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Multiple Floquet Chern insulator phases in the spin-charge coupled triangular-lattice ferrimagnet:
Crucial role of higher-order terms in the high-frequency expansion
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We study the effects of photoirradiation with circularly polarized light on the Dirac half-metal state induced
by the ferrimagnetic order in a triangular Kondo-lattice model. Our analysis based on the Floquet theory reveals
that two types of Floquet Chern insulator phases appear as photoinduced nonequilibrium steady states and that
these two phases can be experimentally detected and distinguished by measurements of the Hall conductivity. It is
elucidated that these rich nonequilibrium topological phases come from higher-order terms in the high-frequency
expansion called Brillouin-Wigner expansion, which is in striking contrast to usually discussed Floquet Chern
insulator phases originating from the lowest-order terms of the expansion. So far, the lattice electron models on
simple nonmultipartite lattices such as triangular lattices and square lattices have not been regarded as targets
of the Floquet engineering because the lowest-order terms of the high-frequency expansion for Floquet effective
Hamiltonians cancel each other to vanish in these systems. Our findings of the Floquet Chern insulator phases
in a triangular Kondo-lattice model are expected to expand the range of potential models and even materials
targeted by the Floquet engineering.
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I. INTRODUCTION

Since the first theoretical proposal of the Floquet Chern
insulator state in graphene [1,2], the Floquet engineering
of topology in condensed matters has been a central is-
sue of the photoinduced physics [3,4]. A recent experiment
[5] and a precise theoretical analysis [6] indicate that, al-
though the experimentally observed photoinduced transverse
current in graphene is largely coming from the electron pop-
ulation imbalance around the Dirac cone, there is tiny but
finite contribution from photoinduced Berry curvatures. Pos-
sible realizations of the Floquet Chern insulator state are
theoretically and experimentally proposed also in several
atomic-layer systems including twisted multilayer graphene
[7–9], silicene [10], black phosphorene [11], transition-metal
dichalcogenides [12–15], organic salts [16–22], and cuprate
superconductors [23]. In addition, subsequent seminal works
have revealed new concepts, e.g., the anomalous Floquet
states due to hybridization of multiple Floquet sectors with
different photon numbers [24–27] and the Floquet fractional
Chern insulator states as intrinsic fractionally quantized Hall
states under a periodic drive [28], which are attracting a great
deal of research interest recently. The circular dichroism of
the Floquet states is also studied intensively [29,30].

The Floquet engineering of material topology has been
developed further in various directions [31]. On the surfaces
of topological insulators, Floquet-Bloch states with ultrafast
intraband and interband dynamics are experimentally ob-
served [32,33]. In three-dimensions, Floquet Weyl semimetal
states [34,35] as three-dimensional counterparts of the Flo-
quet Chern insulator states have been proposed to emerge
in the photodriven three-dimensional Dirac electron systems

[36] and the Mott-insulating magnets on the pyrochlore lat-
tice [37]. Consideration of strong electron correlations is
another important direction of the research. The Floquet
theory combined with the dynamical mean-field theory
(DMFT) named Floquet-DMFT has been developed as a pow-
erful tool to analyze the photodriven phenomena in correlated
electron systems [38,39], e.g., manipulation of fermion-
fermion interactions [40] and higher-harmonic generations
in Mott insulators [41]. In addition, the Floquet engineer-
ing extends its scope to the research field of spintronics
[42,43]. Analyses based on the Floquet theory have revealed
a variety of physical mechanisms of spin-current generation
based on spin-wave excitations by application of electromag-
netic waves to magnets such as multiferroic materials with
magnetoelectric coupling [44]. Spin dynamics toward and
in the Floquet states are also active research topics [45,46].
The Floquet engineering continues to attract researchers from
the viewpoints of both fundamental science and technical
application.

The geometry of lattice structure is a crucial factor for
the Floquet engineering [2,47,48]. We argue this aspect by
introducing a technical detail of the Floquet theory. The Flo-
quet theory describes nonequilibrium steady states induced by
a periodic drive such as light in an extended Hilbert space
of states with different photon numbers n, i.e., the original
space without the periodic drive (n = 0) and duplicated sub-
spaces with n = ±1,±2, · · · . Because direct analyses of this
extended Hilbert space require a huge computational cost,
a high-frequency expansion technique is frequently used, in
which the duplicated nonzero photon-number subspaces are
projected onto the original Hilbert space. In this framework,
we often consider the terms up to the first-order of the
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expansion with respect to 1/ω for the effective Hamiltonian
Ĥeff ,

Ĥeff = Ĥ0 −
∑
n>0

[Ĥn, Ĥ−n]

nω
, (1)

Ĥn = 1

T

∫ T

0
dτ Ĥ (τ )einωτ , (2)

where Ĥ (τ ) denotes the original time-dependent Hamiltonian
under photoirradiation, and ω and T = 2π/ω denote the fre-
quency and time period of light, respectively. The first term of
Eq. (1) describes the time-average of the original Hamiltonian,
while the second term describes the projection of one-photon
subspaces into the original Hilbert space.

In fact, in the Floquet engineering, the second term plays
a substantial role for the emergence of photoinduced topolog-
ical phases. However, it is known that the first-order terms
usually vanish because of the cancellation of contributions
from equivalent paths having phases with opposite signs. In
fact, we can avoid such cancellations to realize a nonzero con-
tribution from the first-order terms in multipartite lattices, e.g.,
honeycomb lattices (bipartite), Lieb lattices (bipartite), and
Kagome lattices (tripartite). On the contrary, the cancellation
cannot be avoided in simple nonmultipartite lattices such as
square and triangular lattices even in the presence of extrinsic
sublattice degrees of freedom introduced by long-range orders
of spins and/or charges. For this reason, lattice electron mod-
els on several multipartite lattices such as Kagome lattices,
honeycomb lattices, and Lieb lattices have been intensively
studied in the research of Floquet engineering, but those on
simple square lattices and triangular lattices have not been its
major target so far.

