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Low-energy peak in the one-particle spectral function of the electron gas at metallic densities
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Based on a nonperturbative scheme to determine the self-energy �(k, iωn) with automatically satisfying the
Ward identity and the total-momentum conservation law, a fully self-consistent calculation is done in the electron
gas at various temperatures T to obtain G(k, iωn) the one-particle Green’s function with fulfilling all known
conservation laws, sum rules, and correct asymptotic behaviors; here, T is taken unprecedentedly low, namely,
kBT/εF down to 10−4 with εF the Fermi energy, and tiny mesh �k as small as 10−4kF is chosen near the Fermi
surface in k space with kF the Fermi momentum. By analytically continuing G(k, iωn) to the retarded function
GR(k, ω), we find a novel low-energy peak, in addition to the quasiparticle (QP) peak and one- and two-plasmon
high-energy satellites, in the spectral function A(k, ω)[= −ImGR(k, ω)/π ] for kBT � 10−3εF in the simple-
metal density region (2 < rs < 6 with rs the dimensionless density parameter). This new peak is attributed to the
effect of excitonic attraction on �(k, iωn) arising from multiple excitations of tightly bound electron-hole pairs
in the polarization function �(q, iωq ) for |q| ≈ 2kF and |ωq| � εF and thus it is dubbed “excitron.” Although
this excitron peak height is only about a one-hundredth of that of QP, its excitation energy is about a half of that
of QP for |k| ≈ kF, seemingly in contradiction to the Landau’s hypothesis as to the one-to-one correspondence
of low-energy excitations between a free Fermi gas and an interacting normal Fermi liquid. As for the QP
properties, our results of both the effective mass m∗ and the renormalization factor z∗ are in good agreement with
those provided by recent quantum Monte Carlo simulations and available experiments.

DOI: 10.1103/PhysRevB.110.085132

I. INTRODUCTION

The Landau Fermi-liquid theory (FLT) [1,2] is very use-
ful in describing low-temperature physics in ordinary metals
through the concept of quasiparticle (QP). This key concept
is verified to infinite order in perturbation expansion in the
quantum field theory [3–6]. It is also confirmed in both the
renormalization-group approach [7] and the multidimensional
bosonization [8–10].

In these several decades, FLT is found to break down in
a number of exotic metals broadly referred to as non-Fermi
liquids (NFLs), including the one-dimensional (1D) Luttinger
liquids [11–15], the strange-metal phase in high-Tc cuprates
[16–21], and the fluctuation regime around a quantum critical
point (QCP) [22–35].

It has been quite a challenge to fully understand the routes
to NFLs from normal Fermi liquids [36–42]. In 3D simple
metals, we can envisage a couple of routes to NFLs. The
first one is related to the long-range nature of the Coulomb
interaction V (q)(= 4πe2/q2). In fact, this has been investi-
gated in detail in the past [43–45] and it is concluded that
V (q) at |q| → 0 is not singular enough to break FLT in 3D
metals due to the screening effect. Incidentally, transverse
electromagnetic fields give rise to unscreened long-range in-
teractions, leading to the breakdown of FLT even in alkali
metals [46–48], but this occurs only at unrealistically low
temperatures because of its very weak coupling controlled by
the small factor (kF/mc)2, where kF is the Fermi momentum,
m is the mass of a free electron, and c is the velocity of light.
Hereafter we employ units in which h̄ = kB = 1.

The second route is concerned with the response func-
tion at |q| ≈ 2kF and possible 2kF singularities in it

[9,10,26,45,49–53]. This is a problem which has not been
examined in detail, especially in the context of 3D simple
metals. The density response at low energies and short wave-
lengths will be an essential ingredient in the present study, as
we now explain.

The low-lying excited states in simple metals are well
described by those of a 3D homogeneous electron gas, an
assembly of N electrons embedded in a uniform positive rigid
background. In a recent paper [54], it is shown in the low-
density electron gas that an excitonic collective mode ωex(q)
made of correlated electron-hole pair excitations appears as a
soft mode for q ≈ 2kF. If this ωex(q) vanishes at q = qc ≈
2kF, then a macroscopic number of electron-hole pairs are
produced spontaneously to form a CDW state with the wave
number qc which is exactly the state predicted by Overhauser
[55]. In actual simple metals for which the density parameter
rs defined by

rs = 1

αkFaB
with α =

(
4

9π

)1/3

≈ 0.5211 (1)

and aB the Bohr radius is in the range from 2 to 6, this kind of
CDW does not seem to exist, but from the perspective of QCP
physics, the correlated electron-hole pair excitations around
2kF may be regarded as quantum fluctuations around the
quantum critical CDW transition point. In this regard, those
bosonic excitations in simple metals can be considered as
marginally relevant processes in the sense of renormalization
group to break FLT.

In fact, the above-mentioned ωex(q) mode is confirmed as
an incipient excitonic mode in the dynamic structure factor
S(q, ω) at |q| ≈ 2kF by recent ab initio path integral Monte
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Carlo simulations performed in the electron gas for rs = 2–10
[56–58] and rs = 2–36 [59], where the mode is referred to as
a “roton.”

In this paper, by exploiting the precise polarization func-
tion in the charge channel derived from Monte Carlo data
for the density response, we will accurately calculate the
self-energy �(K ) with K ≡ {k, iωn}, a combined notation of
momentum k and fermion Matsubara frequency ωn, in the 3D
homogeneous electron gas for rs < 6 with the motivation to
inspect the validity of FLT in simple metals. For this inspec-
tion, we are not allowed to adopt a theory based on any kinds
of perturbation expansion, because NFL cannot be described
by perturbation expansion starting from the noninteracting
Green’s function G0(K ); actually, the so-called GW approx-
imation to the Hedin’s closed set of equations, derived by
using the screened interaction W as an expansion parameter
[60–65], and its refinements [66–69] have not shown any
indication of the breakdown of FLT. The same is true both
in the many-body perturbation theory with using some appro-
priate local-field factor [70–76] and in the effective-potential
expansion (EPX) method [77,78].

Considering this situation, we shall employ the GW	

scheme [79] which is improved on the original one [80]
and satisfies all the known conservation laws and sum rules,
including the Ward identity (WI) [81], total-energy and total-
momentum conservation laws, three sum rules concerning
the momentum distribution function n(k) [54], and correct
asymptotics. This scheme is an intrinsically nonperturbative
approach applicable to both Fermi and Luttinger liquids in
a unified manner [82], but so far, it was too complicated
to be implemented in 3D systems. In particular, the total-
momentum conservation law (and thus the backflow effect)
was not well respected, so that the QP effective mass m∗ could
not be reliably determined. Therefore, one of the aims in this
paper is to develop a feasible code to implement this advanced
scheme with keeping the total-momentum conservation law.

By applying this newly developed code to the electron
gas at rs = 2, 07, 3.25, 3.93, 4.86, 5.20, and 5.62 relevant
to Al, Li, Na, K, Rb, and Cs, respectively, we successfully
obtain a convergent result of �(K ) at each rs and various
values of T down to 10−4εF, where εF is the Fermi energy.
For T � 10−3εF, the obtained �(K ) is not smooth enough
at |k| ≈ kF and ωk ≈ 0 to safely confirm FLT; by a heuristic
analysis, this anomalous behavior is found to be well
described by a branch-cut singularity, exhibiting a symptom
of possible breakdown of FLT.

This situation is more clearly seen in the one-particle spec-
tral function A(k, ω) ≡ −ImGR(k, ω + iγ )/π with γ = πT
and GR(k, ω) the retarded Green’s function obtained by an
analytic continuation of G(K ) in complex ω plane through
Padè approximants. A typical example of A(k, ω), a quantity
to be observed by angle-resolved photoemission spectroscopy
(ARPES), is shown in Fig. 1 in which a new peak indicated
by “excitron” appears in addition to the predominant QP peak
and one- and two-plasmon satellites. It is evident from this
figure that an energy resolution in ARPES should be of the
order of 1 meV or less to experimentally distinguish this weak
excitron peak from the very strong QP peak.

Since the excitron spectral strength is quite weak and G(K )
is dominated by the QP pole singularity, bulk properties of

FIG. 1. One-particle spectral function A(k, ω) for the 3D ho-
mogeneous electron gas at rs = 4.86 corresponding to potassium,
T = 0.001εF, and |k| = 0.82kF.

the electron gas at metallic densities will be well explained
by FLT in which the quantitative evaluation of m∗ is a long-
standing yet hot issue. We can determine m∗ from the QP peak
position at |k| in the vicinity of kF; our values for m∗ are in
good agreement with those given in recent quantum Monte
Carlo (QMC) simulations [83,84]. The same is true for the
QP renormalization factor z∗; our values for z∗ determined by
the jump of n(k) at |k| = kF agree well with those in recent
QMC simulations [85,86] and available experiments [86–88].

This paper is organized as follows: In Sec. II we explain
our framework to calculate �(K ) in the electron gas through
a nonperturbative iteration loop with rigorously satisfying the
Ward identity and the total-momentum conservation law. A
proposed functional form for the vertex function 	(K, K + Q)
in Sec. II E is one of our main results. In Sec. III we give
the calculated results on various properties in the electron
gas, including a new low-energy peak dubbed excitron and
two-plasmon satellites in A(k, ω). Although we treat the
electron densities corresponding to all simple metals, the
main stress is laid on Na, because Na is known to be an
almost perfect realization of the electron gas with rs = 3.93.
In Sec. IV we make a detailed account of the excitron,
ascribing it to the effect of excitonic attraction arising from
multiple excitations of tightly bound electron-hole pairs.
Finally in Sec. V we give a summary of this paper and discuss
related and future issues. Appendices A–E provide some
details of our numerical calculation.

II. SELF-ENERGY CALCULATION SCHEME

A. Hamiltonian

The Hamiltonian H for a 3D homogeneous electron gas is
written in second quantization as

H =
∑
kσ

εkc+
kσ

ckσ + 1

2

∑
q �=0

∑
kσ

∑
k′σ ′

V (q)c+
k+qσ

c+
k′−qσ ′ck′σ ′ckσ ,

(2)
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where ckσ is the annihilation operator of an electron with
momentum k and spin σ whose single-particle energy is given
by εk ≡ k2/(2m) − εF with εF = k2

F/(2m). We will consider
the system in unit volume and the total number of electrons
N is nothing but the electron density n, given in terms of the
Fermi momentum kF as n = k3

F/(3π2).
In this system, the correlation energy per electron εc

is already known accurately as a function of rs by the
Green’s-function Monte Carlo (GFMC) method [89] and the
interpolation formulas to reproduce the GFMC data [90,91].
With the use of εc(rs), μc the correlation contribution to the
chemical potential μ and the compressibility κ are, respec-
tively, obtained as

μc

εF
= α2r2

s

(
εc − rs

3
ε′

)
, (3)

κF

κ
= d μ

d εF
= 1 − αrs

π
+ α2r3

s

6
(rsε

′′
c − 2ε′

c), (4)

where κ is given through the thermodynamic relation of κ =
(d n/d μ)/n2 and κF is the compressibility in the noninter-
acting electron gas, given by κF = DF/n2 = 3m/(k2

Fn) with
DF = d n/d εF = mkF/π

2 the density of states at the Fermi
level in the noninteracting system.

