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In quantum anomalous Hall (QAH) systems, the Hall conductance is quantized, and the corresponding
effective topological theory of the system is the Chern-Simons theory. The conductance quantum is given by
the universal constant e2/h—the inverse von Klitzing constant—that is independent of the bulk gap, as well as
the size of the system. This picture relies on the assumption that the edge modes are sharply localized at the
edge, i.e., they have zero width. We show that, considering the physical case where the edge modes have finite
localization length b, the effective action would not be topological in the bulk direction anymore. Because of
nonzero b the conductance quantum will be corrected as (1 − ε)e2/h where ε encompasses the nonuniversal
(i.e., material/sample dependent) part that is determined by the dimensionless ratios gb

h̄vF
and b

L where g, vF , L
are the bulk gap, Fermi velocity, and sample length. To compute the nonuniversal correction ε we use anomaly
inflow framework according to which the bulk action produces the correct amount of anomaly inflow that would
cancel the anomaly of the chiral edge modes. These corrections place limits on the precision of measurable
quantization in units of the inverse von Klitzing constant for QAH systems with smaller sizes and/or smaller
bulk gaps. Our result suggests that the failure of precision measurements to reproduce the exact conductance
quantum e2/h is not an annoying sample quality issue, but it contains the quantitative physics of anomaly inflow
that can be inferred by the systematic study of such corrections.
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I. INTRODUCTION

The hallmark of symmetry-protected topological (SPT)
phases is their gapless zero modes on their boundary [1].
When the gapped degrees of freedom of a fermionic SPT are
integrated out, effective electromagnetic theory in SPT phases
realizes a topological term that represents the topological
nature of the material. Such topological terms are universal
in the sense that they are independent of the bulk gap and
the system size, and have an intimate relation with the edge
modes via anomaly inflow [2]. This intimate relation would
force the bulk action to correctly manifest the features of edge
modes. This relation between the topology of the bulk and the
existence of zero modes on the boundary is known as bulk-
edge correspondence. Is there a more quantitative expression
of this correspondence to allow for a measurement that would
shed more light on this correspondence?

The effective action derived by integrating out the bulk
gapped modes assumes that the edge modes live on an exact
one lower dimensional space, i.e., they are sharply localized
in the boundary without any spatial profile along the bulk
direction. Such a Dirac-delta localization of zero modes at
the boundary is a convenient assumption to formalize the
correspondence between the bulk and the edge. However, in
actual topological materials the localization length cannot be
less than the atomic scales. Assuming that the edge modes
are localized within the range b of the boundary introduces
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a length scale to the bulk-edge correspondence. It would be
natural to expect that the spatial profile of zero modes con-
tribute corrections to the effective action of the gapped bulk.
One naively anticipates that the localization length b of the
zero modes will be combined with the length L representing
the system size to form a dimensionless ratio b/L that will
ultimately control the possible corrections to the universal
b = 0 limit. We find surprisingly that as soon as b is nonzero,
it triggers dependence on both the sample size L and the
bulk gap g via the dimensionless parameter gb

h̄vF
. In this way,

the effective action is not strictly topological in the sense
that it will acquire nonuniversal corrections that are given by
sample/material specific parameters. The bright side of such
dependence is that its systematic study can be an experimental
framework for the quantitative study of the anomaly inflow on
the tabletop.

In the b = 0 universal limit, all the information that is
matched between bulk and boundary via anomaly is cap-
tured by anomaly descent equations that relate three parties:
anomaly in d dimensions, Chern-Simons theory in d + 1
dimensions, and topological characteristic classes in d + 2
dimensions [3]. But we show that in addition to this universal
topological information, there is also nonuniversal corre-
spondence between bulk and edge, which is captured by a
deformation of the original descent equation containing the
embedding information of d dimensional anomalous theory
inside the d + 1 dimensional manifold. Rephrasing the above
point in the context of QAH system, when the bulk theory has
a nontrivial topology, the edge is characterized by exact e2/h
conductance. Deviations of the bulk theory from topological
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theory (in bulk direction) will be reflected as corresponding
deviations from the universal conductance e2/h. Anomaly
inflow encompasses both situations and therefore provides a
framework to compute such corrections.

