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Quantum criticality and optical conductivity in a two-valley system
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We demonstrate that the optical conductivity of a Fermi liquid (FL) in the absence of umklapp scattering is
dramatically affected by the topology of the Fermi surface (FS). Specifically, electron-electron (ee) scattering
leads to rapid current relaxation in systems with multiple, or multiply connected, FSs, provided that the valleys
have different effective masses. This effect results from intervalley drag. We microscopically derive the optical
conductivity of a two-valley system, both within the FL regime and near a quantum critical point (QCP) of
the Ising-nematic type. In the FL regime, intervalley drag restores the Gurzhi-like scaling of the conductivity,
Reσ (ω) ∼ ω0. This dependence contrasts sharply with the previously identified subleading contribution to the
conductivity of a two-dimensional FL with a single convex FS, where Reσ (ω) ∼ ω2 ln |ω|. The vanishing of the
leading term in the optical conductivity is a signature of geometric constraints on ee scattering channels, which
are lifted for a multiply connected FS. A large differential response, dReσ/dμ with μ being the chemical poten-
tial, is predicted at the Lifshitz transition from a single-valley to a multivalley FS, which should be observable
within the experimentally accessible frequency range. Near a QCP, intervalley drag leads to a |ω|−2/3 scaling of
Reσ (ω) in two dimensions, thus providing a specific current-relaxing process for this long-standing conjecture.

DOI: 10.1103/PhysRevB.110.085139

I. INTRODUCTION

In recent years there has been a revival of interest to
optical studies of various materials with a nontrivial band
structure, including graphene in different incarnations [1,2],
transition metal dichalcogenides (TMD) [3,4], and Weyl and
Dirac semimetals [5,6]. The latest advancements in opti-
cal spectroscopy, encompassing a broad frequency spectrum,
have provided a unique probe of intraband electron dynamics,
demonstrating how electron-electron (ee) interactions influ-
ence current relaxation and manifest themselves in distinct
patterns of frequency scaling of the conductivity [7–13]. To
a large degree, these studies are driven by an enduring interest
in the formation of novel quantum states.

The dissipative part of the optical conductivity of a non-
Galilean-invariant Fermi liquid (FL) at frequencies ωτ � 1,
where τ ∝ T −2 is the quasiparticle transport time, is believed
to be described by the Gurzhi formula [14],

Reσ (ω, T ) = σ0

(
1 + 4π2T 2

ω2

)
, (1)

with σ0 being the material-dependent constant. However,
recent studies have demonstrated that, in the absence of
umklapp scattering, the validity of the Gurzhi scaling is crit-
ically dependent on the Fermi surface (FS) geometry and
topology [11,15–21]. Specifically, an isotropic FS both in
two-dimensional (2D) and three-dimensional (3D) systems,
and a convex 2D FS gives rise to a dramatic suppression of the

*Contact author: gindikin@protonmail.ch

conductivity due to a slow current relaxation.1 This unfolds as
follows.

Regardless of the method employed — be it equations of
motion for the current operator [15–17,19], Fermi Golden
Rule (FGR) [27,28], or diagrammatic expansion of the Kubo
formula [11,21] — the optical conductivity is ultimately pro-
portional to (�v)2, averaged over the FS with the scattering
probability, where

�v ≡ vp + vp′ − vk − vk′ (2)

is a change of the total group velocity (proportional to the
total current) due to a collision of two electrons with ini-
tial momenta k and k′, and final momenta p and p′. In a
Galilean-invariant system, v = k/m, and �v is equal to zero
identically by momentum conservation. The same happens
for an isotropic FS both in two and three dimensions, ex-
cept for in this case �v vanishes only on the FS rather than
identically [15–17]. For a convex FS in two dimensions, the
only allowed scattering channels are the Cooper channel,
in which k = −k′ and p = −p′, and the swap channel, in
which k′ = p and p′ = k, and �v = 0 for both these channels
[22–25,29,30]. As long as �v = 0, the conductivity vanishes
to leading order for all the cases described above and, to
obtain a finite result, one needs to expand �v either around
the FS (for an isotropic FS) or near the Cooper and swap
solutions (for a convex FS). This leads to a strong suppres-
sion of the conductivity compared to the Gurzhi formula:

1In two dimensions, a slow current relaxation is the manifestation
of a more general effect: a long lifetime of odd harmonics of the
electron distribution function [22–26].
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Reσ (ω, T ) ∝ max{ω2 ln |ω|−1, T 4 ln T −1/ω2} in two dimen-
sions and Reσ (ω, T ) ∝ max{ω2, T 4/ω2} in 3D.

The Gurzhi result for the conductivity is restored un-
der specific conditions. In three dimensions, this occurs
when anisotropic terms in the electron dispersion beyond the
quadratic level are taken into account. In two dimensions,
the Gurzhi result is valid for a concave FS, which allows for
scattering channels beyond the Cooper and swap ones with
�v �= 0 [19,21,29,30].

In this work, we consider another mechanism of fast,
Gurzhi-like current relaxation: ee scattering in systems with
multiple, or multiply connected, FSs with different effective
masses. At the phenomenological level, the case of a mul-
tivalley conductor with parabolic dispersions in each valley
can be analyzed via the classical equations of motion, in
which the intervalley interaction is accounted for by the drag
force, proportional to the difference of the drift velocities in
different valleys. The drag force renders the ee contribution
to the conductivity finite, both in the optical case and in the
dc case in the presence of disorder [11,31]. The dc case was
further analyzed in Refs. [29] and [30] via the semiclassical
Boltzmann equation. The goal of the present paper is to derive
the optical conductivity of a two-valley system microscop-
ically, both in the FL regime and in the situation when the
ee interaction drives the system to the quantum critical point
(QCP) of the Ising-nematic type [32].

We start with a simpler problem of a two-valley FL with
Coulomb interaction within and between two nonequivalent
valleys. Our model spans a wide range of 2D systems and
materials, from systems with non-parabolic spectrum and val-
ley imbalance, typical for TMDs, to systems with annular FS,
including biased bilayer and rhombohedral trilayer graphene.
We calculate the optical conductivity via the FGR and show
that it exhibits the Gurzhi scaling of Eq. (1). The interest of
such systems lies in the ability to manipulate the scattering
channels by electrical means, which promises large differen-
tial responses at the threshold of the channel opening, thus
crafting a unique experimental signature within the experi-
mentally accessible frequency range.

We proceed with a more intricate example of a two-valley
system, in which one of the valleys is tuned to an Ising-
nematic QCP, while the other valley plays the role of a
momentum sink for the first one. We demonstrate that the
intervalley conductivity scales with frequency as |ω|−2/3 at the
QCP in 2D, which is the same as conjectured a long time ago
in Ref. [33] in the context of fermions interacting with a U (1)
gauge field.

II. TWO-VALLEY FERMI LIQUID AWAY
FROM CRITICALITY

A. The model

We start with an effective Hamiltonian of a two-valley
electron system2

H =
∑
k,s

(εk,s − μ)c†
k,sck,s + 1

2

∑
qss′

uss′ (q)ρq,sρ−q,s′ . (3)

2Extending our approach to accommodate an arbitrary number of
valleys is conceptually straightforward.

Here, ck,s and ρq,s represent the electron annihilation operator
and the density operator, respectively, εk,s is the electron dis-
persion, μ is the chemical potential, and indices s, s′ = 1, 2
label distinct valleys. We ignore the electron spin if the valleys
do not result from spin splitting; if they do, s and s′ label
the spin projection. The Hamiltonian captures two types of ee
interactions involving small momentum transfers: intravalley
interaction, denoted by uss(q), and intervalley drag, denoted
by uss′ (q), but neglects the intervalley swaps of electrons. The
last assumption is justified if the valley centers are located far
away from each other or, for the case of concentric valleys, if
their Fermi momenta are widely different. For simplicity, we
will consider the case of isotropic but otherwise arbitrary εk,s;
adding anisotropy of the FS does not change the scaling form
of Reσ (ω, T ). We focus on the 2D case first and discuss the
3D case at the end of this section.

The distinction between u11, u22 and u12 becomes signifi-
cant near the QCP, a topic explored in detail in the Sec. III.
Here, away from criticality, we simplify the model by as-
suming uniformity of the interactions: uss(q) = uss′ (q) = Uq.
In the static limit, we consider the 2D screened Coulomb
interaction in the Thomas-Fermi approximation,

U(q) = 2πe2

|q| + κ
, κ = 2πe2(NF,1 + NF,2), (4)

with NF,s being the density of states at the Fermi energy in
valley s. We assume that the interaction is sufficiently long-
ranged, such that the condition to neglect intervalley swaps is
satisfied.

