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Hearing the dynamical Floquet-Thouless pump of a sound pulse
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Topological pumps have many implications in physics; for instance, it enables coherent transfer of energy,
charge, and spin. However, a topological pump would fail for signal and information transmission since the
underlying adiabatic condition is unavoidably violated with rapid modulation. Here, we construct a nonadiabatic
pump in a two-color Floquet setting of topological acoustics and demonstrate a dynamical topological pumping
for delivering signal pulse in both real time (t) and propagation axis (z, synthetic time). The pulse transfer
indicates a direct detection of anomalous topological invariants of periodically driven systems. Using our fab-
ricated acoustic waveguide arrays, we demonstrate a topological pump transport of both continuous and pulsed
sound waves, proving the utility of our pump array for dynamical signal transmission and wave manipulation.
Our findings can advance both fundamentals and implementations of dynamical topological pumps in driven
systems.
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I. INTRODUCTION

Topological pumping was first proposed by Thouless in
1983, when he analyzed a quantized charge motion subject to
a slow cyclic modulation of a periodic potential [1,2]. Unlike
conventional electronic diabatic pumps, a topological pump
allows an electron wave function to flow parametrically from
one boundary into the bulk and fully emerge at the opposite
boundary after an adiabatic modulation cycle. The pumped
charge per cycle has been utilized to investigate topologi-
cal phases since it provides a direct detection of topological
invariants. Thouless pumps have found applications in reg-
ulating wave transport in various “wave” systems such as
optical [3–8], acoustic [9–13], and elastic waves [14]. For
instance, the pump has been demonstrated in photonic Fi-
bonacci quasicrystal [6], acoustic topological lattice [13], and
a magneto-mechanical topological insulator [15]. However,
adiabatic modulation required by Thouless pumps (to avoid
level crossing and scattering between instantaneous eigen-
states) poses a significant obstacle for practical applications
such as signal transmission. Recent research has shown the
possibility of overcoming this constraint in plasmonic waveg-
uides [16], where non-Hermitian engineering is employed to
achieve energy transport. Here, we address that, a general
dynamical pump framework is required to preserve quantized
transport in a temporal pump process, thus avoiding the limi-
tations of adiabatic conditions.

Relaxing adiabatic constraints in topological pumps offers
two benefits. First, it provides a method for detecting topolog-
ical numbers of driven systems. A system when evolved by
the drive, usually breaks the adiabatic condition. Thus, con-
structing a nonadiabatic pump mechanism capable of sensing
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anomalous topological numbers becomes fundamentally es-
sential. Second, from a practical perspective, nonadiabatic
pumps enable the transmission of signals and information
over a broad frequency bandwidth. This is particularly advan-
tageous in waveguide-based topological lattices [17] where
wave propagation is not limited to being monochromatic or
paraxial. Both the real time (t) and the propagation coordinate
(z) need to be considered simultaneously, rather than replacing
z with t in the quantum-optical analogy [18].

Notably, numerous artificial acoustic microstructures have
been constructed to implement the Thouless pump under
adiabatic constraints [19,20]. To achieve adiabatic pumping,
acoustic topological edge states [21] are generated in acous-
tic resonators [13] following the Aubry-André-Harper model
[11,22]. Recently, a novel approach [12] shows acoustic
topological pumping in time by varying the relative posi-
tion of bilayered metamaterials, leading to the construction
of an aperiodic acoustic crystal with a periodically driven
phason. In addition, a nonreciprocal topological pump [10]
was constructed using spatiotemporally modulated boundary
conditions in a time-varying acoustic waveguide system. In
response to the growing demand for innovative acoustic wave
manipulation, there is a pressing need for a dynamical, robust,
and nonadiabatic pump capable of manipulating sound pulse
effectively.

Here, we propose a dynamical Floquet-Thouless pump of
sound capable of nonadiabatically delivering both acoustic en-
ergy and signal in a periodically driven system. Our acoustic
waveguide array with small sheets is beneficial for sound sig-
nal transmission to confront the difficulty of pumping broad
bandwidth sound information. We achieve efficient and robust
transmission of an acoustic signal by dynamically broadcast-
ing a sound pulse from one boundary of the array to the
other and then receiving it. Remarkably, the temporal pulse
pump manifests a direct measurement of topological invari-
ants, surpassing the assumption of wave monochromaticity in
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FIG. 1. Setup, simulation, and observation of the dynamical Floquet-Thouless pump of sound pulses. (a) Schematic diagram of a
periodically modulated acoustic waveguide array in a two-color Floquet setting. The inset shows a fabricated acoustic array sample aligned by
a bunch of sheets of acrylic plates. (b) The near-field FEM simulation of the pulse pump process at different physical times. The input sound
has a central frequency of 2950 Hz with a bandwidth of 500 Hz. The movie of the pulse pump is given in the Supplemental Mataerial [28].
(c) The experimental observation of the final output acoustic pulse intensity at different waveguide, corresponding to the first, fifth, and tenth
waveguide in the simulation. The input sound pulse has a frequency at 2900 Hz.

topological lattices. Our results validate the accessibility and
practicability of our proposed topological pump of signal and
information, exceeding the limits of an adiabatic pump for
energy or charge.

II. FLOQUET-THOULESS PUMPING
FOR ACOUSTIC PULSE

Figure 1(a) depicts our proposed acoustic waveguide ar-
ray, based on an extended Floquet Rice-Mele model that
was first proposed by Pan et al. [23], to study the topolog-
ical pump of anomalous Floquet states. The array consists
of ten curved acrylic waveguides with a height of 20 mm
and variable widths ranging from 26.6 to 33.4 mm, with a
manufacturing error of 0.1 mm. At the top and bottom of
the array, smooth, transparent acrylic plates are put in to cre-
ate a two-dimensional closed space. The soundproof sponge
completely surrounds the waveguide array, shielding it from
external acoustic disturbance. A sinusoidal signal at 2890 Hz
is generated using a signal generator, amplified by a power
amplifier, and sent to the first waveguide via a speaker. The
sound intensity in the near field of the array is measured using
a microphone. The inset shows the experimental array sample.

