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Quantum melting of long-range ordered quantum antiferromagnets investigated
by momentum-space continuous similarity transformations
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We apply continuous similarity transformations (CSTs) to study the zero-temperature breakdown of long-
range ordered quantum antiferromagnets. The CST flow equations are truncated in momentum space by the
scaling dimension so that all operators with scaling dimension up to two are taken into account. We determine
the quantum phase transition out of the Néel-ordered phase in the unfrustrated square lattice Heisenberg bilayer
as well as the quantum melting of the Néel-ordered and columnar phase in the highly frustrated J1-J2 model
on the square lattice. In all cases the CST is set up to isolate the ground state so that the stability of the flow
equations, the ground-state energy, and the sublattice magnetization are used to explore the long-range ordered
phases. We extract quantum critical points, which agree well with values in the literature. Further, we estimate
the associated critical exponents α and β, which turns out to be a challenging task for the CST approach.
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I. INTRODUCTION

The collective behavior of interacting quantum matter has
been an important topic in condensed matter physics in the
last decades. Its study is key to the discovering and under-
standing of correlated many-body states with intriguing facets
and the potential for new technological applications utilizing
the quantum nature of these materials. Examples are mag-
netic data storage [1], spintronics, and platforms for quantum
computing based on optical or solid state platforms [2–6]. An
important example is the discovery of high-Tc cuprate super-
conductors [7], where the superconducting properties emerge
in two-dimensional CuO2 layers [8]. Here, antiferromagnetic
Heisenberg interactions between nearest-neighbor copper
atoms are of central importance. In extension, the antiferro-
magnetic Heisenberg bilayer is connected to high-temperature
superconductors such as YBa2Cu3O6+x and hence it is of
fundamental interest to understand the influence of magnetic
interactions in such two-dimensional systems [9].

In the undoped case, the low-energy physics is well
described by an antiferromagnetic, nearest-neighbor spin- 1

2
Heisenberg model The latter represents an interesting and
challenging subject to study on its own. On bipartite lattices,
the zero-temperature ground state of the Heisenberg model
displays long-range Néel order, where the SU(2) symmetry
is spontaneously broken. Here the spins align antiferromag-
netically with a preferred spin direction and sizable quantum
fluctuations are present in this two-dimensional system. The
breaking of the continuous SU(2) symmetry results in the
presence of gapless Goldstone bosons, which are called
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magnons. While the low-energy properties of the magnons
are well understood for quite some time, only recently a
quantitative understanding of the high-energy part of the
one-magnon dispersion such as the characteristic roton mini-
mum has been achieved [10–12]. Apart from the one-magnon
dispersion, also the full dynamical structure factor up to three-
magnon continua has been calculated by continuous similarity
transformations (CST) in momentum space [10,11] yielding
quantitative agreement with inelastic neutron scattering data
of undoped cuprate materials. Technically, the CST is based
on the non-Hermitian Dyson-Maleev transformation [13,14]
and the CST flow equations have been truncated by the scaling
dimension of operators so that all quartic magnon-magnon
interactions with scaling dimension up to two are taken into
account.

A next natural step is to investigate the breakdown of
long-range ordered phases using the CST approach. Keeping
in mind that a truncation with scaling dimension up to one
corresponds to the self-consistent mean-field solution, it is an
interesting open question whether one can capture the quan-
tum melting of long-range ordered phases quantitatively by
CST when truncating on the level of quartic operators, which
have scaling dimension two.

In a first step in this direction, the CST has been ap-
plied successfully to the symmetry-enhancement transition
in the antiferromagnetic, spin- 1

2 XXZ model on the square
lattice tuning from the spin-anisotropic Ising point to the spin-
isotropic Heisenberg model [15]. Beyond the ground-state
energy and the decay of two-magnon bound states, the CST
turned out to be able to quantitatively determine the algebraic
behavior as well as its prefactor of the closing of the single-
magnon gap.

However, this gap closing is not a genuine quantum phase
transitions since no symmetry is broken spontaneously and
genuine critical fluctuations are absent. In fact, it is only the
symmetry, which is enhanced from Z2 to SU(2) when tuning
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the anisotropy from the Ising limit to the isotropic Heisen-
berg point. As a consequence, the associated exponents are
of mean-field type. Quantitative agreement has been found
between the CST and quantum Monte Carlo data (QMC) [16].

In the present paper we proceed further and apply the
CST to two paradigmatic models where long-range antifer-
romagnetic order breaks down by quantum phase transitions.
Specifically, we investigate the unfrustrated, spin- 1

2 Heisen-
berg bilayer on the square lattice that features a well-studied
quantum phase transition in the O(3) universality class
[17–20] separating the long-range Néel order from the fea-
tureless singlet phase at strong interlayer couplings. This
system serves as a benchmark making quantitative compar-
isons to QMC studies [18,20] possible.

Subsequently, we study the highly frustrated, spin- 1
2

J1-J2 model on the square lattice that features two magneti-
cally ordered phases at small and large next-nearest-neighbor
interactions J2. The nature of the quantum critical points
and the associated critical exponents as well as the quantum
phases in the intermediate regime are still highly debated
because the presence of geometric frustration in the exchange
couplings leads to many competing ground states, which are
hard to capture quantitatively by any numerical technique.
Here, we focus on the breakdown of the two magnetically
ordered phases and compare our results with the ones from
other approaches where available.

The paper is structured as follows. In Sec. II we describe
the relevant properties of the Heisenberg bilayer on a square
lattice and of the J1-J2 model. A description of the CST as well
as of technical aspects is provided in Sec. III; this section can
be skipped by those who want to focus on the results. Results
for the critical points and the critical exponents α and β are
provided in Sec. IV. We conclude our paper in Sec. V.

II. MODELS

In this section, we introduce the square lattice Heisenberg
bilayer and the J1-J2 Heisenberg model on the square lattice,
which we investigate in this article. In particular, we summa-
rize the known quantum critical properties for both systems.

A. Square lattice Heisenberg bilayer

The Hamiltonian of the square lattice Heisenberg bilayer is
given by

H = J
2∑

α=1

∑
〈i, j〉

Ŝi,α Ŝ j,α + J⊥
∑

i

Ŝi,1Ŝi,2, (1)

where Si,α denotes the spin- 1
2 on site i in layer α ∈ {1, 2},

〈i, j〉 indicates a pair of nearest neighbors in each layer and J
the coupling between them, while J⊥ is the nearest-neighbor
interlayer coupling. The square lattice Heisenberg bilayer and
the sublattices as used in our calculations are shown in Fig. 1.
For λ⊥ := J⊥/J = 0, the Hamiltonian reduces to two indepen-
dent copies of the single-layer antiferromagnetic Heisenberg
model on the square lattice studied in Refs. [10,11,21,22] with
broken SU(2) symmetry. The system displays the long-range
ordered Néel ground state with gapless Goldstone bosons,
called magnons, as elementary excitations. In the opposite

FIG. 1. Sketch of the magnetically ordered phase of the antifer-
romagnetic Heisenberg bilayer on the square lattice with black solid
bonds representing the nearest-neighbor coupling J and black dashed
bonds representing the interlayer coupling J⊥. Red and blue arrows
illustrate the spin orientation on the different sublattices A and B in
the ground state.

limit, λ⊥ � 1, the ground state is a featureless gapped singlet
state, which is adiabatically connected to the limit of isolated
dimers.