B. One-particle Green’s function

The Dyson equation relates the one-particle Green’s func-
tion G(K ) with the self-energy �(K ) through

G−1(K ) = iωn + μx + μc − εk − �(K ). (5)

Here, μ is divided into μ = εF + μx + μc with μx the ex-
change contribution to μ, given by

μx

εF
= −2αrs

π
. (6)

Let us divide �(K ) into odd and even parts in ωn as

�(K ) = [1 − Z (K )]iωn + χ (K ), (7)

where both Z (K ) and χ (K ) are not only even functions in ωn

but also real functions, as seen by combining Eq. (7) with the
analyticity property �(k,−iωn) = �∗(k, iωn). Then, G−1(K )
is rewritten as

G−1(K ) = Z (K )iωn − E (K ), (8)

with the introduction of E (K ) ≡ k2/(2m) + χ (K ) − μ.

C. Momentum distribution function

Once G(K ) is known, the momentum distribution function
n(k) (= 〈c+

kσ
ckσ 〉) is calculated as

n(k) = T
∑
ωn

G(K )e−iωn0+
, (9)

where the Matsubara sum is taken by the procedure explained
in Appendix A. Accuracy of n(k) may be checked by the
three sum rules related to total electron number, total kinetic
energy, and total kinetic-energy fluctuation, as derived in
Ref. [54]. Those sum rules are conveniently expressed in

terms of the nth-power integral In, given as

In ≡
∫ ∞

0
dx n(x)xn, (10)

with x = |k|/kF and n(x) = n(k). The rigorous values for
In with n = 2, 4, and 6 are I2 = 1/3, I4 = 1/5 + α2r2

s
(−εc − rsε

′)/3, and I6 = 8/105 + 5I2
4 /3 + 5αrs[B(rs) −

2/3 + 2g(0)/3]/(9π ), with g(0) the on-top value of the
pair distribution function and B(rs) specified in Eq. (51) in
Ref. [54]. After several tentative calculations, we find that
n(k) as obtained from Eq. (9) satisfies the I2 sum rule up to
five digits or more and I4 up to three digits, but I6 up to only
a single digit in most cases, indicating that n(k) for |k| � 2kF

is not accurate enough, which reflects the fact that the k-mesh
(or grid) in k space in the iterative calculation of G(K ) is not
dense enough for |k| � 2kF.

As a remedy for this problem in n(k), we have modi-
fied n(k) [=n(x)] to nc(x) by the procedure explained in
Appendix B in which the behavior in the region of x � 2
is rectified by the introduction of nIGZ(x) obtained by the
parametrization scheme described in Ref. [54]. In actual cal-
culations, nc(x) always satisfies all the three sum rules up to
at least five digits (and mostly seven or eight digits). As an
example, the results of n(k), nc(x), and nIGZ(x) are shown
for rs = 3.93 in Fig. 10(a) in which we can barely see the
difference among those three functions on the scale of the
figure.

D. Polarization function

The charge response function Qc(Q) is related to the polar-
ization function in the charge channel �(Q) through

Qc(Q) = − �(Q)

1 + V (q)�(Q)
, (11)

and the formal definition of �(Q) is written as

�(Q) = −2
∑

K

G(K )G(K + Q)	(K, K + Q)

≡ −2 T
∑
ωn

∑
k

G(K )G(K + Q)	(K, K + Q), (12)

where 	(K, K + Q) is the three-point vertex function in the
charge channel.

In the many-body problem, it is often the case that �(Q)
is less singular than G(K ). In fact, in 1D Luttinger liquids,
�(Q) is easily obtained and does not exhibit any NFL-related
singularity [12]. In 3D Fermi liquids, it is shown that no non-
analytic corrections are contained in �(Q), in sharp contrast
to the polarization function in the spin channel in which a non-
analytic q2 ln |q|-term exists [52]. Thus we can expect that in
the 3D electron gas, even if there were a branch-cut singularity
in G(K ) at low T , it would not induce any singular effects on
�(Q), implying that �(Q) will be reliably determined even
at T of the order of 0.1εF. On this assumption, we consider
Qc(q, 0) obtained by Monte Carlo simulations [92–98] as suf-
ficiently accurate data, based on which various parametrized
forms for the conventional charge local-field factor G+(Q)
have been proposed [99–105].

In view of this situation, we regard �(Q) as a quantity
precisely known from the outset in the self-consistent iteration
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loop. In actual calculations, �(Q) is given either with G+(Q)
as

�(Q) = �0(Q)

1 − V (q)G+(Q)�0(Q)
, (13)

or with Gs(Q) due to Richardson and Ashcroft [99] as

�(Q) = �WI(Q)

1 − V (q)Gs(Q)�WI(Q)
, (14)

where the Lindhard function �0(Q) is calculated as [106]

�0(Q) = −2
∑

K

G0(K )G0(K + Q)

= 4
∫

d3k

(2π )3
n0(k)

εk+q − εk

ω2
q + (εk+q − εk)2

, (15)

with n0(k) = θ (kF − |k|) the step function and �WI(Q) is
given by

�WI(Q) = 4
∫

d3k

(2π )3
n(k)

εk+q − εk

ω2
q + (εk+q − εk)2

. (16)

Note that Gs(Q) is obtained from G+(Q) as

Gs(Q) = G+(Q) + 1

V (q)�0(Q)

�0(Q) − �WI(Q)

�WI(Q)
, (17)

but in this paper, we shall adopt the function form (a slightly
modified Richardson-Ashcroft parametrization) prescribed in
Eq. (58) in Ref. [54] for Gs(Q).

In Eq. (16), we employ nc(x) for n(k) to make �WI(q, 0)
correctly behave in the limit of |q| → ∞. However, the behav-
iors of �0(Q) and �WI(Q) in the limit of Q → Q0 ≡ {0, 0}
can be derived directly from Eqs. (15) and (16), respectively;
in the ω limit (i.e., q → 0 first, and then ωq → 0), we obtain

�0(Q) = �WI(Q) = DF

3

v2
Fq2

ω2
q

, (18)

with vF = kF/m and in the q limit (i.e., ωq → 0 first, and then
q → 0), we obtain

�0(Q) = DF, and �WI(Q) = DFI0, (19)

where I0 is defined in Eq. (10) with n = 0. Combining the
above-mentioned behavior of �0(Q) with the constraints im-
posed on G+(Q) [or that of �WI(Q) with those on Gs(Q)] at
Q → Q0, we see that in the ω limit,

�(Q) = DF

3

v2
Fq2

ω2
q

= nq2

mω2
q

, (20)

and in the q limit,

�(Q) = DF
κ

κF
= d n

d εF

d εF

d μ
= d n

d μ
. (21)

The relations in Eqs. (20) and (21) are, respectively, known as
the f-sum rule and the compressibility sum rule.

E. Vertex function

Formally, we can calculate �(K ) rigorously by

�(K ) = −
∑

Q

W (Q)G(K + Q)	(K, K + Q), (22)

where W (Q) is the effective interaction, given by

W (Q) = V (q)

1 + V (q)�(Q)
. (23)

Since we regard �(Q) as a precisely known quantity, W (Q) is
already known. As for 	(K, K + Q), we adopt the improved
GW 	 scheme described in Ref. [79]. According to Eqs. (54)–
(58) in Ref. [79], 	(K, K + Q) is given in the product of two
components as

	(K, K + Q) = 	̃WI(K, K + Q)	�(K, K + Q), (24)

with

	̃WI(K, K + Q) = G−1(K + Q) − G−1(K )

iωq − (εk+q − εk)η̃1(K + Q/2)
, (25a)

	�(K, K + Q) = �(Q)

�̃WI(Q)

+ �(Q)

DF

{
3iωq

v2
Fq2

[
−iωq

(
1 − �1(Q)

�̃WI(Q)

)

− (εk+q − εk)(1 − η̃1(K + Q/2))

]

+ η̃2(K ; Q) − �2(Q)

�̃WI(Q)

}
, (25b)

where the functional η̃1(K ) is introduced as

η̃1(K ) ≡ −∂G−1(K )

∂εk

/
∂G−1(K )

∂ (iωn)
, (26)

and three “modified polarization functionals,” �̃WI(Q),
�1(Q), and �2(Q), are, respectively, defined as

�̃WI(Q) ≡ 2
∑

K

G(K + Q) − G(K )

iωq − (εk+q − εk)η̃1(K + Q/2)
, (27a)

�1(Q) ≡ 2
∑

K

[G(K + Q) − G(K )](εk+q − εk)

[iωq − (εk+q − εk)η̃1(K + Q/2)]iωq
, (27b)

�2(Q) ≡ 2
∑

K

[G(K + Q) − G(K )]η̃2(K ; Q)

iωq − (εk+q − εk)η̃1(K + Q/2)
. (27c)

The functional η̃2(K ; Q) will be specified later.
In Ref. [79], this functional form for 	(K, K + Q) was

derived from the perspective of FLT, i.e., with the assumption
that G(K ) is given in such a form as

G(K ) = zk

iωn − ε̃k + i sgn(ωn)(2τk)−1
+ Gincoh(K ), (28)

for |k| ≈ kF and |ωn| � εF, where zk, ε̃k, and τk are, respec-
tively, the QP renormalization factor, the QP dispersion, and
the QP lifetime. Here, |ε̃k|τk � 1 is assumed and Gincoh(K ) is
a smooth function, corresponding to the incoherent smooth
background in A(k, ω). Note that QP appears as a pole in
G(K ) as long as zk �= 0 and this pole-singularity is intimately
connected with the condition that �(K ) is smooth enough to
be analytically expanded around the Fermi point KF ≡ {kF, 0}.

The final result in Eq. (24), together with Eqs. (25)–(27),
however, does not explicitly contain any FLT-specific param-
eters such as the Landau interaction and m∗, implying that
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this functional form itself can be applied to NFL as well. In
fact, η̃1(K ), a key quantity leading to m/m∗ at K → KF in
FLT, appears in this formalism as a direct consequence of
the total-current (or total-momentum) conservation law that
should be satisfied even in NFL, indicating that η̃1(K ) must
also be a key quantity in NFL.