Then we encounter the following question: Is it really
impossible to conduct the Floquet engineering with electron
models on simple nonmultipartite lattices? The answer is no,
and the Floquet engineering can indeed be applied to lattice
electron models on, e.g., triangular and square lattices. In this
paper, we demonstrate that even a simple triangular-lattice
system can host rich Floquet topological phases under pho-
toirradiation based on a theoretical study on the photodriven
Dirac half-metal state in a Kondo-lattice model with spin-
charge coupling. Our Floquet analysis reveals that originally
massless half-metallic Dirac electrons become massive under
irradiation with circularly polarized light, and, consequently,
two kinds of Floquet spin-polarized Chern insulator phases
emerge. Importantly, the first-order terms of high-frequency
expansion are not relevant to this photoinduced topological
phase transition because they completely cancel each other
out and vanish on the triangular lattice. Instead, higher-order
terms turn out to play a substantial role for emergence of these
Floquet topological phases. We also argue that these Floquet
Chern insulator phases can be detected and distinguished by
a measurement of the Hall conductivity. Our findings are
expected to broaden the range of candidate materials for the
Floquet engineering.

The rest of this paper is organized as follows. In Sec. II,
we describe the extended Ising Kondo-lattice model utilized
in this study. In Sec. III, we explain our theoretical framework
based on the Floquet theory and the high-frequency expan-
sion. In this section, we also discuss how the first-order terms

of the high-frequency expansion vanish in the nonmultipartite
lattice systems. In Sec. IV, we present the results, which
include nonequilibrium band structures, nonequilibrium phase
diagrams, and the Hall conductivity under irradiation with
circularly polarized light. Section V is devoted to summary.

II. MODEL

We start with a triangular Kondo-lattice model which
describes the coupling between conduction electrons and lo-
calized spins on the triangular lattice [49]. T he Ha miltonian
is given by

HIKLM = −t
∑
〈i, j〉

∑
σ=↑,↓

(ĉ†
iσ ĉ jσ + H.c.)

− JK

∑
i

∑
σ,σ ′=↑,↓

ĉ†
iσ σ̂ z

σσ ′ ĉiσ ′Siz

+ J ′
K

∑
i

∑
j∈{NN of i}

∑
σ,σ ′=↑,↓

ĉ†
iσ σ̂ z

σσ ′ ĉiσ ′S jz. (3)

Here ĉ†
iσ (ĉiσ ) denotes the creation (annihilation) operator of

an conduction electron with spin σ (=↑,↓) on site i, and Si =
(0, 0, Siz ) with Siz = ±1 is the localized Ising spin on site i.
The symbol σ̂ z is the Pauli matrix for the spin z component.
The first term represents the nearest-neighbor hoppings of
conduction electrons, where t is the transfer integral and is
used as a unit of energy. The second and third terms describe
the intrasite ferromagnetic and intersite antiferromagnetic ex-
change coupling between the conduction electron spins and
the localized Ising spins, respectively, where JK and J ′

K are the
coupling constants. We assume a three-sublattice up-up-down
ferrimagnetic order of the localized spins [Fig. 1(a)]. This
spin structure is known to be realized as the ground state
when the electron filling is nearly 1/3. We assume the limit
of strong Ising anisotropy where this magnetic order does not
alter under photoirradiation.

In equilibrium, this ferrimagnetic order induces Dirac-cone
bands when (JK + 3J ′

K )/t > 1, whose Dirac points are located
at K-point and ε = ±JK. These Dirac-cone bands are per-
fectly spin polarized. Specifically, the lower-lying Dirac cone
around ε = −JK is up-spin polarized, whereas the higher-
lying Dirac cone around ε = +JK is down-spin polarized
[Fig. 1(b)]. When the electron filling is ne = 1/3, the lowest
two of the six bands are occupied and the lower Dirac point
with up-spin polarization is located at the Fermi level. This
state is referred to as “Dirac half metal”.

In fact, an additional down-spin band overlaps this Dirac
point, which inevitably hinders physical responses of the
Dirac electrons. The intersite antiferromagnetic Kondo cou-
pling J ′

K can remove this down-spin band from the Dirac
point through lowering its energy as shown in Fig. 1(c) [49].
This band shift does not change the chemical potential μ =
−JK, which is originally located at the Dirac point of lower-
lying Dirac-cone bands. In this situation, we expect physical
responses purely from the Dirac electrons, at least, at low
temperatures. In the following, we discuss the results obtained
for JK/t = 2 and J ′

K/t = 0.05. Note that this parameter set
does satisfy the relation (JK + 3J ′

K )/t > 1.
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FIG. 1. (a) Up-up-down ferrimagnetic order with three sublat-
tices (A, B, and C) on the triangular lattice. Thick lines indicate a
honeycomb network of up-spins. (b) Band dispersion relations for
the extended Ising Kondo-lattice model with JK/t = 2 and J ′

K/t = 0.
(c) Those for JK/t = 2 and J ′

K/t = 0.05. Red and blue colors of the
lowest three bands in (b) and (c) indicate the up- and down-spin
polarizations, respectively.

When the order of localized spins {Si} is rigid and is
never affected by the photoirradiation, the above Kondo-
lattice model can be reduced to a tight-binding model with
sublattice-dependent on-site potentials as

H = −t
∑
i �= j,σ

ĉ†
iσ ĉ jσ +

∑
i,σ

vi,σ ĉ†
iσ ĉiσ , (4)

with

vi,σ =

⎧⎪⎨
⎪⎩

−JKσ i ∈ sublattice A

−JKσ i ∈ sublattice B

(JK + 6J ′
K )σ i ∈ sublattice C

, (5)

where σ = +1 (σ = −1) for up (down) spin. This formula
is a general form of the Hamiltonian for the noninteracting
electron systems with arbitrary on-site potentials.

When this system is irradiated by light, the situation is de-
scribed by the following Hamiltonian with a time-dependent
vector potential A(τ ),

Ĥ (τ ) = −t
∑
i �= j,σ

eiA(τ )·ri j ĉ†
iσ ĉ jσ +

∑
i,σ

vi,σ ĉ†
iσ ĉiσ , (6)

where ri j ≡ r j − ri denotes the bond vector from site i to site
j. The general form of the time-dependent vector potential is
given by

A(τ ) = Eω

ω
(e1 cos ωτ + e2 sin ωτ ), (7)

where e1 and e2 are arbitrary three-component vectors de-
scribing the light polarization. This vector potential generates
the light electric field,

E(τ ) = −∂A(τ )

∂τ
= Eω(e1 sin ωτ − e2 cos ωτ ). (8)

In this study, we examine the effect of circularly polarized
light and thus set e1 = (1, 0, 0) and e2 = (0, 1, 0).