Since this model is bipartite and unfrustrated, the quantum
phase transition between these two phases has been studied
reliably with QMC techniques and the critical point was found
to be λ⊥,c = 2.5220(1). The quantum critical properties are
governed by the O(3) universality class [18,20,23] with criti-
cal exponents α = 0.1336(15) and β = 0.3689(30) [17]. This
well-studied phase transition will serve as a benchmark for the
CST study below.

Previous spin-wave calculations strongly overestimate the
location of the quantum critical point. Linear spin-wave the-
ory yields λ⊥,c ≈ 13.6 while self-consistent spin-wave theory
and Schwinger-boson mean-field theory yield the improved
values λ⊥,c ≈ 4.3 [24] and λ⊥,c ≈ 4.5 [25], respectively. In
[26], it is argued that the main weakness of spin-wave theory
consists in the fact that transversal and longitudinal fluctu-
ations are not treated equally and an expansion around the
nonmagnetic phase is presented yielding λ⊥,c ≈ 2.73.

B. J1-J2 Heisenberg model on the square lattice

The Hamiltonian of the J1-J2 Heisenberg model on the
square lattice is given by

H = J1

∑
〈i, j〉

ŜiŜ j + J2

∑
〈〈i, j〉〉

ŜiŜ j, (2)

with antiferromagnetic couplings J1, J2 > 0 and 〈i, j〉
(〈〈i, j〉〉) labels nearest neighbors (NN) [next-nearest neigh-
bors (NNN)]. In contrast to the square lattice Heisenberg
bilayer, this model is highly frustrated because of the simul-
taneous presence of the NNN antiferromagnetic coupling J2

and the NN coupling J1. Only if one of them vanishes, no
geometric frustration is present.

Despite its simplicity, the J1-J2 Heisenberg model repre-
sents an extremely challenging problem. Its quantum phase
diagram is expected to be rich with potentially exotic quantum
spin liquid phases in the intermediate regime J1 ≈ J2 [27–32].
As a function of λ12 = J2/J1, the two limiting phases are the
Néel phase at small values of λ12 and the columnar phase at
large λ12. The quantum melting of these phases are the foci of
the present paper. The SU(2) symmetry-broken Néel phase is
realized for λ12 � 0.4 [27–33] and is therefore adiabatically
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connected to the NN Heisenberg model on the square lat-
tice, which we introduced already in Sec. II A. For λ12 � 0.6
[28,29,31–33], the ground state of the system is a columnar
ordered phase, which is adiabatically connected to the limit
J2 � J1. For J1 = 0, the model reduces to two independent
copies of the nearest-neighbor Heisenberg model where the
CST approach yields quantitative results [10,11,15].

For the intermediate regime J1 ≈ J2, the existence of disor-
dered phases such as gapless or gapped quantum spin liquids
or different valence-bond solids with columnar or plaquette
order are discussed [27–32]. There are indications that the
phase transition from the columnar phase to a disordered
intermediate phase is weakly first order [27–29,31,32]. The
corresponding numerical evidence is found using density
matrix renormalization group (DMRG) [29,33,34], coupled
cluster method (CCM) [28], projected entangled pair states
(PEPS) [32], and variational QMC [31]. For the phase tran-
sitions between the Néel state and a disordered state the
situation is less clear. The authors of the Refs. [28,29,31,32]
find indications of a continuous phase transition, but a con-
trary finding exists as well [35] and no conclusive results are
available to date.

Here, we apply the CST to both, the Néel and the columnar
phase, and track the quantum melting of these long-range
ordered gapless phases towards the intermediate regime. Lin-
ear spin wave theory (LSWT) in both ordered cases show
a melting of the magnetic order indicated by the vanishing
of the sublattice magnetizations [36,37]. For the Néel phase,
the melting occurs at λ12 ≈ 0.38 and for the columnar phase
LSWT predicts λ12 ≈ 0.51. In contrast, self-consistent mean-
field spin wave theories find an intermediate region from
λ12 ≈ 0.55 to λ12 ≈ 0.62, where both phases show nonzero
magnetization so that they may exist. Hence, no indication
about the nature of the intermediate phase can be deduced.

The starting point for the Néel phase is shown in Fig. 2(a)
where the lattice is divided into two sublattices with alternat-
ing spins. The unit cell is the same as for the NN Heisenberg
model, but one has to take the additional frustrating NNN
couplings into account linking two spins of the same sublat-
tice. In the limit of λ12 → ∞, the NNN couplings dominate.
Eventually, two copies of the NN Heisenberg model arise on
square lattices rotated by 45◦ with lattice constant

√
2a. These

two copies are coupled by the NN interaction. For J1 = 0,
two independent SU(2) symmetries are broken, but a residual
NN coupling J1 reduces the degeneracy and only two choices
for the spin orientation of the second sublattice remain. As a
reference state for out calculations, we choose the one shown
in Fig. 2(b). Note that the unit cell of the columnar phase is a
2a × a rectangle instead of a

√
2a × √

2a diamond.

III. METHODS AND TECHNIQUES

A. Continuous similarity transformation (CST)

We use continuous basis changes to simplify the initial
physical model by transforming it to a more diagonal version,
for instance, to a model with block-diagonal Hamiltonian.
The approach has been very successful for gapped magnetic
systems, see below. But it has also been applied to fermionic
systems, e.g., for deriving the attractive interaction in

FIG. 2. The panels show the two magnetically ordered phases of
the antiferromagnetic J1-J2 model with solid black bonds represent-
ing the nearest-neighbor interaction J1 and the dashed black bonds
representing the next-nearest-neighbor interaction J2. Red and blue
arrows illustrate the spin orientation on the sublattices A and B in the
ground state. In (a), the Néel ordered phase is shown where J1 � J2

and in (b) the columnar ordered phase where J2 � J1.

superconductors from an electron-phonon coupling [38–40]
or for finding the spectral densities in the single-impurity
Anderson model [41,42] and properties in one-dimensional
models [43,44]. Generally, however, metallic, gapless phases
are challenging to deal with since the elementary, fermionic
excitations have a finite life time, see considerations in
Ref. [45].

Here we focus on magnons in long-range ordered quantum
magnets, which display infinite life time at zero temperature.
We use the CST in momentum space with a truncation in the
scaling dimension as done in Refs. [10,11,15]. The main idea
of flow equation based approaches [46–49] is to transform
a given initial Hamiltonian H0 in a continuous way into a
basis where it is (more) diagonal. The Hamiltonian after the
transformation is called the effective Hamiltonian Heff. An
auxiliary flow parameter � is introduced that parametrizes the
transformation from H(� = 0) = H0 to H(� = 0) = Heff and
the flow is given by the flow equation ∂�H(�) = [η(�),H(�)]
where η(�) is the anti-Hermitian infinitesimal generator of
the transformation. Computing [η(�),H(�)] generally yields
infinitely many terms. In order to obtain a closed system of
ordinary differential equations, a systematic and controlled
truncation scheme must be utilized. The choice of a suitable
generator and truncation scheme is central to flow equa-
tion approaches.