The gradient part of the current operator is given by

J =
∑
k,s

vk,sc
†
k,sck,s, vk,s = ∇kεk,s = k̂ vk,s , (5)

where k̂ ≡ k/k.
The real part of the conductivity, σ (ω), can be derived via

the FGR (see Refs. [27,28] and Appendix A) up to the two-
loop order to give

Reσ (ω, T ) = πe2

2ωD
(1 − e− ω

T )
∑
kk′q
ss′

∫
d
 |Mss′ (k, k′, q)|2

× n
(
εk+ q

2 ,s − 

)
n
(
εk′− q

2 ,s′ − ω + 

)

× (
1 − n

(
εk+ q

2 ,s

))(
1 − n

(
εk′− q

2 ,s′
))

× δ
(

 + εk− q

2 ,s − εk+ q
2 ,s

)
× δ

(
ω − 
 + εk′+ q

2 ,s′ − εk′− q
2 ,s′

)
, (6)

where Mss′ (k, k′, q) is the matrix element of the Coulomb
interaction and n(εk,s) = (e

εks−μ

T + 1)−1 is the Fermi function,
and D is the spatial dimensionality. Note that the conductivity
represents the sum of intravalley, σss, and intervalley, σs �=s′ ,
contributions, of which we are mostly interested in the latter.

For our case of a long-range interaction, the exchange part
of the matrix element can be neglected, and then

Mss′ (k, k′, q) = U(q)�vss′

ω
, (7)
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where

�vss′ ≡ vk+ q
2 ,s + vk′− q

2 ,s′ − vk′+ q
2 ,s′ − vk− q

2 ,s (8)

is the velocity change due to a two-electron scattering process
in a two-valley system. In contrast to the single-valley case,
�vss′ �= 0 even for the parabolic dispersions εk,s = k2/2ms,
as long as m1 �= m2.

B. Fermi surface geometry

The velocity change in Eq. (8) can be expanded, to the
leading order in the momentum transfer q, into the sum of two
qualitatively different terms, �vss′ = �uss′ + �wss′ , where

�uss′ = q
(

1

m̄s(k)
− 1

m̄s′ (k′)

)
, (9)

and

�wss′ =
(

1

m∗
s (k)

− 1

m̄s(k)

)
k̂(q · k̂)

−
(

1

m∗
s′ (k′)

− 1

m̄s′ (k′)

)
k̂′(q · k̂′), (10)

with 1/m̄s(k) = (1/k)∂εk,s/∂k and 1/m∗
s (k) = ∂2εk,s/∂k2

being the (inverse) density-of-states and band masses,
respectively.

We call two valleys “equivalent”, if they have equal
density-of-states masses on the corresponding FSs, i.e., m̄1 ≡
m̄(kF,1) = m̄2 ≡ m̄(kF,2). For equivalent valleys, �uss′ gives
zero when projecting k and k′ onto the corresponding FSs.
In this case, the main contribution to the conductivity comes
from �wss′ but, similarly to the single-valley case, this con-
tribution is suppressed as compared to the Gurzhi result of
Eq. (1).3

For nonequivalent valleys the situation is quite the oppo-
site; the dominant contribution to the conductivity is due to
�uss′ , and this dramatically affects the scaling form of the
conductivity.

C. Optical conductivity

The dissipative conductivity, to the leading order of the
interaction strength, is determined by all possible ee scattering
processes accompanied by the creation of two electron-hole
pairs.

Energy conservation in a process of ee scattering is ensured
by two δ functions in Eq. (6):

εk+ q
2 ,s − εk− q

2 ,s = 
,

εk′− q
2 ,s′ − εk′+ q

2 ,s′ = ω − 
. (11)

To leading order in max{ω, T }, one can set the right-hand
sides of the last two equations to zero. Then, at fixed q,
the allowed electron momenta k satisfy the equation εk− q

2
=

εk+ q
2
. Geometrically, the solutions correspond to the inter-

section points between two FSs, shifted by the momentum
transfer q.

3Note that �wss′ = 0 for a parabolic dispersion.

FIG. 1. The intersection points between two Fermi surfaces,
shifted by the momentum transfer q.

In what follows we assume that the electron dispersion
is even in k, i.e., εk,s = ε−k,s. The time-reversal symmetry
guarantees this to be the case if spin-orbit interaction can be
neglected, regardless of whether the inversion symmetry is
present or not [34]. If so, the intersection points arise in pairs
at k and −k, like at points A and A′ in Fig. 1.

The dominant contribution to the conductivity at the small-
est energy transfer 
 (which is of the same order as the photon
frequency ω) comes from ee scattering in a close vicinity of
the intersection points. A channel of electron-electron scat-
tering is defined by any pair of the intersection points. The
contributions from distinct channels are being summed up in
the expression for the conductivity.

For a single circular (and, more general, convex) FS in two
dimensions, there are at most two intersections between the
shifted FSs. In this case, the only scattering channels for elec-
trons are the swap channel with k ≈ k′ (channels {A, A} and
{A′, A′} in Fig. 1) and Cooper channel with k ≈ −k′ (channels
{A, A′} and {A′, A} ibid.)

The situation changes qualitatively for electrons residing in
nonequivalent valleys. The new scattering channels arise for
two electrons situated near the intersection points of distinct
FSs: {A, B}, {A, B′}, etc. When two electrons are scattered
close to these points, their momenta align in the same or
opposing directions, k̂ ≈ k̂′ or k̂ ≈ −k̂′, but the absolute val-
ues of their momenta are no longer equal, |k| �= |k′|, in a
distinction from the swap and Cooper channels.

The intervalley (s′ �= s) contribution to the conductivity
of Eq. (6) is determined by the factor �vss′ , evaluated for
k and k′ on the corresponding FSs. In this case, the leading
contribution to �v comes from �uss′ = qδ of Eq. (9), with
the mass mismatch

δ = vFs

kFs
− vFs′

kFs′
= 1

m̄s
− 1

m̄s′
. (12)

For nonequivalent valleys, δ �= 0.
It is crucially important that, in contrast to δwss′ of Eq. (10),

�uss′ is not small when electron momenta are close to their
respective intersection points. This smallness, inherent in
Eq. (10), reflects the small-angle nature of the ee scattering,
and is enforced by the dot product of q and k̂,

(q · k̂) ≈ v−1
ks

(
εk+ q

2 ,s − εk− q
2 ,s

)
, (13)

which, according to Eq. (11), gives an extra power of fre-
quency to conductivity [see Eq. (21) below].
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Hence, the intervalley conductivity is given by

Reσs �=s′ (ω) = e2

4πω3

(
1 − e− ω

T
) ∑

q

∫
d
U2

q (�uss′ )2

× ImPs(
, q)ImPs′ (ω − 
, q) , (14)

with

Ps(
, q) =
∑

k

n
(
εk+ q

2 ,s − 

)(

1 − n
(
εk+ q

2 ,s

))

 + εk− q

2 ,s − εk+ q
2 ,s + i0

. (15)

Note that Ps is distinct from the electron polarization s,
which arises from the interplay of “absorption” and “emis-
sion” processes, represented as n(1 − n′) − n′(1 − n). In
contrast, Ps only involves the “absorption” component. Con-
sequently, its imaginary part is not an odd function of the
frequency.

In the limit of vF,sq � |
|, one gets

ImPs(
, q) = NF,s

e− 

T − 1




vF,sq
. (16)

A subsequent integration over 
 yields∫ ∞

−∞


(ω − 
) d


(e− 

T − 1)(e− ω−


T − 1)
= ω3

6(1 − e− ω
T )

(
1 + 4π2T 2

ω2

)
.

(17)

In two dimensions, the integral over momentum trans-
fer is regularized by imposing the ultraviolet cutoff
λ = min{kFs, kFs′ } to give∫

qU2
q dq = (2πe2)

2
[

ln

(
1 + λ

κ

)
− λ

λ + κ

]
, (18)

where the expression in brackets, C, interpolates between
C = ln (λ/κ ) for λ � κ , and C = λ2/(2κ2) for λ � κ .