It is the most important advantage in this formalism that the
Ward identity (WI) [81] is automatically satisfied, whatever
choice one may make for η̃1(K ) and η̃2(K ; Q); if we choose
η̃1(K ) = η̃2(K ; Q) = 1, the present vertex function is nothing
but the one in the original GW 	 scheme [80] and 	̃WI(K, K +
Q) is reduced to the canonical form appearing in connection
to WI as

	WI(K, K + Q) = G−1(K + Q) − G−1(K )

iωq − εk+q + εk
. (29)

Thus, we note that by just changing 	WI(K, K + Q) into
	̃WI(K, K + Q), we can enter into a more advanced stage in
which both WI and the total-momentum conservation law are
simultaneously fulfilled.

In actual numerical calculations, however, it turns out that
it is not easy to proceed at each iteration step with η̃1(K )
evaluated in accordance with Eq. (26). Because η̃1(K ) reflects
the total-momentum conservation law only in its value at
K = KF, we can approximate η̃1(K + Q/2) as η1(Q), a func-
tion depending only on Q with the condition that η1(Q0) =
η̃1(KF) in the q limit. Under this approximation, we can reduce
	�(K, K + Q) into

	�(K, K + Q) = �(Q)

�̃WI(Q)
+ �(Q)

DF

{
1 − η1(Q)

η1(Q)

3iωq

v2
Fq2

× [iωq − (εk+q − εk)η1(Q)]

+ η̃2(K ; Q) − �2(Q)

�̃WI(Q)

}
, (30)

and �̃WI(Q) is easily calculated by

�̃WI(Q) ≡ �̃WI(q, iωq) = 1

η1(Q)
�WI

(
q,

iωq

η1(Q)

)
, (31)

with �WI(q, iωq) ≡ �WI(Q) in Eq. (16).
Since we may take η̃2(K ; Q) at our disposal, we choose it to

make numerical calculations as easy as possible. By carefully
inspecting the structure of each term in Eq. (30), we can think
of a possible form for η̃2(K ; Q) as

η̃2(K ; Q) = η1(Q)ζ1(Q) + [iωq − (εk+q − εk)η1(Q)]

× 3

v2
Fq2

[iωqζ2(Q) − (εk+q − εk)ζ3(Q)], (32)

with arbitrary functions ζi(Q) (i = 1, 2, and 3). By substi-
tuting this η̃2(K ; Q) into Eq. (30), we immediately find the
following: (i) ζ1(Q) is irrelevant, because it is always can-
celed by the corresponding term in �2(Q)/�̃WI(Q). (ii) By
choosing ζ2(Q) as [η1(Q) − 1]/η1(Q), we can eliminate the
first term in the curly brackets in Eq. (30). (iii) Because the
term containing ζ3(Q) is rather difficult to treat, it would
be better to approximate (εk+q − εk)ζ3(Q) by vFqζ3(Q) with
q = |q|. As a result, we have arrived at the functional form for

FIG. 2. In panel (a), η1(q, 0) at T = 10−4εF is plotted in the
range of 0 < q < 10kF for the 3D homogeneous electron gas with
the density region corresponding to simple metals, and in panel (b),
the same function is drawn with q in an enlarged scale near q = 0.

	(K, K + Q), written as

	(K, K + Q) = G−1(K + Q) − G−1(K )

iωq − (εk+q − εk)η1(Q)

�(Q)

�̃WI(Q)

− [G−1(K + Q) − G−1(K )]
�(Q)

DF

3ζ3(Q)

vFq
.

(33)

It should be noted that we can rigorously reproduce �(Q)
irrespective of η1(Q) and ζ3(Q) in substituting this functional
form for 	(K, K + Q) into Eq. (12), verifying the internal
consistency of our formulation.

To determine η1(Q) and ζ3(Q), we need to consider several
constraints to be imposed on them to make 	(K, K + Q) be-
have correctly in various limits. In line with such constraints
as discussed in Appendix C, we will use η1(Q) in Eq. (C3)
and ζ3(Q) given by

ζ3(Q) = −1

3

�0(Q) − �WI(Q)[1 − β3Gs(Q)]

�WI(Q)
, (34)

in this paper.
In Fig. 2, the self-consistently determined results of

η1(q, 0) are plotted at T = 10−4εF for the 3D homogeneous
electron gas with 2 < rs < 6. As seen from this figure, η1(Q)
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FIG. 3. Results of β3 in Eq. (34) determined to reproduce the
accurate μc for the 3D homogeneous electron gas with the density
parameter rs in the range of 1 < rs < 6.

is smoothly converged to unity for q � 10kF, but it exhibits a
rather rapid change near q ≈ 0, indicating that �(K ) is not
smooth enough for K ≈ KF, a symptom of possible break-
down of FLT. Incidentally, in obtaining η1(Q), we need to
know the static physical quantities, E (k, 0) and Z (k, 0), which
can be obtained by an extrapolation procedure explained in
Appendix D.

In Eq. (34), the term involving the parameter β3 is intro-
duced to rigorously reproduce μc, the value accurately given
in Eq. (3). The appropriately determined values for β3 pro-
viding the correct μc with rs in the region of 1 < rs < 6 are
shown in Fig. 3 in which we take T as 10−4εF. As seen from
the figure, the magnitude of β3 is small, i.e., of the order
of 0.02, letting us know that the β3 term exerts only limited
effects on �(K ).

F. Self-energy

By substituting Eq. (33) with Eq. (34) into Eq. (22), we
obtain an expression for the calculation of �(K ) as

�(K ) = �a + �b(K ) + �(K )G−1(K ), (35)

with

�a = −
∑

Q

WWI(Q)RWI(Q)

= −T
∑
ωq

∫ ∞

0

q2dq

2π2
WWI(Q)RWI(Q), (36a)

�b(K ) = −
∑

K ′
W WI(Q)G(K ′)	WI(K, K ′)

= −T
∑
ωn′

1

k

∫ ∞

0

qdq

4π2
W WI(q, iωn′ − iωn)

×
∫ k+q

|k−q|
k′dk′G(K ′)	WI(K, K ′), (36b)

�(K ) =
∑

K ′
WWI(Q)RWI(Q)G(K ′)

= T
∑
ωn′

1

k

∫ ∞

0

qdq

4π2
WWI(q, iωn′ − iωn)

× RWI(q, iωn′ − iωn)
∫ k+q

|k−q|
k′dk′G(K ′), (36c)

G(K),η (Q)
1

W   (Q),W  (Q),R   (Q)

WI

Σ(K)

n(k),Γ   (K’,K)
__

Π   (Q),Π   (Q)WI

∼

WI WIWI

__
Eq.(5), Eqs.(C3)-(C6)

Eq.(9), Eq.(37d)

Eq. (16), Eq.(31)

Eqs.(37a)-(37c)

Eq.(35)

WI

FIG. 4. Self-consistent iteration loop to determine the self-
energy �(K ) in the present calculation scheme.

where WWI(Q), W WI(Q), RWI(Q), and 	WI(K ′, K ) are, respec-
tively, defined as

WWI(Q) = W (Q)
�(Q)

�WI(Q)

= V (q)

1 + V (q)�WI(Q)[1 − Gs(Q)]
, (37a)

W WI(Q) = WWI(Q)
�WI(Q)

�̃WI(Q)
, (37b)

RWI(Q) = �0(Q) − �WI(Q)[1 − β3Gs(Q)]

DFvFq
, (37c)

	WI(K, K ′) = G−1(K ′) − G−1(K )

iωq − (εk′ − εk)η1(Q)
. (37d)

Here, �a is independent of K and directly connected to the
chemical potential shift, �b(K ) is the main contribution to the
self-energy, and �(K ) partially contributes to the renormal-
ization factor.

G. Self-consistent iteration loop

To summarize this section, Fig. 4 schematically displays
a self-consistent iteration loop to determine �(K ). In devel-
oping the actual code, we make it adaptable to calculations
at unprecedentedly low temperatures, down to T = 10−4εF,
because no singularities in �(K ) leading to NFL have been
obtained for T = 10−2εF in the original GW	 scheme [80],
T = 0.04εF in the recent variational diagrammatic Monte
Carlo (VDMC) simulations [83,97], and T = 0.1εF in the
algorithmic Matsubara-diagrammatic Monte Carlo (ADMC)
technique [98]. In accordance with T ≈ 10−4εF, the mesh
size �k in k space should also be small of the same order,
i.e., �k ≈ 10−4kF near the Fermi surface, to detect any sin-
gularities in �(K ) appearing at such a low T , because |εk|
at |k| = kF ± �k is approximately equal to kF�k/m which
must be comparable to πT . In this respect, no symptoms of
NFL will be detected in the recent zero-temperature quantum
Monte Carlo calculations [84] in which �k(≈ kF/32) is not
small enough.

The implementation of this iteration loop starts
with �0(K ) the self-energy in the random-phase
approximation (RPA) (or the G0W0 approximation [107]),
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given by

�0(K ) = −
∑

Q

V (q)

1 + V (q)�0(Q)
G0(K + Q), (38)

and ends up when the relative difference in �(K ) between
input and output at each mesh point becomes less than 10−5.
In revising the input �(K ) at each step during the iteration
loop, we employ the second Broyden’s method [108–110].
We need 10–100 iteration steps depending on rs and T to
obtain converged results for �(K ). The calculated �(K ) is
converted into the retarded self-energy �R(k, ω + iγ ) with
γ = πT through numerical analytic continuation with the use
of Padé approximants [111].

In the actual numerical implementation, instead of �(K ),
we calculate a couple of real functions in Eq. (8), Z (K ) and
E (K ), both of which are even in ωn and depend on k only
through k (≡ |k|). Those functions will be evaluated only at
a finite number of points in (k, ωn) space, {ki, ω j}, and if
we need the values of those functions at K other than those
selected points, then we will employ the two-dimensional
cubic spline interpolation method. In Appendix E, we make
a more detailed explanation of {ki, ω j}, together with some
remarks on the numerical integration in Eqs. (36a)–(36c) and
the numerical analytic continuation.

III. CALCULATED RESULTS

A. One-particle spectral function

In Fig. 5, the one-particle spectral function A(k, ω) [≡
−ImGR(k, ω + iπT )/π ] is plotted as a function of ω for
rs = 3.93, corresponding to sodium, at T = 4 × 10−3εF with
k (≡ |k|) = 0.0 − 2.2 in units of kF. This shows a well-known
typical behavior, characterized by the dominant quasiparticle
peak and the associated one-plasmon satellites. In fact, this
result is essentially the same, even quantitatively, as the one
given at rs = 4 in Fig. 3(a) in Ref. [79] in which both η̃1

and η̃2 were taken as unity. Therefore, we cannot find any
indication of the breakdown of FLT at least for sodium at
T = 4 × 10−3εF, as is the case in all previous studies on alkali
metals.

By decreasing T down to 10−4εF, however, we find a to-
tally new situation in the low-energy region of ω for k ∼ kF at
rs = 3.93, as shown in Fig. 6. Although nothing special is seen
at k = kF at all temperatures, a shoulder or bump structure
begins to develop at T = 10−3εF and a clear peak structure
emerges at T = 10−4εF for k not equal to kF but close to it.
The energy of this new peak is about a half of that of the
corresponding quasiparticle peak at the same k and thus a
new mode, if any, associated with this peak (to be dubbed
“excitron”) is characterized by the very low excitation energy
of the order of 0.1εF or less.

