIC STATES

Let us now focus on the low-energy properties of the ALN
using the numerical approach of matrix product states (MPS)
applied to anyonic systems [66—69]. Details on the computa-
tion of the ALN using MPS are discussed in Appendix C.

A. Anyonic Hamiltonians

Throughout the remainder of this work, we will mainly fo-
cus on two models with bipartite geometry and open boundary
conditions (OBC). The first model is known as golden chain
[42,45] and describes a chain of Fibonacci anyons fulfill-
ing the fusionrules | x t =7 xl=tand 7t xt =147,
where 1 denotes the trivial charge and 7 the Fibonacci anyonic
charge. The golden chain Hamiltonian favors the fusion of
neighboring anyons to the identity channel,

L-1

Hoc=—Y P, (15)

where Pl.( ll_)H denotes the projector of the anyons located at sites
i and i + 1 onto their trivial fusion channel. Interactions of
this form arise from virtual tunneling processes of topological
charges between the anyons, which corresponds to the leading
order interactions of the effective theory for large distances
between the anyons [70]. As seen from Eq. (15), we use OBC
and fix the boundary topological charges (additional boundary
degrees of freedom corresponding to extending the basis in
Fig. 2 by ap and by, without Hgc directly acting on them)
to be trivial.

The second, slightly more complicated model features
su(2); anyons [31,44,46,62] with fusion rules

min{ji+j2.k—j1—jo}
J1 X o= Z Js (16)

J=lii=Jl

where the charges take half-integer values up to k/2, i.e.,
Jj1,j2€1{0,1/2,1,...,k/2}. Note that in the context of
su(2);, we denote the trivial charge by 0, in all other contexts
we denote it by 1. Using these anyons, we can build analogues
to spin-1 systems subject to Hamiltonians whose local terms
project onto the total spin sectors of two neighboring spins
with certain amplitudes; one paradigmatic example of such a
Hamiltonian is the AKLT Hamiltonian [71-73]. The anyonic
generalization to su(2); anyons features a chain of spin-1
anyons where the Hamiltonian consists of projectors o

i,i+1
and Pi(?ll projecting the anyons on sites i and i 4+ 1 onto their

direct fusion products 1 and 2. The Hamiltonian can thus be
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written as [44,46]

L-1

Hain-1(0) = Y _cos(®)PF), —sin()P. (17

i=1

where we use again OBC and choose trivial boundary charges.
While this Hamiltonian can be studied for each level k, we will
focus on the case k = 5.

B. Logarithmic entanglement negativity scaling
for the golden chain model

We first consider gapless systems described by CFTs, for
which the ground states are known to show nontrivial entan-
glement behavior. In particular, when monitoring the growth
of the entanglement entropy for finite systems over different
system sizes or different bipartitions, it is possible to extract
the central charge of the CFT [74-76]. This is also possible
using the LN, which is expected to follow [77]

2L
&= ¢ In (—) + const. (18)
4 T

in the case of bosons, an equal bipartition and OBC, where ¢
denotes the central charge of the CFT and L the system size. It
has been further shown that Eq. (18) is also expected to hold
for fermionic systems [53], which raises the question whether
it also holds true for anyonic systems. We provide numerical
evidence in four different cases that this is indeed the case.

We use the golden chain Hgc introduced in Eq. (15) and
the anyonic spin-1 model for su(2)s anyons Hgpyin—1(6) in-
troduced in Eq. (17) as test objects for extracting the correct
central charges using the ALN. The golden chain model is
known to be described by the tricritical Ising CFT with central
charge ¢ = 7/10 [42,45]. Figure 3 shows the ALN obtained
from MPS simulations with bond dimension y = 500 for the
ground state of the golden chain for different system sizes L.
Using the expected behavior of the LN in Eq. (18), we extract
a central charge of ¢ = 0.6975(8). This is very close to the
expected value of ¢ = 7/10 and due to the fact that the central
charge (of unitary CFTs) only takes certain discrete values for
¢ < 1 [78], we can unambiguously associate our numerical
result to the triciritical Ising CFT.

The anyonic spin-1 model Hgpin—1(#) has three distinct
gapless phases that feature Z3-, Zs- and Z,-sublattice sym-
metry and are described by CFTs with central charges ¢ =
6/7,8/7, and 6/7, respectively [46]. The corresponding val-
ues of 6 that were used to extract the central charges via the
ALNare 6 = /2, w, and 3 /2. Figure 3 also shows the ALN
for these three cases as obtained from MPS simulations with
bond dimension x = 500. The extracted central charges ¢ =
0.8582(8), 1.1405(8), and 0.8507(6) are close to the expected
values. In particular, we can again unambiguously associate
the results for & = 7 /2 and 0 = 37 /2 to CFTs with ¢ = 6/7
due to the discreteness of the central charge for ¢ < 1.

Overall, our results show that the scaling behavior of the
ALN can be used to extract the correct central charge of crit-
ical systems described by CFTs, which is in fact a nontrivial
conclusion since the definition of the APT is more general
than the ones of the BPT and FPT that may be considered

o Hcc

Hspinfl (9 - 77/2)
AHspin—l(e == 7T) 0

DHspin—l( = 37T/2)

0.5 L | ! | B
24 2° 20 27 28
L

FIG. 3. ALN of the ground states of the critical models Hgc,
Hopin—1(0 = 7 /2), Hepin—1(0 = m) and Hpin—1 (6 = 37 /2) for OBC,
equal bipartitions and different total system sizes L as obtained
from MPS simulations. Scaling analyses yield for the central charges
¢ = 0.696(2), 0.8582(8), 1.1405(8), and 0.8507(6) for MPS bond
dimension x = 500, which are close to the known values of the
CFTs ¢ =7/10, 6/7, 8/7, and 6/7, respectively. The results for
Hpin—1(6 = 37 /2) have been shifted for clarity.

limiting cases of the APT for which the scaling described in
Eq. (18) has aleady been demonstrated before [29,32].