III. METHODS

We analyze the model in Eq. (6) using the Floquet the-
ory. We also perform real-time simulations based on the
time-dependent Schrödinger equation to support the Floquet
analysis. In the following, we describe a fundamental formal-
ism of the Floquet theory and its application to noninteracting
systems. Then we describe the Keldysh Green’s functions to
calculate the Hall conductivity in the photoirradiated system
in Sec. III B. In Sec. III C, we describe the Brillouin-Wigner
expansion as one of the typical high-frequency expansion
techniques. In Sec. III D, we discuss how the first-order terms
of the Brillouin-Wigner expansion are canceled in the non-
multipartite lattice electron systems. In Sec. III E, we explain
details of the real-time simulations. We also discuss the unit
conversions used in this study in Sec. III F.

A. Floquet theory

The time-dependent Schrödinger equation for noninteract-
ing systems is given by

ih̄
∂

∂τ
|ψ (τ )〉 = Ĥ (τ ) |ψ (τ )〉 , (9)

where τ , Ĥ (τ ) and |ψ (τ )〉 denote the time, the noninter-
acting time-dependent Hamiltonian, and the time-dependent
single-particle wave function, respectively. When we consider
a time-periodic Hamiltonian Ĥ (τ ) with a frequency ω, which
satisfies Ĥ (τ ) = Ĥ (τ + T ) with T = 2π/ω, the wave func-
tion |ψ (τ )〉 is given by

|ψ (τ )〉 = e−iεt/h̄ |φ(τ )〉 . (10)

Here |φ(τ )〉 (= |φ(τ + T )〉) is the time-periodic single-
particle state called Floquet state, which has the same time
periodicity as that of Ĥ (τ ), and ε denotes the eigenvalue of the
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corresponding Floquet state. Equation (10) is the representa-
tive formula of the Floquet theorem. Because both Ĥ (τ ) and
|φ(τ )〉 are time periodic, we can expand them by the complex
Fourier series as

Ĥ (τ ) =
∑

m

e−imωτ Ĥm, (11)

|φ(τ )〉 =
∑

m

e−imωτ |φm〉 , (12)

where the complex Fourier coefficients Ĥm and |φm〉 are, re-
spectively, given by

Ĥm = 1

T

∫ T

0
dτ Ĥ (τ )eimωτ , (13)

|φm〉 = 1

T

∫ T

0
dτ |φ(τ )〉 eimωτ . (14)

Here the integer m in Ĥm and |φm〉 denotes the number of
photons.

For Ĥ (τ ) in Eq. (6), we obtain an explicit formula of the

Fourier coefficient Ĥn as

Ĥn = −t
∑
i �= j,σ

J−n(Ai j )e
−inθi j ĉ†

iσ ĉ jσ + δ0,n

∑
i,σ

viσ ĉ†
iσ ĉiσ .

(15)

We use the following relation in the derivation,

1

T

∫ T

0
dτ exp{iAi j sin(ωτ + θi j ) + inωτ }

= J−n(Ai j )e
−inθi j , (16)

where Jn(x) is the n-th order Bessel function of the first kind.
The quantities Ai j and θi j are, respectively, given by

Ai j = Eω

ω

√
(ri j · e1)2 + (ri j · e2)2, (17)

θi j = tan−1

(
ri j · e1

ri j · e2

)
. (18)

Substituting Eqs. (10), (11), and (12) into Eq. (9), we
obtain the following eigenvalue equation,

(ĤF − ωM̂r ) |φF〉 = ε |φF〉 , (19)

where

ĤF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . .

.

· · · Ĥ−2,−2 Ĥ−2,−1 Ĥ−2,0 Ĥ−2,+1 Ĥ−2,+2 · · ·
· · · Ĥ−1,−2 Ĥ−1,−1 Ĥ−1,0 Ĥ−1,+1 Ĥ−1,+2 · · ·
· · · Ĥ0,−2 Ĥ0,−1 Ĥ0,0 Ĥ0,+1 Ĥ0,+2 · · ·
· · · Ĥ+1,−2 Ĥ+1,−1 Ĥ+1,0 Ĥ+1,+1 Ĥ+1,+2 · · ·
· · · Ĥ+2,−2 Ĥ+2,−1 Ĥ+2,0 Ĥ+2,+1 Ĥ+2,+2 · · ·

. .
. ...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

M̂r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . .

.

· · · −2Îr Ôr Ôr Ôr Ôr · · ·
· · · Ôr −Îr Ôr Ôr Ôr · · ·
· · · Ôr Ôr Ôr Ôr Ôr · · ·
· · · Ôr Ôr Ôr +Îr Ôr · · ·
· · · Ôr Ôr Ôr Ôr +2Îr · · ·

. .
. ...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

In the real-space representation, the matrix HF is composed
of 2N × 2N-dimensional block matrices Ĥn,m ≡ Ĥn−m. The
matrices Îr and Ôr are 2N × 2N-dimensional identity matrix
and zero matrix, respectively. The Floquet-state vector |φF〉 in
the real-space representation is defined as

|φF〉 =t
( · · · ,

{
φ−2

iσ

}
,
{
φ−1

iσ

}
,
{
φ0

iσ

}
,
{
φ1

iσ

}
,
{
φ2

iσ

}
, · · · ),

(22)

where {φn
iσ } is a set of 2N components φn

iσ of the n-photon
Floquet-state vector |φn〉 with i = 1, 2, · · · , N and σ = ±1.
In this way, the time-dependent Schrödinger equation in

Eq. (9) with a time-periodic Hamiltonian Ĥ (τ ) is mapped onto
the time-independent eigenvalue problem given by Eq. (19).

Using the Fourier transforms,

ĉ†
iσ = 1√

N

∑
k

ĉ†
ke−ik·ri , ĉiσ = 1√

N

∑
k

ĉkeik·ri , (23)

we rewrite Eq. (19) in the momentum-space representation as

(ĤF(k) − ωM̂m ) |φF(k)〉 = εk |φF(k)〉 , (24)
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where

ĤF(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . .

.

· · · Ĥ−2,−2(k) Ĥ−2,−1(k) Ĥ−2,0(k) Ĥ−2,+1(k) Ĥ−2,+2(k) · · ·
· · · Ĥ−1,−2(k) Ĥ−1,−1(k) Ĥ−1,0(k) Ĥ−1,+1(k) Ĥ−1,+2(k) · · ·
· · · Ĥ0,−2(k) Ĥ0,−1(k) Ĥ0,0(k) Ĥ0,+1(k) Ĥ0,+2(k) · · ·
· · · Ĥ+1,−2(k) Ĥ+1,−1(k) Ĥ+1,0(k) Ĥ+1,+1(k) Ĥ+1,+2(k) · · ·
· · · Ĥ+2,−2(k) Ĥ+2,−1(k) Ĥ+2,0(k) Ĥ+2,+1(k) Ĥ+2,+2(k) · · ·

. .
. ...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

M̂m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . .

.

· · · −2Îm Ôm Ôm Ôm Ôm · · ·
· · · Ôm −Îm Ôm Ôm Ôm · · ·
· · · Ôm Ôm Ôm Ôm Ôm · · ·
· · · Ôm Ôm Ôm +Îm Ôm · · ·
· · · Ôm Ôm Ôm Ôm +2Îm · · ·

. .
. ...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

The matrix HF(k) is composed of 6 × 6-dimensional block
matrices Ĥn,m(k) ≡ Ĥn−m(k). The matrices Îm and Ôm are 6 ×
6-dimensional identity matrix and zero matrix, respectively.
The Floquet-state vector |φF(k)〉 in the momentum space is
defined as

|φF(k)〉 =t ( · · · ,
{
φ−2

ν (k)
}
,
{
φ−1

ν (k)
}
,
{
φ0

ν (k)
}
,
{
φ1

ν (k)
}
,

× {φ2
ν (k)
}
, · · · ), (27)

where ν is the band index. The present system has six bands
for each photon-number subspace (i.e., ν = 1, 2, · · · , 6) be-
cause of the three sublattices and the spins σ = ±1. Here
{φn

ν (k)} is a set of six components φn
ν (k) of the n-photon

Floquet-state vector |φn(k)〉 at momentum k. For practical
treatment of Eq. (24), we restrict the number of photons to
|n| � nmax with nmax = 16 throughout the present study. After

this truncation, we obtain the band dispersion relations εn
ν (k)

and the eigenstates |φn
ν (k)〉 by diagonalizaing the truncated

Floquet Hamiltonian HF(k) − ωMm.

B. Keldysh Green’s function formalism

The Chern number of the νth band in the Floquet state and
the Hall conductivity under photoirradiation are respectively
given by [1,31,50]

Nν
Ch = 1

2π

∫
BZ

dk ν
z (k), (28)

σxy = e2

h

1

2π

∑
ν

∫
BZ

dk nν (k)ν
z (k). (29)

The Berry curvature ν
z (k) is given by

ν
z (k) = i

∑
(m,μ)[ �=(n,ν)]

〈
φn

ν (k)
∣∣∂kxHF(k)

∣∣φm
μ (k)
〉 〈

φm
μ (k)
∣∣∂kyHF(k)

∣∣φn
ν (k)
〉

[
εn
ν (k) − εm

μ (k)
]2 . (30)

The nonequilibrium electron distribution function nν (k) repre-
sents the expectation value of electron occupation of the state
with a momentum k and the band index ν. For the off-resonant
condition that all the Floquet sidebands with nonzero photon
number n �= 0 do not overlap the original band set with n = 0,
we can simply approximate nν (k) ∼ f (ε0

ν (k)) where f (ε) is
the Fermi distribution function in equilibrium. On the con-
trary, for the on-resonant condition that some of the Floquet
sidebands overlap the original bands, this approximation no
longer holds. Therefore, we need to calculate nν (k) for evalu-
ating the Hall conductivity.

We utilize Keldysh Green’s function method [39,51] to
calculate nν (k). The Dyson equation for the Green’s function

matrix is given by

(
ĜR(k, ε) ĜK(k, ε)

0 ĜA(k, ε)

)−1

=
(

[ĜR0(k, ε)]−1 [ĜK0(k, ε)]−1

0 [ĜA0(k, ε)]−1

)
−
(

�̂R �̂K(ε)

0 �̂A

)
,

(31)

where ĜR, ĜA, and ĜK (�̂R, �̂A, and �̂K) are the retarded,
advanced, and Keldysh Green’s functions (self-energies) for
the Floquet states, respectively. Matrix elements of the
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noninteracting Green’s functions for the Floquet states and the
self-energies are respectively given by

[ĜR0(k, ε)]−1
nν,mμ = εδnmδνμ − [HF(k) − ωMm]nν,mμ, (32)

[ĜR0(k, ε)]−1
nν,mμ = εδnmδνμ − [HF(k) − ωMm]nν,mμ, (33)

[�̂R]nν,mμ = −i�δnmδνμ, (34)

[�̂A]nν,mμ = i�δnmδνμ, (35)

[�̂K(ε)]nν,mμ = −2i� tanh

[
ε − μ + mω

2kBThr

]
δnmδνμ, (36)

where � represents the strength of dissipation due to the cou-
pling to a heat reservoir at temperature Thr. We set �/t = 0.1
in this study. Then, the lesser Green’s function Ĝ< is given by

Ĝ<(k, ε) = ĜR(k, ε)�̂<(ε)ĜA(k, ε), (37)

where the lesser self-energy �̂< is given by,

�̂<(ε) = �̂A + �̂K(ε) − �̂R

2
. (38)

Finally, the nonequilibrium electron distribution nν (k) with
momentum k and band index ν is given by

nν (k) =
〈
φ0

ν (k)
∣∣N̂k
(
ε0
ν (k)
)∣∣φ0

ν (k)
〉

〈
φ0

ν (k)
∣∣Âk
(
ε0
ν (k)
)∣∣φ0

ν (k)
〉 , (39)

where the operators Â and N̂ are respectively given by

Âk(ε) = i

2π
(ĜR(k, ε) − ĜA(k, ε)), (40)

N̂k(ε) = − i

2π
Ĝ<(k, ε). (41)

In this study, we use 144 × 144 k-points for numerical cal-
culations. The chemical potential μ is determined by using
the bisection method to preserve the total electron number ne.
We iterate the Keldysh Green’s function calculation to tune
the chemical potential until the value of ne becomes very close
to the target value. In the following, we keep ne = 0.34 with
negligibly small errors less than 10−8.