This way, we obtain the intervalley conductivity in 2D,

σs �=s′ (ω) = Cδ2

12
e2 e2NF,s

vF,s

e2NF,s′

vF,s′

(
1 + 4π2T 2

ω2

)
. (19)

Remarkably, the signature of the FL state—the Gurzhi scaling
of Eq. (1)—is reinstated due to the drag between nonequiva-
lent valleys.

The 3D case can be considered along the same lines. Al-
though a generic 3D FS allows for infinitely many channels
of current relaxation, the intravalley contribution to the con-
ductivity still vanishes to leading order for the special case of
an isotropic FS. Indeed, the group velocity in this case is given
by vk,s = k/m̄s(k). Projecting all momenta in Eq. (8) onto the
FS, we obtain �vss|k=kF,s = 0. A finite result is obtained by
expanding �vss near the FS, and the resultant conductivity
is suppressed by a factor of max{ω2, T 4/ω2} [17,35]. The
intervalley contribution differs from the 2D result (19) only by
a numerical coefficient due to a different form of the screened
Coulomb interaction.

D. Applications

Consider a two-valley Dirac metal with the dispersion
of εks = v|k| and valley imbalance—be it interaction-driven
or invoked by the Zeeman splitting—characterized by ζ =

�εF /μ = |εF,1 − εF,2|/μ. In this case the total intervalley
conductivity σ = σ12 + σ21 becomes

Reσ (ω) = e2 α2| ln α|
24π2

ζ 2

(
1 + 4π2T 2

ω2

)
, (20)

with the effective fine structure constant α = e2/v.
The intravalley contribution [17,35]

Reσss(ω) = e2

960π2

ω2

ε2
F,s

(
1 + 4π2T 2

ω2

)(
3 + 8π2T 2

ω2

)

× ln
αkF,s

�
, (21)

with infrared cutoff � = max{ω/v, T/v}, is suppressed by a
factor of max{ω2 ln ω, T 4 ln T/ω2}, as compared to Eq. (20).

The next example is given by a biased bilayer graphene,
which features a moat-band dispersion of the form [36]

εk = V

2
− V

v2

t2
⊥

k2 + v4

t2
⊥V

k4 , (22)

where t⊥ the interlayer hopping parameter and V the voltage
drop across the layers. Provided that a single band is occupied,
a multiply connected annular FS, depicted in Fig. 1, arises if
V > 2μ.

Here, the mass mismatch between the inner and outer com-
ponents of the FS equals

δ = 4v4

t2
⊥V

(
k2

Fs + k2
Fs′

) ≈ 4v2V

t2
⊥

, (23)

and C ≈ (V − 2μ)t2
⊥/4κ2v2V , for μ close to 2V . This gives

rise to the conductivity exhibiting a threshold behavior, de-
scribed by the following expression:

Reσ (ω) = D θ (V − 2μ)(V − 2μ)

(
1 + 4π2T 2

ω2

)
, (24)

where D represents a combination of the system parameters.
This threshold behavior marks the Lifshitz transition, at the
voltage V equal to 2μ.4

The valence band of biased rhombohedral trilayer
graphene also features a moat-band dispersion. While the
low-energy Hamiltonian fully accounting for the moat-band
structure is yet to be derived from the many-band model [37],
for current purposes it is sufficient to approximate it by the
dispersion similar to Eq. (22), again neglecting the trigonal
warping effect. Then we obtain

Reσ (ω) = D̃ θ (2μ − V )(2μ − V )

(
1 + 4π2T 2

ω2

)
. (25)

In modern double-gate experimental setups, it is possi-
ble to independently adjust the voltage across layers without

4While the model predicts a sharp transition at this threshold, it
is important to note that at finite temperature, this transition is not
perfectly abrupt. Specifically, we assume that the temperature T is
much smaller than the Fermi energies T � min{εF,1, εF,2}, yet in
the vicinity of the transition it becomes large enough to introduce
a smearing around the threshold on the scale of T .
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changing the electron concentration. This allows for the elec-
trical control of conductivity, according to Eqs. (24) and (25),
at fixed electron density. Opening a new scattering channel
within the small FS by adjusting the chemical potential to
cross the peak of the “Mexican hat” gives rise to the jump in
the differential conductivity, which could be directly observed
through modulation spectroscopy [38].

III. QUANTUM-CRITICAL TWO-VALLEY SYSTEM

A. The Model

1. Charge currents

In this section, we consider a two-valley system near
an Ising-nematic quantum critical point. The interaction
part of the Hamiltonian is the same as in Eq. (3), except
for the form factors that project the interaction onto a

channel with a given angular momentum. Accordingly,
uss′ (q) → Fs(k)Fs′ (p)uss′ (q). Due to these form factors, the
electric field couples not only to the free but also to the
interaction part of the Hamiltonian. Correspondingly, the
current contains the regular part, given by Eq. (5), and the
“anomalous” part [19,21]:

Jan =
∑

k,p,q,s,s′
[(∇k + ∇p)Fs(k)Fs′ (p)]uss′ (q)

×c†
k+ q

2 ,s
c†

p− q
2 ,s′cp+ q

2 ,s′ck− q
2 ,s

. (26)

The time derivatives of the current operators in Eqs. (5)
and (26) show directly which processes contribute to current
relaxation. For the two-valley case, we obtain

∂t J = −i[H, J] = −i[Hint, J]

= − i

2

∑
k,p,q,s,s′

(vk+q/2,s + vp−q/2,s′ − vk−q/2,s − vp+q/2,s′ )Fs(k)Fs′ (p)uss′ (q)c†
k+q/2,sc

†
p−q/2,s′cp+q/2,s′ck−q/2,s (27a)

and

∂t Jan = −i[H, Jan] = −i[H0, Jan]

= i
∑

k,p,q,s,s′
(εk+q/2,s + εp−q/2,s′ − εk−q/2,s − εp+q/2,s′ )(∇k + ∇p)Fs(k)Fs′ (p)uss′ (q)c†

k+q/2,sc
†
p−q/2,s′cp+q/2,s′ck−q/2,s. (27b)

We see that ∂t Jan in Eq. (27b) contains the difference
between the energies of two electrons before and after a col-
lision, which is equal to the photon energy, ω. Therefore, the
corresponding contribution to the conductivity is suppressed
by a factor of ω2 [19,21]. On the contrary, ∂t J in Eq. (27a)
contains the difference of the velocities of the initial and
final states. This difference is nonzero for nondegenerate val-
leys, even if the electron spectrum in each of the valleys is
parabolic, and the corresponding contribution to the conduc-
tivity is not suppressed. For this reason, we will neglect the
anomalous part of the current. For the normal part of the
current, the form factors do not bring any qualitative changes,
and we will ignore them in what follows. Thus, the interaction
part of the Hamiltonian is reduced back to Eq. (3).

A FL near a QCP is strongly interacting, i.e., its Z factor
is much smaller than one (or, equivalently, the renormalized
mass is much larger than the bare one). To keep track of
the Z-factor renormalization, we employ the diagrammatic
treatment of the Kubo formula in this section, as opposed to
the FGR scheme employed in Sec. II.

2. Quantum criticality in a two-valley system

As in the previous part of the paper, we assume that valleys
are located sufficiently far from each other, such that the
exchange of fermions between the valleys can be neglected.
We adopt a model of Hubbard-like interaction (uss′ = const)
and, for simplicity, assume that fermions in valley 2 do not
interact with each other (u22 = 0). Then the only bare inter-
actions in the model are the intravalley interaction in valley
1 (u11) and intervalley drag (u12). As before, we also assume

that the electron spectrum in each valley is isotropic but not
necessarily parabolic, but consider both the 2D and 3D cases
on the same footing.

Within the random phase approximation (RPA), the matrix
of dressed interaction is given by5

Û = û(1̂ − ̂û)−1, (28)

where

ss′ (q,
m) = T
∑
νm

∫
dDk

(2π )2
Gs(k + q/2, νm + 
m/2)

× Gs′ (k − q/2, νm − 
m/2), (29)

and Gs(k, νm) is the Green’s function of valley s.
The solution of Eq. (28) for our case of u22 = 0 is given by

U11(q,
m) = u11 + 22(q,
m)

R
u2

12

= u11

R1(q,
m)
+ 22(q,
m)u2

12

R1(q,
m)R(q,
m)
, (30a)

U12(q,
m) = U21(q,
m) = u12

R(q,
m)
, (30b)

U22(q,
m) = 11(q,
m)u2
12

R(q,
m)
, (30c)

5RPA is controllable if the number of fermionic flavors in each
valley, N , is large. We assume this to be the case but, for brevity,
do not display N in the formulas.
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where

R1(q,
m) = 1 − u1111(q,
m), (31a)

R(q,
m) = R1(q,
m) − 11(q,
m)22(q,
m)u2
12.