To demonstrate this phenomenon within the framework of
anomaly inflow, we choose the QAH effect (QAHE) [4]. The
first step in promoting the classical version of the anomalous
Hall effect [5,6] was a theoretical effort by Haldane proposing
a model based on the honeycomb lattice that would give a
nonzero Hall conductance σH without requiring a magnetic
field [7]. But the actual realization of QAHE is based on the
surface Dirac cones of topological insulators. These Dirac
cones can be gaped out by doping magnetic atoms offering
a 2D massive Dirac cone [8] required for the realization of
QAHE. These massive Dirac fermions will play the role of
massive bulk Dirac fermions for the QAH transport at the
edges as realized in recent experiments [9,10].

One important advantage of this experimental platform is
that the bulk gap is caused by the external magnetic influ-
ence of the doped magnetic atoms. Therefore, using external
magnetic fields to force them away from the perpendicular
direction [11] can be thought of as a knob to tune the gap
of the massive Dirac fermions. In this way, we propose the
QAH transport in magnetically doped topological insulators
as a suitable platform to study the anomaly inflow physics
systematically by studying the size L and gap g dependence
of the anomalous Hall conductance. We model the QAHE
with massive Dirac fermions in two space dimension coupled
with a scalar field φ featuring a kink to which edge modes
responsible for the QAHE are bound. The question we study
in this paper is the impact of the width of the kink that also
represents the localization length of the edge modes, on the
Hall conductance σH of the QAHE.

The organization of the paper is as follows: In Sec. II we
describe how the anomaly inflow can be used to incorporate
the localization size of the edge modes as corrections to uni-
versal conductance. In Sec. III we implement the anomaly
inflow computation for the 2+1 dimensional massive Dirac
fermions of the QAHE. In Sec. IV we compute the nonuniver-
sal corrections arising from the finite localization size of the
edge modes for a Sigmoid shaped mass profile the numerical
results of which are presented in Sec. V. We end the paper
with summary and discussions in Sec. VI.

II. ANOMALY INFLOW FRAMEWORK

The nontrivial topology in topological materials manifests
itself when boundaries or defects are introduced into such
gapped systems. Then the topology will be represented by
gapless excitations living on the interface, which are protected
by the quantum anomaly associated with these boundary zero
modes. The phenomenon of canceling the gauge noninvari-
ance of zero modes living on the boundary by the topological
field theory of the bulk is known as anomaly inflow and was
first introduced by Callan and Harvey [2] following which
there has been a plethora of examples of such bulk-edge cor-
respondence [1,12–15]. Some explicit examples of emergence
of anomalous edge theories from topological bulk physics can
be found in Refs. [16–20].

Consider a d-dimensional theory with global symmetry
described by the group G. The symmetry would transform the
degrees of freedom of system φ to φg. If we promote such
global symmetry to a local gauge symmetry and couple the
system with background gauge field Aμ associated with this
gauge symmetry, we can write the partition function of such
theory in the background of this gauge field as

Zd [A] =
∫

DφeiS[φ,A], (1)

where S[φ, A] is the action of theory describing the dynam-
ics of system in the presence of background gauge field A.
Anomaly appears when such partition function does not re-
main invariant under gauge transformation of the gauge field,
transforming A to Ag, where g denotes parameter of local
gauge transformation

Zd [Ag] �= Zd [A]. (2)

The amount of noninvariance would depend generally on both
A and g and can be classified by a phase factor Zd

anomaly[A, g]
defined as

Zd [Ag] = Zd [A].Zd
anomaly[A, g]. (3)

The anomaly in d dimension is intimately tied to the SPT
phases in d + 1 dimensions. There would always be an SPT
phase living on a d + 1 dimension manifold with boundary
that produces the same amount of nongauge invariance as
d-dimensional anomalous system would produce. Therefore,
they both have the same classification [21,22].