While the concept of pumping energy of a microwave
is conceivable [23], the temporal pumping of sound pulses
considering both the physical time (t) and the propaga-
tion direction (z) remains intriguing and demanding. To
investigate this, we generated a sound pulse (2950 Hz cen-
ter frequency, 500 Hz bandwidth) at the first waveguide.
Figure 1(b) illustrates simulation results of the acoustic pres-
sure field distribution as the pulse is pumped through the array
over a real time range of 8–40 ms. Notably, we observed
a pump cycle of Tp = 32 ms, corresponding to the design
adiabatic length of T = 5.5 m. Five distinct steps of the pulse
pumping process at different real times are visualized.

To further validate the Floquet-Thouless pump, we per-
formed experimental measurements. A 2900 Hz acoustic
pulse is launched at the initial end of the waveguide, and the

received signal is analyzed at positions of the first, fifth, and
tenth waveguides [Fig. 1(c)]. As expected, the majority of the
pulse is collected from the tenth waveguide. Notably, during
pulse propagation, a fraction of the signal travels through
the air and is captured by the microphone [gray boxes in
Fig. 1(c)], while the rest is successfully pumped through the
structure to the end of the array. We notice that the incident
sound pulses are temporal in real time, as the pulses evolve
along the propagation direction (z) in a manner akin to how
they would over time (t). Thus, in the quantum-optical anal-
ogy, this pulse is also “temporal” in z.

To comprehend the temporal pump dynamics in the array,
we must go deep into the full form of the acoustic wave
equation. The incident wave is coupled into the waveguide
forming a spoof acoustic surface wave propagating along the
z direction. In our setup [Fig. 1(a)], sound propagation dynam-
ics are described by a single-variable acoustic wave equation
in terms of the sound pressure fluctuation (p),

∇2 p − 1

c2
0

∂2 p

∂t2
+ δ

c4
0

∂3 p

∂t3
= − γ

ρ0c4
0

∂2 p2

∂t2
. (1)

This equation is known as the Westervelt equation [24],
with c0 = √

∂ p/∂ρ̃ being the speed of sound from the
first-order term of the Taylor expansion of the equation
of state p = p(ρ̃ ), and γ being the nonlinearity coefficient
from the second-order expansion. δ represents sound dif-
fusivity induced by viscosities and heat. Given the weak
small-amplitude pressure fluctuation (p) in our setting, the
linearization of Eq. (1) suffices to describe sound propagation
(i.e., γ = 0). See the simulation result in Fig. 1(b) for nontriv-
ial temporal dynamics when the real time t is retained.

To determine the topological protection of the pulse pump-
ing, we decompose the linearized Westervelt equation into a
topological tight-binding model under monochromaticity and
paraxiality criteria. Considering a monochromatic pressure
wave p = p̃e−iωt with frequency ω, propagating mainly along
the z direction, we approximate it as p̃ = p̃z(x, z)eikzz with
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wave number kz. By inserting this ansatz into Eq. (1), we
derive a paraxial wave equation in terms of p̃z:

i∂z p̃z = − ∂2
x

2kz
p̃z − 1

2kz

(
ω2

c2
0

− k2
z + i

ω3δ

c4
0

)
p̃z, (2)

where only the two-dimensional space (x, z) is considered,
and the second derivative of z is disregarded under the paraxial
condition. The acoustic wave propagation becomes equivalent
to the Schrödinger equation for longitudinal monochromatic
sound pressure when treating the propagation direction z as
a synthetic time, using the quantum-optical analogy [25].
Notice that the real time t is embedded in the parameters
associated with the sound frequency ω. Detailed derivations of
the acoustic Schrödinger equation are given in the Appendix,
Sec. 3.

Assuming weak coupling between the curved waveg-
uides, where the overlap integrals vanish for |m−n| > 1,
Cn,m = 0, we arrive at the tight-binding-approximated (TBA)
Schrödinger equation, considering only nearest-neighbor
couplings:

i∂zψi = βi(z)ψi + κi+1,i(z)ψi+1 + κi−1,i(z)ψi−1, (3)

where βi(z) = β0 + 
β(z)(−1)i with β0 being the averaged
complex propagation constant and 
β(z) = 
β0 sin(�z)
the staggered on-site potential. Additionally, κi+1,i = κ0 +

κ (z)(−1)i with κ0 being the averaged coupling strength
and 
κ (z) = 
κ0 cos(�F z) cos(�z) the staggered coupling
strength. Notice that both on-site potentials and coupling
strengths depend on the real frequency ω of the monochro-
matic sound.

In our Floquet setting, two modulation frequencies are de-
ployed on the staggered couplings: Floquet frequency �F =
2π/TF (Floquet cycle TF ) and adiabatic frequency � = 2π/T
(adiabatic cycle T ). Only adiabatic modulation is applied to
the staggered on-site potential 
β(z). The modulation fre-
quencies and cycles relate to the synthetic time z of the unit in
length, not real time t . To achieve an anomalous topological
pumping, we require two driven frequencies in two-color Flo-
quet engineering [23]: the first drive establishes an anomalous
Floquet steady state, and the second drive steers it in an
adiabaticlike manner. The topological number associated with
the opening of an anomalous π gap was discussed [23]. To
be specific in our two-color setting, the condition T � TF

is required; the adiabatic cycle is larger than the Floquet
cycle. Here, we simulate the condition T = 10TF = 5.5 m
[Fig. 1(a)], with the propagation constants and the coupling
strengths of the array discussed detailed in Fig. 5 in the
Appendix.