(31b)

The QCP in a two-valley system occurs when R(q → 0,


m = 0) = 0, which corresponds to the condition

1 + λ11 − λ12 = 0, (32)

where

λ11 = NF,1u11 (33a)

and λ12 = NF,1NF,2u2
12 (33b)

are the dimensionless couplings of the intra- and intervalley
interaction, respectively, and NF,s is the density of states in
valley s at the corresponding Fermi energy. For future conve-
nience, we singled out the first term in Eq. (30a), which is the
intravalley interaction in the absence of coupling between the
valleys.

In what follows, we will need the asymptotic forms of the
polarization bubbles for

|
m| � vF,sq � kF,s, (34)

which are given by

ss(q,
m) = −NF,s

(
1 − q2

q2
F,s

− CD
|
m|
vF,sq

)
, (35)

where C2 = 1, C3 = π/2, and qF,s ∼ kF,s.6

Now we focus on the immediate vicinity of the QCP,
where R(q,
) in Eq. (31a) is finite but small. According to
Eqs. (31a) and (31b), the factor 1/R1 in Eq. (30a) can be
then replaced by 1/11(q,
m)22u2

12, which in nonsingular.
Therefore, the first term in this equation can be neglected.
Keeping only the most singular terms in the rest of the in-
teractions in Eqs. (30a)–(30c), we cast them into a familiar
Z = 3 critical form [40]:

U11(q,
m) = − 1

NF,1R(q,
m)
, (36a)

U12(q,
m) = U21(q,
m) = u12

R(q,
m)
, (36b)

U22(q,
m) = − NF,1u2
12

R(q,
m)
(36c)

with

R(q,
m) = 1

q∗2

(
q2 + q2

B + γ
|
m|

q

)
. (37)

6A q2 term in the free-fermion polarization bubble is present as long
as the band dispersion is neither parabolic nor linear. In addition,
the interaction between low-energy fermions generate extra q2 terms
[39]. It is assumed that the q2 term in Eq. (35) includes both the
free-fermion and interaction-induced parts.

Here, the parameters of the critical interaction are

1

q∗2
= 1

q2
F,1

+ λ12

q2
F,2

,
1

v∗
F

= 1

vF,1
+ λ12

vF,2
,

γ = CD
q∗2

v∗
F

, q2
B = (1 + λ11 − λ12)q∗2, (38)

where qB is the mass (the inverse correlation length) of or-
der parameter fluctuations. At the QCP, qB = 0. As long as
qB > 0, the system is in the FL regime for ω � ωFL and in the
non-Fermi-liquid (NFL) regime for ω � ωFL, where

ωFL ≡ v∗
Fq3

B/q∗2. (39)

In the FL regime, the fermionic self-energy of the sth val-
ley behaves as �s(νm) ∝ iνm/qB + iq−4

B νm|νm| ln(ωFL/|νm|)
in 2D [41], and as �s(νm) ∝ iνm ln(ωFL/|νm|) + iq−3

B νm|νm|
in 3D.

A crossover to the NFL regime can be achieved by em-
ploying the space-time scaling of the Z = 3 critical theory
[42]. This allows us to replace qB → |νm|1/3, which yields fa-
miliar results: �s(νm) ∝ isgnνm|νm|2/3 in two dimensions and
�s(νm) ∝ iνm ln |νm| in three dimensions. The justification for
this step is as follows.

For a single-valley case, the conductivity, calculated via
the fully dressed current-current correlation function, scales as
σ ′(ω) ∝ ω

−2/3
FL F (ω/ωFL). This result was derived in Ref. [42]

under assumption that ωFL is the only energy scale near
a nematic QCP, which is also the assumption we adopt in
the current paper. The scaling function F (x) is determined
such that ωFL drops out from the result in the quantum-
critical regime, where ω � ωFL. This leads to F (x) ∝ x−2/3

as x → ∞. This behavior implies that in the vicinity of the
QCP, the bosonic mass can be effectively replaced by ω1/3,
with results in agreement with Refs. [33,43].

We conjecture that this same scaling behavior applies to the
two-valley case as well. However, this conjecture awaits con-
firmation through a detailed calculation of the fully dressed
current-current correlation function. In the next section, we
present a calculation of the optical conductivity in the FL
regime near a QCP.

B. Optical conductivity

1. Intravalley contribution

The leading-order diagrams for the contribution to the
conductivity from the interaction between valley-1 and
valley-2 fermions are shown in Figs. 2(a) and 2(b). The anal-
ysis of the single-valley case follows along the same lines
as in Refs. [11,17,19,21], with additional details provided in
Appendix B 1.

The real part of the optical conductivity is nonzero only
if the effective interaction is dynamic. For the self-energy
(SE) and Maki-Thompson (MT) diagrams (a1–a3 and b1–b3
in Fig. 2), it implies that one can subtract off the static part
of the interaction, U st

ss (q) = Uss(q, 0), such that the double
wavy and zigzag lines in these diagrams are replaced by the
corresponding dynamic interactions,

U dyn
ss (q,
m) = Uss(q,
m) − Uss(q, 0), (40)
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(a)

(a1) (a2)

(a4)

(b)

(b1) (b2)

(b4)

(c)

(c1) (c2)

(c3) (c4)

(b5)

(b3)

(a5)

(a3)

FIG. 2. Diagrams for the optical conductivity of a two-valley
quantum critical system. (a) Contribution from the intravalley in-
teraction in valley 1. Thick solid line: Green’s function of valley 1;
double wavy line: the U11 component of the interaction, Eq. (30a);
solid triangle: renormalized current vertex. The capital letters label
the D + 1 momenta: P = (p, νm ), K = (k, ν ′

m ), Q = (q, 
m ), W =
(0, ωm ). (b) Contribution from the induced intravalley interaction in
valley 2. Thin solid line: Green’s function of valley 2; zig-zag line:
U22 component of the interaction, Eq. (30c); open triangle: renor-
malized current vertex. (c) Intervalley (drag) contribution. Double
dashed line: the U12 component of the interaction, Eq. (30b).

expanded to linear order in |
m|. In the FL regime, the Green’s
functions in all diagrams can be approximated by their quasi-
particle forms7

Gs(k, νm) = 1
iνm
Zs

− εk,s
, s = 1, 2, (41)

7There is no double counting in adding self-energy corrections to
the renormalized Green’s functions in diagrams a1 and a2, and b1
and b2. Indeed, Eq. (41) accounts only for the real part of the self-
energy, while the double wavy line in these diagrams produces, after
analytic continuation, the imaginary part of the self-energy.

where Zs is the renormalization factor of valley s, and where
we have taken into account that the theory becomes local near
QCP, i.e., the self-energy depends primarily on the frequency
but not on the momentum [44].

Filled and blank triangles in Fig. 2 represent renormalized
current vertices, �k,s. For an isotropic spectrum and forward-
type scattering, such a vertex can be written as the product of
the bare group velocity and the charge vertex, while the latter
is related to the Z factor via the Ward identity [42]:

�k,s = vk,s�s = vk,s

Zs
. (42)

With Eqs. (41) and (42) taken into account, the sum of the
SE and MT diagrams is reduced to (cf. Appendix B 1)

σ SE+MT
ss (ωm)

= − e2

2Dω3
m

∑
K,Q

(vk+q,s − vk,s)2U dyn
ss (Q)

× [2Gs(K )Gs(K + Q) − Gs(K )Gs(K + Q + W )

− Gs(K + Q)Gs(K + W )], (43)

where K = (k, iνm), Q = (q, i
m), W = (0, iωm),
∑

K ≡
(2π )D+1

∫
dνm

∫
dDk, and Gs(K ) ≡ Gs(k, νm). Here and

thereafter, we set ωm > 0 without loss of generality.
In contrast to diagrams a1–a3 and b1–b3, the interaction

lines in the Aslamazov-Larkin (AL) diagrams [a4, a5 and b4,
b5 in Fig. 2] can be replaced by their static limit,

U st
ss (q) = Uss(q,
m = 0), (44)

while dynamics comes from the Green’s functions forming
the triangles. The two AL diagrams can be combined into the
following expression (cf. Appendix B 2):

σ AL
ss (ωm) = e2

2Dω3
m

∑
K,Q

∑
P

(vk+q,s − vk,s) · (vp,s − vp−q,s)