We use the same truncation scheme as in [10,11,15] in
terms of the scaling dimension of operators. Indeed, the
scaling dimension dsc introduces a hierarchy among the op-
erators where operators with lower scaling dimension are
more relevant for the low-energy physics than operators with
a larger scaling dimension. In [10,11] it was demonstrated
that the CST with a truncation of operators with dsc > 2 is
able to reproduce the one-magnon dispersion and the dy-
namical structure factor of the Heisenberg antiferromagnet
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quantitatively. In [15] the same truncation was used to deter-
mine the critical exponents of the closing of the one-magnon
gap quantitatively as well as the decay of two-magnon bound
states into the two-magnon continuum.

Truncating the flow for dsc > 1 is equivalent to mean-field
theory where all phase transitions discussed in Sec. II are
present, but with critical points inconsistent with state-of-
the-art numerical studies [24,36]. Here we investigate how
extending the truncation scheme considering all operators
with dsc � 2 improves the results of the mean-field approach
and if critical points and critical exponents can be determined.

In contrast to the former CST studies for ordered magnets
[10,11,15,16] we here choose the 0n-generator [45] instead
of the full quasiparticle-number conserving generator [47,48].
The full quasiparticle-number conserving generator is given
by ηi j = sgn(qii − q j j )hi j , where qii are the eigenvalues of
the quasi-particle counting operator Q and hi j is a matrix
element of H in an eigenbasis of Q. This generator allows one
to disentangle all quasiparticle sectors so that Heff acquires
a block-diagonal form where each block contains elements
that act only on a fixed number of quasiparticles without
changing this number. However, this only succeeds if there are
no energetic overlaps between different quasiparticle sectors.
For example, the overlap of the ground-state energy sector
(zero quasiparticles) with an energy in the one-quasiparticle
(1QP) sector corresponds to the closing of the single-particle
gap and hence a second-order phase transition. An overlap of
sectors with higher quasiparticle number within a stable phase
is also possible, for instance induced by binding effects, and
will result in a divergent flow.

We encounter such energetic overlaps and associated diver-
gences of the flow for all three long-range ordered magnetic
phases under study when applying the quasiparticle gener-
ator. Consequently, we use the 0n-generator [45] that only
disentangles the ground state from all higher particle sectors.
Generically, this yields more robust flows since energetic
overlaps in higher quasiparticle sectors do not matter. Still,
the 0n-generator allows us to study the phase transition out
of the ordered phases by the stability of the flow and by
the analysis ground-state properties such as its energy or the
sublattice magnetization. This will be discussed in more detail
in Sec. III C.

B. Self-consistent mean-field approach

The starting point of the CST is the self-consistent mean-
field solution in the thermodynamic limit. This approach has
the crucial advantage that it captures the gapless Goldstone
bosons for the Néel and columnar phase, which is already
challenging for an approach using flow equations represented
in real space [50].

The reference state for the mean-field calculations is in
all cases the classical ordered state with alternating spin
up and down on the two sublattices. Then we introduce
bosonic degrees of freedom by the Dyson-Maleev transfor-
mation [13,14]. This transformation is not unitary so that
the resulting Hamiltonian is not manifestly Hermitian. The
bosons represent spin flip excitations above the classical or-
dered state. Next, a mean-field decoupling in real space is
performed [24,51] and the resulting bilinear Hamiltonian is

solved by means of a Fourier and subsequent Bogoliubov
transformation. These transformations are applied to the total
Hamiltonian including the quartic interaction terms yielding

H = E (0) + �
(0)
1↔1 + �

(0)
0↔2 + V (0)

0↔4 + V (0)
1↔3 + V (0)

2↔2. (3)

The subscripts n ↔ m indicate the numbers of creation and
annihilation operators of magnons appearing in the labeled
terms. Bilinear terms are denoted by �, quartic terms by V .
For example, �

(0)
1↔1 is given by

�
(0)
1↔1 =

∑
k

ω0(k)(: α
†
kαk : + : β

†
kβk :) (4)

where α
(†)
k and β

(†)
k are the bosonic magnon operators after

the Bogoliubov transformation and ω0(k) is the bare one-
magnon dispersion. The colons : . . . : indicate normal-ordered
operators with respect to the mean-field ground state. The
term �

(0)
0↔2 comprises off-diagonal bilinear contributions that

are zero after the mean-field decoupling. The operators V (0)
n↔m

contain quartic terms including the two-magnon interactions
(n = m = 2), but also couplings of the vacuum to four-
magnon states (n = 0, m = 4) and couplings of single-
magnon states to three-magnon states (n = 1, m = 3). The
derivation and the final form of of all quartic contributions
V (0) is given in Appendix A.

Only certain kinds of quadratic and quartic operators re-
spect the total spin conservation

Stot =
∑
i∈�A

α
†
i αi −

∑
i∈�B

β
†
j β j =

∑
k

(α†
k αk − β

†
k βk ). (5)

These terms are already present in the initial Hamiltonian
at � = 0 of the CST. Consequently, the CST flow consists
of the same set of operators for all three long-range ordered
phases investigated in this paper. On a technical level, the
models differ only in their initial values for the prefactors of
the operators and in their lattice symmetries, which we will
discuss in Sec. III D.

After the CST flow induced by the 0n-generator the effec-
tive Hamiltonian reads

Heff = E + �1↔1 + V1↔3 + V2↔2. (6)

with the ground-state energy E and the remaining quadratic
terms �1↔1 and quartic terms V1↔3 + V2↔2. We stress again
that the ground state is decoupled from all single- and multi-
particle states by application of the 0n-generator.

In the code, we stop the flow when the residual off-
diagonality (ROD), i.e., the square root of the sum over all
squared entries of the generator η [45], has dropped to values
below 10−6J in the bilayer model and below 10−6J1, respec-
tively, in the J1-J2 model. Note that the number of entries
grows ∝ L6 resulting in a increased numerical accuracy for
higher L because each residual term is reduced further.

C. Observables

Here we discuss the observables and quantities used to
study the quantum phase transition in all cases under con-
sideration. These are the convergence of the CST flow itself,
the sublattice magnetization, and the second derivative of the
ground-state energy. The sublattice magnetization is the order
parameter of the long-range ordered phases.
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If the basis change is induced by the 0n-generator, a break-
down of the flow indicates a crossing of some excited energy
with the ground-state energy and thus the collapse of the mag-
netically ordered phase. Hence, a first way to determine the
critical point λc consists in locating the value of λ where we
first find a divergent flow. Here, λ can be λ⊥ or λ12 depending
on the model. For the bilayer model and the melting of the
Néel order in the J1-J2 model we consider increasing values of
λ; for the melting of the columnar order we consider decreas-
ing λ. In practice, we sample the parameter region close to the
phase transition with a grid of width distance 
λ = 0.001 and
thereby determine λc with an uncertainty of 
λ.

In addition, we determine two physical quantities from
the ground-state energy per site that exhibit quantum critical
power-law behavior in the vicinity of a continuous phase
transition. The first is the order parameter of the long-range
ordered magnetic phases, i.e., the alternating magnetization.
With the help of the Hellmann-Feynman theorem, we calcu-
late the total sublattice magnetization by

M = d

dhalt
E0(halt )

∣∣
halt=0, (7)

where we introduced an alternating magnetic field halt in
the Hamiltonian favoring the long-range order by breaking
the SU(2) symmetry explicitly. In practice, we compute the
derivative as a ratio of differences (E0(halt ) − E0(0))/halt

for small halt = 1 × 10−7J , cf. Refs. [16,23]. To be able to
compare different system sizes we consider the ground-state
energy per site e0 and the sublattice magnetization per site m.