In conventional notation, the adiabatic condition neces-
sitates an extremely slow evolution of the system in time
t , ensuring it remains within the instantaneous eigenstates
without scattering into adjacent states. In the framework of
the quantum-optical analogy (where t is analogous to z), adia-
baticity enforces a slow evolution along the propagation axis z
(the synthetic time). In our setup, the Floquet-Thouless pump
for sound pulses clearly violates the adiabatic condition in two
aspects: in real time t and synthetic time z. The adiabaticity
in t is compromised due to pulse propagation encompassing
a range of sound frequencies, while the adiabatic condition
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FIG. 2. Observation of the Floquet-Thouless pump in acoustic
waveguide arrays. (a) The FEM simulation of the pump on the array.
(b) The measured near-field distribution of the normalized acoustic
field at a frequency of 2890 Hz. (c) The total intensity decreases ex-
ponentially as a function of the propagation distance due to the sound
diffusivity. (d) The nonadiabatic pump channel is constructed in the
quasienergy spectrum based on our Floquet-Thouless pump model.
The inset shows the pumped topological number, corresponding to
the anomalous π modes.

for z is likewise disrupted by rapid Floquet modulation in
the curved waveguide configuration. It is noteworthly that
synthetic time z for the Floquet pumping presented in this
work is different with a conventional spatial pump. However,
the spatial pump in propagation direction is utilized to mimic
the Floquet pump in real time.

III. NEAR-FIELD MEASUREMENT

To demonstrate the near-field distribution of the
Floquet-Thouless pump, we design a specific acoustic
array and compare simulation results with experiments,
as shown in Fig. 2. According to practical waveguide
structure (see Appendix, Sec. 2), we estimate the coupling
amplitudes κ0 ≈ 5.236 (m−1), 
κ ≈ 0.897 (m−1) and the
on-site potentials β0 ≈ 65.62 (m−1), 
β0 ≈ 11.17 (m−1).
Figure 2(a) illustrates our finite-element simulation of the
pumping process. When the sound wave with a frequency
of 2900 Hz is ejected from the first waveguide, the acoustic
energy of the sound wave is mostly pumped into the tenth
waveguide after a cycle of T . Figure 2(b) shows the observed
pump process, as the sound travels from the first waveguide
to the tenth, after completing a cycle of T , consistent with our
theoretical analysis and simulation of the nonadiabatic pump
model. Incidentally launching the wave from from the fifth
waveguide does not excite the pump channel, demonstrating
the inefficiency of pumping via the nontopological Floquet
bulk (see Appendix, Fig. 6).

A particular emphasis is placed on the sound attenuation
along acoustic waveguides. To provide a clear pattern of the
acoustic pump dynamics, we normalize the experimental data
at each propagation distance, eliminating attenuation effects.
The total damped intensity in terms of the propagation dis-
tance is shown in Fig. 2(c), where red circles represent the
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FIG. 3. Transmission and dispersion of pumping acoustic pulses. (a) Transmission rate of monochromatic acoustic waves at frequencies
ranging from 2200 to 3500 Hz. The optimum transmission of the pump channel is close to one at 2850 Hz. (b) Two sound pulses are temporally
pumped, having a bandwidth of 500 Hz (red curve) and 1000 Hz (blue curve), respectively, in the central frequency of 2950 Hz.

sum of the acoustic wave magnitudes in each column along
propagation, fitted to a logarithmic linear curve. This curve
indicates rapid decay of acoustic energy loss during propaga-
tion. Therefore, we can safely say that the sound attenuation
does not ruin the pump pattern. Additionally, we examine that
the experimental data and simulations matched well at the
output of the last Floquet cycle (see Appendix, Fig. 7).

The topological number pumped in our Floquet-Thouless
pump shares similarities with the adiabatic pump. For a de-
tailed comparison of pumping zero modes and π modes, see
the Appendix, Figs. 8 and 9. When the Floquet driving (TF )
is removed, the Floquet Rice-Mele model [Eq. (3)] transforms
into its adiabatic version [26], capable of pumping zero modes
[27]. Nevertheless, our Floquet-Thouless model facilitates
the transfer of anomalous π modes inherent to periodically
driven systems. Furthermore, we can clarify our pump model
by comparing it to conventional quantum pumping, such as
the Aubry-André-Harper (AAH) model. The AAH model is
characterized as a quasiperiodic and adiabatic model, whereas
our Floquet-Thouless pump displays periodic behavior but
is nonadiabatic. Figure 2(d) shows the quasienergy spectrum
featuring an anomalous π mode, elucidating the construction
of a nonadiabatic pump channel in a two-color Floquet setting.

IV. DISCUSSIONS

We investigate the pump transmission rate of our acoustic
array by sending a continuous sound wave. Figure 3(a) shows
that the array maintains a high transmission rate across a
wide frequency range. The maximum rate reaches 86.5% at
2850 Hz, while the lowest rate remains at 13.9% at 2200 Hz.
This finding provides insight into the temporal pulse pump
observed in Fig. 1(b).

The pulse, comprising monochromatic components with
different pump transmission, experiences variations in the
coupling strength and on-site potentials with the sound fre-
quency. This variation in parameters is likely to distort the
pulse shape during propagation by altering the quasienergy
band dispersion. However, our setup, regardless of the
quasienergy band dispersion, maintians a fixed pumping cycle
at T. This holds true as long as the coupling configurations
support a topological pump channel in the spectrum [see the
band structure in Fig. 2(d)]. Consequently, our pump effec-
tively preserves signal pulse profiles after one propagation
cycle, demonstrating its effectiveness in signal transmission.

To evaluate the transmission performance for different
pulse durations, we generate pulses with a center frequency
of 2950 Hz and bandwidths of 500 and 1000 Hz. Figure 3(b)
depicts pulse pumping results after a propagation time Tp =
32 ms for the bandwidth 1000 Hz, Tp = 33 ms for the band-
width 500 Hz. The broad pulse is effectively pumped while
maintaining reasonable signal shape fidelity at a high level.
In contrast, the narrow pulse experiences severe waveform
distortion, consistent with the lower transmission rate in
Fig. 3(a). Importantly, this distortion is attributed to transmis-
sion efficiency rather than band dispersion. Thus, achieving
coherent signal pulse pumping in our array requires a rela-
tively smooth and frequency-independent transmission rate.