× [
U st

ss (q)
]2

Gs(P)Gs(P − Q)

× [2Gs(K )Gs(K + Q) − Gs(K )Gs(K + Q + W )

− Gs(K + Q)Gs(K + W )]. (45)

Combining Eqs. (43) and (45), and taking into account that
typical momenta and energy transfers in the FL regime are in
the range (34), we obtain for the total intravalley contribution
(see Appendix C)

σintra(ωm) =
∑

s

(
σ SE+MT

ss + σ AL
ss

)

=
∑

s

e2CDNF,sOD

2Dω3
mvF,sm̄s

2

∫
dqqD

(2π )D

∫
d
m

2π

×(|
m + ωm| + |
m − ωm| − 2|
m|)
×U eff

ss (q,
m), (46)

where

U eff
ss (q,
m) = U dyn

ss (q,
m) − [
U st

ss (q)
]2

dyn
ss (q,
m) (47)

085139-7



YASHA GINDIKIN et al. PHYSICAL REVIEW B 110, 085139 (2024)

is the effective intravalley interaction,

dyn
ss (q,
m) = CDNF,s

|
m|
vF,sq

(48)

is the dynamic part of the polarization bubble, and m̄s =
kF,s/vF,s is the density-of-states mass evaluated on the FS.
In the absence of the intervalley interaction, the intraval-
ley interaction is reduced to the first term in Eq. (30a).
In this case, U eff

ss (q,
m) vanishes and, to get a finite
conductivity, one needs to expand the electron velocities
near the FS. As a result, the conductivity is suppressed
by a factor of ω2

m ln |ωm| in two dimensions and ω2
m

in three dimensions [17–21]. For the case of coupled
valleys, however, U eff

ss (q,
m) is finite because the dy-
namic part of the critical interactions in Eqs. (36a)–(36c)
comes from both valleys, while 

dyn
ss (q,
m) comes only from

one of the valleys. Explicitly, we obtain

U eff
11 (q,
m) = CD

NF,1

q∗4(
q2 + q2

B

)2

(
1

v∗
F

− 1

vF,1

) |
m|
q

= CDλ12

NF,1

q∗4(
q2 + q2

B

)2

|
m|
vF,2q

, (49a)

U eff
22 (q,
m) = CDλ12

NF,2

q∗4(
q2 + q2

B

)2

(
1

v∗
F

− 1

vF,2

) |
m|
q

= CDλ12

NF,2

q∗4(
q2 + q2

B

)2

|
m|
vF,1q

. (49b)

Note that the two intravalley interactions are related by a
permutation of the valley indices 1 ↔ 2.

Performing straightforward integrations over q and 
m,
and analytically continuing to real frequencies, we obtain the
intravalley part of the conductivity as

Reσintra(ω) = ADe2λ12
q∗4

vF,1vF,2q4−D
B

(
1

m̄2
1

+ 1

m̄2
2

)
, (50)

where A2 = 1/48π2 and A3 = 1/576.

2. Intervalley contribution

The intervalley contribution to the conductivity is depicted
graphically in Fig. 2(c). Note that the SE and MT diagrams are
absent for the intervalley case, because they involve swapping
of fermions between the valleys, which is not allowed in our
model. Therefore, we have to consider only the AL diagrams.
As with other AL diagrams, the full intervalley interac-
tion (the double-dashed line) is replaced by its static value
[cf. Eq. (36b)], U st

12(q) = u12q∗2/(q2 + q2
B). As shown in Ap-

pendix B 2, the sum of diagrams in Fig. 2(c) can be written as

σinter(ωm) = e2

Dω3
m

∑
K,Q

′∑
P

(vk+q,1 − vk,1) · (vp,2 − vp−q,2)

× [
U st

12(q)
]2

G2(P)G2(P − Q)

× [2G1(K )G1(K + Q) − G1(K )G1(K + Q + W )

− G1(K + Q)G1(K + W )]. (51)

The rest of the calculations is identical to those in Secs. III B 1
and Appendix C, and the final result for the intervalley part
reads

Reσinter(ω) = −2ADe2λ12
q∗4

m̄1m̄2vF,1vF,2q4−D
B

. (52)

Note that vF,1 and vF,2 in the last equation are the absolute
values of the Fermi velocities in the corresponding valleys,
while masses m̄1 and m̄2 are positive for electron-like valleys
and negative for holelike valleys. Therefore, the intervalley
contribution to the conductivity is negative, if both valleys
are either electronlike or holelike, and positive, if one of the
valleys is electronlike and and another one is holelike. This
is exactly the same effect that one encounters in Coulomb
drag between two physically separate layers: the sign of the
drag conductivity depends on the sign of the relative charge
of the carriers in two layers [45]. Also note that, like the in-
travalley contribution, the intervalley one contains only the
density-of-states rather than the band mass. This means that
the intervalley (drag) contribution is nonzero even for the
Dirac single-particle spectrum, for which the band mass
vanishes but the density-of-state mass is finite. Therefore, the
result is not sensitive to whether the system has a particle-hole
symmetry or not.8

3. Total conductivity

Adding up the intra- and intervalley contributions,
Eqs. (50) and (52), we obtain the total conductivity as

Reσ (ω) = Reσintra(ω) + Reσinter(ω)

= ADe2

(
1

m̄1
− 1

m̄2

)2

λ12
q∗4

vF,1vF,2q4−D
B

. (53)

Note that the conductivity vanishes for the case of identical
valleys, i.e., for m̄1 = m̄2, in agreement with the result of
Sec. II C.

Employing the scaling argument given at the end of
Sec. III A 2, the frequency dependence of the conductivity is
obtained by replacing qB by |ω|1/3 in Eq. (53), which yields

Reσ (ω) ∝
(

1

m̄1
− 1

m̄2

)2

λ12|ω|−(4−D)/3. (54)

This recovers the scaling forms, ω−2/3 in two dimensions
[33] and ω−1/3 in three dimensions, obtained under the as-
sumption of a current-relaxing process of an unspecified type.

IV. CONCLUSIONS

We have investigated the impact of Fermi surface (FS)
topology and electron-electron interaction (ee) interactions on
the optical conductivity of a Fermi liquid (FL). Our findings
demonstrate that in a FL with a multivalley FS and distinct
effective masses in different valleys, ee scattering facilitates a
rapid current relaxation due to intervalley drag.

8The difference between the particle-hole symmetric and asymmet-
ric cases shows up only in subleading terms which contain higher
powers of frequency.
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FIG. 3. Amplitudes for creation of two electron-hole pairs.

We derived the optical conductivity of a two-valley system,
both in the FL regime and near the Ising-nematic quantum-
critical point (QCP). Our results show that in the FL regime,
intervalley drag restores the Gurzhi scaling form of the con-
ductivity, Reσ (ω, T ) = σ0(1 + 4π2T 2/ω2). This restoration
occurs because the geometric constraints on ee scattering are
lifted in systems with multiply connected FSs, permitting
new scattering channels. Consequently, this effect generates
a significant differential response at the threshold of the chan-
nel opening, which emerges at the Lifshitz transition from
a single-valley to a multivalley FS. We propose seeking this
effect in biased bilayer and rhombohedral trilayer graphenes.

Near the QCP, the intervalley contribution to the conductiv-
ity scales as |ω|−2/3 in two dimensions and as |ω|−1/3 in three
dimensions, thus providing a specific current-relaxing process
that aligns with longstanding theoretical predictions [33].
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APPENDIX A: FERMI GOLDEN RULE

This Appendix provides a computation of the imaginary
part of the retarded current-current correlator, K(ω), to the
second order of perturbation theory in ee interactions. We use
the Källén-Lehmann representation, in essence applying the
FGR.

An elementary process contributing to K(ω) involves the
excitation of two electron-hole pairs, one in each of valleys s
and s′, by a photon of frequency ω. The contribution is given
by

δK′′(ω) = 2π
∑

q

|Mss′ (k, k′, q)2|

× δ
(
ω + εk− q

2 ,s + εk′+ q
2 ,s′ − εk+ q

2 ,s − εk′− q
2 ,s′

)
.