Close to the quantum critical point λc of a continuous phase
transition, the sublattice magnetization m displays a power-
law behavior

m(λ) ∝ (1 − λ/λc)β (8)

with β being the corresponding critical exponent.
Moreover, we have access to the critical exponent α by

means of the second derivative of the ground-state energy
per site with respect to λ, which is a susceptibility towards
changes of the control parameter. Close to a continuous phase
transition one has

d2

dλ2
e0(λ) ∝ (1 − λ/λc)−α. (9)

The second derivative is numerically evaluated by using the
second-order central difference scheme twice. In the columnar
phase, an overall sign appears in the above brackets in Eqs. (8)
and (9) since the critical point is approached from large λ

towards smaller values of λ leading to (1 − λ/λc) instead of
(λ/λc − 1).

D. Lattice discretization

In order to solve the CST flow numerically, the Brillouin
zone (BZ) has to be discretized; we use the term “Brillouin
zone” both for the magnetic Brillouin zone for the J1-J2 model
or the standard Brillouin zone for the Heisenberg bilayer, see
below for details. To fulfill conservation of total momentum it
is convenient to choose the mesh of sampling points equidis-
tant. All BZs considered in this paper are rectangular in shape
with L × L points where L is the linear size.

(a)

(b) (c)

FIG. 3. Discretizations of the BZs for the three long-range or-
dered phases. We show the two possible discretizations Nap and Np

for a linear system size of L = 4(5). The BZ of the Heisenberg
bilayer is displayed in (a). The magnetic BZs of the two ordered
phases of the J1-J2 model are shown in (b) for the Néel phase and
in (c) for the columnar phase.

Additionally, we adopt periodic or antiperiodic bound-
ary conditions. For periodic boundary condition, a bosonic
creation or annihilation operator is retrieved exactly after a
shift by L along one of the axes while they take a minus
sign for the antiperiodic boundary conditions. This procedure
helps to reduce finite-size effects. In momentum space, the
difference between periodic and antiperiodic boundary con-
dition manifests in sampling different points in the BZs, see
Fig. 3. The antiperiodic conditions allows us to avoid the
exact center � = (0, 0) where the mean-field solution displays
an integrable divergence, which make a numerical treatment
on a discrete grid not feasible. Therefore, we set coefficients
involving the � point for the periodic boundary conditions to
zero at the beginning of the flow. This approach was already
taken in Refs. [10,11]. Since we remove a zero-dimensional
point from a two-dimensional lattice, we expect this error to
vanish for large L, for instance in an appropriate extrapolation.
Antiperiodic lattices automatically circumvent the problem by
not sampling �.

A certain disadvantage in � not being part of the sam-
pling points is that only even numbers of momenta can add
to zero, i.e., comply with momentum conservation. For the
models studied, displaying collinear order, this is not an issue
because only even number of bosonic operators occur in each
monomial.

The use of different periodicity in the boundary conditions
imply that the numerical results are not identical, even for the
same L. But we expect that in the limit L → ∞ the results
coincide within numerical accuracy. We will use coincidence
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or the lack thereof as means to assess the accuracy of our
results. In the following we will use the symbol Nap for results
obtained with an antiperiodic boundary conditions and Np

for the periodic counterpart. Calculations with Nap with even
values of L and with Np with odd values of L are an addition
compared to previously published data [10,11,15] and allow
for more robust extrapolations.

The BZs of the three different long-range ordered phases
have different shape and point symmetries. In Fig. 3, we show
the BZ of the Néel order in the Heisenberg bilayer [Fig. 3(a)]
as well as the magnetic BZs in the Néel [Fig. 3(b)] and the
columnar phase [Fig. 3(c)] of the J1-J2 model. The different
markers encode the various lattice discretizations Nap and
Np and lengths L = 4, 5 used in the CST. Due to the point
symmetry of the real space unit cell, only the shaded area
needs to be taken into account for all integrals over the BZs
and in the flow of the coupling constants. Note that both,
the Néel phase in the Heisenberg bilayer model and in the
J1-J2 model, show an additional rotational symmetry, which
can be used to reduce the number of couplings to be tracked,
thereby enhancing the performance of the CST calculations.

Although we always discretize with L × L sampling
points, L corresponds to different lengths in each phase be-
cause the unit cells of the three phases have different shapes.
For the Heisenberg bilayer, both atoms are located in the
center of the square unit cell with side length a, where a is the
lattice distance that we set to one for all models. Therefore,
to know the length one needs to multiply L by a. The unit
cell of the Néel phase of the J1-J2 model is a diamond with
length

√
2a along the edges and therefore L needs to be

multiplies with
√

2a to obtain lengths. Finally, the unit cell
of the columnar phase is a 2a × a rectangle. Therefore, L has
different length factors in x and y direction. The smaller length
scale is in units of a. These different lengths must be kept in
mind when discussing the results in the following sections.

IV. RESULTS

In this section, we discuss the results obtained for the quan-
tum melting of the three long-range ordered phases obtained
from the described CST approach. For all three cases we
discuss the convergence of the CST flow, the ground-state
magnetization, and the second derivative of the ground-state
energy as described in Sec. III C. The critical value and uni-
versality class of the unfrustrated Heisenberg bilayer on the
square lattice are known and hence serve as a benchmark for
the CST method. Then, we discuss our results for the break-
down of the Néel and the columner phase in the J1-J2 model
and compare our results with the findings in literature.

A. Heisenberg bilayer

In Fig. 4, we show λ⊥,c as a function of 1/L for
L ∈ (11, 20) and for all discretizations. The values λ⊥,c are
the maximum values of λ⊥ at which the CST flow is still
converging. We see that the values for λ⊥,c are larger than
the value λ⊥,c = 2.5220 ± 0.0001 in literature [18,20], but
are significantly closer to them than the results from linear
spin-wave theory (λ⊥,c ≈ 13.6) and self-consistent spin-wave
theory (λ⊥,c ≈ 4.2) [24].

FIG. 4. Extrapolation of the last coupling for which the CST
converges in the Heisenberg bilayer for different lengths L and
different boundary conditions. The values of the last convergent
λ = J⊥/J are shown. The average of the linear fits for Np and Nap

is λ⊥
c = 2.62 ± 0.07, which is ≈4% above the literature value of

2.5220 ± 0.0001 [18,20].

The results for Np can be extrapolated to infinity with a
linear fit in 1/L. This yields λ⊥,c ≈ 2.7, which is about 7% too
large compared to the literature results. The results for Nap do
not display a clear scaling behavior in 1/L for the accessible
length scales. The critical points for small L and Nap decrease
slower than the results for Np, which is expected owing to
the effects discussed in Sec. III D. However, the values bend
down strongly from L ≈ 15 onwards. A linear fit of the last
five values yields λ⊥,c ≈ 2.55 indicating that larger system
sizes are needed for a reliable extrapolation. The average of
the results of both boundary conditions is λ⊥,c = 2.62 ± 0.07.
Interestingly, we do not observe the same behavior for the two
ordered phases in the J1-J2 model, see below. Let us stress that
the presented results are a significant improvement compared
to any variant of spin-wave theory. At the same time, the
breakdown of the flow is not able to quantitatively capture the
critical values with the same accuracy as for example QMC.