Figure 4 compares the efficiency of the Floquet-Thouless
pump and the adiabatic pump, with simulations conducted
across various sound frequencies and structural parameters.
The Floquet-Thouless pump exhibits effectiveness at both low
and high frequencies, enabling nonadiabatic signal transfer
and outperforming the adiabatic pump. Increasing the num-
ber of Floquet cycles in a fixed adiabatic cycle enhances
nonadiabatic transmission efficiency at high frequencies, as
evidenced at 3700 Hz [Fig. 4(b) and Appendix Fig. 10].
Constraints on sound wave propagation in the array mani-
fest at low frequencies due to mode mismatch, while higher
frequencies encounter limitations imposed by the cutoff fre-
quency, resulting in leakage into free space. However, the
anomalous π mode lies in its ability to serve as a versa-
tile platform for carrying higher-frequency signals during the
nonadiabatic pump process—a capability not realized in con-
ventional pumps [see Fig. 4(c)]. The physical mechanism is
that the Floquet modulated waveguides provide more chances
to couple and pump the sound in our Floquet-Thouless pump.
The detailed discussions are presented in the Appendix,
Sec. 9. Therefore, the Floquet-Thouless pump allows for
more efficient signal and energy transfer across a broader
frequency regime, exceedingly released from the adiabatic
constraint.

Direct measurement of the topological number in our
system relies on the temporal pumping of the signal, dis-
tinguishing it from the conventional measurement based on
steady-state pumping of plane waves (continuous wave).
While steady-state measurements involve transmittance deter-
mination, temporal measurements require integration in the
time domain. Utilizing a temporal pulse pumping process
offers a more intuitive approach to identify and quantify the
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for Floquet-Thouless pumps (red and cyan curves). (b), (c) The near-field simulations for nonadiabatic and adiabatic pumps at frequency
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topological invariant. Additionally, robustness against defects
was thoroughly assessed in the Appendix, Figs. 11 and 12.

V. CONCLUSION

In short, we have constructed and observed a dynami-
cal Floquet-Thouless pump in an acoustic waveguide array
with two-color Floquet modulations. Through extensive sim-
ulations and experiments, surpassing the quantum-optical
analogy, we achieved a nonadiabatic dynamical topological
pumping of both continuous and pulsed sound waves. Our
findings of pumping signals and information open up a new
avenue for advanced acoustic and optical wave manipulation
in topological lattices, with potential applications in wave-
length division multiplexing and data transmission.
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APPENDIX

1. Numerical simulations

The finite-element simulations for this work were
performed using the commercial software COMSOL

MULTIPHYSICS. Simulation by the acoustic module and
frequency domain calculations were used to obtain a
stable sound pressure field. In the simulation, the acoustic
impedance between the waveguides sheet and air is large,
thus the sheet region is set as an interior hard boundary and
the peripheral environment of the structure is set as a plane
wave radiation boundary condition. The sound pressure field
of the tenth Floquet cycle of the tenth waveguide and the
sound pressure field of the first Floquet cycle of the first
waveguide are integrated separately, and the transmission is
derived after the ratio. Our acoustic pulse signal is obtained

from the acoustic module in time domain calculation, a probe
is placed in the middle of the first waveguide incident port and
the tenth waveguide end sheet spacer, respectively, and the
sound pressure intensity is recorded to obtain the results in the
main text.

2. Sample preparation and acoustic field measurements

The height of the small sheets comprising the waveguide
are uniformly 20 mm and their thickness is 2 mm, while the
width variation of these sheets in an adiabatic cycle is be-
tween 26.6 and 33.4 mm, with the manufacturing error being
0.1 mm. Smooth, transparent acrylic plates with big scales are
placed at the top and bottom of the waveguide array to create
a two-dimensional closed environment. Then, the waveguides
are put in an enclosed environment with a temperature of
20 °C, an air density of 1.21 kg/m3, and a sound speed of
343 m/s, and are surrounded by a sound insulation sponge.
The overall dimensions of the array are 5.5 m in length and
0.65 m in breadth. We use a signal generator (AFG1022,
Tektronix) to generate a sinusoidal wave signal, which is
then amplified by a power amplifier (CPA2400, SinoCinetech)
to drive the speaker facing the first waveguide. The micro-
phone (378B02, PCB Piezotronics) is then used to scan the
waveguide array and record its sound pressure intensity at
each point.

3. Derivation from Westervelt equations
to TBA Schrödinger equation

We would like to derive the governing wave equation for
the sound propagation in our topological acoustic lattice com-
posed of acrylic sheets in the air at room temperature (T =
20◦C). We suppose that our acoustic lattice is an isotropic and
perfectly elastic, yet spatially inhomogeneous medium. There
are three primary variables that describe acoustic dynamics
[24]: the particle velocity u, the mass density ρ, and the
pressure P. As the three variables have values that fluctuate
around a mean, we can take the small-amplitudes assumption.
This assumption indicates that they are typically decomposed
into the average values, and fluctuating components, in which
the particle velocity is small, u = u0 + ũ, and there are only
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small perturbations (fluctuations) to the equilibrium density
and pressure, ρ = ρ0 + ρ̃, P = P0 + p. For our acoustic lat-
tice system, we assume the mean value of the velocity is
zero, u0 = 0, the ambient density of the undisturbed air is
ρ0 = 1.21kg/m3, and the ambient pressure of the undisturbed
air is P0 = 1 atm.