C. Brillouin-Wigner expansion

To study the effect of lattice geometry on the electron states
in the photoirradiated system, we adopt the Brillouin-Wigner
expansion [47], which is one of the typical high-frequency
expansion techniques [52–55]. The high-frequency expansion
is accurate in the limit of ω → ∞ where 2π/ω is a time
periodicity of the Hamiltonian. The expansion gives an effec-
tive Hamiltonian ĤBW called Brillouin-Wigner Hamiltonian,
which describes the electron states under photoirradiation and
is obtained by an appropriate projection of nonzero photon-
number subspaces of HF − ωMr to the original Hilbert space
with zero photon number. The Brillouin-Wigner Hamiltonian
is given by

ĤBW =
∑

n=0,1,2,···
Ĥ (n)

BW, (42)

with

Ĥ (0)
BW = Ĥ0,0, (43)

Ĥ (1)
BW =

∑
n �=0

Ĥ0,nĤn,0

nω
= −
∑
n>0

[Ĥn, Ĥ−n]

nω
, (44)

Ĥ (2)
BW =

∑
n1,n2 �=0

Ĥ0,n1 Ĥn1,n2 Ĥn2,0

n1n2ω2
−
∑
n �=0

Ĥ0,nĤn,0Ĥ0,0

n2ω2
, (45)

Ĥ (3)
BW =

∑
n1,n2,n3 �=0

Ĥ0,n1 Ĥn1,n2 Ĥn2,n3 Ĥn3,0

n1n2n3ω3

+
∑
n �=0

Ĥ0,nĤn,0Ĥ0,0Ĥ0,0

n3ω3

−
∑

n1,n2 �=0

Ĥ0,n1 Ĥn1,0Ĥ0,n2 Ĥn2,0

n2
1n2ω3

−
∑

n1,n2 �=0

Ĥ0,n1 Ĥn1,n2 Ĥn2,0Ĥ0,0

n1n2ω3

(
1

n1
+ 1

n2

)
. (46)

Note that all the n-th order terms are the order of (1/ω)n. We
neglect emergent many-body terms in Ĥ (2)

BW and Ĥ (3)
BW which

have no influence on the Floquet single-particle states in the
noninteracting systems [47].

D. Cancellation of the first-order terms

We discuss how the first-order terms of the Brillouin-
Wigner expansion in the nonmultipartite lattice electron
systems vanish through mutual cancellation. The numerator
of Eq. (44) can be calculated by substituting Eq. (15) into
Eq. (44). The explicit calculations are done for n > 0 as

[Ĥn, Ĥ−n] =
∑
i, j

∑
k,l

ti jtklJ−n(Ai j )Jn(Akl )e
−in(θi j−θkl )

× [ĉ†
i ĉ j, ĉ†

k ĉl ]

= 2i(−1)n+1
∑
i, j

∑
k

tiktk jJn(Aik )Jn(Ak j )

× sin{n(θik − θk j )}ĉ†
i ĉ j . (47)

Here we omit the spin indices for simplicity, but the gener-
ality of the argument is not compromised by consideration of
the spin degrees of freedom. These terms describe three-site
hoppings of conduction electrons from site i to site j via site
k (i → k → j) mediated by two nearest neighbor hoppings t .
Importantly, in the two- and three- dimensional lattices with-
out sublattice degrees of freedom, every three-site hopping
path (i → k1 → j) has its counterpart (i → k2 → j), which
satisfies the following relations,

tik1tk1 jJn(Aik1 )Jn(Ak1 j ) = tik2tk2 jJn(Aik2 )Jn(Ak2 j ), (48)

θik1 − θk1 j = −(θik2 − θk2 j ). (49)

These relations indicate that the summation over k in the
rightmost side of Eq. (47) leads to a perfect cancellation of
the first-order terms. Examples of the pairs of three-site hop-
ping paths (i → k1 → j) and (i → k2 → j) on the triangular
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FIG. 2. Examples of pairs of three-site hopping paths
(i → k1 → j) and (i → k2 → j) whose contributions to indirect
hoppings from site i to site j cancel each other.

lattice are shown in Fig. 2, whose contributions to indirect
hoppings from site i to site j cancel each other. In contrast,
the contributions from the first-order terms survive in the
multipartite lattices, such as honeycomb lattices, Lieb lattices,
and Kagome lattices. This situation is hardly changed even
if further neighbor transfer integrals are considered for these
lattices.

E. Real-time simulations based on the time-dependent
Schrödinger equation

In addition to the Floquet analysis, we also perform nu-
merical simulations for real-time electron dynamics under
photoirradiation based on the time-dependent Schrödinger
equation. The time-dependent Schrödinger equation in Eq. (9)
can be formally solved in the form,

|ψν (k, τ + �τ )〉 = T exp

[
−i
∫ τ+�τ

τ

dτ ′ Hk(τ ′)
]

|ψν (k, τ )〉 ,

(50)

where |ψν (k, τ )〉 is the single-particle state of νth band with
momentum k and time τ , Hk(τ ′) denotes the k-resolved
Hamiltonian with time τ ′, and T is the time-ordering operator.
The single-particle excitation spectrum is given by [56,57]

A(k, ε) = Im
∑
i,σ

∫
dτ1dτ2 spr (τ1; τpr, σpr ) spr (τ2; τpr, σpr )

× eiε(τ1−τ2 )[G<
k,iiσσ (τ1, τ2) − G>

k,iiσσ (τ1, τ2)],
(51)

with

G<
k,i jσσ ′ (τ1, τ2) = i 〈ĉ†

k, jσ ′ (τ2)ĉk,iσ (τ1)〉 , (52)

G>
k,i jσσ ′ (τ1, τ2) = −i 〈ĉk,iσ (τ1)ĉ†

k, jσ ′ (τ2)〉 . (53)

The lesser and greater Green’s functions G<
k,iiσσ (τ1, τ2) and

G>
k,iiσσ (τ1, τ2) correspond to occupied and unoccupied states

of the ith site with momentum k and spin σ (=↑,↓), respec-
tively. spr (t ; τpr, σpr ) denotes the normalized Gaussian wave

TABLE I. Unit conversions when the transfer integral is t =
0.1 eV and the lattice constant is a = 5 Å. The variables with (with-
out) tilde denote dimensionful (dimensionless) quantities.