On the quantum materials side, one of the conceptually
simple, but experimentally challenging phenomena was the
observation of quantum anomalous Hall effect (QAHE) [9],
which relies on magnetic topological insulators [23]. In this
paper, following Harvey [24], for the QAHE problem, we
investigate how the spatial profile of the gapless boundary ex-
citations in the bulk direction influences the effective action of
the topological theory of the bulk. We obtain such dependence
using the anomaly inflow for an anomalous Hall system. We
discuss implications for the recent experiments on the QAHE.

III. 2+1 DIMENSIONAL ANOMALOUS HALL SYSTEM

Let us begin by considering a quantum anomalous Hall
system in 2+1 dimension. Such a system can be described
in low energy by a pair of gapped Dirac theories [7], which
because of the presence of mass term would break time re-
versal invariance. Each Dirac theory would contribute half
quantized value e2

2h to integer quantized Hall conductance.
Our starting point would be to consider one of these 2+1
dimensional Dirac equations in the background of a 1+1
dimensional domain wall. The domain walls can be produced
in the process of symmetry breaking of a Z2 symmetry or can
be considered as an existing interface between two regions
with different masses. In the symmetry breaking case one
can consider the Dirac equation interacting with a scalar φ(x)
whose Lagrangian is

L = ψ̄ (x)iγ μ(Dμ)ψ (x) + 1
2∂μφ∂μφ − gψ̄φψ (x) − V (φ),

(4)
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FIG. 1. The domain wall profile.

where g is the coupling between fermions and the background
scalar field φ and has the dimension of mass (energy). The po-
tential V (φ) induces Z2 symmetry breaking and will produce
a vacuum with either of the expectation values 〈φ〉 = v or
〈φ〉 = −v. But there can also be a domain-wall solution such
that φ interpolates between such two vacua with an asymptotic
behavior specified by φ(−∞) = −v and φ(+∞) = v. An
example of such solutions is portrayed in Fig. 1.

Such codimension q defects are known to exist when the
broken symmetry G has nontrivial q − 1 homotopy groups
πq−1(G) [25]. Here we have codimension one defect or do-
main wall because π0(Z2) = Z2. In the presence of a domain
wall, the Dirac fermions obey the equation of motion,

iγ μ∂μψ (x) − gφ(x)ψ (x) = 0, (5)

and separating directions along the wall a = 0, 1 from perpen-
dicular spatial direction μ = 2 or z, we will have

iγ a∂aψ (x) + iγ 2∂2ψ − gφψ = 0, (6)

where γ μ are gamma matrices obeying the Clifford algebra
{γ μ, γ ν} = 2ημν and ημν is the Minkowski metric of the
space-time.

Considering the profile of domain wall in the perpendicular
direction to the wall, one can separate the Dirac equation into
two parts using the ansatz,

ψ = η(xa)F (x⊥) = Aη(xa)egα(z), (7)

where a = 0, 1 are the directions along the wall, η(xa) is
the 1+1 dimensional spinor living on the wall, and F (x⊥) =
Aegα(z) is the fermion profile in the direction normal to the
wall with a normalization constant A. Using this ansatz, we
obtain an effective 1+1 D Dirac equation plus a constraint,

iγ a∂aη(xa) = 0, (8)

i(γ zη)∂zα = φ η. (9)

The constraint can be solved if we have

iγ zη = ±η, ∂zα = ±φ. (10)

The second equation gives

α(z) = ±
∫ z

0
φ(z′)dz′, (11)

from which the solution bounded to the wall will be

ψ (x) = Aη(xb)e±gα(z) = Aη(xb)e± ∫ z
0 gφ(z′ )dz′

. (12)

Note that iγ z is the chirality operator in 1+1 dimension.
So one implication of the constraint equation is that the 2D
spinor has a definite chirality. The other implication is that
the positive chirality solution is exponentially growing in the
direction normal to the wall and the negative chirality one
is exponentially decaying in the same direction or, in other
words, the negative chirality solution is localized on the do-
main wall.