In Fig. 7, we show the change in shape and position of
this new peak with the increase of k from 0.95kF to 1.05kF

through kF for rs = 3.93 at T = 10−4εF, from which we see
that this new peak is absorbed into (or perfectly overlapped
with) the dominant quasiparticle peak at k = kF. Thus, we
need to keep k away from kF to detect this new peak, but at the
same time, as |k − kF| increases, the peak height decreases,
making the detection rather difficult. To compromise between

FIG. 5. Overall structure of the one-particle spectral func-
tion A(k, ω) in the 3D homogeneous electron gas at rs = 3.93
corresponding to sodium with T = 4 × 10−3εF and k (≡ |k|) =
0.0, 0.1, 0.2, · · · , 2.0, 2.1, 2.2 in units of kF.

FIG. 6. Change of A(k, ω) with the decrease of T from 4 × 10−3

down to 10−4 in units of εF for rs = 3.93 with k = 0.92kF (in blue),
kF (in gray), and 1.08kF (in red).
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FIG. 7. Change in shape and position of the new peak in A(k, ω)
with the increase of k from 0.95kF to 1.05kF for rs = 3.93 at T =
10−4εF. The new peak position is indicated by an arrow at each k.

these competing factors, it would be good to search for this
peak at k in the range |k − kF| ∼ 0.03kF − 0.2kF. We have
also calculated A(k, ω) at T = 10−4εF for other values of rs

in the range of 1 < rs < 6 to find that this new peak always
appears with qualitatively the same features as those described
above, including the behavior with the change of k and T ,
though quantitatively the peak strength (or height) depends
rather strongly on rs; as rs increases, the peak emerges more
vividly and strongly. A more detailed analysis on the character
of this new peak (or excitron) will be made in Sec. IV.

The dispersion relation of excitron (or the peak position
of this new mode), ξk, at T = 10−4εF for rs = 3.93 and
5.20 corresponding to Na and Rb, respectively, is drawn in
Fig. 8, together with the quasiparticle dispersion relation ε̃k

determined by the quasiparticle peak position and the bare
dispersion εk. Although the results for rs = 4.86 correspond-
ing to K are not shown here, they enter just between those of
Na and Rb. For |k − kF| � 0.25kF, ξk is not shown, because
the new peak in either k � 0.75kF or k � 1.25kF becomes
broad and its peak height is very low, making us very difficult
to identify the peak position or the peak itself. For k ∼ kF,
the excitron dispersion ξk is linear and can be written as
ξk = vexcitron(k − kF), but for k not in the vicinity of kF, ξk

deviates from this linear relation. The ratio of vexcitron/vF is
plotted as a function of rs in Fig. 12 in Sec. III D.

The quasiparticle effective mass m∗ estimated by ε̃k with
k in the range of |k − kF| � 0.1kF is about the same as m,
but it becomes smaller than m for k outside of this range.
This change of m∗ with k can easily be understood by the
fact that m∗ is determined by the competition of exchange
and correlation effects; the former makes m∗ small as under-
stood by the fact that m∗ → 0 at k = kF in the exchange-only
(or Hartree-Fock) approximation, while the latter makes m∗
large as easily guessed by just considering the heavy-fermion
physics. Because the exchange effect is evaluated in first-order
perturbation theory (and thus without energy denominators),
it persists even for k far away from kF. This is not the case for
the correlation effect to which the second- and higher-order

FIG. 8. Dispersion relation ξk of the new peak (excitron) in com-
parison with the quasiparticle dispersion relation ε̃k and the bare
dispersion εk (the dotted curve) for rs = 3.93 and 5.20 corresponding
to Na and Rb, respectively, at T = 10−4εF. For comparison, ε̃k at
rs = 4 in diffusion Monte Carlo (DMC) simulations is given by the
brown solid curve.

perturbation terms contribute. Thus, as k goes away from the
Fermi level, the correlation effect becomes weaker than that of
exchange, making m∗ smaller than m. In this way, the disper-
sion relation ε̃k can never be parabolic in the whole region of k
from 0 to kF, making the occupied bandwidth wider than that
of the free-electron band. This widened bandwidth is also seen
in the diffusion Monte Carlo (DMC) simulations [112,113]
as shown by the brown curve in Fig. 8; the magnitude of
bandwidth in DMC is about the same as that in the present
calculation, though its behavior of ε̃k for k ∼ kF is much
different, providing m∗ much smaller than m which is not
correct as we shall see in Sec. III D. Note that DMC was feared
to be an unreliable method in determining m∗ [114].

In contrast to this widening of the computed occupied
bandwidth, much narrower bandwidths have been observed
by ARPES experiments [115,116]. To account for this dis-
crepancy, various explanations were proposed; in particular,
the effect of final states in the optical measurements attracted
attention [80,117], but very recently yet another plausible
explanation was proposed by emphasizing the importance of
local dynamical correlations associated with an atom based on
a more realistic model beyond the electron gas [118].

In Fig. 9, A(k, ω) is plotted on the hundred times wider
scale of ω for k in the range of 0.92 − 1.08 in units of kF at
rs = 3.93 and T = 10−4εF. On this large (not logarithmic but
linear) scale, the excitron peak is not seen well as a separate
structure from the dominant quasiparticle peak even at this
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FIG. 9. Change of A(k, ω) for k in the range from 0.92kF to
1.08kF at rs = 3.93 and T = 10−4εF with paying special attention
to one- and two-plasmon satellites, indicated by blue smaller and red
larger arrows, respectively.

very low T , but we can detect the structures associated with
the energies of the order of εF instead. In fact, we can easily
find the one-plasmon satellites (shown by blue smaller arrows)
and also even the two-plasmon ones (shown by red larger
arrows).

The two-plasmon satellite is a challenging issue in the
theoretical studies of photoemission in the electron gas in
connection with experiments in simple metals. In the usual
GW and related schemes, it is known to be very difficult
to provide this two-plasmon satellite structure, which urged
Aryasetiawan et al. to invent a GW plus cumulant-expansion
approach [119], a method manually including the multiplas-
mon satellites. Afterwards, many other works followed in that
direction [120–124], whereas Pavlyukh et al. succeeded in
obtaining the structure without resort to the cumulant expan-
sion for the first time [125]. As seen in Figs. 1 and 9, our
present method is the second one to accomplish the goal of
obtaining the two-plasmon satellites without manually includ-
ing the multiplasmon satellites, as far as the author knows.
More details on this important achievement may be published
elsewhere in the future, along with data for wider ranges of k
and comparisons with other related works.

B. Momentum distribution function

The momentum distribution function n(k) is calculated
for rs in the range of 2.07 − 5.62 at T = 10−4εF in accor-
dance with the prescription described in Sec. II C, together
with Appendix B, in which three functions, n(k) defined in
Eq. (9), nIGZ(k/kF), and nc(k/kF), are introduced. As shown

FIG. 10. Momentum distribution function n(k) at T = 10−4εF

for (a) rs = 3.93 corresponding to sodium and (b) rs in the range of
2.07 − 5.62. In panel (a), data at rs = 3.99 in QMC are also included
for comparison.

in Fig. 10(a), we cannot see the difference among those three
functions at rs = 3.93 on the scale of this figure. In fact,
as long as rs � 5.0, those three functions provide virtually
the same result. Even for rs > 5, a small difference between
n(k) and nc(k/kF) appears only for k � 1.5kF. Therefore, in
Fig. 10(b), we give only the results of nc(k/kF) which satisfies
all the three sum rules associated with I2, I4, and I6 very
accurately up to seven digits. We have also calculated n(k)
at several other temperatures up to 4 × 10−3εF to find that the
obtained results are virtually independent of T . Incidentally,
the present results of nc(k/kF) are essentially the same as
those of the momentum distribution function given in Sec. II F
in Ref. [54].

For comparison, the results of n(k) at rs = 3.99 in quantum
Monte Carlo (QMC) simulations for the 3D homogeneous
electron gas [85] (blue dotted-dashed curve) and the solid
sodium [126] (green diamonds) are depicted in Fig. 10(a). The
data in QMC are seen to be in reasonably good agreement with
our present ones, but we do not regard the QMC data as suffi-
ciently accurate ones for the following reasons: (i) The QMC
data are not verified to satisfy the three sum rules. In fact,
by just looking at the difference between n(k) in QMC and
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nc(k/kF) perfectly satisfying the three sum rules, we would
consider that the QMC data might satisfy the I2 sum rule, but
they never satisfy other sum rules. (ii) The size extrapolation,
an inevitable process in QMC to obtain physical quantities in
the bulk system, is not reliable enough to produce a definite
and well-converged result, as mentioned in Ref. [79]. (iii) If
we compare the results given by the blue dotted-dashed curve
with those by the green diamonds, the difference might be
ascribed to the band effect. This effect, however, should not
be large for |k| � kF, while the actual difference between
them is unphysically large at k ≈ 0, indicating that the mag-
nitude of errors in the QMC evaluation is of the order of
this size.

C. Quasiparticle renormalization factor

In all preceding works in which FLT was assumed to be
valid, the quasiparticle renormalization factor z∗ is nothing
but Z (kF, 0)−1. In the present study, however, the quasiparticle
peak is overlapped with that of excitron at k = kF as seen in
Fig. 7, implying a possibility that z∗ differs from Z (kF, 0)−1.
Because we will come to know in Sec. IV that the singularity
associated with the excitron is well described by a branch cut,
we do not expect any contribution from the excitron to the
jump of n(k) at the Fermi level, suggesting us to consider this
jump as z∗. At the same time, we may regard the difference be-
tween Z (kF, 0)−1 and the jump as the strength of the excitron
peak at the Fermi level, δz, namely,

z∗ ≡ nc(1 − 0+) − nc(1 + 0+), (39)

δz ≡ 1

Z (kF, 0)
− z∗. (40)

In actual calculations, we find that δz defined in Eq. (40) is
always positive, which is consistent with our interpretation of
δz from a physical point of view.

In Fig. 11, we plot our results of z∗ and δz as a function of
rs by green solid curve with circles and red solid curve with
squares, respectively. For reference, the data for n0 [= nc(0)]
and n± [=nc(1 ± 0+)] are also given by the black dotted
curves. This figure clearly shows that z∗ is larger than δz by
50 − 100 times, implying that the excitron will exert its effect,
if any, on bulk physical quantities by only a very small amount
for rs < 6.