As discussed in Sec. III C, we expect a power-law be-
havior of the sublattice magnetization m and the second
derivative of the ground-state energy per site d2e0/dλ2 in the
vicinity of quantum phase transitions. Figure 5 shows such
singular behavior for m for values close to the critical point
for Nap and for different L together with power-law fits. One
sees clear signs of singularities in both quantities. However,
the last values for m and d2/dλ2e0, where the CST flow is
still converging, do not reach the expected values of 0 or −∞,
respectively.

We also observe that the values for β and α obtained from
power-law fits on the last five points are by far too small and
extrapolate to 0 in the case of β and to infinity for α. Clearly,
these findings are inconsistent with the known quantum crit-
ical behavior of the square lattice Heisenberg bilayer. This
lead us to the conclusion that we do see the breakdown of the
Néel order in the CST data, but we do not capture the critical
behavior close to the phase transition in the divergence of the
flow itself. One possible explanation is that neglected fluctu-
ations caused by the truncated hexatic or higher terms start
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FIG. 5. The markers show the sublattice magnetization per site
m in the square lattice Heisenberg bilayer as a function of the control
parameter λ⊥ for different linear system sizes L. For clarity, the data
shown is for Np only. The dashed lines show the power-law fits using
the last six values before the flow diverges. This results in a trend
towards too small values for the exponent β.

playing a significant role close to the phase transition. Addi-
tionally, a hallmark of continuous quantum phase transitions
is the divergence of correlation lengths and hence fluctuations
on larger length scales become increasingly more important.
The finite discretization of the numerical solution of the CST
flow might be limiting in this regard as well.

Therefore, the power-law fits of the flow divergence are
not the optimum quantity to extract quantum critical proper-
ties. As a consequence, we choose a fit interval that is close
to the phase transition, but is not yet so close that artifacts
of the CST flow because of the truncation or because of the
finite lattice size play a significant role. This approach is in the
spirit of series expansions, where perturbative data obtained
far from the critical point are extrapolated towards the critical
point yielding often quantitative results. As a criterion for
this intermediate range of vicinity, we choose the principle
of minimal sensitivity of the fit results on the fit interval [52].
This means that we chose the fit interval such that varying
the upper and lower limit of the fit interval changes the result
the least while staying as close to the phase transition as
possible. The technical details of this approach are given in
Appendix B.

Figure 6 shows the obtained values for β found by the
principle of minimal sensitivity for the fit interval and the
boundary conditions Np and Nap. Interestingly, the β values
for Nap and Np are very similar and Np does not show a strong
dependence on L. The average of a linear extrapolations is
β ≈ 0.18 ± 0.06, which is significantly smaller than the liter-
ature value β = 0.3689 ± 0.0003 [17]. However, we do find
a finite value that is consistent within the different numbers
of sampling points of the CST and significantly different from
the mean-field value β = 1

2 showing that we do capture non-
trivial algebraic behavior. Yet, our finding indicates that we do
not have quantitative access to the critical behavior of m.

Finally, Fig. 7 shows the results obtained for the critical
exponent α by the principle of minimal sensitivity of the fit
interval for given Np and Nap. The values for α lie on straight

FIG. 6. Critical exponent β determined from the sublattice mag-
netization in the square lattice Heisenberg bilayer for different linear
system sizes L and different boundary conditions. The dotted lines
show a linear fit for all lattice discretizations. The average of the
linear fits is β = 0.18 ± 0.06, which is ≈52% below the literature
value of 0.3689 ± 0.0003.

lines if plotted over 1/L. The results for Np fall faster for
1/L → 0. By linear fits and averaging over Nap and Np we
find α = 0.205 ± 0.057 with a relative error of more than
25 % reflecting the large spread of the extrapolated results.
The literature value is α = 0.1336 ± 0.0015 [17], which we
strongly overestimate. We do not have convincing hypothesis
for the relatively large difference between the results of both
boundary conditions. The spread is similar to the spread in the
values for the critical λ⊥,c in Fig. 4. Note that for λ⊥,c and α,
the Nap results alone appear closer to the QMC results; for the
exponent β, however, this is not the case.

In conclusion, the CST is able to determine the critical
coupling with an accuracy of about 2% by analyzing the

FIG. 7. Critical exponent α determined from the second deriva-
tive of the ground-state energy per site in the square lattice
Heisenberg bilayer for different system sizes L and different bound-
ary conditions. The dotted lines show linear fits for all the data
of one boundary condition. The average of the linear fits is
α = 0.205 ± 0.057, which lies ≈54% above the literature value of
0.1336 ± 0.0015.
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FIG. 8. Extrapolation of the last coupling for which the CST
converges in the Néel phase of the J1-J2 model for different lengths L
and different boundary conditions. The average of the linear fits for
Nap and Np is λ12,c = 0.371 ± 0.001, which is within ≈10% in the
range of the literature values, except for CCM.

divergence of the CST flow, but the calculations for Nap and Np

differ significantly. Studying the critical exponents α and β in
the proximity of the divergence of the flow yields unphysical
values, which are most likely caused by the finite-size effects
and truncation errors in the CST approach. An analysis based
on the principle of minimal sensitivity [52] of the fit interval
allowed us to identify power-law behavior, which is not of
mean-field type. But the extracted values deviate strongly
from the literature values.

B. J1-J2 model

As already discussed in Sec. III D, we are able to access
both magnetically ordered phases of the J1-J2 model with the
CST determine where these phases become unstable against
quantum fluctuations. Of course, it is desirable to also address
the intermediate phase(s) being either valence bond solids or
quantum spin liquids. This requires to establish an appropriate
formulation in second quantization in terms of the elementary
excitations. Such a step is beyond the scope of the present
study since so far no clear consensus has been reached about
the nature of the intermediate phase or phases. We identify the
instability of the ordered phases with magnons as elementary
excitations by studying the divergence of their flow. If the flow
converges, it may still be that the phase is unstable against
a first-order transition, which does not result from diverging
local fluctuations of the ground-state energy. Hence, it may
be that we overestimate the stability of the long-range ordered
phases.

We extrapolate λ12,c as function of 1/L in both phases for
L ∈ (12, 20) and the two possible boundary conditions Np,
Nap. As for the bilayer model, the values given are the average
of the results of these two cases. In addition, we again extract
the critical exponents β and α of the two phase transitions
from the sublattice magnetization and the second derivative of
the ground-state energy per site, as we did before in Sec. IV A
for the bilayer model.

FIG. 9. Critical exponent β determined from the sublattice mag-
netization in the Néel phase of the J1-J2 model for different system
sizes L and different boundary conditions. The dotted lines show lin-
ear fits; the average of the extrapolated linear fits is β = 0.21 ± 0.01.

Starting with the Néel phase in Fig. 8, we find the critical
value λ12,c = 0.372 ± 0.001. Here, the extrapolated values for
Nap and Np agree very well, in contrast to what we had found
in the Heisenberg bilayer. The values for Np fall faster for
1/L → 0, which is likely caused by the systematic omission
of the wave vector � = (0, 0) for periodic boundary condi-
tions as discussed in Sec. III D. Compared to the literature,
the determined value of λ12,c lies well within the results
obtained by exact diagonalization (ED) with λ12,c = 0.35
[28], variational QMC with λ12,c = 0.4 [31], and PEPS with
λ12,c = 0.41 [32]. The deviations to these literature value are
below 10%, in the range that the literature values scatter
anyway. Only the results obtained by the CCM λ12,c = 0.447
and DMRG with λ12,c = 0.44 [34] deviate by about 17% .