Solving the reduced Dirac equation along the wall, Eq. (8),
one obtains the free propagating solution with momentum p,

η±
p (t, x) = u±e−ip(t±x), (13)

where u± is 2D spinor with definite chirality. Such 2D spinor
is written as a subspace of a 3D spinor

u± = 1√
2E

(
σμ pμ ξ±
σ̄ μ pμ ξ±

)
, (14)

where σμ = (1, σ i ), σ̄ μ = (1,−σ i ) in which σ i are Pauli

matrices and ξ± are chosen in a basis where ξ± = (
1
∓i

). The

full solution would be

ψp(x) = F (x⊥)u±e−ip(t±x) = Au±e−ip(t±x)e± ∫ z
0 gφ(z′ )dz′

.

(15)
To be normalizable it must satisfy the normalization condition∫

d2x ψp(x)†ψp′ (x) = 2πδ(p − p′). (16)

This condition excludes the exponential growing solution
from the list of viable solutions and also fixes the normal-
ization constant A for the localized solution. Simplifying the
expression by using the plane-wave solution along the domain
wall we obtain the condition only for the transverse directions∫

dx⊥ F2(x⊥) = 1. (17)

Anomaly on 1+1D domain wall

Our goal here is to find the effective action of the gapped
modes of the bulk in terms of the background U (1) fields such
that correctly portrays the anomaly inflow picture in the pres-
ence of edge modes with finite-size localizations. To do so, we
need to find the anomaly or noninvariance of effective action
of zero mode fermions. Once we have their contribution to the
anomaly, we will construct an effective action of the bulk such
that the bulk effective action cancels the anomaly of localized
zero modes. If we were to consider the domain wall as an
exact two-dimensional surface (not a 2D manifold embedded
in 3D bulk), then one could compute the anomaly of 2D chiral
fermions on it, which would produce the well-known result

∂a ja = −e

4π
F = −e

8π
εabFab, (18)

which is the consistent U (1) anomaly of gapless chiral
fermions [26]. There would be another concept known as
covariant anomaly, related to consistent anomaly but differs
from it by a factor of two [27]. Such nonconservation of U (1)

085121-3



ARMIN GHAZI AND S. A. JAFARI PHYSICAL REVIEW B 110, 085121 (2024)

Aj j

FIG. 2. Zero-mode Feynman diagram.

current ja is an immediate consequence of Eq. (3) for the case
of U (1) background gauge fields (Aμ). In this case we will
have

Z

[
A + 1

e
dλ

]
= ei

∫
λF
4π Z[A], (19)

so here Zanomaly[A, g] = ei
∫

λF
4π , which is associated with the

3D Chern-Simons theory as its corresponding bulk theory.
Now for the quasi-two-dimensional anomaly produced along
the domain wall, one should compute the contribution of zero
modes, which are localized along the domain wall in the
original 3D theory.

We can decompose the fermion field into two parts, the
zero mode and nonzero modes,

ψ = ψzm + ψnzm, (20)

One can also assume the same splitting for Green’s function

G(x2, x1) = 〈ψ (x2)ψ (x1)†〉 = G(x2, x1)zm + G(x2, x1)nzm.

(21)
To see the inflow picture, one should compute the U (1) cur-
rent in this domain wall background. The total current should
be conserved as the consequence of nonanomalous U (1) sym-
metry in the system. But as we know the current along the
domain wall is nonconserved owing to the anomaly, so one
should see this noninvariance by computation of zero-mode
current associated with the Feynman diagram of Fig. 2.

