
PHYSICAL REVIEW B 110, 085127 (2024)

Unambiguous and robust formulation for Wannier localization
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We provide a new variational definition for the spread of an orbital under periodic boundary conditions (PBCs)
that is continuous with respect to the gauge, consistent in the thermodynamic limit, well suited to diffuse orbitals,
and systematically adaptable to schemes computing localized Wannier functions. Existing definitions do not
satisfy all these desiderata, partly because they depend on an “orbital center”—an ill-defined concept under
PBCs. Based on this theoretical development, we showcase a robust and efficient (10×–70× fewer iterations)
localization scheme across a range of materials.
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I. INTRODUCTION

Localized Wannier functions (LWFs) offer several the-
oretical and computational advantages over Bloch orbitals
in condensed-phase electronic structure calculations. For in-
stance, LWFs allow one to probe/characterize the local
electronic structure in complex extended systems, thereby
enabling chemical bonding analysis (e.g., floating bonds in
amorphous Si [1,2]), orbital partitioning (e.g., computing
molecular dipole moments in liquid water [3]), and chemical-
environment-based features/targets for machine learning
(ML) [4]. LWFs also play a critical role in evaluating the
bulk properties of materials (e.g., in the modern theory
of polarization [5–8] and magnetization [9–13]), predicting
and understanding the spectroscopic signatures of condensed
matter (e.g., IR [14] and Raman spectra [15]), as well as
constructing effective model Hamiltonians (e.g., for quantum
transport of electrons [16,17] and strongly correlated systems
[18–21]). Computationally, LWFs enable large-scale elec-
tronic structure calculations to exploit the real-space sparsity
(or “near sightedness” [22]) of exchange-correlation interac-
tions (e.g., in hybrid density functional theory [23,24] and GW
[25]). As such, a well-defined, robust, and efficient framework
for computing LWFs is highly desirable.

In this work, we address two fundamental problems with
existing methodologies for obtaining LWFs—one theoretical
and one practical. On the theoretical side, we present an un-
ambiguous ground-truth definition for the spread of an orbital
under PBCs that has several favorable properties: continuity
with respect to gauge transforms, consistency in the ther-
modynamic limit, and suitability for diffuse orbitals. Most
importantly, this variational definition sidesteps the funda-
mentally ill-posed problem of determining an orbital center
under PBCs, thereby yielding a gauge-continuous formula-
tion well suited for generating LWFs. In contrast, prior work
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based on adaptations of 〈r2〉 − 〈r〉2 (e.g., Marzari–Vanderbilt
[26]) suffer from the inherent complexities associated with
position operators in periodic systems (as studied by Resta
[27,28]), and result in orbital spread ansatz that are not gauge
continuous. Given the importance of computing LWFs, many
alternative (and practically effective) expressions for orbital
spread have been proposed [2,29–33]. While often deemed
“equivalent” [34,35], we will show this is not the case.

Based on this theoretical development, we derive a sys-
tematic approximation to our ground-truth orbital spread
definition that is local in k space and forms the basis for a
robust and efficient scheme for generating LWFs. In practice,
we show that our scheme consistently converges in at least
an order-of-magnitude fewer iterations (10×–70×) than the
widely used Wannier90 code [36] across a diverse range of
materials. The theoretical and practical contributions herein
provide a strong foundation for automated LWF construction
in large-scale systems across physics, chemistry, and materials
science, and will thereby enable next-generation capabilities
in the screening, discovery, and design of novel materials;
characterization and analysis of complex multiscale systems;
and generation of high-quality ML data at scale.