Essentially, the acoustic wave is a pressure fluctuation. A
change in local pressure leads to the immediate compres-
sion of fluid, resulting in subsequent pressure changes. Our
acoustic lattice propagates a sound wave as a result of this
mechanism. Therefore, instead of considering the full equa-
tions of the three variables, we just discuss the single-variable
acoustic wave equation for the sound pressure fluctuation (p),
which is given by the Westervelt equation:

∇2 p − 1

c2
0

∂2 p

∂t2
+ δ

c4
0

∂3 p

∂t3
= − γ

ρ0c4
0

∂2 p2

∂t2
, (A1)

where c0 = √
∂ p/∂ρ̃ is the speed of sound from the first-

order term of the Taylor series expansion of the equation
of state p = p(ρ̃ ), and γ is the nonlinearity coefficient from
the second-order term of the Taylor series expansion. The
symbol δ is the sound diffusivity that has two contributions
from the viscosities and heat conditions. The derivations of
the Westervelt equation from the equations of motion, con-
tinuity equation, and constitutive equation can be found in
Ref. [24]. Our starting point is the Westervelt equation, from
which we would derive the Schrödinger-like coupled-mode
equations.

To further simplify the preceding equation, we must take
into account the specific configuration of the acoustic lattice.
The first is that the acoustic nonlinearity can be disregarded
( ∂2 p2

∂t2 ≈ 0) since the small-amplitude pressure is weak, and the
linearization of the equation adequately describes the sound
propagation,

∇2 p − 1

c2
0

∂2 p

∂t2
+ δ

c4
0

∂3 p

∂t3
= 0. (A2)

Second, we simplify this linear Westervelt equation by the
slow-varying envelope approximation. Consider a monochro-
matic pressure wave p = p̃e−iωt with the frequency ω, so that
the wave equation is obtained:

∇2 p̃ +
(

ω2

c2
0

+ i
ω3δ

c4
0

)
p̃ = 0. (A3)

Then, we assume the sound pressure mainly propagates
along the z direction, thus we can approximate the pressure
as p̃ = p̃z(x, y, z)eikzz with the wave number kz. We calcu-
late each term in Eq. (A3) and present the procedure in the
following:

∇2 p̃ = (
∂2

x + ∂2
y + ∂2

z

)
p̃z(x, y, z)eikzz

= eikzz
(
∂2

x + ∂2
y + ∂2

z + 2ikz∂z − k2
z

)
p̃z(x, y, z)

= eikzz
(
∂2

x + ∂2
y + 2ikz∂z − k2

z

)
p̃z(x, y, z),(

ω2

c0
2

+ i
ω3δ

c0
4

)
p̃ = eikzz

(
ω2

c0
2

+ i
ω3δ

c0
4

)
p̃z(x, y, z),

where, in the last step of the first expression, we take the
slow-varying envelope approximation, |∂2

z p̃z| � |2ikz∂z p̃z|.
Therefore, we obtain the paraxial wave equation

i∂z p̃z = −
(
∂2

x + ∂2
y

)
2kz

p̃z − 1

2kz

(
ω2

c0
2

− k2
z + i

ω3δ

c4
0

)
p̃z. (A4)

In the quantum-optical analogy (z → t), the acoustic
wave propagation along the z direction is described by
the Schrödinger-type paraxial equation for the longitudinal
monochromatic sound pressure. In this sense, the evolu-
tion of a sound beam in space resembles the wavefunction
of an electron, with z replacing the real time t . The first
term in the right-hand side of Eq. (A4) mimics the kinetic
energy term, while the second term mimics the potential
term [V (x, y, z) = − 1

2kz
( ω2

c0
2 − k2

z + i ω3δ
c0

4 )] in the Schrödinger
equation.

Now, let us derive the coupled-mode equations from the
paraxial wave equation of the Schrödinger type, Eq. (A4).
Notice that the speed of sound c0 = √

∂ p/∂ρ̃ varies depend-
ing on the substance; for instance, in air c0,air = 343 m/s,
whereas in an acrylic sheet of polymethyl methacrylate
c0,acr = 1430 m/s. We investigate the periodic distribution
of these acrylic sheets in space; the modulation of speed
of sound in the array of location (x, z), is then analytically
determined:

c0 = c0(x, z) =
{

c0,air, (x, z) ∈ �air

c0,acr, (x, z) ∈ �acr.
(A5)

For our acoustic lattice configuration, we only consider
the two dimensions of the space (x, z). Notice that in our
COMSOL MULTIPHYSICS finite-element-method (FEM) simula-
tion, we set the rigid boundary for sound pressure in solids for
replacing the acrylic sheets; hence, the speed of sound in the
region �acr occupied by these sheets is approximately close
to infinity.

Let us examine the governing equation [Eq. (A4)]. Con-
sidering the periodicity of the sound speed c0 = c0(x, z)
[Eq. (A5)], we can consider that the potential term is given by

V (x, z) = − 1

2kz

(
ω2

c2
0

− k2
z + i

ω3δ

c4
0

)
=

∑
n

V0[x − xn(z)],

(A6)

where xn is the location of the nth curved acoustic waveguide
in an array and the center trajectory of the waveguide is z
dependent, xn = xn(z). V0 is the fundamental potential of the
single curved acoustic waveguide.

On each curved waveguide, we assume that the fundamen-
tal acoustic guiding modes are given by W0(x − xn(z), z) (see
Supplemental Material, movie V-6 [28]; the cw guiding wave
in a curved waveguide), which can be utilized as a normalized
basis for constructing the Wannier functions. Therefore, the
longitudinal monochromatic sound pressure p̃z can be decom-
posed as follows:

p̃z =
∑

n

ψn(z) W0(x − xn(z), z) =
∑

n

ψnW0,n. (A7)
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Substituting Eq. (A7) into Eq. (A4), let us perform the
following calculations:

i∂z p̃z =
∑

n

(i∂zψn) W0,n + ψn(i∂zW0,n),

− ∂2
x

2kz
p̃z =

∑
n

ψn

(
− ∂2

x

2kz
W0,n

)
[
− 1

2kz

(
ω2

c2
0

− k2
z + i

ω3δ

c4
0

)]
p̃z

=
[
− 1

2kz

(
ω2

c0
2

− k2
z + i

ω3δ

c0
4

)∑
n

ψnW0,n

]
.

so that the wave equation is given by∑
n

(i∂zψn) W0,n =
∑

n

−ψn

(
i∂zW0,n + ∂2

x

2kz
W0,n

)

− 1

2kz

(
ω2

c0
2

− k2
z + i

ω3δ

c4
0

) ∑
n

ψnW0,n.