Considering the partition function of the full fermionic
theory in the background of U (1) gauge field Aμ,

ZT [A] =
∫

Dψ̄DψeiS[ψ,A], (22)

we know that ZT [A] must be gauge invariant or equiva-
lently have conserved U (1) current ∂μ〈Jμ〉A = 0. But from
the general anomaly inflow picture, we know that considering
fermionic modes localized on the defect and the other bulk
modes separately, each would not be gauge invariant. For the

localized modes current on the defect we have

〈Jμ(x1)zm〉 = −i e
∫

d3x2〈T {Jμ(x1)zmJν (x2)zm}〉Aν (x2),

(23)
where T {Jμ(x1)zmJν (x2)zm} is the time-ordered correlation
function of U (1) currents. Using the definition of current,
〈Jμ(x1)zm〉 will become

i e
∫

d3x2Tr(γ μG(x2, x1)zmγ νG(x1, x2)zm )Aν (x2). (24)

To calculate this, we need to introduce mode expansion of
zero modes

ψ (x)zm =
∫ ∞

0

d p

2π
uβ âpF (x⊥)e−ip(t+x)

+
∫ 0

−∞

d p

2π
uβ b̂†

−pF (x⊥)e−ip(t+x), (25)

where âp is the annihilation operator for the particle with mo-
mentum p and b̂†

−p is the creation operator for the antiparticle
with the same momentum. One can write this as

ψ (x)zm = F (x⊥)ζ (t, x)

=
[∫ ∞

0

d p

2π
[uβ âpe−ip(t+x)+uβ b̂†

pF (x⊥)eip(t+x)]

]

× F (x⊥), (26)

where

ζ (t, z) =
∫ ∞

0

d p

2π

[
uβ âpe−ip(t+x) + uβ b̂†

peip(t+x)
]
, (27)

is a fundamentally two-dimensional chiral fermion. Now
defining the Green’s function as usual

G(x2, x1)zm

= θ (t2 − t1)〈ψ (x2)ψ̄ (x1)〉 − θ (t1 − t2)〈ψ̄ (x1)ψ (x2)〉,
(28)

We use the mode expansion (26) to obtain the Green’s func-
tion of such zero modes in terms of 2D gamma matrices as
subspaces of original 3D gamma matrices

G
(
xa

2, x⊥
2 ; xa

1, x⊥
1

)
zm =

∫
d2 p

(2π )2
eip.(x2−x1 )F (x⊥

2 )F (x⊥
1 )

× PL

p + iε
, (29)

where PL is 2D representation of the projection operator into
left-handed chiral fermions. With this Green’s function, we
can calculate the one loop current of (23). To do so, we write
the spinor summations in terms of intrinsic two-dimensional
gamma matrices,

〈Jμ(x2)zm〉 = ie2

2

∫
dx⊥

1

∫
d2 p

(2π )2

∫
d2q

(2π )2
eiqx2F2(x⊥

2 )F2(x⊥
1 )Tr

[
γ μ PL

p + iε
γ ν PL

p − q + iε

]
Aν (q)

= ie2

2

∫
d2 p

(2π )2

∫
d2q

(2π )2
eiqx2F2(x⊥

2 )Tr

[
γ μ PL

p + iε
γ ν PL

p − q + iε

]
Aν (q) (30)

= e2
∫

d2q

(2π )2
eiqx2F2(x⊥

2 )

(
qμενβqβ + qνεμαqα

8πq2

)
Aν (q). (31)
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Using this current we can compute ∂μJμ for the pair of
Dirac theories, which is proportional to the anomaly a,

a = −e2

8π
F2(x⊥

2 )εabFab. (32)

By the definition of anomaly (3), we know that the gauge
variation of effective action of zero modes is proportional to
the anomaly

δ�Szm =
∫

d3x a �, (33)

which for the covariant chiral anomaly case with a =
− e

4π
εabFabF2(x⊥), one would get

δ�Szm =
∫

d2xdx⊥

(
− e2

4π
εabFabF2(x⊥)

)
�(x). (34)

Following [24,28] the gapped bulk should have effective ac-
tion

S = − e2

8π

∫
d3xεμνλ(1 + ρ)AμFνλ. (35)

Such action fails to fulfill the Gauge invariance by the follow-
ing amount:

δ�Szm =
( e

4π

) ∫
d2xdx⊥ εμνλ(∂μρ)Fνλ�(x), (36)

=
( e

4π

) ∫
d2xdx⊥ ε⊥ab(∂⊥ρ)Fab�(x). (37)

So by using Eqs. (34) and (36) and considering the difference
between covariant and consistent anomaly, one can choose the
appropriate integration constant and see that

ρ(z) = −1 +
∫ z

0
dz′F2(z′), (38)

or explicitly

ρ(z) = −1 + A2
∫ z

0
dz′e−2

∫ z′
0 gφ(z′′ )dz′′

, (39)

where A will be obtained by normalization condition (17)
and depends on the specifics of material. The function ρ(z)
captures the effect of zero-mode profile and how effective
action in the Bulk depends on it.

IV. NONUNIVERSAL CORRECTIONS
TO THE HALL CONDUCTANCE

Our goal here is to explore the consequences of the above
results. So let us consider an anomalous Hall system with a
pair of gapped Dirac particles in the background of a domain
wall. Considering a pair of such Dirac particles, the current in
the bulk would become

Jμ = δS

δAμ

= −e2

4π
(εμνλ(1 + ρ)Fνλ + εμνλ(∂νρ)Aλ), (40)

which can be explicitly written as

Jμ = −e2

4π
A2

[
εμνλ

(∫ z

0
dz′e−2

∫ z′
0 gφ(z′′ )dz′′

)
Fνλ

−εμνz(e−2
∫ z′

0 gφ(z′′ )dz′′
)Aν

]
. (41)

The second term would mainly contribute to the boundary
current and is also responsible for the difference between
consistent and covariant anomaly that bulk induces on the
boundary whereas the first term is the Hall current in the bulk
[27].

Using the normalization relation of (17), if we assume the
total width of material is L we have

A−2 =
∫ L

0
dz′e−2

∫ z′
0 gφ(z′′ )dz′′

. (42)

Then we will have the bulk currents as

Jμ
bulk = −e2

4π

⎛
⎝εμνλFνλ

∫ z
0 dz′e−2

∫ z′
0 gφ(z′′ )dz′′

∫ L
0 dz′e−2

∫ z′
0 gφ(z′′ )dz′′

⎞
⎠. (43)

So we can read the Hall conductance defined by

σHall = lim
ω→0

1

iω
〈 jx(q, ω) jy(−q, ω)〉 (44)

to be

σHall(z) = e2

2π

⎛
⎝

∫ z
0 dz′e−2

∫ z′
0 gφ(z′′ )dz′′

∫ L
0 dz′e−2

∫ z′
0 gφ(z′′ )dz′′

⎞
⎠, (45)

which depends on both the value of gap controlled g, and also
the gap profile φ(z).

Also, the bulk action would induce a current on the bound-
ary as

Jμ
boundary = e2

4π

⎛
⎝εμνzAνe−2

∫ z′
0 gφ(z′′ )dz′′

∫ L
0 dz′e−2

∫ z′
0 gφ(z′′ )dz′′

⎞
⎠, (46)

which is not gauge invariant and it must be added to the
boundary current because of boundary zero modes in Eq. (31).
Note that εμνz essentially means a Levi-Civita symbol with
two superscripts μν. The superscript z is kept to emphasize the
procedure of reduction in the dimension from the bulk to the
boundary. So for the total boundary current, we would have

Jμ
boundary(x, z) =

∫
d2q

(2π )2
eiqx2

(
e2

2π

)
×

⎡
⎣ e

∫ z′
0 gφ(z′′ )dz′′

∫ L
0 dz′e−2

∫ z′
0 gφ(z′′ )dz′′

[
εμνz −

(
εμρzqνqρ

q2

)]

× Aν (q, z)]. (47)

Now we have the gauge-invariant current on both the inter-
face and inside the bulk. Let us consider a specific φ profile as
an explicit example of this construction,

φ(z) = tanh
( z

b

)
(48)

where b is a parameter that controls the width of the interface
between two sections with positive and negative mass (Fig. 1)
and corresponds to the localization width of the zero modes in
the boundary. For such a profile we have

e−2
∫ z′

0 gφ(z′′ ) = cosh−2gb

(
z′

b

)
≡ c(z′)−2gb. (49)
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Let us compute the normalization factor in the denominator. Note that if we consider space-filling material then we should
integrate over the whole space.