II. THEORY

Our definition for the spread of an orbital under PBCs is
motivated by the variational characterization of the center of
an orbital under open boundary conditions:

c∗ � argminr′

∫
ρ(r)(r − r′)2 dr =

∫
ρ(r) r dr, (1)

where ρ(r) is the density of a Wannier function [37]. Adapting
(1) for periodic systems leads to the density convolution (DC),
denoted by (Sρ):

(Sρ)(r′) �
∫
Sr′

ρ(r)(r − r′)2 dr

=
∫
S0

ρ(r + r′) r2 dr, (2)
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FIG. 1. Variation of (a) sum of spreads of |1〉 and |2〉, (b) spread
of |1〉, and (c) center of |1〉 with respect to the gauge, U (θ ), for a
1D periodic system containing two Wannier functions (|1〉 , |2〉) [37].
While sDC is continuous with respect to the (π -periodic) gauge, sMV is
not; also highlighted are some of the discontinuities of sMV and cMV.

where S0 is the Born-von Karman supercell (i.e., the unit cell
replicated with respect to the k-point mesh) and Sr′ is the
supercell translated by r′. The corresponding DC center (cDC)
and DC spread (sDC) are then defined as the minimizer and
minimum of (2):

cDC � argminr′ (Sρ)(r′), (3)

sDC � minr′ (Sρ)(r′). (4)

A key feature of sDC is continuity with respect to the
gauge chosen for the Wannier functions. This property arises
because sDC is explicitly defined as the minimum of an opti-
mization problem—a continuous quantity with respect to the
gauge in this case. This is in stark contrast to commonly used
orbital spread definitions based on 〈r2〉 − 〈r〉2 (e.g., [26]) that
can be discontinuous with respect to the gauge—a property
inherited from explicitly depending on the ill-defined notion
of an orbital center under PBCs [27,28]. We sidestep this issue
by using a center-independent formulation [cf. (4)]; hence,
the fact that cDC is not necessarily continuous with respect
to the gauge (as the periodicity implies multiple minimizers)
cannot plague sDC even though sDC = (Sρ)(cDC) for any cDC

satisfying (3).
To illustrate this advantage, Fig. 1 shows how sDC varies

with respect to the gauge for a two-state system [37]. For
comparison, we also consider the Marzari-Vanderbilt (MV)
spread (sMV) [26], the optimization of which leads to the
so-called maximally localized Wannier functions (MLWFs).
Figures 1(a) and 1(b) show that sMV is discontinuous with
respect to the gauge, as is cMV [Fig. 1(c)]. In contrast, sDC is
a smooth function of the gauge even though cDC is ill behaved.

The DC formulation in (3) and (4) can be intuitively
thought of as implicitly using the optimal integration bound-
ary when computing an orbital spread in real space. Moreover,
numerical evaluation of the underlying DC integral in (2)
(e.g., via a Fourier transform) corresponds to a spectrally
accurate computation of the orbital spread. Hence, the DC
formulation is both consistent in the thermodynamic limit
and more accurate for finite-sized domains than common

FIG. 2. Spread of a square wave in a 1D periodic domain
[−100, 100) as a function of the width 2d . sDC captures the expected
d2/3 behavior while sMV only does so when d is small relative to the
domain.

first-order expressions (i.e., as used explicitly by Marzari and
Vanderbilt [26] via a finite-difference scheme and implicitly
by Resta [27] via the use of a single low-frequency Fourier
mode when defining the position operator). Accordingly, sDC

is better suited to quantifying the spread of diffuse orbitals
(relative to the unit cell) as well as orbitals centered near unit-
cell boundaries. To concretely illustrate the validity of sDC for
both local and diffuse orbitals, Fig. 2 considers the spread of
a square wave (width = 2d) in a 1D periodic domain. While
sDC gives the exact spread (d2/3), sMV is only accurate when
d is small relative to the domain and becomes increasingly
inaccurate as d grows. This discrepancy can also be seen
in real systems, e.g., a K-doped molten KCl salt (K33Cl31)
[38–41], in which the bipolaron state is close to the conduc-
tion band and quite diffuse. Figure 3 clearly shows that sMV

deviates from the ground truth sDC as the orbitals become more

FIG. 3. Comparison of sDC and sMV for the LWFs in K33Cl31

computed with Wannier90 (blue dots). As the orbitals become more
diffuse, sMV deviates significantly from the ground truth sDC. Insets
show select orbital isosurfaces (±0.0001) overlaid with the unit cell
(simple cubic; side length 26.59 Bohr; [41]).