C. Topological phase transition

Let us now focus on gapped systems, for which the ALN
can distinguish topologically nontrivial phases from trivial
ones. Consider the golden chain Hamiltonian for Fibonacci
anyons with an additional dimerization A [47],

L-1

Hae(A) == (1= (=1 AP}, (19)

i=1

Focusing on the case where the number of sites L is even, we
may interpret this Hamiltonian as having a two-site unit cell
with intracell coupling 1 4+ A and intercell coupling 1 — A
between neighboring 7 anyons. In the limit A = 1(A = —1),
only the intracell (intercell) coupling remains, which allows
for an analysis of the ground state.’ For A = I, the two
anyons within each unit cell fuse to the trivial charge 1 in the
ground state, as depicted in Fig. 4(a) for L = 8, where the
trivial charge labels 1 have been omitted. For A = —1, two
neighboring ts of different unit cells fuse to 1 such that there
are two anyons left at the left and right boundary. These two
anyons must also form a dimer with trivial fusion product, as
shown in Fig. 4(b) for L = 8, since the total charge of the full
system must be trivial. The reason for the latter constraint is
the conservation of topological charge. When a physical sys-
tem enters a topologically ordered phase, the total topological

3Here, we focus again on the case where the boundaries are trivial,
for which the ground state is unique for both A = 1 and A = —1.
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FIG. 4. Ground states of the dimerized golden chain Hagc(A)
for L = 8 and (a) A = 1, (b) A = —1 consisting of dimers of charge
7. For A = —1, the dimerization between different unit cells leads
to long-range entanglement between the two s on the edges. The
ALN for the bipartition indicated by the dashed lines is (a) £, = 0,
(b) &, = 21In(d;). (c) Action of ), on a fusion diagram for OBC with
trivial boundary charges. A 7 anyon tunnels between the first and the
final unit cell, all other anyons in the fusion tree remain unaffected.

charge must be trivial due to the initial absence of topological
charges, implying that arbitrarily exciting and braiding anyons
cannot change this total charge. The major difference to the
A =1 case is thus that the dimerization of the boundary
anyons implies long-range entanglement. If we now choose to
compute the ALN for the equal bipartition, we find £, = 0 for
A =1and & = 2In(d,) for A = —1* since we cut zero and
two t-dimers, respectively [see Figs. 4(a) and 4(b)], and the
ALN of a single dimer of charge ¢ with trivial fusion product
is In(d,.). This interpretation can be confirmed by taking a
look at the bond dimension x of the respective MPS. For
A = 1, we have x = 1 at each bond, whereas for A = —1, we
have x = 2 at bonds connecting two unit cells. Since a single
dimer can be encoded by bond dimension xy = 1, it follows
that there is a second dimer connecting two unit cells for
A=-—1.

We can go one step further and define an operator ), which
introduces a t anyon connecting the two ends of the fusion
diagrams as depicted in Fig. 4(c) for L = 8. Note that at this
point, the newly introduced anyon does not affect the other
charges in the fusion tree. We can, however, bring this new
fusion diagram back to its form before applying ); using the

“Note that these values are only obtained when choosing the in-
terface between the two subsystems to be in between two unit cells.
Otherwise, £, = In(d, ) in both cases.

matrix elements

(fi, for - S\l fis fos oo fLm1)
L1

= \/‘Tf[Fftlfﬂ]flf; H [F, ff-’,fjr]f}flf}" (20)

=

Here, f; and f; denote the fusion products with fl(/) = L(L)l =

T [see Fig. 4(c)], L the system size, d; again the quantum
dimension of T anyons and F' the F'-moves. This operator may
remind the reader of the topological symmetry operator Y7,
which is defined for periodic boundary conditions and can be
interpreted as adding a closed t-loop encircling the anyonic
chain [44—46]. We note that there are fundamental differences
between ); as defined above and Y; that go beyond the bound-
ary conditions. While ¥; commutes with (the periodic version
of) Hacc(A), the same does not hold for ;. Further, ¥? =
Y. + 1, whereas yf =d; 3/2)_ + 1. Nevertheless, ), can be
used to measure the presence of a long-range t-dimer between
the two edges of the system. We denote the corresponding ex-
pectation value with respect to the ground state as D, = ().
Intuitively, when there is long-range entanglement in form of
a t-dimer between the two edges, it is detected by D, since
Y, adds another long-range r-dimer to the system. Combining
these two dimers using T X T = 1 + 7 yields a superposition
of along-range t-dimer and a trivial one. Thus D; # 0 should
take a finite value. On the other hand, if there is no long-range
t-dimer, ); adds one (1 x t = 7) to the system, resulting in
a state that is orthogonal to the ground state. We therefore
expect D; = 0 in this case. We can verify this intuition for the
two limiting cases and obtain D, = 1 for A = —land D, =0
for A =1, in agreement with the above argument.

Going beyond the above limiting cases, we show the ALN
for A € [—1, 1] in Fig. 5(a) for system sizes up to L = 160
and the corresponding values for D, in Fig. 5(b). These re-
sults were computed using MPS simulations with maximum
bond dimension x = 300. It can be seen that within both
phases, the limiting case |A| = 1 corresponds to the small-
est entanglement. This can be explained by “switching on”
the couplings that are trivial for |A| = 1, leading to longer-
ranged entanglement beyond two neigboring sites in the
bulk, which is reflected accordingly in the ALN. For A = 0,
Hacc(A) becomes the critical golden chain model separating
the topologically distinct phases [47]. It was already shown in
Sec. IV B that the ALN agrees with the CFT prediction at this
point. In Fig. 5(a), we can in addition see that the maximum of
the ALN in the considered interval also seems to converge to
the point A = 0, showing that the ALN correctly captures the
phase transition. Figure 5(b) shows that D, = 0 in the trivial
phase except for very small distances from the phase transition
point A = 0. Comparing the behavior for different system
sizes suggests that this is merely a finite size effect such that
D, =0 for A > 0 in the thermodynamic limit. For A < 0,
finite values D, # 0 can be observed, saturating to D, = 1 at
A = —1. Overall, we thus find that D, can indeed be thought
of as measuring the presence of a long-range t-dimer between
the two edges of the system, which is, as expected, only
nontrivial in the topological phase.