For comparison, the preceding results of z∗ in both
experiments and theories are added to the figure: Compton-
scattering studies were done on Al [87], Li [86,127], and Na
[88] and the obtained results are indicated by the big black
solid circles with error bars, while the data in QMC [85,86]
are by the big brown squares. For the sake of reference, the
results of z∗ in G0W0 and EPX methods are, respectively,
shown by the blue dashed and purple dotted-dashed curves.
We find that (i) our results of z∗ perfectly reproduce those
experimental ones, (ii) they are also in very good agreement
with the QMC data, and (iii) they are virtually the same as
the old data in EPX, confirming the accuracy of the results
in Ref. [128].

In the literature, it is often the case that the results of
z∗ are given to be much higher than our present results or
even those in G0W0, but those results are not correct, simply

FIG. 11. Quasiparticle renormalization factor z∗ as a function of
rs given by the green solid curve with circles at T = 10−4εF. For
comparison, the results in G0W0 (blue dashed curve) and in EPX
(purple dotted-dashed curve) are shown, together with the data in
QMC simulations (big brown squares) and the experimental data
(solid circles with error bars) for Al, Li, and Na. The data for
δz representing the strength of the excitron peak (red solid curve
with squares) are also given, together with those of n0 ≡ nc(0) and
n± ≡ nc(1 ± 0+) by dotted curves.

because such results originate from an inappropriate treat-
ment of the correlation effect near the Fermi level where the
energy denominators diverge. As discussed in rather details
in Ref. [128], any theoretical frameworks without correctly
taming the divergent energy denominators will fail to produce
correct values of z∗. To be more concrete, a theory with the use
of Jastrow-type variational trial functions is, in general, not a
good choice. Even in QMC or DMC, if those simulations start
with Jastrow-based variational Monte Carlo, then final results
may inherit the demerits of Jastrow functions. This might be
one of the reasons why DMC does not provide correct ε̃k near
the Fermi level in Fig. 8.

D. Quasiparticle effective mass

The quasiparticle effective mass m∗ can be determined
through the derivative of ε̃k at k = kF and the obtained result
is drawn by the green solid curve with circles in Fig. 12. Our
present result is very close to that of Simion and Giuliani [74]
given by the black dashed curve and it is also in excellent
agreement with the very recent data provided by diagrammatic
Monte Carlo calculation [83] (blue diamonds) and QMC [84]
(brown squares). The result in G0W0 shown by the black
dotted curve is not quite the same as ours, but it may still be
regarded as a semiquantitatively good result. This success of
G0W0 probably reflects the fact that ε̃k itself is well reproduced
by G0W0 due to the strong mutual cancellation between the
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FIG. 12. Quasiparticle effective mass in units of the free-electron
mass m∗/m as a function of rs, together with the excitron velocity in
units of vF. The results in G0W0, the method by Simion-Giuliani,
diagrammatic Monte Carlo (DiagMC), and QMC are also shown for
comparison.

self-energy effect and the vertex correction as a consequence
of the Ward identity [107]. Thus, if we are not concerned with
the physics of highly correlated phenomena such as excitron,
then G0W0 is a good choice for many purposes, because it is
computationally very cheap yet provides qualitatively correct
results.

Compared with the quasiparticle velocity at the Fermi level
v∗

F ≡ (m/m∗)vF ≈ vF, the velocity of excitron at the Fermi
level vexcitron, which can be obtained through the derivative
of ξk at k = kF, is found to be typically about a half of v∗

F, as
seen in Fig. 12 in which vexcitron is shown in units of vF by the
red solid curve with squares.

IV. DETAILS OF EXCITRON

So far, the excitron is introduced only as a new low-energy
peak in A(k, ω), but here we try to understand its features in
terms of the self-energy, either the retarded one �R(k, ω + iγ )
or the thermal one �(k, iωn). For this purpose, we focus
exclusively on the case of rs = 3.93 at T = 2 × 10−4εF in
Secs. IV A–IV D, partly because this is a typical example ex-
hibiting a clear excitron peak in A(k, ω) and partly because we
can obtain a completely convergent result of �(K ) much more
easily in this system than in those at larger rs and/or lower T .
In Sec. IV E, we examine the T -dependence of �R(k, ω + iγ )
by changing T in the range of (1–8) × 10−4εF.

A. Characteristics of excitron in �R(k, ω + iγ )

In Fig. 13(a), A(k, ω) in this system is drawn in a logarith-
mic scale as a function of ω at k ≡ |k| = 0.95kF. For ω in the

FIG. 13. Peaks in the one-particle spectral function A(k, ω) in
panel (a) and the corresponding structure in the retarded self-energy
�R(k, ω + iγ ) in panel (b) at k ≡ |k| = 0.95kF for the 3D homoge-
neous electron gas at rs = 3.93 and T = 2 × 10−4εF. The region of
ω ∼ 0 is enlarged to show the behavior leading to the quasiparticle
and excitron peaks in the inset in panel (b).

range (−3εF, 3εF), there exist four peaks in A(k, ω) and the
corresponding structure in �R(k, ω + iγ ) − μx − μc is given
in Fig. 13(b); at the quasiparticle peak position, both real
and imaginary parts in �R(k, ω + iγ ) − μx − μc vary very
smoothly with vanishingly small magnitudes, as shown in the
inset, in accordance with the assumption in FLT. However,
the one-plasmon satellites are associated with large variations
in both real and imaginary parts in the shape of functions as
can be found in the Lorentz oscillator model, reflecting an
electron motion in the electric field induced by the plasmon.
At the excitron peak position, although the magnitudes of the
variations are by far small, about a one-hundredth, the real and
imaginary parts behave in a way very similar to those at the
one-plasmon satellites, implying that the excitron peak must
also be connected with the motion of an electron in the field
induced by some kind of low-energy (of the order of 0.1εF)
excitations.

To pinpoint the relevant low-energy excitations to bring
about the excitron, we show the calculated result of the
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FIG. 14. Two-dimensional contour map of the dynamical struc-
ture factor S(q, ω) for the electron gas characterized by the same
parameters as those in Fig. 13.

structure factor S(q, ω), defined by

S(q, ω) = − 1

π

1

1 − e−ω/T
Im QR

c (q, ω), (41)

in Fig. 14 to demonstrate that, though the plasmon
contribution in the range of ω ≈ 1.9–2.4εF with q � kF

overwhelmingly dominates, the most important contribution
in the range of ω ≈ 0–0.2εF comes from the tightly bound
electron-hole pair excitations with q ≈ 2kF, the region
indicated by the yellow shaded area in the figure. Incidentally,
the result for S(q, ω) in Fig. 14 is virtually the same as that
given for rs = 4 in Fig. 1(a) in Ref. [54], basically because
the present result for QR

c (q, ω) is essentially the same as those
in the previous publications, not only in Ref. [54] but also
in Refs. [129,130].

Now, our task is to study the electron-electron interaction
mediated by the tightly bound electron-hole pair excitations
Vex(K, K ′; Q) and its contribution to the self-energy �ex(K );
diagrammatically, they are given in Figs. 15(a) and 15(c),
respectively, with the electron-hole irreducible (defined in
the horizontal view) four-point interaction Ĩ (K1, K2; K1 +
Q, K2 − Q) in Fig. 15(b). For Q ≈ 2KF and an electron on
the Fermi sphere, i.e., |k| ≈ kF, the dominant contribution
to �ex(K ) comes from the scattered states K + Q also on
the Fermi sphere. Since |q| ≈ 2kF, this is only possible for
k + q ≈ −k and q ≈ −2k. A similar restriction also ap-
plies to each pair polarization process in Vex(K, K + Q; Q) in
Fig. 15(a); the important contribution arises only for kn ≈ k in
G(Kn) and kn + q ≈ −k in G(Kn + Q). The above restrictions

FIG. 15. Diagrammatic representation of Vex(K, K ′; Q) the
electron-electron attractive interaction induced by multiple excita-
tions of tightly bound electron-hole pairs in panel (a), with the
electron-hole irreducible four-point interaction Ĩ in panel (b), and its
contribution to the self-energy �ex(K ) in panel (c).

clearly indicate that once we choose an electron characterized
by k, all the processes of its scatterings and the associated
electron-hole pair excitations occur predominantly in either
parallel or antiparallel to the k direction.

If we approximate G(Kn) and G(Kn + Q) by G0(Kn) and
G0(Kn + Q), respectively, in Fig. 15(a), then we can easily
obtain an approximate expression for Vex as

Vex ≈ − V (2kF)2�0(2KF)

1 − Ĩ (KF,−KF; −KF, KF)�0(2KF)/2
. (42)

This is an attractive interaction and its importance was well
appreciated long ago by the systematic and unbiased survey
of the electron-electron interaction in the problem of super-
conductivity in the electron gas [131]. Because the relevant
interaction Vex is attractive, we can understand why the ex-
citron energy ξk is lower than ε̃k.

B. Extraction of the singular part in Z(K )

After much trial and error, we come to realize that the
mathematical feature is better seized in terms of �(k, iωn)
rather than �R(k, ω + iγ ), as long as only numerically ob-
tained data are available to us at the present stage. Therefore,
let us draw Z (K ) the renormalization function and χc(K ) the
correlation contribution to χ (K ) in Figs. 16(a) and 16(b),
respectively, as a function of k in a wide range from 0 to 4kF

[and even up to 10kF for χc(K )] with changing Matsubara
frequency ωn also in a very wide range, i.e., for n from 1
(ω1 ≈ 0.0006εF) to 7 × 104 (ω70000 ≈ 80εF), where χc(K ) is
defined by

χc(K ) ≡ χ (K ) − χx(k), (43)
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FIG. 16. Overall structure of the renormalization function Z (K )
in panel (a) and that of the correlation part in the self-energy χc(K )
in panel (b) for the electron gas characterized by the same parameters
as those in Fig. 13.

with the exchange part of the self-energy χx(k) which is
independent of ωn and calculated as

χx(k)

εF
= −2αrs

π

[
1 + k2

F − k2

2kFk
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣ ]. (44)

As we see, in the scale of these figures, both Z (K ) and χc(K )
seem to behave quite normally in the whole {k, ωn} space, in
accordance with FLT. In fact, even in a much-enlarged scale
with ωn in the limited range of n from 1 to 100, we hardly see

FIG. 17. Enlarged view of Z (k, iωn) given in Fig. 16(a) for k/kF

in the range of 0.94–1.06 and ωn with n � 300 (or ωn � 0.38εF ).

noticeable variations, much less anomaly, in χc(K ) even for k
in the vicinity of kF.

In Z (K ), however, we find a conspicuous spike structure
for k in the vicinity of kF (or 0.99 � k/kF � 1.01) and small
ωn (or ωn/εF � 0.03). Actually, this anomalous behavior can
also be faintly seen in Fig. 16(a), but it is very clearly found
through an enlarged view of Z (K ), as given in Fig. 17. This
kind of anomaly in Z (K ) is never expected in FLT, but here it
emerges as a strong symptom of possible breakdown of FLT.
At the same time, it is found to be very localized in {k, ωn}
space as a characteristic feature.