∫ L

0
dz′e−2

∫ z′
0 gφ(z′′ ) =

∫ L

0
dz′ cosh−2gb

(
z′

b

)
=

√
π�( 3

2 −bg)
�(1−bg) − c(L)1−2bg

2F1
(

1
2 , 1

2 − bg; 3
2 − bg; c(L)2

)
i
b − 2ig

, (50)

where 2F1 is the hypergeometric function. So for the bulk current, we would formally have

Jμ
bulk (z) = −e2

4π
εμνλFνλ ×

⎡
⎣ c(z)1−2gb

2F1
(

1
2 , 1

2 − gb; 3
2 − gb; c(z)2

) −
√

π�( 3
2 −gb)

�(1−gb)

c(L)1−2gb
2F1

(
1
2 , 1

2 − gb; 3
2 − gb; c(L)2

) −
√

π�( 3
2 −gb)

�(1−gb)

⎤
⎦. (51)

Therefore the Hall conductance (44) will become

σH(z) = e2

2π

⎡
⎣ c(z)1−2gb

2F1
(

1
2 , 1

2 − gb; 3
2 − gb; c(z)2

) −
√

π�( 3
2 −gb)

�(1−gb)

c(L)1−2gb
2F1

(
1
2 , 1

2 − gb; 3
2 − gb; c(L)2

) −
√

π�( 3
2 −gb)

�(1−gb)

⎤
⎦. (52)

So instead of a constant Hall conductance across the material, we have z-dependent conductance, depending on both the width
of boundary and bulk and also the value of gap via g. The entire measured current in the boundary is obtained by integrating
over the whole geometry. Assuming Hall bar geometry we have

σH = 1

L

∫ L

0
σ (z)dz. (53)

In order to write the above formula in the standard units, one notes that g has the dimension of energy. Therefore, when combined
with b of dimension length, will have the dimension of h̄vF where vF is the (Fermi) velocity scale of the material and σH will be
expressed in the natural unit of e2/h. Doing so to restore the constants we obtain

σH = e2

h

∫ L

0

dz

L

⎡
⎢⎢⎢⎢⎣

c(z)1−2 gb
h̄vF 2F1

(
1
2 , 1

2 − gb
h̄vF

; 3
2 − gb

h̄vF
; c(z)2

)
−

√
π�

(
3
2 − gb

h̄vF

)

�
(

1− gb
h̄vF

)

c(L)1−2 gb
h̄vF 2F1

(
1
2 , 1

2 − gb
h̄vF

; 3
2 − gb; c(L)2

)
−

√
π�

(
3
2 − gb

h̄vF

)

�
(

1− gb
h̄vF

)

⎤
⎥⎥⎥⎥⎦ (54)

where h̄ is reduced Planck constant and vF is Fermi velocity.
Using the above formulas one can find the Hall conductance
for different setups. Equation (54) also describes a mate-
rial with length 2L where both boundaries host finite-width
domain walls with the same b. We see that there are two
dimensionless parameters controlling the quantization of Hall
coefficient: One parameter is gb

h̄vF
, which depends on the value

of gap (g), localization length of edge modes (b), Fermi veloc-
ity of material (vF ), and the other parameter is b

L or the ratio
of edge localization and the sample length.