Quantity Dimensionless quantity Corresponding values

Frequency ω = h̄ω̃/t = 1 ω̃ = 24.2 THz
Light electric field Eω = eaẼω/t = 1 Ẽω = 2 MV cm−1

Time τ = τ̃ t/h̄ = 1 τ̃ = 6.6 fs
Temperature Thr = kBT̃hr/t = 1 T̃hr = 1163 K

packet of the probe pulse given in the form,

spr (τ ; τpr, σpr ) = 1√
2πσpr

exp

[
− (τ − τpr )2

2σ 2
pr

]
, (54)

where τpr and σpr are the pulse center and the pulse width,
respectively. The effect of pump pulse, which is treated as a
time-periodic external field in the framework of the Floquet
theory, is also taken into account by means of the Peierls
substitution k → k + A(τ ). The vector potential that mimics
a circularly polarized pump pulse with the Gaussian envelope
is given by

Apu(τ ) = Eω

ω
exp

[
− (τ − τpu)2

2σ 2
pu

]
(e1 cos ωτ + e2 sin ωτ ),

(55)

with maximum electric field strength of Eω and the fre-
quency of ω. Here τpu and σpu are the pulse center and
the pulse width, respectively. We set (τpu, τpr, σpu, σpr ) =
(500T, 500T, 76T, 25T ) in this work. We solve the time-
dependent Schödinger equation in Eq. (50) in the time window
of t ∈ [0, 1000T ] with the time step of �τ = T/800 where
T = 2π/ω. The initial states {|ψν (k, 0)〉} are set to be the
eigenstates of HIKLM(k) in equilibrium where A(τ ) = 0. The
exponential function in Eq. (50) is expanded up to the 20th
order.

IV. RESULTS

A. Phase diagram

We first study nonequilibrium steady states of electrons
under irradiation with circularly polarized light by using the
truncated Floquet Hamiltonian HF(k) − ωMm. To construct a
phase diagram, we calculate Eω-ω profiles of several physical
quantities, i.e., Chern number of the third band N3

Ch, indirect
band gap �23, and direct band gap �̃23 by diagonalizing
the truncated Floquet Hamiltonian. The obtained profiles are
shown in Figs. 3(b)–3(d), respectively. Note that we adopt
the natural units e = h̄ = c = 1 for the following calculations.
Table I summarizes the unit conversions when we assume
t = 0.1 eV and a = 5 Å for the transfer integral and the lattice
constant, respectively.

The original six bands are divided into two band sets with
three bands each separated by the exchange gap. Importantly,
sums of the Chern numbers Nν

Ch over the three bands within a
band set become zero, that is,

∑3
ν=1 Nν

Ch = 0 and
∑6

ν=4 Nν
Ch =

0. Accordingly, when the electron filling is nearly 1/3 with
only the lowest two of six bands originally filled with
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FIG. 3. (a)–(c) Eω-ω profiles of (a) the Chern number of the third band N3
Ch, (b) the indirect band gap �23, and (c) the direct band gap

�̃23 calculated by diagonalizing the truncated Floquet Hamiltonian HF(k) − ωMm. (d) Nonequilibrium phase diagram in the plane of light
amplitude Eω and frequency ω under irradiation with circularly polarized light, which is constructed from the Eω-ω profiles of the physical
quantities in (a)–(c).

electrons, the Chern number of the system NCh =∑
ν∈filled Nν

Ch is related with N3
Ch as NCh = −N3

Ch. In Fig. 3(a),
we find two regions with N3

Ch = −1 (NCh = +1) separated by
a region with N3

Ch = +2 (NCh = −2).
The N3

Ch = −1 phase in the high-frequency regime is
caused by a gap opening at the K point as discussed in
Sec. IV B. As the system approaches from the high-frequency
N3

Ch = −1 phase to the N3
Ch = +2 phase, the band gap at

the M point gradually closes and completely vanishes at the
boundary between these two phases. Subsequently, the gap re-
opens at the M point as the system enters the N3

Ch = +2 phase
as described in Sec. IV C. On the contrary, the boundary be-
tween the N3

Ch = +2 phase and the low-frequency N3
Ch = −1

phase corresponds to the point at which the flat band appears
with vanishing bandwidth due to the dynamical localization.
According to the Floquet theory, the transfer integrals under
a periodic drive are renormalized by a factor of the Bessel
function J0(Eω/ω), and the factor becomes zero at this phase
boundary. We also note that the Chern number is ill-defined in
the white regions because the band gap is too small.

The Eω-ω profiles of two types of band gaps (indirect and
direct gaps) between the second and the third bands are shown
in Figs. 3(b) and 3(c). The indirect and direct band gaps �μν

and �̃μν between the μth and νth bands are defined by

�μν = min
k∈BZ

[
ε0
ν (k)
]− max

k∈BZ

[
ε0
μ(k)
]
, (56)

�̃μν = min
k∈BZ

[
ε0
ν (k) − ε0

μ(k)
]
. (57)

According to �23, we judge whether the system is
gapped/insulating (�23 > 0) or gapless/metallic (�23 < 0).
On the other hand, we capture the closing of direct band gap
according to �̃23, which becomes zero on the dashed lines
in Fig. 3(c). These two lines correspond to the two phase
boundaries in Fig. 3(a), i.e., a phase boundary at which the
gap closes at M points and another phase boundary at which
the doubly degenerate up-spin-polarized bands appear.

The Eω-ω profiles of the physical quantities in Figs. 3(a)–
3(c) are summarized into a phase diagram in Fig. 3(d). We
assign the region with �23 < 0 to a semimetal phase irrespec-
tive of the value of NCh. On the contrary, we assign the regions

with �23 > 0 and nonzero quantized NCh to a Chern insulator
phase. We have two types of Chern insulator phases, i.e., the
phase I with NCh = +1 and the phase II with NCh = −2.

B. Single-particle spectra

To understand how these Floquet Chern insulator phases
appear, we investigate the Floquet band structures under
photoirradiation. Figures 4(a)–4(d) show the single-particle
spectra A(q, ε) calculated by real-time simulations of the
time-dependent Schrödinger equation (color) and the Floquet
band structures calculated by diagonalization of the truncated
Floquet Hamiltonian HF(k) − ωMm (green solid lines) for
various values of Eω when ω is fixed at 8. The value of Eω is
increased as indicated by a horizontal arrow in Fig. 4(e).

Figure 4(a) indicates that the Dirac point located at K point
is almost gapless when the light amplitude is as small as
Eω = 2. The Dirac gap is gradually opened with increasing
Eω, and eventually the Dirac point is apparently gapped when
the light amplitude is as large as Eω = 12 as seen in Fig. 4(d).
In the presence of the gap, the two lowest bands acquire a
nonzero Chern number of NCh = 1 in total. Note that the band
gap between the second and third bands on the M point is
always opened irrespective of the value of Eω.