Because of this locality, we are tempted to extract this
anomalous structure from Z (K ) by taking the difference
between Z (K ) and Zsmooth(K ), the latter of which is a
smoothed part of Z (K ) obtained by the cubic-spline inter-
polation along k axis with the exclusion of the mesh points
in the interval (0.97kF, 1.03kF ) at each ωn with n � 50.
For n > 50, Zsmooth(K ) is tentatively taken as Z (K ) itself.
In Figs. 18(a) and 18(b), both Zsmooth(K ) and Zdiff (K ) [≡
Z (K ) − Zsmooth(K )] are drawn, respectively. As we see,
Zsmooth(K ) is rather smooth and has no abnormal structure
in the whole {k, ωn} space. However, Zdiff (K ) has a distinc-
tive particle-hole symmetric structure and its magnitude is
not small only in the very limited region in {k, ωn} space,
or more concretely, for |k − kF| � 0.025kF and ωn � 0.05εF

(or n � 40).
Incidentally, a similar extraction procedure cannot be

adopted to produce χ smooth
c (K ) and χdiff

c (K ) at this stage,
mainly because χc(K ) does not change much with ωn in the
small-ωn region, making it difficult to clearly identify the
anomalous structure in χc(K ). In Sec. IV C, however, we
shall explain an alternative procedure to unambiguously de-
fine both χ̃ smooth

c (K ) and χ̃diff
c (K ) from the division of χc(K )

in perfectly consistent with the redefined division of Z (K ) into
Z̃smooth(K ) plus Z̃diff (Z ).
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FIG. 18. Division of Z (K ) given in Fig. 17 into (a) the smoothed
part Z smooth(K ) and (b) the singular part Zdiff (K ).

C. Branch-cut singularity

Fascinated by the mathematically beautiful mirror-
symmetry in Zdiff (K ) with respect to k in reference to kF at
each ωn, we proceed to express it in an analytically closed
form. The discussion on �ex and Vex in Sec. IV A indicates
that we might be able to treat our problem in reference to 1D
physics, because the virtual scattering processes of an electron
specified by k on the Fermi surface, along with the multi-
ple electron-hole pair excitations to bring about the excitron,
occur predominantly in either parallel or antiparallel to the
k-direction. Now, in some particularly simple models in the
1D Tomonaga-Luttinger liquids [132,133], an analytic form
for G(K ) ≡ GTL(K ) is exactly known as [134]

GTL(K ) = 1√
iωn − εh(k)

√
iωn − εs(k)

, (45)

where εh(k) and εs(k) are, respectively, “holon” and “spinon”
dispersion relations in 1D physics.

Inspired by this simple expression for GTL(K ) with pos-
sessing branch-cut singularities, we shall take a heuristic

approach to developing an analytic expression for Zdiff (K ) by
starting with the redefined division of �(K ) as

�(K ) = �̃smooth(K ) + �̃diff (K ), (46)

with

�̃smooth(K ) = [1 − Z̃smooth(K )]iωn

+χx(k) + χ̃ smooth
c (K ), (47a)

�̃diff (K ) = −Z̃diff (K )iωn + χ̃diff
c (K ). (47b)

Here, �̃smooth(K ) is regarded as such a self-energy in the
electron gas as has been considered in FLT and �̃diff (K ) is
supposed to accurately take account of the anomalous struc-
ture in �(K ) by the assumption of the following analytic form:

�̃diff (K ) = −
√

iωn − ξk

√
iωn − ξ ∗

k (iωn)

+
√

α∞(iωn)

2
(iωn − ξk)

+ 1

2
√

α∞(iωn)
[iωn − ξ ∗

k (iωn)], (48)

where ξk is chosen as the excitron dispersion relation given
in Fig. 8 and ξ ∗

k (iωn) is defined by ξ ∗
k (iωn) ≡ αk(iωn)ξk with

the introduction of a parameter αk(iωn). As we shall see, in
the limit of |ξk/ωn| � 1, αk(iωn) becomes independent of k
and the value in this limit is written as α∞(iωn), a parameter
involved in Eq. (48).

Physically, ξk is supposed to represent a “collective-
charge” excitation (or a holon-like excitation in the terminol-
ogy of 1D physics) and thus it is considered as the excitron
dispersion. However, we presume that ξ ∗

k (iωn) corresponds to
a spinon-like excitation whose dispersion relation is not much
different from the quasiparticle dispersion ε̃k in the electron
gas, leading us to the condition that αk(iωn) should not be less
than unity due to the fact that ξk/ε̃k < 1 in the present case.

In this theoretical framework, αk(iωn) is a single free pa-
rameter and plays an important role in �̃diff (K ); if αk(iωn)
is taken to be unity, �̃diff (K ) vanishes completely, implying
that the strength of the anomaly is determined only by the
degree of deviation of αk(iωn) from unity. We also note that
the ωn-dependence in αk(iωn) seems to be indispensable in
describing a branch-cut singularity in not exactly 1D systems,
as opposed to purely 1D systems in which such dependence
is absent as seen in Eq. (45). Effects of the motions tangential
to the 1D axis on the branch-cut singularity are assumed, to a
large extent, to be effectively included by this ωn-dependence.

In view of the importance of αk(iωn), we make a rather
detailed explanation of the procedure to determine it by using
the numerically obtained data of Zdiff (K ). From Eq. (48), we
can write Z̃diff (K ) and χ̃diff

c (K ) as

Z̃diff (K ) = [S−(K )S∗
+(K ) + S+(K )S∗

−(K )]/ωn

−
√

α∞(iωn)

2

[
1 + 1

α∞(iωn)

]
, (49a)

χ̃diff
c (K ) = S+(K )S∗

+(K ) − S−(K )S∗
−(K )

−
√

α∞(iωn)

2

[
ξk + ξ ∗

k (iωn)

α∞(iωn)

]
, (49b)
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FIG. 19. Overall structure of the parameter αk(iωn) as a function
of k = |k| for ωn in the range of n = 1–50 in panel (a), its asymptotic
form in the limit |ξk| � |ωn|, α∞(iωn), with the increase of n in panel
(b), and the parameter βk related to the excitron dispersion relation
as a function of k = |k| in panel (c).

respectively, where S±(K ) is defined as

S±(K ) ≡

√√√√√
ω2

n + ξ 2
k ± ξk

2
, (50)

and S∗
±(K ) is defined analogously with the replacement of

ξk with ξ ∗
k (iωn). From Eqs. (49a) and (49b), together with

Eq. (50), it is easy to see that both Z̃diff (K ) and χ̃diff
c (K ) vanish

in the limit of |ξk/ωn| � 1.
Now, because of ξk = ξ ∗

k (iωn) = 0 at the fermi level, we
obtain Z̃diff (kF, iωn) = 1 − [

√
α∞(iωn) + 1/

√
α∞(iωn)]/2.

Then, by equating this value of Z̃diff (kF, iωn) to the
numerically obtained Zdiff (kF, iωn), we can determine
α∞(iωn) as

α∞(iωn) = (
Z0 +

√
Z2

0 − 1
)2

, (51)

with Z0 ≡ 1 − Zdiff (kF, iωn). This value of α∞(iωn) is cho-
sen under the condition of α∞(iωn) � 1 and the obtained
result is shown in Fig. 19(b) as a function of n. Actu-
ally, because Zdiff (kF, iωn) is available only for n � 50,
α∞(iωn) for n > 50 is not determined by Eq. (51) but by
α∞(iωn) = 1 + δα∞(iωn) with the extrapolation of the data
{δα∞(iωn)}n=1,··· ,50 under the assumption of the power-law
decay of δα∞(iωn) [≡ α∞(iωn) − 1] with the increase of n
from 50.

Once the data of {α∞(iωn)}n=1,2,3,··· are known, we can
determine αk(iωn) at each k by accurately solving the
equation of Z̃diff (K ) = Zdiff (K ) with the use of the Newton-
Raphson method [135] in which we employ the partial
derivative of Z̃diff (K ) with respect to αk(iωn) as

∂Z̃diff (K )

∂αk(iωn)
= ξk

2ωn

√
ω2

n + ξ ∗
k (iωn)2

× [S−(K )S∗
+(K ) − S+(K )S∗

−(K )], (52)

and choose α∞(iωn) as an initial input in the iterative solution
for n � 50. For n > 50, αk(iωn) is determined by an extrapo-
lation method similar to that for α∞(iωn). The obtained result
of αk(iωn) for n � 50 is given in Fig. 19(a) from which we see
that for |k − kF| � 0.02kF in the important range of ωn with
n � 30, αk(iωn) is independent of k and essentially the same
as α∞(iωn). Even for n � 30, we see that αk(iωn) ≈ α∞(iωn)
for |k − kF| � 0.05kF, revealing that α∞(iωn) is the most
important parameter to describe �̃diff (K ). In Fig. 19(c), the
parameter βk defined by βk ≡ ξk/εk is also shown. Note that
βk at |k| = kF is nothing but vexcitron/vF. The deviation of βk

from βkF represents the degree of the departure from the linear
dispersion in ξk.

Having completely specified the parameter αk(iωn) in the
whole {k, ωn} space, we can employ Eqs. (49a) and (49b) to
calculate both Z̃diff (K ) and χ̃diff

c (K ), with which we can also
determine Z̃smooth(K ) [≡ Z (K ) − Z̃diff (K )] and χ̃ smooth

c (K ) [≡
χc(K ) − χ̃diff

c (K )] unambiguously. The obtained Z̃diff (K ) and
Z̃smooth(K ) are, respectively, found to be virtually the same as
Zdiff (K ) and Zsmooth(K ) given in Fig. 18 and thus we suppress
to show those redefined functions here.

In Fig. 20, χ̃diff
c (K ) is drawn to show that its behavior is

qualitatively different from that of Z̃diff (K ); as opposed to
the locality of Zdiff (K ) or Z̃diff (K ), χ̃diff

c (K ) is considerably
extended in the k axis. We also note that its magnitude is quite
small, of the order of 0.001εF, compared with that of χc(K )
of the order of εF, making χ̃ smooth

c (K ) virtually the same as
χc(K ). Those features specific to χ̃diff

c (K ) are the reasons why
we could not find any anomalous behavior in χc(K ) in the
first place. Asymmetry with respect to k in reference to kF in
χ̃diff

c (K ) is another interesting point to note.