(A1)

Here, the matrix element Mss′ (k, k′, q) takes into account the
virtual states shown in Fig. 3.9 The energy denominator com-
ing from the propagator Gs = (ε + ω

2 − εk− q
2 ,s)−1 simplifies

to ε + ω
2 − (ε − ω

2 ) = ω for a process shown in Figs. 3(a)
[and similarly for 3(c)], and −ω for processes in Figs. 3(b)
and 3(d), since the incoming electrons are on the mass shell.
Combining all four amplitudes, we get

Mss′ (k, k′, q)

= uss′ (q)

ω

(
vk+ q

2 ,s + vk′− q
2 ,s′ − vk′+ q

2 ,s′ − vk− q
2 ,s

)
. (A2)

The total contribution to ImK(ω) sums over all electron-hole
pair creation and annihilation processes across both valleys,
integrating over all initial and final states to give

ImK(ω) = 2π

4

∑
kk′q
ss′

|Mss′ (k, k′, q)|2
{

nk− q
2 ,snk′+ q

2 ,s′
(
1 − nk+ q

2 ,s

)(
1 − nk′− q

2 ,s′
) − (

1 − nk− q
2 ,s

)(
1 − nk′+ q

2 ,s′
)
nk+ q

2 ,snk′− q
2 ,s′

}

× δ
(
ω + εk− q

2 ,s + εk′+ q
2 ,s′ − εk+ q

2 ,s − εk′− q
2 ,s′

)
, (A3)

with equilibrium distribution function nk,s accounting for the available states for electron transitions, and 1/4 accounting for
double counting. Finally, the dissipative component of the conductivity, Reσ (ω), is determined via the Kubo formula to give
Eq. (6) of the main text.

9The exchange processes are disregarded for a long-ranged interaction.
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APPENDIX B: COMBINING THE CONDUCTIVITY DIAGRAMS

In this Appendix, we demonstrate how the diagrams for the optical conductivity in Fig. 2 can be grouped together in such a
way that the constraints imposed by momentum conservation become explicit.

1. Self-energy and Maki-Thompson diagrams

We begin with SE and MT diagrams in the intravalley channel, a1–a3 and b1–b3 in Fig. 2. Introducing the fermionic self-
energy, �s(K ) = −∑

Q Gs(K + Q)Uss(Q), we write the sum of two SE diagrams as

σ SE
ss (ωm) = e2

DZ2
s ωm

∑
K

v2
s,k

[
G2

s (K )�s(K )Gs(K + W ) + Gs(K )G2
s (K + W )�s(K + Q)

]
�s(K ), (B1)

where we took into account Eq. (42) for the current vertex and, as in the main text, K = (iνm, k) and W = (iωm, 0). Using the
identity

Gs(K )Gs(K + W ) = Zs

iωm
[Gs(K ) − Gs(K + Q)], (B2)

Eq. (B1) can be written as

σ SE
ss (ωm) = − 1

Dω3
m

∑
K

v2
s,k[Gs(K ) − Gs(K + W )][�s(K + W ) − �s(K )]. (B3)

Now we recall that the dissipative part of the conductivity comes only from the dynamic part of the interaction, as defined by
Eq. (40). Therefore, �s(K ) → −∑

K Gs(K + Q)U dyn
ss (Q).

Repeating the same steps for the MT diagrams, we obtain for the sum of the SE and MT contributions

σ SE+MT
ss (ωm) = − e2

Dω3
m

∑
K,Q

vk,s · (vk,s − vk+q,s)U dyn
ss (Q)[2Gs(K )Gs(K + Q) − Gs(K )Gs(K + Q +W ) − Gs(K + Q)Gs(K +W )].

(B4)

The expression above can be rewritten in a more symmetric form. Relabeling K + Q → K and then Q → −Q, while keeping in
mind that U dyn

ss (Q) is an even function of Q, we obtain an equivalent form of Eq. (B4):

σ SE+MT
ss (ωm) = − e2

Dω3
m

∑
K,Q

vk+q,s · (vk+q,s − vk,s)U dyn
ss (Q)

× [2Gs(K + Q)Gs(K ) − Gs(K )Gs(K + Q + W ) − Gs(K + Q)Gs(K + W )]. (B5)

Taking a half-sum of Eqs. (B4) and (B5), we arrive at

σ SE+MT
ss (ωm) = − e2

2Dω3
m

∑
K,Q

(vk+q,s − vk,s)2U dyn
ss (Q)[2Gs(K + Q)Gs(K ) − Gs(K + Q)Gs(K + W ) − Gs(K + Q)Gs(K + W )],

(B6)

which is Eq. (43) of the main text. The advantage of the last equation is that the “transport factor”, (vk+q,s − vk,s)2, which
suppresses the contribution from small-q scattering, is now explicitly quadratic in q for q → 0.

2. Aslamazov-Larkin diagrams

We now turn to the AL diagrams, considering simultaneously the intravalley (diagrams a4, a5, b4, and b5 in Fig. 2) and
intervalley parts (diagrams c1-c4 in Fig. 2).

a. Particle-hole channel

The particle-hole (ph) diagrams a4, b4, and c1 can be written as

σ
ph
ss′ (ωm) = − e2

DωmZsZs′

∑
K,P,Q

vk,s · vp−q,s′
[
U st

ss′ (q)
]2

Gs(K )Gs(K + W )Gs′ (P − Q)Gs′ (P − Q + W )Gs(K + Q)Gs′ (P), (B7)

where s = s′ = 1, 2 in diagrams a4 and b4, and s = 1, s′ = 2 in diagram c1. Diagram c2 for σ
ph
21 is a mirror image of diagram c1,

so that σ
ph
21 (ω) = σ

ph
12 (ω).
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Applying the identity (B2) to the two first pairs of the Green’s functions in Eq. (B7) and opening the brackets, we obtain

σ
ph
ss′ (ωm) = e2

Dω3
m

∑
K,P,Q

vk,s · vp−q,s′
[
U st

ss′ (q)
]2

[Gs(K ) − Gs(K + W )][Gs′ (P − Q) − Gs′ (P − Q + W )]Gs′ (K + Q)Gs′ (P)

= e2

Dω3
m

∑
K,P,Q

vk,s · vp− q,s′ [U st
ss′ (q)]2[Gs(K )Gs(K + Q)Gs′ (P − Q)Gs′ (P) + Gs(K +W )Gs(K + Q)Gs′ (P − Q +W )Gs′ (P)

− Gs(K )Gs(K + Q)Gs′ (P − Q + W )Gs′ (P) − Gs(K + W )Gs(K + Q)Gs′ (P − Q)Gs′ (P)]. (B8)

In the second term of the last equation we relabel the momenta (under the sum over K and Q) as

Gs(K + W )Gs(K + Q)Gs′ (P − Q + W )Gs′ (P) →︸︷︷︸
K+W ↔K

Gs(K )Gs(K + Q − W )Gs′ (P − Q + W )Gs′ (P)

→︸︷︷︸
Q−W ↔Q

Gs(K )Gs(K + Q)Gs′ (P − Q)Gs′ (P), (B9)

upon which it coincides with the first term. (Note that a replacement Q − W ↔ Q affects neither the velocity nor static
interaction, because W has only the frequency component.) Finally, relabeling Q − W ↔ Q in the third term, we obtain

σ
ph
ss′ (ωm) = e2

Dω3
m

∑
K,P,Q

(vk,s · vp−q,s′ )
[
U st

ss′ (q)
]2

[2Gs(K )Gs(K + Q) − Gs(K )Gs(K + Q + W )

− Gs(K + W )Gs(K + Q)]Gs′ (P − Q)Gs′ (P). (B10)

b. Particle-particle channel

Next, we turn to the particle-particle (pp) diagrams a5, b5, c3, and c4 in Fig. 2. Algebraically,

σ
pp
ss′ (ωm) = − e2

DωmZsZs′

∑
K,P,Q

(vs,k · vs′,p)
[
U st

ss′ (q)
]2

Gs(K )Gs(K + W )Gs′ (P)Gs′ (P + W )Gs(K + Q + W )Gs′ (P − Q), (B11)

where s = s′ = 1, 2 for diagrams a5 and b5, and s = 1, s′ = 2 for diagrams c3 and c4. As for the particle-hole case, diagram c4
is a mirror image of c3, such that σ

pp
21 (ωm) = σ

pp
12 (ωm). Applying Eq. (B2) to the first two pairs of Green’s functions, we obtain

σ
pp
ss′ (ωm) = e2

Dω3
m

∑
K,P,Q

(vs,k · vs′,p)
[
U st

ss′ (q)
]2

[Gs(K )Gs(K + Q + W )Gs′ (P)Gs′ (P − Q)