We take the integration by
∫

dx W ∗
0,m on the left-hand side

of the equation,∫
dx W ∗

0,m

(∑
n

(i∂zψn)W0,n

)

=
∑

n

(i∂zψn)
∫

dx W ∗
0,mW0,n

=
∑

n

(i∂zψn)
∫

dx W ∗
0 (x − xm(z), z)W0(x − xn(z), z)

=
∑

n

(i∂zψn)δm,n = i∂zψm,

where we use the orthogonality of the Wannier basis. Using
the same trick, we also simplify the wave equation and obtain

i∂zψm =
∑

n

Cn,mψn. (A8)

We take the integration by
∫

dx W ∗
0,m on the right-hand side

of the equation,

∫
dx W ∗

0,m

[∑
n

−ψn

(
i∂zW0,n + ∂2

x

2kz
W0,n

)
− 1

2kz

(
ω2

c2
0

− k2
z + i

ω3δ

c4
0

)
ψnW0,n

]

=
∑

n

⎡
⎣−

∫
dx W ∗

0,m

(
i∂zW0,n + ∂2

x

2kz
W0,n

)
− 1

2kz

⎛
⎝ ω2

c2
0 − k2

z + i ω3δ

c4
0

⎞
⎠ ∫

dx W ∗
0,mW0,n

⎤
⎦ψn

=
∑

n

[
−

∫
dx W ∗

0,m

(
i∂z + ∂2

x

2kz

)
W0,n − 1

2kz

(
ω2

c2
0

− k2
z + i

ω3δ

c4
0

)
δm,n

]
ψn =

∑
n

Cn,mψn.

Then, we obtain the coupling coefficients between the acoustic waveguides

Cn,m = − 1

2kz

(
ω2

c2
0

− k2
z + i

ω3δ

c4
0

)
δm,n −

∫
dx W ∗

0,m

(
i∂z + ∂2

x

2kz

)
W0,n. (A9)

Assuming that the coupling between the curved waveg-
uides is weak, the overlap integrals vanish for |m−n| >

1, i.e., Cn,m = 0. In other words, we disregard the high-
order couplings except for the nearest-neighboring coupling.
Consequently, we arrive at the tight-binding-approximated
Schrödinger equation

i∂zψm =
∑

n

Cn,mψn

= Cm,m ψm + Cm+1,m ψm+1 + Cm−1,m ψm−1

= βm(z)ψm + κm+1,m(z)ψm+1 + κm−1,m(z)ψm−1,

(A10)

where the complex propagation constant and the nearest-
neighboring coupling coefficients are explicitly given by

βm(z) = − 1

2kz

(
ω2

c2
0

− k2
z + i

ω3δ

c4
0

)

−
∫

dxW ∗
0,m

(
i∂z + ∂2

x

2kz

)
W0,m,

κm+1,m(z) = −
∫

dx W ∗
0,m

(
i∂z + ∂2

x

2kz

)
W0,m+1,

κm−1,m(z) = −
∫

dx W ∗
0,m

(
i∂z + ∂2

x

2kz

)
W0,m−1.

We rewrite the TBA Schrödinger equation in abbreviated
form:

i∂zψi = βi(z)ψi + κi+1,i(z)ψi+1 + κi−1,i(z)ψi−1. (A11)

Taking into account our specific setup of the acoustic
waveguide array [see Fig. 1(a) in the main text], we may
design the coupling coefficients and propagation constant:

βi = β0 + (−1)i
β(z),

κi+1,i = κ0 + 
κ (z)(−1)i,

κi−1,i = κ0 + 
κ (z)(−1)i−1,

where β0 = (βr − i α
2 ) is the averaged complex propagation

constant and κ0 is the averaged coupling strength between
the waveguides. Note that α is the attenuation factor relating
to the sound diffusivity (δ) as presented in the Westervelt
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equation (A1). The staggered terms are provided by 
β(z) =

β0 sin(�z), 
κ (z) = 
κ0 cos(�F z) cos(�z), in which the
modulation [the Floquet frequency �F = 2π/TF (correspond-
ing to Floquet cycle TF ) and the adiabatic frequency � =
2π/T (corresponding to adiabatic cycle T )] are introduced by
acoustic waveguide fabrication.

Compared to the second quantization formulation of
Eq. (A11), the corresponding TBA Hamiltonian is obtained:

H =
∑

i

[β0 + 
β(z)(−1)i]c†
i ci

+
∑

i

[κ0 + 
κ (z)(−1)i]c†
i+1ci + H.c., (A12)

where i is the ith waveguide in the array and ci, c†
i are

the corresponding destruction and creation operators of the
ith waveguide mode. Figure 2(b) depicts the quasienergy
band structure of the Floquet-Thouless Hamiltonian, which
is solved by the quasienergy approach in the Floquet-Bloch
theorem [23].

Notably, the tight-binding Hamiltonian is derived from
the Westervelt equation (A1) using the approximations of
monochromicality, paraxiality, and linearity. With a sound
pulse input, however, the monochromic assumption is invalid,
so we must return to simulate the dynamics of the linear
Westervelt equation (A2), which is the starting point of our
FEM simulation of the dynamical Floquet-Thouless pump.