D. Analysis of ˜�
R

diff (k, ω + iγ )

At first glance, one might think that we can easily make
an analytic continuation of �̃diff (K ) to �̃R

diff (k, ω + iγ ) by
just changing iωn into ω + iγ in Eq. (48), but actually it
is not so simple due to the presence of αk(iωn); the ana-
lyticity property of αk(iωn) is not precisely known. Thus,
we employ the usual analytic continuation method (or Padé
approximants) to obtain �̃R

smooth(k, ω + iγ ) from �̃smooth(K )
defined in Eq. (47a) and then we determine �̃R

diff (k, ω + iγ )
as the difference between �R(k, ω + iγ ) and �̃R

smooth(k, ω +
iγ ), the former of which is already obtained from �(K ). The
result of �̃R

diff (k, ω + iγ ) in the low-energy region is drawn in
Fig. 21(b) which is perfectly consistent with the anomalous
structure of �R(k, ω + iγ ) around the excitron position in the
inset in Fig. 13. As related to �̃R

smooth(k, ω + iγ ), the one-
particle spectral function Asmooth(k, ω) is given in Fig. 21(a)
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FIG. 20. Singular part χ̃ diff
c (K ) in χc(K ) as a function of k = |k|

for small ωn with n = 1–50.

by the black dotted curve in comparison with A(k, ω) indi-
cated by the red solid curve, where Asmooth(k, ω) is defined by

Asmooth(k, ω) = − 1

π
Im GR

smooth(k, ω + iγ ), (53)

with

GR
smooth(k, ω + iγ )

−1 =ω + iγ + μx + μsmooth
c − εk

− �̃R
smooth(k, ω + iγ ), (54)

where μsmooth
c is the correlation contribution to the chemical

potential as calculated through �̃smooth(K ). Actually, its differ-
ence from μc is negligibly small. There exists no signature of
the excitron in Asmooth(k, ω) as it should be in the case of FLT.

To investigate the function analytically continued from
αk(iωn), we write down �R(k, ω + iγ ) in reference to
Eq. (48) as

�̃R
diff (k, ω + iγ ) = −

√
ω + iγ − ξk

√
ω + iγ − α̃(ω)ξk

+
√

α̃(ω)

2
(ω + iγ − ξk)

+ 1

2
√

α̃(ω)
[ω + iγ − α̃(ω)ξk], (55)

where α̃(ω) is introduced as the analytically continued func-
tion from α∞(iωn), but because αk(iωn) is well approximated
by α∞(iωn) at |k| = 0.95kF, it also represents the analytically
continued one from αk(iωn). The branch cut in the square
root

√
z in Eq. (55) is taken along the negative real axis in

complex-z plane.
By comparing the result of �̃R

diff (k, ω + iγ ) in Fig. 21(b)
with that in Eq. (55), we can determine not rigorously correct

FIG. 21. Comparison of A(k, ω) with Asmooth(k, ω) the one-
particle spectral function corresponding to the smoothed self-energy
is made in panel (a) for the case of k = |k| = 0.95kF. The singular
part of the retarded self-energy and the analytically continued α̃(ω)
from α∞(iωn) are, respectively, shown in panels (b, c).

but reasonably accurate values of α̃(ω) for ω in the range from
−0.2εF to 0 and the obtained results are given in Fig. 21(c),
from which we can raise a couple of points to appreciate the
importance of ω-dependence in α̃(ω): (i) Although α̃(ω) is
real at ω = 0 (more concretely, α̃(0) = 2.247 as given by an
extrapolation of the data {α∞(iωn)}n=1,2,3,···), it is generally
complex with a negative imaginary part. Due to the existence
of this imaginary part in α̃(ω), A(k, ω) is not characterized by
such a square-root singularity, 1/

√
ξk − ω, as typically seen in

purely 1D Luttinger liquids [82,136–138], but is well approx-
imated by a Lorentzian-type function [139]. (ii) One might
expect to see another anomaly at ω = α̃(ω)ξk originating from
the second square root

√
ω + iγ − α̃(ω)ξk in Eq. (55), but it

does not seem to be the case, primarily because the deviation
of α̃(ω) from unity at the relevant ω is not large enough
to provide a noticeable structure in A(k, ω). The only effect
from this contribution is found to make the quasiparticle peak
position in A(k, ω) shift slightly from that in Asmooth(k, ω) as
seen in Fig. 21(a).

E. T -dependence of the excitron liftime

To better understand the excitron, it is useful to deter-
mine its lifetime τexcitron, especially, its dependence on T in
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FIG. 22. (a) Change of �R(k, ω + iπT ) with T in the range
from 10−4εF to 8 × 10−4εF at k = 0.99kF, k = kF, and 1.01kF for
rs = 3.93. (b) Temperature dependence of A(k, iπT ) at k = 0.99kF

and 1.01kF for T in the same range as that in panel (a).

connection with the coherence nature of the excitron. In the
conventional Fermi liquids in which G(K ) is expressed in the
form of Eq. (28), the quasiparticle lifetime τ∗ is obtained by

τ−1
∗ = 2z∗|Im�R(kF, 0)|, (56)

and scales as T 2. Thus, on general grounds, one expects
that Im�R(kF, ω) also contains some relevant information
on τ−1

excitron, but because the excitron peak is hidden be-
hind the quasiparticle peak at k = kF, it is not easy to
extract information on the excitron from Im�R(kF, ω) with-
out removing the dominant quasiparticle contribution in the
first place. According to the first-Matsubara-frequency rule
[53], the quasiparticle part vanishes in the T -dependent
Im�(kF, iπT ), implying the possibility that we may directly
connect Im�(kF, iπT ) with τ−1

excitron.
In these circumstances, we have examined the T -

dependence of �R(k, ω + iπT ) not only at k = kF but also in
the very vicinity of kF, namely, at k = 0.99kF and k = 1.01kF

and the obtained results are shown in Fig. 22(a). The corre-
sponding ones for A(k, ω) are also given in Fig. 22(b) from
which we estimate τ−1

excitron by measuring a full width at a half
maximum (FWHM). Note that we cannot obtain this FWHM
unambiguously, mainly because the excitron peak is located

at the foot of the dominant quasiparticle peak. Thus, a rather
large error bar is associated with this estimation, particularly
for T � 4 × 10−4εF. Those data for τ−1

excitron can be summa-
rized in the form of τ−1

excitron ∝ T α with α ≈ 1.0 ± 0.2. Similar
analysis is also made in reference to −Im�R(k, iπT ) to find
α ≈ 0.6 − 0.9. Incidentally, we find that the numerical data
for Im�R(k, iπT ) are very accurately expressed by

Im�R((1 ± 0.01)kF, iπT ) = −(2.22 ∓ 0.02)T 1.00, (57)

at k = (1 ± 0.01)kF, while at k = kF,

Im�R(kF, iπT ) = −0.924εF(T/εF)0.91, (58)

for T less than 8 × 10−4εF. If we assume that τ−1
excitron is di-

rectly proportional to Im�R(kF, iπT ), then we obtain another
estimate of α as α = 0.91. In this way, α seems to be close
to unity which is exactly the value evaluated in 1D Luttinger
liquids [140]. The result of α = 1 is also expected in the
marginal Fermi liquids. In the present case, however, it is
likely that α is less than unity, though a definite value of α

should be determined by some other analytic method in the
future.

Because of α < 1, the excitron is not a coherent but an
incoherent excitation. Thus, it should formally be included
in the incoherent background in Eq. (28), but it still provides
a clear peak structure in A(k, ω) contrary to the general be-
lief that the incoherent background will be represented by a
smooth function in the Fermi liquids.

Intuitively, we can think of the following: The diagram
in Fig. 15(c) indicates that the excitron is an electron sur-
rounded by multiple electron-hole pairs excited mostly in
the longitudinal direction. In this sense, the excitron (or an
electron-exciton-cloud composite in a shape elongated along
the electron motion) may be regarded as an entity akin to
a polaron (or an electron-phonon-cloud composite). In the
case of polarons, the associated mediating modes are phonons
which are coherent bosons in the whole crystal. However, the
excitron is associated with the incipient excitonic mode, an
incoherent boson mode which is damped in a short distance.
Thus, it is very reasonable to reach the conclusion that the
excitron is an incoherent excitation.

V. CONCLUSION AND DISCUSSION

In this paper, we have developed a feasible nonperturba-
tive scheme to accurately determine �(K ) through a fully
self-consistent iterative calculation with rigorously satisfying
the Ward identity and the total-momentum conservation law,
while fulfilling all other known conservation laws, sum rules,
and correct asymptotic behaviors in G(K ), 	(K, K + Q),
�(Q), and n(k). The scheme has been successfully imple-
mented in the 3D homogeneous electron gas for the range of rs

corresponding to all simple metals at T down to 10−4εF with
tiny mesh as small as 10−4kF near the Fermi surface in k space.
Our results on n(k), the quasiparticle renormalization factor
z∗, and the quasiparticle effective mass m∗, all of which are
the long-standing challenges in the electron gas, are in very
good agreement with the recent data given by quantum Monte
Carlo simulations and available experiments, confirming that
our present scheme actually provides sufficiently accurate
results of �(K ).
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By analytic continuation onto the real ω axis through
Padé approximants, G(K ) is transformed into GR(k, ω), from
which we obtain A(k, ω) exhibiting a new sharp low-energy
peak for |k| not just at kF but in its vicinity, in addition to
the dominant quasiparticle peak as well as high-energy one-
and two-plasmon satellites. The appearance of two-plasmon
satellites without resort to the ad hoc combination of the
GW approximation with a cumulant expansion is a notable
theoretical achievement, but the most important issue is the
discovery of the new low-energy peak that emerges for all
simple-metal densities at T � 10−3εF. Its origin is attributed
to the excitonic attraction arising from the multiple excitations
of tightly bound electron-hole pairs in �(q,�) for |q| ≈ 2kF

and |�| � εF, suggesting that it should be dubbed “excitron.”
This excitonic scattering process occurs only in very restricted
angles along the longitudinal direction, which motivates us
to characterize the excitron as a branch-cut singularity in
analogy with 1D physics. From a viewpoint of QCP physics,
the excitron is also regarded as an anomaly induced by quan-
tum fluctuations of the incipient excitonic mode around the
quantum-critical CDW transition. In either way, this anoma-
lous low-energy phenomenon poses an interesting question
as to the validity of the Landau’s hypothesis on the one-
to-one correspondence of low-energy excitations between a
free Fermi gas and an interacting normal Fermi liquid. Taken
together, our results indicate that non-Fermi liquid physics
may already play a role in the description of simple metals
at sufficiently low temperatures.

Four comments are in order:
(i) Since we start with the rigorous equation to determine

�(K ) in Eq. (22) in which W (Q) is taken as an accurately
known quantity, the vertex function 	(K, K + Q) is the only
unknown quantity. Thus, we have examined various forms for
	(K, K ′) in our theoretical framework, looking for a neces-
sary and sufficient condition for the appearance of excitron.
As a result, we come to know that the excitron appears, if
and only if we include either 	WI(K, K ′) in Eq. (37d) or
	WI(K, K ′) without η1(Q) in Eq. (29) in the definition of
	(K, K ′). We can easily understand the necessity of this kind
of the Ward-identity-related vertex part, because this is the
crux to make our scheme nonperturbative; remember that
we need to go beyond simple perturbation expansion from
G0(K ) for describing a situation intimately connected with
the breakdown of the Fermi-liquid theory. Incidentally, the
quantitative details of excitron, such as the peak position ξk,
the peak height, and the peak width, depend on the choice of
	(K, K ′) by not negligible amounts. Therefore, more useful
information on excitron is needed in the future to further
improve on 	(K, K ′).