+ Gs(K + W )Gs(K + Q + W )Gs′ (P + W )Gs′ (P − Q) − Gs(K )Gs(K + Q + W )Gs′ (P + W )Gs′ (P − Q)

− Gs(K + W )Gs(K + Q + W )Gs′ (P)Gs′ (P − Q)]. (B12)

In the second and third terms in the last equation, we relabel the momenta (under the sum over P and Q) as

2nd : Gs(K + W )Gs(K + Q + W )Gs′ (P + W )Gs′ (P − Q) →︸︷︷︸
P+W ↔P

Gs(K + W )Gs(K + Q + W )Gs′ (P)Gs′ (P − Q − W )

→︸︷︷︸
Q+W ↔Q

Gs(K + W )Gs(K + Q)Gs′ (P)Gs′ (P − Q),

3rd : Gs(K )Gs(K + Q + W )Gs′ (P + W )Gs′ (P − Q) →︸︷︷︸
P+W ↔P

Gs(K )Gs(K + Q + W )Gs′ (P) Gs′ (P − Q − W )

→︸︷︷︸
Q+W ↔Q

Gs(K )Gs(K + Q)Gs′ (P)Gs′ (P − Q). (B13)

Finally, relabeling K + W ↔ K in the fourth term, we obtain the same combination of the Green’s functions as in the final
expression for the particle-hole channel, Eq. (B10), but with an opposite sign:

σ
pp
ss′ (ωm) = − e2

Dω3
m

∑
K,P,Q

(vs,k · vs′,p)[2Gs(K )Gs(K + Q) − Gs(K )Gs(K + Q + W ) − Gs(K + W )Gs(K + Q)]

× Gs′ (P − Q)Gs′ (P). (B14)

c. Combined contributions of the particle-hole and particle-particle channels

The total AL contribution to the conductivity due to intravalley interaction in valleys 1 and 2 is given by the sum of the
ph and pp parts, which are diagonal in valley indices. Adding up Eqs. (B10) and (B14) with s = s′, we find for the intravalley
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contribution

σ AL
ss (ωm) = σ ph

ss (ωm) + σ pp
ss (ωm) = − e2

Dω3
m

∑
K,Q

′∑
P

vk,s · (vp,s − vp−q,s)
[
U st

ss (q)
]2

Gs(P)Gs(P − Q)

× [2Gs(K )Gs(K + Q) − Gs(K )Gs(K + Q + W ) − Gs(K + Q)Gs(K + W )], (B15)

where the prime over
∑

P indicates that only the dynamic part of the result is to be retained.
The contribution to the conductivity due to intervalley interaction is given by sum of diagrams in Fig. 2(c):

σinter(ωm) = σ
ph
12 (ωm) + σ

pp
12 (ωm) + σ

ph
21 (ωm) + σ

pp
21 (ωm) = 2

[
σ

ph
12 (ωm) + σ

pp
12 (ωm)

]
= − 2e2

Dω3
m

∑
K,Q

′∑
P

vk,1 · (vp,2 − vp−q,2)
[
U st

12(q)
]2

G2(P)G2(P − Q)

× [2G1(K )G1(K + Q) − G1(K )G1(K + Q + W ) − G1(K + Q)G1(K + W )]. (B16)

d. Symmetrized form of the Aslamazov-Larkin contribution

Like the SE+MT contribution, the AL contribution can also be rewritten in a more symmetric form. To obtain such a form
for the intravalley AL contribution, we relabel K + Q → K , P − Q → P, and Q → −Q in Eq. (B15) with the result

σ AL
ss (ωm) = − e2

Dω3
m

∑
K,Q

′∑
P

vk+q,s · (vp−q,s − vp,s)
[
U st

ss (q)
]2

Gs(P)Gs(P − Q)

× [2Gs(K )Gs(K + Q) − Gs(K )Gs(K + Q + W ) − Gs(K + Q)Gs(K + W )]. (B17)

Taking a half sum of Eqs. (B15) and (B17), we arrive at the symmetrized form

σ AL
ss (ωm) = e2

2Dω3
m

∑
K,Q

′∑
P

(vk+q,s − vk,s) · (vp,s − vp−q,s)
[
U st

ss (q)
]2

Gs(P)Gs(P − Q)

× [2Gs(K )Gs(K + Q) − Gs(K )Gs(K + Q + W ) − Gs(K + Q)Gs(K + W )]. (B18)

As in the SE + MT case, the transport factor in the last equation is manifestly quadratic in q2, which is Eq. (45) of the main text.
Likewise, the symmetrized form of the intervalley contribution in Eq. (B16) can be reduced to

σinter(ωm) = e2

Dω3
m

∑
K,Q

′∑
P

(vk+q,1 − vk,1) · (vp,2 − vp−q,2)
[
U st

12(q)
]2

G2(P)G2(P − Q)

× [2G1(K )G1(K + Q) − G1(K )G1(K + Q + W ) − G1(K + Q)G1(K + W )], (B19)

which coincides with Eq. (51) of the main text.

APPENDIX C: INTRAVALLEY CONTRIBUTION TO THE CONDUCTIVITY OF A NEARLY-CRITICAL TWO-VALLEY
SYSTEM: COMPUTATIONAL DETAILS

In this Appendix, we present a detailed calculation of the conductivity of a nearly-critical two-valley system due to intravalley
interaction, given by the sum of Eqs. (43) and (45) of the main text.

At the first step, we integrate over the frequency components of K and P, arriving at

σ SE+MT
ss (ωm) = −e2N2

F,s

2Dω3
m

∫
dqqD−1

(2π )D

∫
d
m

2π

∫
dOq,D

∫
dOk,D

OD

∫
dεk,s(vk+q,s − vk,s)2U dyn

ss (Q)

× [nF(εk,s) − nF(εk+q,s)]Gs(k, q,
m,
m + ωm,
m − ωm), (C1a)

σ AL
ss (ωm) = e2N2

F,s

2Dω3
m

∫
dqqD−1

(2π )D

∫
d
m

2π

∫
dOq,D

∫
dOk,D

OD

∫
dεk,s

∫
dOp,D

OD

∫
dεp,s(vk+q,s − vk,s) · (vp,s − vp−q,s)

× [U st
ss (q)]2[nF(εk,s) − nF(εk+q,s)]

[
nF(εp−q,s) − nF(εp,s)

]
×Gs(k, q,
m,
m + ωm,
m − ωm)Gs(p − q, q,
m,
m, 0), (C1b)

where

Gs(m, q, ω1, ω2, ω3) = Zs

(
2

iω1
Zs

− εm+q,s + εm,s
− 1

iω2
Zs

− εm+q,s + εm,s
− 1

iω3
Zs

− εm+q,s + εm,s

)
, (C2)
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NF,s is the density of the states of the sth valley at the corresponding Fermi energy, nF (ε) is the Fermi function, dOk,3 =
sin φkdφkdϕk with φk ∈ (0, π ) and ϕk ∈ (0, 2π ) being the polar and azimuthal angles of a spherical system in 3D, respectively,
O3 = 4π , dOk,2 = dφk with φk ∈ (−π, π ) being the azimuthal angle of a polar system in 2D, and O2 = 2π . Now we take into
account that typical momenta transfers are small: q ∼ qB � kF,s. Therefore, the dispersions and the Fermi functions can be
expanded to order O(q):

εk+q,s − εk,s ≈ vF,sq cos φk, εp,s − εp−q,s ≈ vF,sq cos φp, (C3)

and

nF(εk,s) − nF(εk+q,s) ≈ δ(εk,s)vF,sq cos φk,

nF(εp−q,s) − nF(εp,s) ≈ δ(εp,s)vF,sq cos φp, (C4)

where all the angles are measured from the direction of q. Due to the last equation, the integrations over εk,s and εp,s project the
integrands onto the FS.