V. SAMPLE-DEPENDENT DEVIATIONS FROM e2/h

Let us observe how by fixing two parameters and changing
the other one, the Hall coefficient would change. We probe
the values that are relevant to the observed experimental
realizations of quantum anomalous Hall experiments [9,29–
31]. As can be seen in Fig. 3 fixing both the edge mode
localization length b to a typical atomic size of 1 Å, and the
ratio of g

vF
when the length of the material L drops below

mm length scale, deviations from the universal value e2/h
become manifest at the fourth digit. As can be seen for typical
values of the gap gb/(h̄vF ) shown in the figure, the deviations
are stronger for smaller gb/(h̄vF ) values. For larger values
of the gap, the deviations from the universal value sets in at
lower sample length scales. This indicates that the larger bulk

gaps are closer to the universal limit. In fact, in the limit of
infinitely large gap the conductance will have its universal
value, irrespective of the sample size L.

The dependence on the gap can be more manifestly seen in
Fig. 4 where for two samples of length 0.1 mm and 0.01 mm
the dependence of the Hall conductance on gap has been
depicted. As can be seen for larger gap values the Hall con-
ductance tends to the inverse von Klitzing constant.

FIG. 3. Dependence of Hall coefficient on sample length L for a
atomically localized edge modes with b = 10−10 m.
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FIG. 4. Hall coefficients as a function of gap value g for a mate-
rial with atomically localized edge modes with b = 10−10 m.

Finally, in Fig. 5 we have depicted the variations of the Hall
conductance as a function of the localization length b in an in-
terval around the typical atomic length scale (1 Å), for a fixed
value of L = 0.1 mm and fixed values of g

vF
= 1, 10 Å−1 with

blue and red curves, respectively. The blue curve corresponds
to gap values on the scale of a fraction of eV if b is assumed to
be a fraction of Å, which can be relevant to Cr doped Bi-based
topological insulators [9].

It is important to note that the localization length b affects
the Hall coefficient through two competing tendencies, one
as the exponent of cosh and the other one as argument of the
hypergeometric function. Therefore, the behavior under varia-
tion of b is more complicated. Although in general, decreasing
the value of edge mode localization length would force the
Hall coefficient to get closer to its universal value.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have used the anomaly inflow framework
to compute the corrections to Hall conductance in QAHE
that arise from a finite localization length b for the bound-
ary zero modes. In the limit where b is zero, i.e., the edge
modes are sharply (Dirac delta) localized in the boundary,
the Hall conductance as expected is given by its universal
value of e2/h—the inverse von Klitzing constant. As soon
as b becomes nonzero, quite unexpectedly the dependence
of Hall conductance not only on the dimensionless ratio b/L
where L is the Hall bar length sets in, but also a dependence
on another dimensionless variable gb

h̄vF
is triggered where g

is the bulk gap and vF is the Fermi velocity. Therefore, not
only the sample size start to nonuniversally contribute to the
Hall conductance, but also the composition of the material
affects the Hall conductance via the ratio gb/h̄vF for any given
localization length b of the edge modes.

FIG. 5. Hall coefficients with respect to changing localization
value b for material with total length of 0.1 mm.

In the 1% accuracy of the Ref. [29], dominant thermal
activation across the bulk gap can mask smaller boundary lo-
calization effects discussed here. The observed high-precision
Hall conductance of (0.9998 ± 0.0006)e2/h in hard ferromag-
netic topological insulators [32] might be a hint for significant
boundary localization effects.

Our results show how abstract theoretical notions of
anomaly inflow can find concrete condensed matter realiza-
tion in the context of QAHE. Our theory further offers a
framework to “measure” the localization length b by fitting the
accurately measured Hall conductance for a handful of sample
lengths of a given material where the ratio g/vF is fixed. The
cross over from edge-dominated transport in experiments of
Ref. [11] to diffusive transport in the bulk as a function of
tilting the field angle can be thought of as a means for tuning
the gap g where upon tilting the field away from perpendicular
direction, the gap becomes smaller, allowing for deviations
from the universal quantization. Combining high-precision
measurements of the type [32] at low temperatures with tilted
field studies of the type [11], where the gap g can be tuned
to very small values when the thermal effects [29] are care-
fully separated, can be a route to reveal the anomaly inflow
physics discussed here that manifests itself as nonuniversal
corrections to the Hall conductance.
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