085127-2



UNAMBIGUOUS AND ROBUST FORMULATION FOR … PHYSICAL REVIEW B 110, 085127 (2024)

diffuse—in this case, severely underestimating the spread of
the bipolaron state by roughly 30%.

One of the most practical and prominent uses for an orbital
spread expression is within iterative methods for Wannier
localization [34]. While (4) can easily be computed given an
orbital density, sDC is cumbersome to optimize directly since
(2) is a nonlocal operator in k space. Hence, we now derive
a systematic approximation to sDC that is center independent,
gauge continuous, and consistent in the thermodynamic limit.
Moreover, it can be used as a surrogate for sDC within opti-
mization schemes for computing LWFs, and, if desired, sDC

can be computed for the converged orbitals.
Our derivation [37] starts with the truncated cosine

approximation

r2 �
∑

b

2 wb�
(
1 − e−i bT r), (5)

where b are selected nearest-neighbor vectors and wb are the
associated weights [26]. This leads to the (often tight) lower
bound

(Sρ)(r′) �
∑

b

2 wb�
(
1 − ρ̂(b) ei bT r′)

, (6)

where ρ̂(b) = ∫
S0

ρ(r) e−i bT r dr is the unnormalized Fourier
transform of ρ(r). For the nth Wannier function, ρ̂(b) =
1
N

∑
k Mk,k+b

n,n , wherein N is the number of electrons and M
is the set of k-space overlap matrices [26]. Minimizing the
right hand side of (6) by choosing r′ to eliminate the phase of
ρ̂(b) yields

sDC � sTDC �
∑

b

2 wb(1 − |ρ̂(b)|), (7)

where sTDC is the truncated DC (TDC) approximation and a
formal lower bound to sDC. In contrast, sMV can either overes-
timate or underestimate sDC (Fig. 1). Importantly, sTDC retains
the center independence of sDC; since ρ̂(b) is continuous with
respect to the gauge, this implies that sTDC is also gauge contin-
uous (Fig. S1 [37]). Like sDC, sTDC can be seamlessly applied
to both �-point and k-point calculations without modification.

Interestingly, a �-point only version of sTDC was heuris-
tically proposed in Berghold et al. [29] (by extension of
Ref. [33]); Stengel and Spaldin [32] built off this work to
compute orbital centers for polarization. However, Berghold
et al. [29] focused on numerical agreement of several orbital
spread ansatz for a fixed gauge, rather than their behavior
with respect to changes in the gauge; hence, these alterna-
tive expressions were deemed (essentially) equivalent to sMV

[29,34,35]. In contrast, we rigorously derive (7) from our DC
formulation and demonstrate that sTDC has clear theoretical and
practical advantages over sMV: it is a center-independent and
gauge-continuous definition of orbital spread (vide supra) that
yields a robust and efficient scheme for computing LWFs (vide
infra).

III. COMPUTATIONAL RESULTS

To highlight the sizable improvements provided by sTDC

during iterative localization, we computed LWFs for a suite
of materials using an in-house version of our code [42]

FIG. 4. Fraction of orbital localization computations Pc that
reached success within a given number of iterations for four ma-
terials. Using an sTDC-based (vs. an sMV-based) objective function
consistently provided an order-of-magnitude (10×–70×) reduction
in the number of iterations needed to achieve success.

and Wannier90 (v3.1.0) [36]. At its core, our code im-
plements the same gradient-based optimization algorithm as
Wannier90, but uses sTDC (instead of sMV) to define the
objective function (i.e., as the sum over orbital spreads). No-
tably, the favorable properties of the TDC scheme allowed
for a comparatively simple implementation of manifold op-
timization paired with standard criteria to reliably determine
convergence.