Apart from D,, we can further confirm the topological
nature of the A < 0 phase by directly studying the conditional
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FIG. 5. (a) ALN and (b) D, of the ground state of the dimerized
golden chain Hygc(A) for dimerization A € [—1, 1] obtained from
MPS simulations with bond dimension y = 300. The bipartition
is chosen such that the two subsystems are of equal size. A =0
corresponds to the phase transition point; for A = 1(A = —1), the
ALN agrees with £, = 0(§, = 21n(d,)). (c) Conditional mutual in-
formation /(A, C|B) for the partition depicted in Fig. 6.

mutual information /(A, C|B), computed as [79]
I(A, C|B) = Sap + Spc — S — Sascs 21

for partitions of the system as indicated in Fig. 6. Here, Sx
denotes the entanglement entropy obtained from the reduced
density matrix associated with subsystem X. The results® of
I(A, C|B) are shown in Fig. 5(c) for the same system sizes
as before, where the partitions were chosen such that the
sites are evenly distributed in the way shown in Fig. 6. It
can be seen that in the trivial phase, (A, C|B) converges to
0, whereas in the topological phase, I(A, C|B) converges to
the entropy associated with two t-dimers, given by 2 In(d;).
This is expected since the long-range 7-dimer between the
edges of the system in the topological phase contributes In(d; )

SFor the computation of I(A, C|B), the bond dimension x = 300 of
the previously obtained MPS was extended to x = 1000. The need
for a larger bond dimension is due to the fact that in order to compute
the anyonic partial trace, the anyons to be traced out need to be
exchanged to one of the edges of the system [62], which was found to
lead to much more entanglement. For x = 1000, the truncation error
when computing /(A, C|B) was found to be at most O(1073).

A B D B C

FIG. 6. Partition of a chain into four subsystems A, B, C and D
used to compute the conditional mutual information /(A, C|B).

both to S4p and Spc, whereas it does not contribute to Sp and
Sapc- The transition between these two converged values gets
sharper and seems to converge to the critical point A = 0 for
larger system sizes.

Overall, we have demonstrated that the ALN can capture
topological phase transitions and reflect the nontrivial en-
tanglement between the boundaries of an open system. The
presence of the nontrivial entanglement has been shown by
explicitely evaluting the expectation value of a long-ranged
dimer connecting the boundaries and by considering the con-
ditional mutual information.

V. NEGATIVITY SPECTRUM

Instead of only considering the ALN itself, one may expect
to acquire further insights into the properties of the physical
system by studying the eigenvalues of 74, named the nega-
tivity spectrum [49-53]. The main motivation to consider this
spectrum is that its analog for the entanglement entropy, the
entanglement sprectrum [80], is known to feature universal in-
formation about the phase that goes beyond the entanglement
entropy itself [80-92] (one should however be cautious when
using the entanglement spectrum for such purposes [93]). We
find below that for bipartitions, the APT possesses some non-
trivial block structure that implies the presence of multiplets
in the negativity spectrum which reflect the anyonic charges
at the subsystems’ interface and their exchange phases.

A. Block structure of the anyonic partial transpose

It can be seen from the fusion diagram in Eq. (8) that
there must be a block structure with respect to the total fusion
product g, p’4 = @,(p’),. This block structure is always
present and does not depend on the geometry. If we focus
on bipartitions, however, this block structure becomes much
richer. Physically, the total topological charge of the full sys-
tem must be trivial (i.e., f = 1 in our notation), implying that
cp = 4 and ¢y = 4. It thus follows that

Ty ~TA“)

pi= @

(c.¢'59).N8, >0

(22)

(c,c';8)’

where (p74 )(c,c';¢) contains fusion diagrams with total fusion
product g and either cg =¢4 = ¢, cy=ch =c orcg =7¢s =
d,cp= ¢y = c. This means that (c, ¢’;g) and (¢, c; g) refer
to the same block and thus only one of these two combi-
nations should appear in the direct sum in Eq. (22). From
this block structure, it follows that the product p74 (p74)T,
which is needed to compute the ALN, also has some nontrivial
structure:

STE(BT T = ST (5T

p (p ) (L',L‘/;g)G?Nf(./>0[p (p ) ](c,c’;g)' 2
Similar to 574, the product 5’4 (p74)" corresponds to a super-
position of diagrams of the form depicted in Eq. (8) with the
crucial difference that the block (c, ¢’; g) is associated with the
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total fusion product g and ¢4 = ¢y = ¢, cp = ¢y = ¢'. In this
case, exchanging ¢ and ¢’ for ¢ # ¢’ corresponds to going to a
different block, unlike for ™4 itself. That is, all combinations
(c, ¢'; g) fulfilling the fusion consistency constraint N¥, > 0
appear in the direct sum in Eq. (23). It is this property that
allows us to define the charge-resolved ALN for bipartitions
in Sec. VI A.

B. Structure of the negativity spectrum

Consider again the bipartion geometry with trivial to-
tal charge f =1 and the general density matrix p =
S v Oy @ with Y, pr = 1. Each |¢®) can be
written in terms of a Schmidt decomposition as |y®)) =
Do e Ek; |¢?j(,k))|¢3 (k)) with A(k), € R, where c¢ labels the
charge at the cut (cp in Fig. 2), A B the subsystem, j. the
charge degeneracy and |¢A/JB ™) the Schmidt states. We can
now compute the APT for each of the contributions to ¢ with
respect to its respective Schmidt basis.® By noting that the
analog to p(x,x’; f) in Eq. (7) is given by AE"J)A(CI‘)I,, the

analog to M (x, x'; g) in Eq. (8) is Ai’fj).cAﬁf)j, RgE /+/d.d since

f=1L

By choosing a gauge in with Rgb = Rf“ = /6./(6,6y) [63],
where 6, denotes the topological twist of charge c, it can be
seen that because the Schmidt values are real, the only com-
plex phases contributing come from RS, which is identical

for the full block (NT")(C ¢;9)- 1t thus follows that the APT of
each contribution to o can be written as

(W* )™= o

RES(c, @), (24)
(c,c/;g),NfC, >0

where S(c’, ) is a real symmetric matrix independent of g.
In particular, this implies that S(¢’, ¢) and unitary transforma-
tions thereof are hermitian. This property allows us to write
the APT of 0 as

= @

RE°T (¢, @), (25)
(c.c’i).N%,>0

with some hermitian matrix 7 (¢/, ¢) that is independent of g.
The reason for this is that we can use the result in Eq. (24)
and transform each contribution (Jv®)(y® D% to a com-
mon basis. Thus T'(¢’,¢) can be diagonalized and has real
eigenvalues.

Overall, we thus find the exciting result that the eigenvalues
of o4, which we will refer to as {z;} from now on, lie in the
complex plane on lines through the origin whose angles are
specified by the exchange statistics given by Rg,’z. This means
that from the negativity spectrum, we may identify which
charges contribute the most to the entanglement. Further, the
fact that 7' (¢, ¢) does not depend on g implies exact degen-
eracies in the absolute values of the negativity spectrum {z;}
if N2, > 0 for at least two different charges g. The different
charges g may however be distinguished by different R-moves
R:E. In particular, this implies that if such multiplets in the

5The Schmidt basis does not necessarily agree with the basis choice
in Eq. (7). The result in Eq. (8) can nevertheless be used since the
coefficients only depend on the subsystems’ total charges.

absolute values of the negativity spectrum exist, the anyons
are necessarily non-Abelian; if they are Abelian, there is only
a single g with N5, > 0, i.e., the spectrum should not (generi-
cally) feature identical absolute values.