In Fig. 9 the results for the exponent β as a function of 1/L
are shown, which are again determined according to the prin-
ciple of minimal sensitivity of the fit interval. The values are
a bit more scattered, but they indicate the range between 0.2
to 0.3. We find β = 0.21 ± 0.01 by linear extrapolation and
averaging. We mention that in Ref. [31] the authors deduced
the much larger value β ≈ 0.5. The system sizes, however,
studied were not particularly large.

Continuing in the same manner as for β, Fig. 10 displays
the results for α as function of 1/L. Similar to the cases
before, we find a stronger L dependence of the data for Np,
which we attribute to the omission of the � point. Yet, the
linear extrapolations of the Np and the Nap data yield a very
similar result. The average takes the value α = 0.21 ± 0.01. It
is interesting that the α and the β values appear to be identical.
At present, this fact lacks an explanation.

Finally, for the columnar phase we start again with the
critical point of the phase transition λ12,c. In Fig. 11, the
last converging couplings are depicted against 1/L for both
boundary conditions. Again, we observe that for smaller L the
stability of the magnetically ordered phase is overestimated
resulting in a negative slope here for the linear extrapolation
since the phase transition is approached from larger values
of λ12. Remarkably, we see an excellent agreement of the Np
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FIG. 10. Critical exponent α determined from the second deriva-
tive of the ground-state energy per site in the Néel phase of the
J1-J2 model for different system sizes L and different boundary
conditions. The dotted lines show linear fits; the average of the
extrapolated linear fits α = 0.21 ± 0.01.

and Nap data implying a small estimated error of extrapolation
of the extrapolated and average value λc = 0.6261 ± 0.0002.
Compared to ED results with 0.66 [28], DMRG results with
0.61 [34], variational QMC results with 0.6 [31], PEPS results
with 0.61 [32], and CCM results with 0.587, the CST value fits
very well.

For the exponents β and α, the results for Nap and Np also
agree very nicely. These values have been determined again by
the method of minimal sensitivity described earlier, see also
Appendix B. The obtained values are β = 0.169 ± 0.001, see
Fig. 12, and α = 0.5461 ± 0.0006, see Fig. 13.

As discussed in Sec. II B, the nature of the phase transitions
in the J1-J2 model is still under debate. No comparison of the
exponents with the literature values is possible. The combina-
tion of β and α for both phase transitions in the J1-J2 model
do not fit to a universality class that we are aware of although

FIG. 11. Extrapolation of the last coupling for which the CST
converges in the columnar phase of the J1-J2 model for different
lengths L and different boundary conditions. The average of the
linear fits for Nap and Np is λ12,c = 0.6261 ± 0.002, which deviates
from the literature values by ≈6% or less.

FIG. 12. Critical exponent β determined from the sublattice
magnetization in the columnar phase of the J1-J2 model for different
system sizes L and different boundary conditions. The dotted lines
show a linear fit for both boundary conditions. The average of the
linear fits is β = 0.169 ± 0.001.

we could extrapolate them quite robustly. The results for the
critical values are close to the values in literature.

In contrast to the square lattice Heisenberg bilayer, we
observe a remarkably good agreement of the results from
the two boundary conditions Np and Nap. Additionally, we
want to point out that the CST captures the singularity of
m(λ12) and of ∂2e0/∂λ2 to a much larger extent than for the
Heisenberg bilayer. The magnetization can be traced to lower
values closer to zero and the second derivative of e0 can also
be traced to much lower values, as shown for example in
Fig. 14 for Nap and L = 20. This fact can be a hint, that the
truncation scheme based on the scaling dimension is better
suited for the phases in the J1-J2 model than for the square
lattice Heisenberg bilayer.

Another interesting observation lies in the fact that the crit-
ical exponents of the two phase transitions in the J1-J2 model

FIG. 13. Critical exponent α determined from the second deriva-
tive of the ground-state energy per site in the columnar phase of
the J1-J2 model for different system sizes L and different boundary
conditions. The dotted lines show a linear fit for both boundary
conditions. The average of the linear fits is α = 0.5461 ± 0.0006.
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FIG. 14. The upper panels show the sublattice magnetization per
site m for the three different long-range ordered phases. The lower
panels show the corresponding second derivative of the ground-state
energy per site ∂2e0/∂λ2 on a logarithmic scale. In all three cases,
results for the antiperiodic boundary conditions Nap are shown for
linear system size L = 20.

are different, i.e., the α exponent of the melting of the Néel
phase differs from the α exponent of the melting of the colum-
nar phase; similarly for the β exponent. This can be seen as
evidence for at least two intermediate phases, one adjacent to
the Néel order and one adjacent to the columnar order. But
it appears to us that this argument is not compelling since
the critical exponents also depend on the symmetries of the
melting phases and these are not identical for the Néel and the
columnar ordered phase.

V. CONCLUSIONS

We applied the continuous similarity transformations
(CSTs) in momentum space to long-range ordered magnetic
phases in the unfrustrated square lattice Heisenberg bilayer
and in the strongly frustrated J1-J2 model. The CST was
based on the Dyson-Maleev representation of the spins with a
truncation in scaling dimension dsc keeping all operators with
dsc � 2. While the CSTs have been applied successfully to the
Néel ordered phase of the square lattice Heisenberg model as
well as to the symmetry-enhancement transition in the square
lattice XXZ model, this paper is application to quantum phase
transitions out of long-range ordered phases.

The quantum melting of the long-range ordered phases
is studied by the convergence of the CST flow for the 0n-
generator, which aims at separating the ground state from all
other excited states. In addition, the power-law behavior of
the alternating magnetization per site with critical exponent β

and of the second derivative of the ground-state energy per site
with critical exponent α is analyzed. Technically, we extended
the types of discretizations of the relevant Brillouin zones
exploiting periodic and antiperiodic boundary conditions with
even and odd linear system size L.

For the breakdown of the Néel phase of the square lat-
tice Heisenberg bilayer we obtain for λ⊥ = J⊥/J the critical
value λ⊥,c = 2.66 ± 0.03, which lies ≈5% above the litera-
ture value of 2.5220 ± 0.0001 [18]. This marks a significant

improvement over self-consistent mean-field theory with
λ⊥,c = 4.2, but the extrapolations of the results from periodic
and antiperiodic boundary conditions do not agree well and
hinder a more reliable determination of the critical coupling.

Our analysis of the sublattice magnetization and the second
derivative of the ground-state energy show clear evidence of
singular behavior and hence of the onset of a quantum phase
transition. But the CST for the models expressed in terms
of magnons breaks down before the sublattice magnetization
vanishes. This leads us to the conclusion that the values in
direct vicinity of the critical point are influenced by artifacts
of the divergence itself and do not display the genuine critical
behavior. Such artifacts can be caused by the finite size of
the discretized Brillouin zone and/or the truncation of terms
beyond scaling dimension dsc = 2.