4. The coupling strengths and propagation constants

In order to obtain the coupling strength and propa-
gation constant in our model, we calculate the coupling
strength as a function of waveguide spacing d varying
from 40 mm to 120 mm, see Fig. 5(a). The coupling
strength is extracted from the sound transfer length be-
tween two neighboring waveguides. In our experiment,
we selected waveguide spacings ranging from 45 mm
to 85 mm. We notice that the sound propagation con-
stant depends on the waveguide width. As shown in
Fig. 5(b), we calculate the propagation constant for widths
varying from 13 mm to 40 mm. In our simulations, our waveg-
uide width ranges from 27 mm to 33 mm.
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FIG. 5. The propagation constants and coupling strengths as a
function of the spacing d between two neighboring waveguides and
waveguide width w. (a) For the coupling strengths vs the gap d , we
choose the waveguide spacing ranging from 45 to 85 mm. (b) The
propagation constant vs the clapboard width w; in our simulations,
our waveguide width varies from 27 to 33 mm.

5. Simulation and experiment of incident acoustic wave at the
middle position of the initial end of the waveguide at 2900 Hz

To verify the effect of the system on acoustic pumping, as
a comparison, we incident an acoustic wave with a frequency
of 2900 Hz at the middle position of the initial end of the
waveguide, and the simulation and experimental results are
shown in Figs. 6(a) and 6(b). From the results, it can be seen
that the incident from the middle position does not produce
the effect on acoustic pumping.

6. Comparison between experimental data
and FEM simulation at the output

To investigate the pumping capability of the system over
a broad acoustic frequency range, we conduct experimental
measurements and finite-element simulations at two input
frequencies of 2850 and 2950 Hz, respectively. As shown in
Figs. 7(b) and 7(c), the experimental data and simulations at
the output of the tenth Floquet cycle [as shown in Fig. 7(a)]
are well matched.

7. Comparisons between pumping zero modes and π modes

The Rice-Mele model is implemented for pumping zero
modes by modulating the waveguide width with frequency
� = 2π/T . As shown in Fig. 8(a), the modulation of the
width can be described in terms of the propagation constant;
in our simulations, our waveguide width varies from 27 to 33
mm. The simulation result depicted in Fig. 8(a) demonstrates
that the acoustic energy can be steadily pumped from one side
to the other.

Similarly, as depicted in Fig. 8(b), we also designed the
π -mode pumping in the array.

8. Thouless pumping of acoustic pulse signal

Figure 9(a) shows a visual comparison of the difference
between the π mode and zero modes for pulse signal trans-
mission. Figure 9(b) visually shows its pumping process for
a pulse signal. Supplemental Material movie V-4 shows the
dynamical pumping over time.

Sim. @2900Hz

Exp. @2900Hz

Max

0

= 5.5
(a)

(b)

0

1

input

input

z

FIG. 6. Simulation and experiments of acoustic waveguide ar-
rays with incident acoustic waves in the middle. (a) Simulation of
the propagation effect of the incident acoustic wave in the middle
of the waveguide array at 2900 Hz. (b) Experimental measurements
of waveguide arrays with intermediate incident acoustic wave propa-
gation at 2900 Hz, with the adiabatic period T = 5.5 m and Floquet
period TF = 0.55 m.
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10th Floquet cycle 

Exp. @2850Hz Sim. @2850Hz Sim. @2950HzSExp. @2950Hz

(a) (b) (c)
=0.55 m =0.55 m

FIG. 7. The experimental data and simulations match well at the output of the last Floquet cycle. (a) The array structure of the tenth Floquet
cycle. (b) Comparison between the experimental data and FEM simulation at an input sound frequency of 2850 Hz. (c) Comparison between
the experimental data and FEM simulation at an input sound frequency of 2950 Hz.

9. Transmission for different Floquet cycles TF

in an adiabatic cycle T

In the main text, Fig. 4 illustrates that adiabatic evolution
at low frequency benefits from longer array lengths for both
zero and π mode pumps. However, the π mode pump at
high frequency demonstrates nonadiabatic signal transfer over
a broader frequency range, providing a distinct advantage
over the zero-mode pump. The physical mechanism of the
nonadiabatic pump is that, with the frequency modulation
by the low-frequency adiabatic modulation and the high-
frequency Floquet modulation, as depicted in Fig. 10(a), the
fast Floquet modulation serves as the carrier wave in radio
telecommunications, while the low-frequency modulation
serves as the signal wave. The carrier wave frequency added
into the final modulated result allows for conveying the signal
pulse with a greater transmission bandwidth. To illustrate the
mode evolution clearly, we calculate the pump transmission
for an increasing number of Floquet cycles from n = 4 to 10,
as shown in Figs. 10(c)–10(e), within a fixed adiabatic cycle
T = 3.5 m.

As reference, we also present the adiabatic pump in
Fig. 10(b). The evident high-frequency nonadiabatic pump
efficiency arises as the π mode is efficiently supported
and subsequently transported from the first waveguide to

the tenth, as shown in Figs. 10(d) and 10(e). In contrast,
the adiabatic pump efficiency decreases with increasing the
Floquet cycles due to the violation of the adiabatic condition
in scattering by the modulated waveguides. Specifically, for
Floquet cycle number n = 4 in Fig. 10(c), we find that the
transmission efficiency for both the low-frequency adiabatic
pump and the high-frequency nonadiabatic pump is low
because the driven condition of the π mode is unsatisfied, and
instead, the zero mode is scattered. Near-field distributions
at 2.9 and 3.7 kHz are shown in Figs. 10(f)–10(i), further
illustrating this point and demonstrating efficient pumping
for the high-frequency π mode with increasing Floquet
cycle number from n = 6 to 10, while at low frequencies,
scattering leads to a decrease of transmission efficiency
simultaneously.