Note that the negativity spectrum may also be used to
resolve the anyons’ chirality. In this context, the precise defi-
nition of the APT in Eq. (7) is important. In principle, one can
use an alternative definition where the direction of the braid is
reversed. While this leaves the ALN and all Rényi negativities
invariant, the eigenvalues of 5’4 become complex conjugated
in the case discussed above, i.e., Rgf — (Rgg)* in Eq. (25)
and thus z; — z.

C. Example: negativity spectrum of Fibonacci anyons

To illustrate these properties, we first study the golden
chain model in Eq. (15) describing a chain of Fibonacci
anyons once more. The nontrivial R-moves of these anyons
are R]* = ¢*"/> and RT" = ¢3"/>. Figure 7(a) shows the
negativity spectrum {z;} of the ground state for a bipartition
into 8 and 9 sites for L = 17 as obtained from exact diagonal-
ization. Here, degeneracies in the absolute values are indicated
by usage of the same color; the marker indicates the fusion
product g. It can be seen that all z; either lie on the real axis,
i.e., feature a trival R-move due to ¢ = 1 and/or ¢’ = 1, or on
one of two other lines corresponding to multiplets (¢, ¢’; g) =
(r,7;1), (7, T;57).

Note that the color for all z; on the real axis is black to in-
dicate that they do not belong to any multiplets that occur due
to different charges g as discussed in the context of Eq. (25).
Nevertheless, there may of course be further degeneracies due
to the nature of the state, i.e., this is not a property of the
negativity spectrum in the above sense. Such an additional
degeneracy can also be observed for the orange multiplet in
Fig. 7(a) containing four z;, two for g = 1 and two for g = 7.
The fact that ¢ = ¢’ = t always ensures that the multiplet
contains a multiple of two z;.

For a better visualization of the multiplet structure,
Fig. 7(b) shows {¢; = —In(z;)}, which is reminiscent of the
entanglement spectrum of a density matrix [80], i.e., p’4 has
eigenvalues z; = e~ . Now, it is possible to easily verify the
multiplet structre. Let us note that Fig. 7(b) does not nec-
essarily show the correct imaginary part of ¢;. In order to
avoid an unnessarily confusing picture, we added =+im to ¢;
if its imaginary part does not match with the corresponding
R-move. This is indicated by the label, Im(¢) “mod 7.”

D. Example: negativity spectrum of su(2)s anyons

Let us now consider the more complicated example given
by Hepin—1(0) in Eq. (17) for su(2)s anyons. The nontrivial
R-moves corresponding to exchanges of the integer spins
0,1,2 are

R = =41 RILZ RIZ = 57T RI2 b7,

R2 = =31 Rl = R2 = o2/, (26)
Figure 8 shows both the negativity spectrum {z;} and {¢;} for
0 =m/5, L =11 and a bipartion into 5 and 6 sites. It can be
seen that the multiplet structure is much richer than for the
Fibonacci anyon case: There are multiplets for (c, ¢’;g) =
(1,1;0), (1, 1; 1), (1, 152), (¢, c52) = (1,2;1),(1,2;2) and
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FIG. 7. (a) Negativity spectrum {z;} for the golden chain for
L = 17 and a bipartition into 8 and 9 sites. Each multiplet (¢, ¢’; g) =
(7, 151), (v, T; 7) is highlighted by color, the fusion product g is
indicated by the marker. Eigenvalues not contained in a multiplet
are displayed in black. (b) Logarithmic negativity spectrum {g; =
—In(z;)}, which allows for easier verification of the multiplet struc-
ture. The imaginary values of ¢; are changed by % if they do not
agree with value of the corresponding R-move.

(c,c58) =(2,2;0),(2,2;1), i.e., there are both triplets and
doublets which can be distinguished from each other due
to their unique combination of R-moves. In particular, we
would even be able to identify these multiplets without the
knowledge of g by using the R-moves. All cases in which
¢ = 0and/or ¢’ = 0 are due to their trivial exchange statistics
again on the real axes and do not correspond to multiplets;
the different combinations of ¢ and ¢’ may however still be
distinguished using the fusion product g.

VI. CHARGE- AND IMBALANCE-RESOLVED ANYONIC
LOGARITHMIC ENTANGLEMENT NEGATIVITY

A. Charge resolution

The block structure in Eq. (23) (i.e., we assume again
a bipartition with trivial total fusion product f = 1) further

. \ Im(z)

S ! x “Jog=0
/// Ri02 | R xg=1
,/ ¢ \ Ag =2
Im(e) “mod 7" (b)
————————— PRRRREEEEE SRRt EERE SERERE S
5| —In(R:;%) ~In(R)
R T TR - BEEETEE e-0
—In(R$?
Re(e)
OA— : XA DA
2 3 4 5 6
N A--eAD-——-O - A-A
—In(R3") = — In(R3?)
_9 |
Fmm e - - o m oo - - - mA - - - A - - -%A
—In(R{') = — In(R3?)

FIG. 8. (a) Negativity spectrum ({z;} for the su(2)s anyon
chain Hgyin—1(0 =m/5) for L=11 and a bipartition into 5
and 6 sites. Each triplet (c, ¢’;g) = (1, 1;0), (1, 1;1), (1, 1;2) and
each of the doublets (c,c’;¢) = (1,2;1),(1,2;2) and (c,c’;8) =
(2,2;0), (2,2;1) are highlighted by color, the fusion product g is
indicated by the marker. Eigenvalues not contained in a multiplet
are displayed in black. (b) Logarithmic negativity spectrum {g; =
—1In(z;)}. The imaginary values of ¢; are changed by £x if they do
not agree with value of the corresponding R-move.