To compare the convergence behavior of objective func-
tions based on sTDC and sMV, we considered four materials with
diverse bonding types: Si, Li2Te, BaTiO3, and Cr2O3 [37].
We performed a series of 50 iterative localization computa-
tions per material, each starting from a different randomly
generated gauge [43]. Figure 4 characterizes the convergence
behavior by plotting the fraction of computations Pc that
succeeded within a given number of iterations (with success
defined retrospectively as reaching within 0.1% of the mini-
mum objective value achieved across all 50 runs). Using sTDC

consistently provided an order-of-magnitude reduction in the
number of iterations required to achieve success relative to
sMV (i.e., typically 10×–70× fewer iterations for a fixed Pc)
[44]. Our sTDC-based code is robust and converged for all 200
runs. Moreover, it did not achieve success only twice (once
each for BaTiO3 and Cr2O3), indicating that suboptimal local
minima are—in contrary to common belief—likely rare for
these non-trivial systems. All Wannier90 computations were
run for 5000 iterations, with Pc evaluated by retrospectively
determining the first iteration that achieved success during
each run. Even with this favorable criteria, Wannier90 com-
putations often failed—e.g., for Cr2O3, success was never
achieved within 1000 iterations and Pc ≈ 0.75 after 5000 it-
erations [44].

To better understand the convergence behavior in Fig. 4,
Fig. 5 considers a pair of successful localization computations
for Si. Figure 5(a) shows that sMV for the highlighted orbital
was not monotonic during the Wannier90 optimization tra-
jectory (e.g., iterations 250–300). Such behavior implies that
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FIG. 5. Characterization of two successful localization compu-
tations for Si from Fig. 4. (a) Nonmonotonic decay of sMV for the
highlighted orbital computed with Wannier90 (see inset). (b) Evolu-
tion of sTDC for the analogous orbital computed with our code, which
achieves success in ≈10× fewer iterations; sMV severely overesti-
mates the spread of this orbital. (c) Distant location of cMV leads to the
large discrepancy between sMV and sTDC (or sDC) for the highlighted or-
bital in (b). (d) Orbital isosurfaces depict the expected (approximate)
exponential decay of the highlighted orbital in (b) and (c).

Wannier90 encountered (and “escaped” from) potentially
suboptimal local minima, consistent with Cancès et al. [45];
further investigation suggests these might be nondifferentiable
(i.e., nonsmooth) points where the “gradient” (as defined by
the standard MV formulation) is nonvanishing—a challenging
scenario for any optimizer. In contrast, Fig. 5(b) shows that
sTDC for the analogous orbital monotonically decreases when
optimized using our code, which reaches the same LWFs
(per a visual metric) as Wannier90 in an order-of-magnitude

fewer iterations. Matching theoretical expectations, sTDC lower
bounds sDC and the metrics converge as the orbital becomes
more localized. However, sMV severely overestimates the
spread of the highlighted LWF computed using our sTDC-based
code. This discrepancy stems from the distant location of
cMV shown in Fig. 5(c)—highlighting a potential danger of
center-based definitions like sMV. Consistent with both sTDC

and sDC, Fig. 5(d) confirms that the LWF computed using our
code exhibits exponential decay. While sMV can sometimes fail
to recognize localized orbitals [cf. Figs. 5(b)–5(d)], sTDC—by
construction—is not prone to such issues.

IV. CONCLUSIONS

By providing an unambiguous ground-truth definition
for orbital spread and a corresponding robust scheme for
generating LWFs in complex systems with unprecedented
efficiency, this work addresses key theoretical and practical
issues that currently limit the use of LWFs in next-generation
applications. These contributions enable fully autonomous
construction of LWFs in diverse and large-scale systems,
paving the way for state-of-the-art materials discovery and
physics-informed ML at scale. While we only discussed in-
sulating systems, entangled systems can also be treated by
adapting Ref. [46] to use sTDC—an interesting future research
direction. Accompanying this article are two Julia packages
[42] that allow researchers to experiment with and expand
upon our work.
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