In the Floquet band structures, the band set, which almost
perfectly overlaps the single-particle spectrum, corresponds
to the electron states with zero-photon absorption. In addition
to this original band set, the equivalent band sets repeatedly
appear with an energy interval of ω, which correspond to the
n-photon absorbed (emitted) electron states and are referred
to as the Floquet sidebands. When the light amplitude is as
small as Eω = 2 in Fig. 4(a), we find that the original band set
and the Floquet sideband sets located right above and below
it partially overlap, because the light frequency of ω = 8 is
smaller than the bandwidth of W ∼ 12 (i.e., ω < W ). This
situation is referred to as the on-resonant case.

The overlap of band sets occurs also when Eω = 4 and
Eω = 8. In this on-resonant case, band-anticrossing occurs
at specific points indicated by solid circles. Interestingly,
the spectral weight A(q, ε) is extended to the sidebands at
the band-anticrossing point, which indicates that the Floquet
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FIG. 4. (a)–(d) Single-particle spectra A(q, ε) for various values of Eω, i.e., (a) Eω = 2, (b) Eω = 4, (c) Eω = 8, and (d) Eω = 12,
respectively, when ω = 8. The horizontal solid lines represent the energy level of Dirac points at K point in equilibrium, while the horizontal
dashed lines represent the chemical potential (μ = −1.5) used in the present simulations. (e) Variation of Eω from (a) to (d) is indicated by a
horizontal thick arrow.

sidebands are partially occupied by electrons. On the contrary,
there are some points at which band crossing instead of anti-
crossing occurs. At these band-crossing points, the spectral
weight A(q, ε) does not exhibit particular change or anomaly.
The crossing and anticrossing of the bands are governed by
the structure of the Hamiltonian matrix. The Hamiltonian
matrix HIKLM can be block-diagonalized into independent
up-spin and down-spin blocks as HIKLM = H↑ ⊕ H↓. When
two bands belong to the same (different) spin blocks, the
anticrossing (crossing) occurs when they cross.

Next we discuss the variation of band structures upon
another topological phase transition, which occurs from the
NCh = +1 phase to the NCh = −2 phase with decreasing ω

when Eω is fixed at 12. Figure 5(a) indicates that both K and
M points are gapped when ω = 7.5, and the system has a
Chern number of NCh = +1 associated with the photoinduced
gapped Dirac point at the K point. As ω decreases, the band
gap at the M point gradually decreases. Indeed, as seen in
Figs. 5(b) and 5(c), the band gap at the M point is almost
closed when ω = 7 and ω = 6.8. With further decreasing ω,
the band gap starts opening again after the system enters the
NCh = −2 phase. As seen in Fig. 5(d), a clear gap opens up
when ω = 6.

The Chern number of NCh = −2 in the system after the
gap reopening at the M point can be understood as follows.
First, the Dirac-gap opening at the K point gives the Chern
number of +1 to the lowest two bands, i.e., N1

Ch + N2
Ch = +1.

Subsequently, the closing and reopening of gap at the M points
give additional Chern number of −1 at each M point. Because
the system has three independent M points in the hexagonal
Brillouin zone of the up-up-down ferrimagnetic order, the
total Chern number becomes NCh = (+1) + (−1) × 3 = −2.

C. Hall conductivity

It is predicted that these two Floquet Chern insulator
phases in the photodriven ferrimagnetic system can be de-
tected and distinguished experimentally by the measurement
of Hall conductivity σxy. Figure 6(a) shows the Eω dependence
of σxy calculated using the Keldysh Green’s-function formal-
ism when ω is fixed at 8. Here, Fig. 6(b) shows the calculated
chemical potential μ when the electron filling is ne = 0.34. In
Fig. 6(a), we find that σxy is almost zero when Eω is as small
as Eω � 4. As Eω increases, σxy increases gradually. When
Eω ∼ 12 inside the NCh = 1 phase, σxy is nearly quantized to
e2/h at a low temperature of T = 23 K, which corresponds
to the Chern number of NCh = +1 in the Floquet Chern insu-
lator phase I. Such a quantization of σxy cannot be seen at a
higher temperature of T = 300 K. However, we still observe
a positive nonzero σxy as large as 20% of the quantized value
at T = 300 K.

On the other hand, Figs. 6(c) and 6(d) show the ω-
dependence of σxy and μ when Eω is fixed at 12. We find
that nearly-quantized values of σxy of −2e2/h and e2/h are
observed in the two Floquet Chern insulator phases with
NCh = −2 and NCh = +1, respectively, at low temperatures
(T = 23 K), whereas the quantization is obscure at higher
temperatures (T = 300 K). A clear sign change of σxy from
negative to positive is observed when the system enters from
the NCh = −2 phase to the NCh = +1 phase with increasing
ω. Interestingly, this sign change is observed not only at T =
23 K but also at T = 300 K. Moreover, Fig. 6(e) indicates
that the sign change survives even at 900 K. The heating is
unavoidable in real experiments with light irradiation, but this
result indicates that the sign change is robust against rise in
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represent the chemical potential (μ = −1.5) used in the present simulations. (e) Variation of ω from (a) to (d) is indicated by a vertical thick
arrow.

temperature, which is a favorable property for the experimen-
tal observation.

In Fig. 6(c), we can find that the quantization of the
Hall currents are more pronounced in the NCh = +1 regions
compared to the NCh = −2 regions at low temperatures. One
possible scenario to describe the reason of the difference in
quantization is the difference in nonequilibrium band struc-
tures between the NCh = +1 phase and the NCh = −2 phase.
In fact, Figs. 3(a) and 3(b) indicate that the indirect bandgap
�23 is positive for most of the NCh = +1 regions while it
is negative for most of the NCh = −2 regions. Considering
that the negative indirect bandgap makes the quantized Hall
signatures obscure, it makes sense that the quantization of the
Hall currents in NCh = −2 is less pronounced than those in
NCh = +1.