allows for the definition of a charge-resolved ALN
~  [r~ra (~1ayT
Eue) =M ) Try/[B5 (57) ] gy 27)
c.g

which measures the entanglement between subsystems A and
B mediated by anyons of charge c. Note that when there is
no contribution to the density matrix % featuring charge ¢ at
the cut/interface, £,(c) = —oo. From the above definition, it
is immediately clear that

exp(£a) = Y exp(&a(c)), (28)

as one would expect for a charge-resolved LN.
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As an example, let us apply the notion of charge-resolved
ALN to gapped systems. It was shown in Ref. [94] that in
such systems, the entanglement spectrum features multiplets
whose values (in the thermodynamic limit) can be related
using the anyons’ quantum dimensions. Knowing that the en-
tanglement spectrum is related to the Schmidt decomposition,
we can use this to estimate the charge-resolved ALN. Con-
sider the ground state |i) of a gapped phase and its Schmidt
decomposition W) =Y. >~ Ac ;|92 )9l ), where c is
the anyonic charge at the interface between regions A and
B and j,. the corresponding degeneracy index, |qb ) denote
the associated Schmidt states. The multiplet structure [94]
dictates that A™! oc \/d,, where A™! denotes the Schmidt
value associated with charge c in a given multiplet. Note that
not every charge ¢ needs to be contained in a multiplet; the
degeneracy associated with A‘Cnultl is Ny, 5.» with ar (ag) being
the charges at the left and right ends of subsystem A, and
may thus become zero. Assuming that a single mutliplet m is
responsible for most of the entanglement, the charge-resolved
ALN can be estimated to be

Eale) ~In [ (A™PNG . SN NG NEd, | (29)

cem g

Here, A™ti is the renormalized Schmidt value associated with
the dominant multiplet 7, A™! = A?‘”hi /+/d., where ¢ € m
can be any charge contained in the multiplet m.

Note that the multiplet structure discussed above implies
that for the ground states of gapped systems, we expect the
negativity spectrum to feature its usual (exact) multiplet struc-
ture as discussed in Sec. V B, where multiple multiplets are at
large but finite system sizes close to each other, merging to
larger multiplets in the thermodynamic limit.

B. Example: charge resolution for the ground state
of Hpin—1(6 = 0) for su(2)s anyons

Let us apply the notion of charge-resolved ALN to the
ground state of the anyonic version of the AKLT Hamiltonian
for su(2)s anyons Hgyin—1 (6 = 0). The ground state is known
to feature only two contributions to the entanglement spec-
trum corresponding to a single multiplet with A™! = d° Vin
the thermodynamic limit [94]. These two contributions in the
multiplet correspond to ¢ = 0, 1 since a; = ag = 2 and thus,
we expect for the charge-resolved ALN in the thermodynamic
limit

Eic=0)=1n(d;*(dy+d))) =1In(dy) =0,  (30)
Eac=1)=1n(dy*(do + 2d; + d>)) = In(d)). (31)

Note that because there is only a single multiplet contribut-
ing to the entanglement for this specific state, the above
predictions are actually exact for L — oo. This can be con-
firmed using matrix product states (MPS) for anyonic systems
[66—69], where we found that the deviation from the values
in Eq. (31) is O(10™) for L = 20 and an equal bipartition,
reducing to O(10~?) for L = 50 and to machine precision
for L = 90. Details on how to compute the (charge-resolved)
ALN using MPS can be found in Appendix C. Interestingly,
the above values for the charge-resolved ALN &,(c) = In(d,)

agree with the ALN of a dimer of charge ¢ whose fusion
outcome is the trivial charge [31]. We can thus interpret the
contribution of charge ¢ = 0, 1 to the entanglement as coming
from an effective dimer of the respective charge between the
two subsystems. This interpretation can be confirmed using
the insights on the ground state discussed in Ref. [94], which
shows that there are two spin-2 connections between subsys-
tems A and B. Then, the total charge at the interfaceis 2 x 2 =
0+ 1 and we expect the total entanglement to be identical
to the one of two spin-2 dimers, which is indeed the case
since 21n(dy) = In(dp) + In(d;). The dimer interpretation is
further supported by the MPS results showing that the bond
dimension x of the state is x = 2,i.e.,bothc=0and c =1
have a single Schmidt value contributing to the state, which
effectively corresponds to a dimer of charge ¢ from an entan-
glement prespective. Overall, this interpretation confirms that
the charged-resolved ALN is indeed charge-resolved.

C. Imbalance resolution

The possibilty of defining a charged-resolved ALN as in
Eq. (27) is itself highly nontrivial since charge resolution gen-
erally works differently for the LN. This can be seen for both
bosonic and fermionic systems. While it is possible to define
a symmetry-resolved entanglement entropy corresponding to
the different symmetry sectors [95,96], this is not possible
for the LN. The LN can however be resolved with respect
to the associated charge imbalance between the considered
subsystems [54,55]. It is thus a quite surprising result that it is
possible to resolve the contributions of both the entanglement
entropy and the ALN based on the anyonic charge at the
interface between the two subsystems, which follows from
the block structure in Eq. (23). Indeed, if we were to describe
an Abelian symmetry, such as particle number conservation,
using the anyonic diagrammatics, we would recognize that the
underlying assumption that f = 1 made in Sec. V A implies
a certain total charge for each contribution to the density
matrix. Knowing this total charge implies that a charge im-
balance resolution effectively becomes charge-resolved, just
like the entanglement entropy. In this case, the block structure
obtained without assuming f = 1, using P4 = @y (B4 ),,
corresponds to the charge imbalance-resolved LN without as-
suming that each contribution to the density matrix must have
the same total charge. We therefore find that for Abelian sym-
metries, the block structure leading to the nontrivial charge
resolution is just a special case of the charge imbalanced
resolution. In the case of non-Abelian anyons, however, this
is not the case and we thus obtain a charge-resolved quantity
for f = 1 in addition to the charge imbalance-resolved ALN,
that we may define as

gimbalance(g) — ln’f‘r (10 ) (57}4“)T (32)

= Z Tr [pT4 (ﬁT:)+](c,c’;g)' (33)

c,c

Here, we do not rely on f = 1 in order to define £imbalance(g).
However, if f = 1, we can make use of the richer block struc-
ture to express it as done in Eq. (33). Assuming that we are
dealing again with the ground state of a gapped Hamiltonian,
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we can estimate £mPalance (o) for f = 1 as

g[ilmbalance ( g)