We presented an algorithm based on the principle of min-
imal sensitivity to find ranges of the couplings that are close
to the phase transitions, but not yet dominated by these arti-
facts, yielding consistent values for the critical exponents for
different boundary conditions and lattice sizes. The resulting
values are β = 0.240 ± 0.003 {0.3689 ± 0.0003 [17]} and
α = 0.205 ± 0.057 {0.1336 ± 0.0015 [17]}. This illustrates
that critical exponents could not yet be reproduced by the
CSTs in their current set up. Yet the CST values constitute
a clear improvement over mean-field behavior.

Due to the strongly frustrated nature of the J1-J2 model,
critical points as well as the nature of the phase transitions
and their universality classes associated with the quantum
melting of the Néel and the columnar phase are not known
precisely to date. Assuming that the phase transitions are
continuous, the CST analysis yields λ12,c = 0.371 ± 0.001,
β = 0.20 ± 0.02, and α = 0.21 ± 0.01 for the melting of the
Néel phase and λc = 0.6261 ± 0.0002, β = 0.169 ± 0.001,
and α = 0.5461 ± 0.0006 for the melting of the columnar
phase. We point out that the CST results may overestimate
the stability of the long-range ordered phases if the true phase
transitions are first order.

Yet, the critical CST values agree well with the ones from
other numerical methods. Interestingly, for the J1-J2 model,
the extrapolated values for λ12,c, β, and α from the two
boundary conditions agree very nicely, while this agreement
is rather poor for the square lattice Heisenberg bilayer. This
comes as a surprise since the bilayer system is well established
for displaying a continuous phase transition. We attribute this
differing behavior to the smaller length scales treated in the
Heisenberg bilayer as well as an indication that the repre-
sentation by Dyson-Maleev magnons is better suited for the
J1-J2 model than for the square lattice Heisenberg bilayer.

Finally, we conclude that the CST significantly improves
the results of self-consistent mean-field theory and is able
to locate quantum critical points up to a few percent.
The precision for the critical exponents is difficult to assess
since extrapolations do not agree so well for the system where
the exponents are known while the consistent extrapolations
do not yield exponents of an established universality class.

Concerning the used truncation of the CST flow, an
improved treatment would require to go beyond quartic oper-
ators, tracking hexatic terms with five independent momenta
instead of three. This appears to be computationally not feasi-
ble even for moderate system sizes to date. A realistic option
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could be to select a finite number of hexatic terms by a heuris-
tic argument.

An interesting direction of future research is to change
the spin representation. The Dyson-Maleev transformation is
designed to describe small fluctuations around a state with
long-range magnetic order. Thus, it might not be optimally
suited to describe the melting of this order precisely at
the quantum critical points. A Schwinger boson representa-
tion [53] can capture both, ordered and disordered quantum
phases, and could therefore be a better starting point.

The CST data used in Figs. 4 and 6–13 together with
raw and preprocessed data for individual CST flows for all
considered models are available at [54].
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APPENDIX A: SELF-CONSISTENT MEAN-FIELD
THEORY FOR INTRA-SUBLATTICE INTERACTIONS

In this Appendix we present the derivation of the self-
consistent mean-field theory based on the Dyson-Maleev
transformation for the Heisenberg interaction between pairs
of spins on the same sublattice A or B. The solution of the
self-consistent mean-field theory provides the initial values
for the CST in momentum space.

We presented a detailed description of the analogous steps
for inter-sublattice interactions in the XXZ model on the
square lattice in the Appendix of Ref. [15]. In that Appendix,
the interaction between a spin on sublattice A with a spin on
sublattice B was derived. The results for the inter-sublattice in-
teraction needed in the present paper is identical to the results
in Ref. [15] except for two minor adaptions: First, the sum
over distance vector δ between nearest neighbors in the XXZ
model has to be adapted to the relevant NN distances in the
model at hand. Second, we do not study spin anisotropy in the
present paper. Therefore, the anisotropy parameter can be set
to one in the models discussed here. Since the inter-sublattice
terms are already known, we focus in this Appendix on the
discussion of intra-sublattice terms.

First, we can restrict ourselves to the explicit discussion of
the intra-sublattice terms S(A)

i S(A)
j because the S(B)

i S(B)
j terms

can then be deduced easily since the Hamiltonian and the
assumed order are invariant under spin flip and the translation
by a lattice vector. Due to this symmetry, the final form of
the S(B)

i S(B)
j terms can be inferred by replacing αi ↔ βi and

a subsequent Hermitian conjugation. We use this symmetry
as well in the numerical solution of the flow equations to
minimize the number of terms that we have to track.

Second, we base the derivation on the generic term

HAA =
∑

i

∑
δ∈δ

S(A)
i S(A)

i+δ (A1a)

=
∑

i

∑
δ∈δ

[
Sz

i Sz
i+δ + 1

2
(S+

i S−
i+δ + S−

i S+
i+δ )

]
, (A1b)

where i labels all unit cells and δ labels the distances from one
unit cell to the other ones. The exact form of δ is irrelevant for
the computation and we can leave it as a variable here. Eventu-
ally, the actual distances for the different interactions present
in the system will be inserted. Potential double counting of in-
teractions must be compensated by appropriate prefactors. In
Eq. (A1b) we introduced the spin raising (lowering) operator
S+ (S−) and dropped the superscript (A) since all operators
are taken to be located on sublattice A in this calculation.

We use the Dyson-Maleev representation where the ele-
mentary excitations of the system, i.e., spin flips for S = 1/2,
relative to the classical Néel state are represented by the cre-
ation of a bosons. The Néel state serves as the vacuum for
these bosons. For the A sublattice, we use the from

Sz
i = S − αi α

†
i , (A2a)

S−
i =

√
2Sα

†
i , (A2b)

S+
i =

√
2S[1 − α

†
i αi /(2S)]αi, (A2c)

where a(†)
i are bosonic annihilation (creation) operators.

For the B sublattice, we use the Dyson-Maleev representa-
tion in the variant

Sz
i = −S + βi β

†
i , (A3a)

S−
i =

√
2Sβi, (A3b)

S+
i =

√
2Sβ

†
i [1 − β

†
i βi /(2S)], (A3c)

where again b(†)
i are bosonic operators acting on the B sublat-

tice. Choosing the Dyson-Maleev representations in this way
limits the resulting operators of the inter-sublattice interaction
to bilinear and quartic terms.

Inserting Eq. (A2) into Eq. (A1b) yields

HAA =−J
∑
i,δ∈δ

[
S2 + S(−α

†
i αi − α

†
i+δαi+δ

+ α
†
i αi+δ + αi α

†
i+δ ) + α

†
i αiα

†
i+δαi+δ

− 1

2
(α†

i αi αi α
†
i+δ + α

†
i α

†
i+δαi+δαi+δ )

]
. (A4)

Next, we perform a standard mean-field decoupling [51]

a(†)
i ã(†)

j =: a(†)
i ã(†)

j : +〈a(†)
i ã(†)

j 〉, (A5)

where : ... : indicates normal-ordered operators and 〈...〉 are
the vacuum expectation values. For quartic terms, we use
Wick’s theorem to express all terms by their normal-ordered
expressions.
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The conservation of the total spin component

Sz
tot =

∑
i

(
Sz

(A),i + Sz
(B),i

) =
∑

i

(α†
i αi − β

†
i βi ) (A6)

allows us to infer

〈αiαi〉 = 〈α†
i α

†
i 〉 = 0, (A7)

which simplifies the results of the normal ordering. Addition-
ally, we define

n := 〈α†
i αi 〉 = 〈α†

i+δαi+δ〉, (A8a)

t := 〈α†
i+δαi 〉 = 〈α†

i αi+δ〉. (A8b)