From the perspective of the waveguide structure charac-
teristic, we can further understand the nonadiabatic Floquet
pump. The transmission peak at 2.9 kHz for the adiabatic
pump in Fig. 10(b) constrasts with the difficultly in pump-
ing sound at 3.7 kHz. The physical mechanism involves
periodic sheets creating acoustic waveguides that strongly
constrain sound propagation along the waveguides while of-
fering weaker coupling between adjacent waveguides for
higher-frequency incident sound.
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Floquet cycle ( ): creating anomalous Floquet π mode steady states
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adiabatic cycle ( )
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FIG. 8. Comparisons between pumping zero modes and π modes. (a) The Thouless pump (zero modes) channels in the quasienergy
spectrum and the FEM simulation of the adiabatic Thouless pump (i.e., zero-mode pump) based on the Rice-Mele model. (b) The Floquet-
Thouless pump (π modes) channels in the quasienergy spectrum and the FEM simulation of the Floquet-Thouless pump (i.e., π mode pump)
on the acoustic waveguide array.
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FIG. 9. Adiabatic Thouless pumping of the acoustic pulse signal.
(a) Comparison of zero-mode pumping and Floquet π mode for pulse
signal transmission. (b) Simulation diagram of a pulse pumping in
the zero-mode pump channel.

Consequently, sound at 2.9 kHz couples more easily be-
tween adjacent waveguides and pumps to the tenth waveguide
in the adiabatic period T = 3.5 m, as shown in Fig. 10(f).
However, at 3.7 kHz, the sound remains tightly bound to its
original waveguide, with minimal coupling occurring only
midway, leaving insufficient distance to pump the sound to
the tenth waveguide within T = 3.5 m, as shown in Figs. 10(f)
and 10(l).

Introducing Floquet modulation with the Floquet cycle
TF = T/4 decreases the transmission for both low adiabatic
frequency and high nonadiabatic frequency, as shown in
Fig. 10(c). This occurs because the adiabatic condition is
disrupted for the adiabatic pump, and the π mode is not
yet excited. This process can be observed in the near fields
[Fig. 10(g)] and in the waveguide structure [Fig. 10(k)].
Increasing the modulation to a Floquet cycle of TF = T/6 ef-
fectively excites the π mode at incident frequencies of 2.9 and
3.7 kHz, resulting in high pumping transmissions [Fig. 10(d)].

In the adiabatic frequency region, the near field presented
in Fig. 10(h) shows that sound at 2.9 kHz begins pumping
in the tremble region 1 [outlined in Fig. 10(l)], traversing
through tremble region 2 to be entirely pumped to the other
edge over T = 3.5 m. Conversely, in the nonadiabatic fre-
quency region, sound at 3.7 kHz faces difficultly in pumping
within the first tremble region due to short tremble distance
and strong binding. However, it is quickly pumped to the other
edge in tremble region 2, as shown in Fig. 10(h), differing
from the adiabatic pump in Fig. 10(f).

To achieve the Thouless pump in shorter lengths, we in-
crease the tremble strength to the Floquet cycle of TF = T/10.
This enhances the efficiency of the nonadiabatic pump at
high frequencies, shortening the pump and transfer length,
as shown in Fig. 10(i). Comparing the practical waveg-
uide structures in Figs. 10(j)–10(m), we observe that the
Floquet modulation provides more coupling and pumping
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T = 3.5m, T = T / 10
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(c)
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(e)
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@2900Hz
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(h)

(i)

Sim.

@2900Hz

Sim.

@3700Hz

(g)

(j)
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(l)

(m)

adiabatic modulation Floquet modulation frequency modulation(a)

Sound input

Sound input

Sound input

Sound input

Sound input

Sound input
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Sound input

FIG. 10. (a) Analogous explanation of the Floquet-Thouless pump with frequency modulation schemes. Transmission of adiabatic and
nonadiabatic pumps for different Floquet cycle number in a fixed adiabatic cycle T = 3.5 m with TF = T/4, TF = T/6, and TF = T/10 shown
in (c), (d), and (e); as a reference, the adiabatic pump is shown in (b). Specifically, (c) shows neither adiabatic nor nonadiabatic pump feature,
because at this moment the adiabatic condition is broken for adiabatic pump while the π mode has not been excited yet. (f)–(i) correspond to
the near-field distributions at incident frequency as 2900 and 3700 Hz. (j)–(m) correspond to the practical waveguide structures.
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FIG. 11. Protection of the Floquet-Thouless pump against defects with the input of continuous waves at a frequency of 2900 Hz. (a)–(c) A
defect consisting of a hard, square partition with a height of 150 mm and a width of 20 mm is placed at different spatial locations of the array.
(d)–(f) A defect consisting of hard, circular blocks with a radius of 35 mm is placed. As compared with Fig. 3, we show that the acoustic array
can pump both continuous and pulsed waves, indicating the capability of energy and information transfer in acoustics.

opportunities in tremble regions, thereby shortening the pump
length.

10. Robustness against defects in Floquet-Thouless pump

Next, to assess the topological protection of our acoustic
Floquet-Thouless pump system, we positioned a hard square
partition of 150 mm × 20 mm at different locations along the
waveguide array. As depicted in Figs. 11(a)–11(c), acoustic
energy can be successfully pumped to the output waveguide.
Similarly, in Figs. 11(d)–11(f), rigid circles of 35 mm radius
are positioned in the center of the array, and then we observe
that the majority of the sound intensity can be pumped effec-
tively. Still, a small portion of the acoustic wave is scattered
by the circles, indicating the protection capability depends on
the defect structures. Nonetheless, we can still summarize that

our acoustic waveguide system for the nonadiabatic pump is
topologically shielded and has a high level of defect immunity.

Also, we further investigate the robustness of temporal
dynamical pumping, as shown in Figs. 12(a) and 12(b).
We find that the pulsed sound can easily pass across
the defect and fully reconstruct itself at the end output
of the array. This protected dynamical pumping of sound
pulse resembles an acoustic cloaking process that may
be utilized in signal transfer and wave manipulation of
sound.

11. Movies

We create several movies to demonstrate the dynamical
Floquet-Thouless pumping of sound pulse (see Supplemental
Material [28]).
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FIG. 12. Protection of the dynamical Floquet-Thouless signal pump against defects. (a) A defect consisting of a hard, square partition with
a height of 150 mm and a width of 20 mm is placed at the center of the array. (b) A defect consisting of hard, circular blocks with a radius of
35 mm is placed at the center. The pump channel demonstrates considerable immunity to backscattering from these defects in both cases.
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