~ In ((Amulti)zdg Z Z N;Lt_lRN;;ﬁRNCgC’) . (34)

cem c'em

Before applying this formula to the previous example, let us
note that the imbalance-resolved ALN also fulfills the ex-
pected relation to the regular ALN,

exp(&,) = Z exp (Eimbaance (o)), (35)
8

D. Example: imbalance resolution for the ground state
of Hepin—1(6 = 0) for su(2)s anyons

Going back to the ground state of Hpin—1(6 = 0) for su(2)s
anyons, we use Eq. (34) to compute the imbalance-resolved
ALN in the thermodynamic limit

g{ilmbalance (g — O) —1In (2d2—2)7 (36)
5imbalance (g — 1) = In (3d1d2_2)’ (37)
gimbalance(g — 2) —In (dZ*I) (38)

These values have been verified with approximately the same
deviation as for £,(c) using MPS. Note that the above nontriv-
ial values of the imbalance-resolved ALN do not contradict
the interpretation that the state effectively corresponds to
two dimers since the imbalance is considered for the par-
tially transposed density matrix rather than the state itself.
In fact, it is clear from the discussion of the negativity
spectrum in Sec. VB that due to the possibility ¢ = 1, the
imbalance-resolved ALN is for g =0, 1,2 nontrivial. The
interpretation of £imPalance( o) s generally harder than that of
E4(c). In the above case, we know that the charge blocks
of APT are specified by ¢ =0, 1, ¢/ =0, 1 and all consis-
tent values of g. The g = 1 imbalance sector contributes the
most to the entanglement since the three sectors (c, ¢’) =
0, 1),(1,0),(1,1) are of importance. On the other hand,
for g =0, two sectors (c,c’) =(0,0),(1,1) are relevant
and for g =2, only (c,c’) = (1, 1) contributes. This gives
a rough intuition why gimbalance (g — 1) . gimbalance(o — ()
Eimbalance (o — 2) in our case.

VII. CONCLUSION

We studied the generalization of the partial transpose
and the corresponding entanglement measure, the logarith-
mic negativity (LN), to anyonic systems and revealed some
fundamental properties of these generalizations. We showed
that when applied to fermionic systems, the anyonic partial
transpose (APT) reproduces the fermionic partial transpose up
to a unitary transformation, implying that the APT is indeed an
appropriate generalization of the partial transpose to anyonic

systems. Focusing on low-energy properties, we numerically
verified that the anyonic logarithmic negativity (ALN) of the
ground state of a system described by CFT exhibits the ex-
pected scaling behavior. For gapped systems, it was found that
the ALN captures the phase transition between a topologically
nontrivial and a trivial phase. For bipartitions with trivial
total charge, the APT possesses some rich block structure,
which leads to the negativity spectrum consisting of multiplets
whose constituents feature identical absolute values and com-
plex phases that are related to the anyonic exchange statistics.
In the presence of the aforementioned block structure, we fur-
ther discovered the possibility of studying the charge-resolved
ALN, which is analogous to the charge resolution of the en-
tanglement entropy [95,96]. This goes beyond what has been
studied for bosonic and fermionic systems, for which, on the
other hand, a resolution with respect to the charge imbalance
was found [54,55]. Such a charge imbalance-resolved LN can
also be studied for anyonic systems, which does not rely on
the block struture required for charge resolution.

Given the above results, there are many interesting ques-
tions one may consider for future research. On the level of
pure applications, one may aim to apply the charge-resolved
ALN to analyze bipartitions of mixed states corresponding to,
e.g., thermal density matrices at finite temperatures for three-
dimensional topologically ordered systems. In this context, we
have to note that the notion of charge resolution can also be
applied to spin systems, i.e., it should be possible to resolve
the LN with respect to the total spin of the subsystems. It
would be very interesting to see whether additional insights
can be provided using this charge resolution.

Going beyond the bipartite geometry, we can no longer
resolve the ALN with respect to the charges of the subsystems.
Suppose we divide the full system into subsystems A, B, and
C. To find the entanglement between A and B, we need to
partially trace the density matrix over subsystem C before
computing the PT such that the total charge after the partial
trace is in general no longer trivial. However, it should be
possible to still resolve the ALN with respect to the charges
of subsystem A(B) by promoting the total charge of the par-
tially traced density matrix to some “auxiliary charge” that is
now part of the other subsystem B(A). This promotion does
not affect the total charge of subsystem A(B) while ensuring
that the total charge is trivial. This means that we can now
resolve the ALN with respect to the total charge of A(B),
which intuitively seems to be a sensical extension. Working
out the details and insights that can be learned from studying
such a construction looks like an interesting and promising
future direction. In particular, in this case, one may be able to
see nontrivial differences when resolving with respect to the
charge of subsystem A compared to the resolution with respect
to subsystem B.

Access to the numerical data and simulation codes may be
granted upon reasonable request [98].
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APPENDIX A: COMPUTATION OF THE ANYONIC PARTIAL TRANSPOSE FOR AN ANYON DIMER

In this section, we show how Eq. (8) can be derived using the standard operations on fusion diagrams that are introduced,
e.g., in Refs. [31,59-65]. This can be done by considering the case of an anyonic dimer since the corresponding result straight
forwardly generalizes to Eq. (8) due the choice of basis for the fusion diagrams. The calculation for anyon dimers is

Ta
ca cg\ 4

EA CB gA CB EA CB
. 1 \ 2 1 f 3) 1 R i
— f (é) —_— = — LT = AcCAcB (AC,ACB)
Ny Ny ! Ny Ny S !
A cs [ cs [ s

CaA cp c
EA CB
f
<4) 1 d.‘] chpcC caC * _
— agpen (apes) By () BN
Nf Z dCAdc’ f cB Bg A
[ CIB
EA CB
®) v dfdg 1 sAC acy\ " pead) A\ F T
Nl A(A(B(AA n) R B(RfCA) [FcAch} g ’
2q: Ni \fdepde, ! ! ! - I cpen (A1)
cA cp

where after (1) performing the partial transpose, we first (2)
deform the fusion diagram and then (3) apply A-moves. We
then (4) insert a resolution of identity twice at the crossing of
¢4 with ¢} and f, respectively, and apply the corresponding
R-moves. After (5) applying a F-move, one arrives at the
final result. In the above equation, N, again refers to the
normalization given in Eq. (9). Further, ,/d¢d,/N; = d, /N,
which confirms the prefactors in Eq. (8). Note that the above
result has already been derived for the case c4 = ¢y, cg = ¢}
and higher fusion multiplicities in Ref. [31].