(ii) In the simple-metal density region, the strength of the
excitron peak is found to be so weak that its existence will not
be detected by bulk measurements such as electric conductiv-
ity and specific heat. In ARPES experiments, however, it will
be detected, if the energy resolution is much smaller, of the
order of 1 meV or less, than those in preceding experiments.
In fact, in the previous ARPES studies, the resolution was
about 0.2–0.4 eV in 1980s [115,141–143], 80–200 meV in
1990s [144], and still 30 meV in 2020s [116]. This is proba-
bly the reason why the excitron peak has not been detected,
though some interesting unresolved features were observed

near the Fermi level in the past [141–143]. At the present
time, it is encouraging to know that experimental equipments
with the energy resolution of the order of 1 meV or less
[145] do exist, but they have not been applied to simple
metals so far. If they are actually applied with due attention
to the possible appearance of excitron, then it will be very
exciting to see the experimental results from a perspective
of fundamental physics. Detection of excitron by ARPES is
also very important from a viewpoint of further developments
of our theoretical framework, as mentioned in the previous
paragraph.

(iii) By making the electron density lower than those of
simple metals to approach the CDW transition, we can expect
a more interesting situation in which the effects of excitron
become so strong that FLT apparently breaks down, leading
to the emergence of NFL. With this expectation in mind,
we are now trying to obtain a fully self-consistent solution
for such low densities (or rs > 6), but at present it takes too
many iterative steps to obtain a completely convergent result
of �(K ) for rs > 8. We shall report our efforts in this direction
in the near future.

(iv) In Sec. IV, we have not taken a mathematically rigor-
ous but a heuristic approach to the analysis of the excitron.
Admittedly, it would be better to derive the branch-cut singu-
larity in �(K ) analytically by explicitly including the effect
of Vex(K, K ′; Q) defined in Fig. 15(a), but we have to under-
stand that this is a very difficult task. In fact, this problem
of accurately treating the local charge fluctuations induced by
correlated multiple electron-hole pair excitations is as difficult
as that of the local spin fluctuations in the heavy-Fermion
superconductors [25,146–151] and high-Tc cuprate supercon-
ductors [16–18,21,152–155], suggesting that we should leave
this problem for future analysis. To put it the other way
around, our present approach to treating �(K ) as a whole
by imposing various conservation laws and sum rules may
provide a new route to the solution of local spin fluctuation
problems in those strongly correlated materials. We would
expect a new development from this perspective in those hot
fields, including high-Tc superconductivity.
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APPENDIX A: MATSUBARA SUM

The Matsubara sum of a given function f (iωn) with ωn =
πT (2n − 1) for an integer n is calculated numerically in the
following way:

T
∑
ωn

f (iωn) = T
∞∑

n=1

F (ωn) = T
N∑

n=1

F (ωn)

+ T

12
[F (ωN ) + 5F (ωN+1)] +

∫ ∞

ωN+1

dx

2π
F (x),

(A1)
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where F (ωn) ≡ f (iωn) + f (−iωn) and we increase N from
N ≈ 10 until a convergent result is obtained; in most cases, N
as small as 10 is already good enough, but it is safe to choose
N = 100. We can derive Eq. (A1) from the Euler-Maclaurin
formula [156]:∫ b

a
dx F (x) = h

[
1

2
F (a) + F (a + h) + · · · + F (b − h)

+ 1

2
F (b)

]
− B2

2!
h2F ′(x)

∣∣∣∣b

a

− · · · , (A2)

with the Bernoulli number B2 = 1/6. By taking h = 2πT ,
a = ωN+1, b → ∞, and F ′(a) = [F (a) − F (a − h)]/h, we
can easily arrive at Eq. (A1). The relative error incurred in
cutting off the series in Eq. (A2) at the level of F ′(x) is of the
order of T 4, negligibly small for sufficiently low T .

APPENDIX B: MODIFICATION OF THE MOMENTUM
DISTRIBUTION FUNCTION

We take the following strategy to improve on n(k):
(i) Obtain n(k) [= n(x) with x = |k|/kF] through Eq. (9).

(ii) Determine n0 ≡ n(0) and n± ≡ n(1 ± 0+). (iii) With the
use of these n0 and n±, obtain nIGZ(x) in the parametriza-
tion scheme described in Ref. [54]. Note that “IGZ” stands
for “improved Gori-Giorgi and Ziesche” [157]. (iv) Because
nIGZ(x) is almost the same as n(x), construct a corrected
function nc(x) which changes smoothly from n(x) for x � 1.1
to nIGZ(x) for x � 2.0. Concretely, we define nc(x) as nc(x) ≡
n(x) for x � xc and nc(x) ≡ nIGZ(x) + �n(x) for x > xc with
choosing an appropriate xc in the region of 1.1 < xc < 2.0.
The small additional term �n(x) decreases exponentially as
x increases. At x = xc, �n(x) is so determined as to make
nc(x) smoothly connected to n(x) up to second derivative. It
is also tuned to satisfy the three sum rules for the momentum
distribution function as accurately as possible.

APPENDIX C: CONSIDERATION ON η1(Q) AND ζ3(Q)

The behavior of 	(K, K + Q) at K = KF in the limit of
Q → Q0 is exactly known; in the ω limit, it approaches
	ω(KF, KF), given by

	ω(KF, KF) = ∂G−1(K )

∂ (iωn)

∣∣∣∣
K=KF

= Z (KF), (C1)

as a direct consequence of WI, while in the q limit, it ap-
proaches 	q(KF, KF), given by

	q(KF, KF) = ∂G−1(K )

∂μ

∣∣∣∣
K=KF

= κ

κF

∂E (KF)

∂εkF

, (C2)

as one can convince oneself by considering the one-to-
one correspondence of each Feynman diagram representing
	(KF, KF) with the one obtained by the differentiation of
an arbitrary G line in each Feynman diagram for � with
respect to μ [79,158,159]. If we use the expression in
Eq. (24) as it is, then the above limiting behavior is au-
tomatically satisfied, but in arriving at Eq. (33), we have
introduced a few approximations and simplifications which
may deteriorate this favorable feature. In fact, 	(K, K + Q)
in Eq. (33) reduces to 	ω(KF, KF)/η1(Q0) in the ω limit and

to 	q(KF, KF)[1/I0 + 3ζ3(Q0)] in the q limit, compelling us
to impose the following constraints; η1(Q0) in the ω limit,
ηω

1 = 1 and ζ3(Q0) in the q limit, ζ
q
3 = (I0 − 1)/(3I0). Note

that η1(Q0) in the q limit should be equal to η
q
1 ≡ η̃1(KF) =

(∂E (KF)/∂εkF )/Z (KF) from the very definition of η1(Q).
Taking account of those constraints as well as the basic

feature that 	(K, K + Q) should rapidly approach unity for
either K or K + Q far away from KF, we have chosen ζ3(Q) in
Eq. (34) and η1(Q) in the following form:

η1(Q) = 1

[η−1
a (q) − 1]ηb(iωq/2)ηc(Q) + 1

, (C3)

where ηa(q) is the angular average of η̃1(k, 0) with respect to
the angle θ between kF and q in the definition of k ≡ kF + q/2
(and thus k2 = k2

F + kFq cos θ + q2/4), given by

ηa(q) = 〈η̃1(k, 0)〉 ≡
∫ π

0 sin θdθ η̃1(k, 0)∫ π

0 sin θdθ

=
∫ kF+q/2

|kF−q/2|

kdk

kFq

∂E (k, 0)/∂εk

Z (k, 0)
. (C4)

The overall ωq-dependence is described by ηb(iωn) with
iωn → iωq/2 and the functional ηb(iωn) is defined as

ηb(iωn) = Z (kF, iωn) − 1

Z (kF, 0) − 1
, (C5)

by considering the fact that the dominant ωn dependence
comes from Z (K ) in �(K ) for K near KF. The conversion
function from ω to q limits, ηc(Q), is taken as

ηc(Q) = v2
Fq2

v2
Fq2 + 3ω2

q

, (C6)

in reference to the conversion in �0(Q) at Q → Q0, as shown
in Eqs. (18) and (19).

APPENDIX D: EXTRAPOLATION TO STATIC QUANTITY

From a set of data { f1, f2, · · · , fN } for an even function
f (iωn) at n = 1, · · · , N with ωn = πT (2n − 1), we can es-
timate the static value f (0) by the following extrapolation:
First, we regard the data set as that of the size twice as large
by considering { fN , fN−1, · · · , f2, f1, f1, f2, · · · , fN } given at
{−ωN ,−ωN−1, · · · ,−ω2,−ω1, ω1, ω2, · · · , ωN }. Then, we
apply a Lagrange’s polynomial interpolation formula to this
enlarged data set to obtain the interpolation function f̃ (ω) as

f̃ (ω) =
N∑

n=1

fn

N∏
j �=n

ω2 − ω2
j

ω2
n − ω2

j

. (D1)

By substituting ω = 0 in Eq. (D1), we obtain f (0) as

f (0) ≈ f̃ (0) =
N∑

n=1

fn

N∏
j �=n

ω2
j

ω2
j − ω2

n

. (D2)

We can check the convergence of the result f (0) by increasing
N from N ≈ 10 to find that in all cases N = 30 is large
enough.
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APPENDIX E: MESH POINTS

The selected mesh points in (k, ωn) space, {ki, ω j}, are
chosen in the following way: On k axis, the first point k1

is taken as k1 = 0.007kF; for 0 < ki � 2kF and |ki − kF| �
0.01kF, �i (≡ ki+1 − ki ) ∼ |ki − kF|/10; for ki ∼ kF, �i ∼
10−4kF; for ki > 2kF, �i ∼ ki/10; and the last point kM is
taken as 120kF with M = 240. Since the minimum value of
{�i} is as small as 10−4kF, the integrals in Eqs. (36a)–(36c)
should be very accurately performed, i.e., up to at least six
digits, to obtain significant difference between the results

at adjacent points. To achieve this accuracy, we employ the
double-exponential formula for numerical integration [160].

As for ωn axis, we take account of only the positive side
of the axis, because we consider only even functions; for j =
1 − 24, ω j = πT (2 j − 1); for j = 25 − 35, ω j = πT (4 j −
49); for j = 36 − 50, ω j = πT (8 j − 189); · · · ; and the last
point ωN is about 107 × πT with N = 310. This set {ω j}
is used in the Padé approximants for the numerical analytic
continuation [111] in which it is quite useful to calculate in
quadruple precision.
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