Next, we turn to the “transport factors” in Eqs. (C1b) and (C1b). For an isotropic but otherwise arbitrary single-particle
dispersion, considered in this paper, the group velocity in the sth valley can be written as

vk,i = ∇εk,s = k
k
ε′

s(k), (C5)

where εs(k) ≡ εk,s and ε′
s(k) = dεs(k)/dk. To linear order in q, we have

vk+q,s − vk,s = (q · ∇)vk,s = q
k
ε′

s(k) + (k̂ · q)k̂
(

ε′′
s (k) − ε′

s(k)

k

)
, (C6a)

vp,s − vp−q,s = q
p
ε′

s(p) + ( p̂ · q) p̂
(

ε′′
s (p) − ε′

s(p)

p

)
, (C6b)

where k̂ = k/k and p̂ = p/p. Therefore, the transport factors, evaluated on the Fermi surface(s), are given by

(vk+q,s − vk,s)2
∣∣
k=kF,s

= q2

(
sin2 φk

m̄2
s

+ cos2 φk

m∗2
s

)
, (C7a)

(vk+q,s − vk,s) · (vp,s − vp−q,s)
∣∣
k=p=kF,s

= q2

{
1

m̄2
s

+ (cos2 φk + cos2 φp)
1

m̄s

(
1

m∗
s

− 1

m̄s

)
+ cos φk cos φp cos ϑkp

(
1

m∗
s

− 1

m̄s

)2
}

,

(C7b)

where ϑkp = ∠(k, p), and

1

m̄s
= 1

kF,s
ε′

i (k)|k=kF,s = vF,s

kF,s
, (C8a)

1

m∗
s

= ε′′
s (k)|k=kF,s , (C8b)

are the (inverse) density-of-states and band masses of the sth valley, respectively.
In the FL regime, typical momentum and energy transfers are such that |
m| ∼ ωm � vF,sq. Then, as it follows from Eqs. (C2)

and (C3), the relevant values of cos φk and cos φp are small, i.e., | cos φk,p| ∼ ωm/vF,1q � 1, which means that φk,p ≈ ±π/2 in
two dimensions and φk,p ≈ π/2 in three dimensions. In this limit, the transport factors in Eqs. (C7a) and (C7b) are reduced to
to a simpler form

(vk+q,s − vk,s)2
∣∣
k=kF,1

= (vk+q,s − vk,s) · (vp,s − vp−q,s)
∣∣
k=kF,1,p=kF,1

= q2

m̄2
s

. (C9)

The rest of the integrands in Eqs. (C1b) and (C1b), cos φk and cos φp are linearized near φk,p = ±π/2 in 2D and near
φk,p = π/2 in 3D, respectively, and the angular integrals are solved to linear order in ωm/vF,sq. Since U dyn

ss and 
dyn
11 depend

only on the magnitude of q, the integration over Oq,D simply gives a factor of OD. Adding up the SE + MT and AL contributions,
we obtain

σintra(ωm) =
∑

s

e2CDODNF,s

2Dω3
mvF,sm̄2

s

∫
dqqD

(2π )D

∫
d
m

2π
(|
m + ωm| + |
m − ωm| − 2|
m|){U dyn

ss (q,
m) − [
U st

ss (q)
]2

dyn
ss (q,
m)

}
,

(C10)

where C2 = 1 and C3 = π/2, which coincides with Eq. (46) of the main text.
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APPENDIX D: “HIGH-ENERGY” APPROACH
TO QUANTUM CRITICALITY

In the previous section, we treated all intra- and interval-
ley interactions on the same footing, within the RPA, while
quantum criticality was imposed by tuning the interaction in
valley-1 to the critical value. We will refer to this approach as
to a “low-energy” one. Another widely accepted way to con-
struct an effective theory of quantum criticality is to assume
that critical bosons are formed out of “high-energy” fermions
with energies comparable to the ultraviolet scale of the model.
Bosons are assumed to be described by the Ornstein-Zernike
susceptibility

χ0(q) = μ

q2 + q2
B

, (D1)

which incorporates the static part of 11(q). In general, χ0(q)
also contains 
2 term coming from the internal dynamics of
bosons, but we assume that it is less important than Landau
damping by low-energy fermions. We will refer to this ap-
proach as to a “high-energy” one.

The goal of this section is to show that the high-energy
approach has to be treated with extra caution when applied
to a two-valley system. One reason for caution is the renor-
malization of qB by intravalley interaction u12. Another, more
fundamental reason, is the need to keep the static 11(q) in
the formulas.

Indeed, a formal extension of the high-energy approach to
the two-valley case yields the action of the following form:

S = Sf0 + Sb0 + Sfb + Sint,12 + Sint,22, (D2)

where

Sf0 =
∑
s=1,2

∫
dτ

∑
k

c̄k,s(τ )(∂τ + εk,s)ck,s(τ ) (D3)

is the action for free fermions with dispersions εk,s (s = 1, 2),

Sb0 =
∫

dτ
∑

q

ϕq(τ )ϕ−q(τ )

χ0(q)
(D4)

is the the bosonic part,

Sfb = u
∫

dτ
∑
k,q

Fkc†
k+ q

2 ,1
(τ )ck− q

2 ,1(τ )ϕ−q(τ ) (D5)

describes the coupling of valley-1 fermions to critical bosons,
and

Sint,12 = u12

∫
dτ

∑
k,p,q

c̄k+ q
2 ,1(τ )c̄p− q

2 ,2(τ )cp+ q
2 ,2(τ )ck− q

2 ,1(τ ),

(D6a)

Sint,22 = u22

2

∫
dτ

∑
k,p,q

c̄k+ q
2 ,2(τ )c̄p− q

2 ,2(τ )cp+ q
2 ,2(τ )ck− q

2 ,2(τ ),

(D6b)

describe noncritical interactions between valleys 1 and valley
2, and in valley 2, respectively.

Integrating out bosons via the Hubbard-Stratonovich trans-
formation, we obtain

Sint,11 = 1

2

∫
dτ

∑
k,p,q

u11(q)c̄k+ q
2 ,1(τ )c̄p− q

2 ,1(τ )ck− q
2 ,1(τ )

× cp+ q
2 ,1(τ ), (D7)

where

u11(q) = − u2χ0(q) = − w

q2 + q2
B

(D8)

is the q-dependent effective interaction with valley 1 with
w = u2μ. As we said earlier, the static part of 11(q) is incor-
porated into u11(q) as a portion of qB. Other parts of the action
are not affected by the Hubbard-Stratonovich transformation.
The full action can now be written as

S = Sf0 + 1

2

∫
dτ

∑
k,p,q

∑
ss′=1,2

uss′ (q)c̄k+ q
2 ,s(τ )c̄p− q

2 ,s′ (τ )

× cp+ q
2 ,s′ (τ )ck− q

2 ,s(τ ), (D9)

where

û(q) =
(

u11(q) u12

u12 u22

)
, (D10)

is a 2×2 matrix of “bare” interactions. In this formulation,
interaction between low-energy fermions introduces Landau
damping, but there are no interaction terms that would contain
static 11(q). As the consequence, if we extract the effective
interactions from the the action, we would obtain

Ũ11(q,
m) = Ũ11,a(q,
m) + Ũ11,b(q,
m), (D11a)

Ũ11,a(q,
m) = u11(q)

1 − u11(q)dyn
11 (q,
m)

= − w

q2 + q2
B + γ |
m|/q

, (D11b)

Ũ11,b(q,
m) = u2
1222(q,
m)[

1 − u11(q)dyn
11 (q,
m)

]2

= − NF,2u2
12

(
q2 + q2

B

)2(
q2 + q2

B + γ |
m|/q
)2 , (D11c)

Ũ12(q,
m) = u12

1 − u11(q)dyn
11 (q,
m)

= u12
q2 + q2

B

q2 + q2
B + γ |
m|/q

, (D11d)

Ũ22(q,
m) = u2
12

dyn
11 (q,
m)

1 − u11(q)dyn
11 (q,
m)

= u2
12

w

(
q2 + q2

B

)
γ |
m|/q

q2 + q2
B + γ |
m|/q

, (D11e)

where γ = CDwNF,1/vF,1 and where we neglected the differ-
ence between R1 and R in Eqs. (31a) and (31b).

Comparing with Eqs. (30a), (30b), and (30c) we see
that Ũ11,a(q,
m) is the same as the first term in the last
line in Eq. (30a), but other terms are different. The dif-
ference is twofold. First, all denominators are powers of
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1 − u11(q)dyn
11 (q,
m), which is the same as R1 in Eq. (31a).

The denominators in Eqs. (30a), (30b), and (30c) contain
R, which differs from R1 by 11(q,
m)22(q,
m)u2

12, see
Eq. (31a). Second, the terms in Eq. (D11e) all contain small
u11(q) in the numerator, while the corresponding terms in

Eqs. (30a), (30b), and (30c) contain the bare u11. The two
terms differ by a static 11(q): u−1

11 (q) = u−1
11 − 11(q). This

static piece is missing if we formally extend the high-energy
approach from a one-valley case, where it is valid, to the
two-valley case.
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