APPENDIX B: PROOF OF THE RELATION
OF THE FERMIONIC PARTIAL TRANSPOSE
TO THE ANYONIC PARTIAL TRANSPOSE APPLIED
TO FERMIONIC SYSTEMS

In the following, we show that the FPT can indeed be
related to the APT using the relations in Sec. III. First of
all, note that when describing fermions using the anyon

(

diagrammatics, all charges corresponding to al@, I<ig<N
and bg'), 1 < j <M in Eq. (7) are fermionic, denoted by ¢
with the R-move R;W = —1 encoding the exchange statistics
(where 1 again denotes the trivial charge). Since the F-moves
for the fermionic anyon model are trivial, i.e., only enforce
fusion consistency without containing any nontrivial phases,
it can already be seen from Eq. (10) that the APT (in an
appropriate basis in which the initial density matrix is real
symmetric) can only have real entries, implying a real neg-
ativity spectrum. Thus it can only be connected to the twisted
FPT, which also possesses a real spectrum, whereas the usual
FPT possesses a complex one [53]. Since in the definition of
the APT in Eq. (7), the order of the anyons in subsystem A is
reversed, it is natrual to apply the spatial reflection operator
R defined by Rf;R™" = ifi+1—,; [56] onto subsystem A. It
turns out that this is already enough to make the APT and the
twisted FPT agree with each other, i.e.,

~Ta f _
P =Rap" (=D RS, (B1)
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where Fy = ) jeatj- We will show this relation in the following by considering how the operators on the right-hand side of
Eq. (B1) act in the fermionic occupation basis:

f _
Ra(1na, (0)8) ({7 }a, (7381) " (~DPR = (—1)P@MODTUR G L, (n)s) ((n))as 1151 R
— (_1)¢({nj},{ftf})+ml-m(_l-)fA(_1)((rrl)m+(frl)f/\)/2|{,—lj}}’ {nj}B)({nj}}’ {7115

(B2)

where ¢({n;}, {f1;}) is given in Eq. (6). Here, the same notation as in Eq. (5) has been used, with the addition of the superscript
R in {n;}¥, which indicates that the particle configuration is spatially reflected. In Eq. (B2), the factor of (—1){(a=Dm+@—Du)/2
arises from the exchanges of fermionic creation and annihilation operators due to the spatial reflection. Since the above states is
exactly what is also obtained from the APT, we can now compare the phase to the one obtained when applying the APT, which

can be expressed as (—1)™%(—1)4(+m) = (—1)@u(@B+%+%) The relative phase between the FPT and the APT is thus

(-1 )TA(TA+2)/2+fA(fA +2)/2+ 13T+ TaTp+TaTe+(Ta+18)(Ta+Tp)+374 /24374 /2—Ta(Ta— 1) 2= Ta (Ta— 1) /24 Ta (Tp+Ta+T8) _ (—1 )fA(TA +Tu+f3+1). (B3)

It is straight forward to verify that this relative phase is triv-
ial if (74 + 3)mod2 = (T4 + Tp)mod2, which expresses the
conservation of fermion parity, i.e., this relation must always
hold in physical systems. With this, it is shown that Eq. (B1)
holds.

Let us now turn to the second connection between the APT
and the FPT, given by

~TZ 9(7 iy =177
i = d—URApTA’RAIU‘. (B4)
with
Ul{njha, (njds) = (=)™ ™% |{n;}a, {n,}5). (B5)

First of all, note that 0, is an anyonic density matrix repre-
senting the fermionic system but has in addition a Majorana
fermion o as boundary charge in subsystem A. Concretely,
this means that in the basis in Fig. 2, there is an additional
anyon gy = o that does not affect the fermionic system de-
scribed by the density matrix in any other sense. Further, there
is no operator acting on the fermionic density matrix that can
create such a boundary charge, i.e., we either assume that it is
already there to begin with and does not affect the FPT or we
simply identify states with identical fermion configuration and
different boundary charges with each other. Since the origin
of the phases and operations in Eq. (B4) has already been
discussed in Sec. III, we directly go to the computation of
the phases that arise on both sides of Eq. (B4). Before doing
so, however, we need to specify how to describe the Majorana
fermions in terms of anyon models. We choose the Ising anyon
model [31,62] to do so. The nontrivial fusion processes are

J

(

oxo=14+vy,0 x¢ =0 and ¥y x ¥ = 1, where ¢ again
denotes the fermion and 1 the trivial charge and each anyon is
their own anticharge. The corresponding R-moves are

R =e¢i, Ry =7, (B6)
RV =RV =—i, R/V =-1, (B7)
the nontrivial F'-moves are
o oyo o000 1
[F(;/f ]/f]aa = [Flllw ](ra = _1’ [Fzr ]11“/, = _ﬁ’
(B8)
o000 o000 o000 1

[Fa ]IIZ[FU ]hp:[Fa ]1/;]:_' (B9)

V2

We can now determine the phases arising from Eq. (10)
to be

T d2 T 7
(RZU)TBmO (R(lfa)*e 12(f5m0d2)(_1)r513'
Here, it was used that no matter the number of fermions
in subsystem A, c4 = ¢), = o due to the additonal boundary
charge. The remaining effect of cg) =1, ¢ is encoded in the

mod?2 terms. On the other hand, the phases arising from the
FPT and the additional transformations in Eq. (B4) are

(B10)

_1\eUnibAnh) sta r _\Ta 1\ ((a—Dta+(Fa—1)74)/2
(=1 (=" (=1)

T4mod2 ( _ l-)‘Z'A mod2

X Oy0 (B11)

Since we already know from the previous consideration that
the transformed states themselves agree (up to the identifica-
tion that ignores the boundary charge), we can focus again on
the relative phase, where we use 6, = (R77)*:

l-rgmodZJrfgmodZ(_ 1)1’31?3 (_ 1)¢({nj}’{ﬁ-’})iTA +rAmod2(_l-)fA+fAm0d2(_ 1 )((rA —Doa+(Ta—1)7)/2

= (-1 )TA(TB+1 )+74(Tp+1)+(ta+15)(Fa+T)+(—Tamod2-+1pmod2— Ty mod2+Tzmod2) /2

(B12)

It can be verified that this relative phase is indeed trivial if (t4 + t5)mod2 = (T4 4+ Tg)mod2 by considering all consistent
combinations of even and odd t4 p, T4 5. With this, we conclude that the correspondence between the APT and the FPT in

Eq. (B4) holds.