D. Analyses based on the high-frequency expansion

As discussed in Sec. III C, the Floquet engineering has
often been performed using the effective Floquet Hamiltonian
obtained by the Brillouin-Wigner expansion in the high-
frequency limit. More specifically, Hamiltonians composed
of up to the first-order terms of the expansion with respect
to 1/ω have been frequently used for the research. However,
it is known that the first-order terms usually vanish because
of the cancellation of equivalent paths having phases with
opposite signs. In multipartite lattices, we can avoid this can-
cellation to obtain a nonzero contribution from the first-order
terms. On the contrary, the cancellation cannot be avoided in
simple lattices such as square and triangular lattices even in
the presence of extrinsic sublattice degrees of freedom intro-
duced by long-range orders of spins and/or charges. Thereby,

Floquet topological electron states and photoinduced topolog-
ical phase transition cannot be expected in electron systems
on simple lattices within the crude approximation based on
the high-frequency expansion up to the first-order. This is a
reason why several multipartite lattices such as Kagome lat-
tices, honeycomb lattices, and Lieb lattices have been studied
in the research of Floquet engineering, whereas simple square
lattices and triangular lattices have not been in a scope of the
research.

However, as discussed above, we have obtained rich Flo-
quet Chern insulator phases in the triangular Kondo-lattice
model by the analyses based on direct diagonalization of
the truncated effective Floquet Hamiltonian. In the present
system, a ferrimagnetic order has been assumed to realize
the Dirac-cone bands around the K point. The above-argued
cancellation of the first-order terms also occurs even in the
presence of sublattice degrees of freedom due to the ferrimag-
netic spin order. In fact, the Floquet Chern insulator phases
in the present triangular-lattice system are attributable to the
higher-order terms of the expansion.

To demonstrate the substantial role of the higher-order
terms, we calculate the band structure around the K point
under irradiation with circularly polarized light when Eω = 6
and ω = 6. Figure 7(a) shows the band structure calculated
using a Hamiltonian matrix composed of up to the first-order
terms only, that is, ĤBW = Ĥ (0)

BW + Ĥ (1)
BW. This band structure

is nearly the same with that in equilibrium without photoir-
radiation in Fig. 1(c), because the zeroth-order term Ĥ (0)

BW
corresponds to the time-averaged Hamiltonian and the first-
order term Ĥ (1)

BW vanishes due to the perfect cancellation.
In Fig. 7(b), we show the band structure calculated using

a Hamiltonian matrix including up to the second-order terms,
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FIG. 6. (a) Hall conductivity σxy and (b) Chemical potential μ

for the electron filling of ne = 0.34 in the photodriven system as
functions of Eω when ω = 8. (c), (d) Those as functions of ω when
Eω = 12. (e) σxy as a function of temperature when Eω = 12 and
ω = 6, 8.
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FIG. 7. Contributions from terms of the high-frequency expan-
sion (the Brillouin-Wigner expansion) to the Floquet-band structure
in the photoirradiated system. The band dispersion relations around
the K point are calculated using the Brillouin-Wigner Hamiltonian
ĤBW in Eq. (42) up to (a) the first-, (b) the second-, and (c) the
third-order terms with respect to 1/ω when Eω = 6 and ω = 6.

that is, ĤBW =∑2
n=0 Ĥ (n)

BW. The overall band structure shifts
upward along the energy axis, indicating that the second-order
term Ĥ (2)

BW has a nonzero contribution, but it cannot open
a gap at the Dirac point. The band structure calculated for
ĤBW =∑3

n=0 Ĥ (n)
BW in Fig. 7(c), in contrast, shows a gapped

Dirac point. This indicates that the third-order term Ĥ (3)
BW is

the lowest-order term required to open a gap at the Dirac point.
Owing to this gap opening, the system attains a nonzero Chern
number of NCh = +1.

These results clearly demonstrate that the higher-order
terms of the Brillouin-Wigner expansion instead of the usually
considered first-order terms are relevant to the gap opening
at the Dirac point, which results in the photoinduced topo-
logical phase transition and rich Floquet topological phases.
This aspect is expected to widen the target materials of the
Floquet engineering and to enhance the possibility of the
research.

V. SUMMARY

As we discussed earlier in this paper, the main targets of the
Floquet engineering have been the multipartite lattices, e.g.,
honeycomb, Kagome, and Lieb lattices in which the sublattice
degrees of freedom are coming only from lattice geometry,
in other words, originally imprinted even without consider-
ing spin or orbital degrees of freedom of electrons. We here
have demonstrated that such “lattice geometry-induced” or
“originally imprinted” sublattice degrees of freedom are not
necessarily required for the Floquet engineering and it could
be done even in the monopartite systems, as long as they
have “non-imprinted” sublattice degrees of freedom induced
by the spontaneous orderings of spins (or even orbitals). In
the latter case, not the lowest but higher-order terms in the
high-frequency expansion give us the feasibility of the Floquet
engineering.

More specifically, as a typical example of the latter case,
we have theoretically studied the effects of photoirradiation
with circularly polarized light on the Dirac half-metal state
in the triangular Kondo-lattice model with a three-sublattice
ferrimagnetic order. By applying the Floquet analysis based
on the truncated Floquet Hamiltonian, we have found that two
types of Floquet Chern insulator phases with distinct Chern
numbers of NCh = +1 and NCh = −2 appear as nonequi-
librium steady states, which originate from the band gap
formation/closing at distinct momentum points. By calculat-
ing the Hall conductivity in the photodriven system using the
Keldysh Green’s function formalism, we have revealed that
these two Floquet Chern insulator phases can be experimen-
tally detected and are distinguishable by measurements of the
Hall conductivity. Specifically, it has been revealed that the
Hall conductivity takes nearly quantized values of e2/h and
−2e2/h with opposite signs in the respective phases. It has
also been elucidated that these nonequilibrium topological
phases come from the higher-order terms in the Brillouin-
Wigner expansion in the high-frequency limit, which is in
striking contrast to usually discussed Floquet Chern insu-
lator phases originating from the lowest-order terms of the
expansion. Because the first-order terms generally cancel out
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and vanish in simple nonmultipartite lattices, research of the
Floquet engineering has been performed by taking several
multipartite lattices, e.g., the Kagome lattices, the honeycomb
lattices, and the Lieb lattices. However, the present work has
revealed that the higher-order terms, which have nonzero con-
tributions even in the nonmultipartite lattices, can induce the
photoinduced topological phase transitions and the Floquet
topological electron phases. This aspect indicates that vari-
ous lattice electron models on simple lattices such as square
lattices and triangular lattices can also be within a scope of
the Floquet engineering. We expect that the predicted Flo-
quet Chern insulator phases might be observed in triangular
ferrimagnets RFe2O4 (R = Yb, Lu, Er) [58–61] under irradi-
ation with circularly polarized light. The present work will
widen the list of candidate target materials/systems for the

Floquet engineering and enhance the possibility of research in
this field.
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