Since the APT applied to bosonic systems is similarly related to the bosonic PT via spatial reflection of region A, it is justified
to refer to the APT as the generalization of both the bosonic and the fermionic PT to anyonic systems.
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FIG. 9. (a) MPS representing a state in the basis in Fig. 2 for N =M =2 and f = 1 in canonical form, where the labels of the fusion
products are omitted for convenience. The anyonic charges at the boundary of the MPS are promoted to additional (boundary) charges a, and
bs belonging to subsystem A and B, respectively. (b) In the case f # 1, the state can be represented by using a three-leg tensor at the interface
between the two subsystems instead of the usual Al tensor; for the case considered in (a), AP would need to have this additional leg. (c) APT
P4 for the MPS in (a). (d) (p™4)"p"4 using the APT in (c). By exploiting the orthogonality properties of the canonical form, this operator
can be simplified to the operator shown in (e). Here, we added the labels of the charges ¢ and ¢’ dictating the block structure Eq. (23) (the

corresponding charges g are obtained by fusing ¢ and ¢’).

APPENDIX C: COMPUTING THE ANYONIC
ENTANGLEMENT NEGATIVITY WITH MATRIX
PRODUCT STATES

to anyonic systems [66—-69,103], we add (directed) anyonic
charges to the tensor legs which obey the anyonic fusion rules
and with respect to which all tensors are block diagonal. An
example is given in Fig. 9(a), which corresponds to a MPS
representing a state in the basis given in Fig. 2forN = M = 2
and f = 1 in canonical form. We denote the canonical three-
leg tensors as I''"! and the (diagonal) 2-leg tensors containing
the Schmidt values as AlY. In Fig. 9, we omitted the labels

In this section, we explain how to compute the ALN and its
charge- and imbalance-resolved variants using MPS. For this,
we assume the reader to be acquainted with the fundamen-
tals of tensor networks [97,99-102]. For the generalization
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of the intermediate fusion products for convenience and bent
the lines at the boundaries associated with ap and b upwards,
that is, we effectively promote the corresponding charges to be
part of subsystems A and B, respectively. In practice, this does
not change anything since we can simply set these charges
to be trivial. If we were to consider the case f # 1, we would
need to replace the Alll-tensor at the interface between the two
subsystems by the corresponding 3-leg tensor, as indicated in
Fig. 9(b). However, since the main focus of this work is on the
case f = 1, we also restrict ourselves to this case here.

Let us now briefly mention a few important details re-
garding the anyonic generalization. Consider the Schmidt
demcomposition of a state |{) at bond i,

|1/j> = ZAE’]j" ¢?.j<~>|¢gjc)’ (Cl)

¢, je

where ¢ denotes the anyonic charge at the interface between
subsystems A and B, j. the charge degeneracy index, A[’]

the Schmidt values and |¢A/ B) the Schmidt states. Then, the
normalization constraint of W) is given by [66]

Wiy) = d.(ah )’ =1, (C2)
¢ je

where d, again denotes the quantum dimension of the any-
onic charge c. The entanglement entropy corresponding to the
bipartition into subsystems A and B can be expressed as [66]

S ==y de(Al) I ((AL})). (C3)

C.je

m 2

At this point, we can readily see that a MPS with bond dimen-
sion ¥ = 1 can already correspond to an entangled state since
a single Al = d~1/2 ensures correct normalization with en-
tropy S = ln(d ), which is nontrivial for non-Abelian anyons
c. This also confirms that a x =2 MPS can represent two
anyon dimers, as claimed in Sec. VI A for the anyonic gen-
eralization of the AKLT state. When generalizing algorithms
such as time-evolving block decimation (TEBD) [104] and
density matrix renormalization group (DMRG) [105,106] to
anyonic MPS, in addition to keeping track of factors of quan-
tum dimensions, one needs to introduce (3-leg) fusion tensors
representing the anyonic fusion rules. These tensors need to
be applied whenever tensors are to be reshaped as done, e.g.,
in order to perform a singular value decomposition. For more
details on anyonic MPS in general, TEBD and DMRG for
anyonic MPS, see Refs. [66—69].

Let us now focus on the computation of the ALN using
MPS. Applying the definition of the APT in Eq. (7) to the
MPS in Fig. 9(a) yields the operator shown in Fig. 9(c). Here,
we did not reverse the direction of the arrows associated with
the anyons of subsystem A (unlike in Eq. (7)). The hermitian

conjugate (p’4)" can be obtained by taking the definition in
Eq. (7), reversing the braid direction and complex conjugat-
ing the prefactors. Since MPS in canonical form exploit the
Schmidt decomposition, complex conjuagtion is trivial and
the operator (574 )™+ can be expressed as in Fig. 9(d) Using
the orthogonality properties of the canonical form, (374 ) 574
can be simplified to take the form in Fig. 9(e), where we
added the anyonic charge labels ¢ and ¢’ with respect to which
(p™)"p™ is block diagonal [see Eq. (23)]. This can be used
to compute both the ALN and the charge-resolved ALN. It
can be seen that in Fig. 9(e), only the A tensors contribute
to these quantities since the rest of the MPS corresponds to
orthonormal states in the respective subsystems. This applies
similarly to more general bipartitions, such that the ALN and
charge-resolved ALN can be expressed as

€. =In (Try/ (57) '57) (Z“”) . (CH

G e
(chAE’ﬁbc)<ZduA£%> o
Je '\ jor

where Al denotes the tensor between subsystems A and B and

E’]] the corresponding Schmidt values. Note that we use the
charge labels ¢ and ¢’ instead of their anticharges. We do this
to make the connection to the description of density matrices
used in Sec. V A and Eq. (8), which requires us to reverse the
arrows of the fusion products in Fig. 9(e), leading to ¢ — ¢
and ¢ — ¢'.

To compute the imbalance-resolved ALN, we need the
third charge g appearing in the block structure in Eq. (23),
which is the fusion product of ¢ and ¢’. The connection can be
made explicit via

E.(c)=1In

(C6)

d, ¢
B Z d(:’ d(: /q
g c
Then, the imbalance-resolved ALN can be written as

ZNfc,dg<ZA[’] AE’]j,) . (€

JesJe

6cilmbalance (g) —1In

Note that the ALN and its charge- and imbalance-resolved
versions can be evaluated with computational complexity
O(x), where x is the bond dimension of the MPS. This is
however only valid for the bipartition geometry with trivial
total fusion product f = 1. In fact, we expect a much more
unfavorable scaling when going beyond bipartitions, as seen
for the BPT whose computational complexity is O(x®) for
tripartitions [107].
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