Collecting all terms we finally obtain

HAA = − J
∑
i,δ∈�δ

[
E0,AA + Ã : α

†
i αi :

+ B̃ : α
†
i αi+δ : + : α

†
i αi α

†
i+δαi+δ :

− 1

2
(: α

†
i αi αi α

†
i+δ : + : α

†
i α

†
i+δαi+δαi+δ :)

] (A9)

with

E0,AA = −S2 + 2S(−n + t ) + n2 + t2 − 2nt, (A10a)

Ã = 2(−S + n − t ), (A10b)

B̃ = 2(S + t − n). (A10c)

Next, we exploit the discrete translation symmetry by per-
forming a Fourier transformation to a reciprocal space. The
only normal ordered operators conserving Sz

tot are : α
†
k αk : and

: α
†
1α

†
2α3α4 :. Eventually, we obtain

HAA = −J
∑
i,δ∈�δ

E0,AA − J
∑

k

: α
†
k αk : Ãk

− J

N

∑
1,2,3,4

δ(1 + 2 − 3 − 4) : α
†
1α

†
2α3α4 : γ̃ (2, 3, 4),

(A11)

where we used

γ (k) :=
∑
δ∈δ

e−ikδ, (A12a)

Ãk := (Ã + γ (k)B̃), (A12b)

γ̃ (2, 3, 4) := γ (2 − 4) − γ (2)

2
− γ (2 − 3 − 4)

2
. (A12c)

The next step is to perform a Bogoliubov transformation
considering the full Hamiltonian with all contributions, i.e.,
not only the intra-sublattice terms. The full Hamiltonian in
momentum space takes the form

H = E0 +
∑

k∈MBZ

Ak(: α
†
kαk : + : β

†
kβk :)

+
∑

k∈MBZ

Bk(: αkβ−k : + : α
†
kβ

†
−k :) + Ṽ, (A13)

with coefficients Ak and Bk for the bilinear terms and the
quartic terms Ṽ . The AA terms contribute to E0 via E0,AA, to
Ak via Ãk , and to Ṽ via the terms α

†
1α

†
2α3α4 . The analogous

relations hold for the BB terms.

The bilinear part of H is diagonalized by the Bogoliubov
transformation of the form

α
†
k = lk α

†
k + mkβ−k, (A14a)

β
†
k = mkα−k + lk β

†
k , (A14b)

with 1 = l2
k − m2

k = 1. (A14c)

We parametrize explicitly as in Refs. [10,11,55]

μk :=
√

1 − (Bk/Ak)2, (A15a)

lk :=
√

1 − μk

2μk
, (A15b)

mk := −sgn(γ (k))

√
1 + μk

2μk
, (A15c)

xk := sgn(γ (k))

√
1 + μk

1 − μk
. (A15d)

Note that mk = −xklk holds.
Following these steps, we rewrite the Hamiltonian (3) in

the form

H = E (0) + �(0) + V (0) (A16)

with

�(0) = �
(0)
1↔1 + �

(0)
0↔2, (A17)

V (0) = V (0)
0↔4 + V (0)

1↔3 + V (0)
2↔2, (A18)

where the term �(0) the quadratic terms and V (0) all the quartic
terms. V (0) can be written as

V (0) = JZ

N

∑
1234

δ(1 + 2 − 3 − 4)l1l2l3l4

× (
V (a)

1234α
†
1α

†
2α3α4 + V (b)

1234α
†
1α

†
2α3β

†
−4

+ V (c)
1234α

†
1α2β

†
−3β

†
−4 + V (d)

1234α
†
1α−2α3β4

+ V (e)
1234α

†
1α−2β

†
−3β4 + V (f)

1234α
†
1β

†
2β

†
−3β4

+ V (g)
1234α−1α−2β3β4 + V (h)

1234α−1β
†
2β3β4

+ V (i)
1234β

†
1β

†
2β3β4

)
. (A19)

The AA interactions contribute to each vertex function V (i)
1234

according to

V (a)
(AA),1234 = 1

4 v1(1, 2, 3, 4), (A20a)

V (b)
(AA),1234 = − 1

2 x4 v1(1, 2, 3, 4), (A20b)

V (c)
(AA),1234 = 1

4 x3x4 v1(1, 2, 3, 4), (A20c)

V (d)
(AA),1234 = − 1

2 x4 v2(1, 2, 3, 4), (A20d)

V (e)
(AA),1234 = x3x4 v2(1, 2, 3, 4), (A20e)

V (f)
(AA),1234 = − 1

2 x2x3x4 v2(1, 2, 3, 4), (A20f)

V (g)
(AA),1234 = 1

4 x3x4 v3(1, 2, 3, 4), (A20g)

V (h)
(AA),1234 = − 1

2 x2x3x4 v3(1, 2, 3, 4), (A20h)

V (i)
(AA),1234 = 1

4 x1x2x3x4 v3(1, 2, 3, 4), (A20i)
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where we defined

v1(1, 2, 3, 4) := γ̃ (1, 3, 4) + γ̃ (1, 4, 3)

+ γ̃ (2, 3, 4) + γ̃ (2, 4, 3), (A21a)

v2(1, 2, 3, 4) := γ̃ (1,−2, 3) + γ̃ (1, 3,−2)

+ γ̃ (−4,−2, 3) + γ̃ (−4, 3,−2), (A21b)

v3(1, 2, 3, 4) := γ̃ (−3,−1,−2) + γ̃ (−3,−2,−1)

+ γ̃ (−4,−1,−2) + γ̃ (−4,−2,−1).

(A21c)

Note that we symmetrized the contributions in order to ac-
count for the symmetry of swapping two wave vectors that
are the arguments of the same creation or annihilation oper-
ators. For example, α

†
1α

†
2α3α4 is identical to α

†
2α

†
1α3α4 and

this should also be reflected in the coefficients V (a)
(AA),1234.

The analogous contributions of S(B)
i S(B)

j can again be in-
ferred by swapping α ↔ β in combination with a Hermitian
conjugation.

Finally, n and t are determined by performing the Fourier
and Bogoliubov transformation on the right hand side of
Eq. (A8b) and evaluating the vacuum expectation values. This
yields the self-consistency equations

n = 1

N

∑
k

〈α†
kαk〉 = 1

N

∑
k

l2
k , (A22a)

t = 1

N

∑
k

γ (k)〈α†
kαk〉 = 1

N

∑
k

γ (k)l2
k . (A22b)

They are solved numerically by iteration to convergence by
a Gauss-Kronrod quadrature of order 601 as implemented in
the “boost C++ libraries” project. Since lk is divergent for
k → (0, 0), we exclude wave vectors with |k| < 10−8 in the
integration. The iteration is stopped when the change of each
parameter is smaller than 10−13. If the AA and BB interactions
are different, it may happen that the t values differ because
different δ and hence different γ (k) need to be considered.
Then, these t values have to be solved separately.

APPENDIX B: POWER-LAW FITS FOR CRITICAL
BEHAVIOR AND EXPONENTS

In this Appendix, we discuss in detail how we extracted the
critical exponents for the long-range ordered phases investi-
gated in the main text. Let us consider an observable, which
displays singular behavior near the breakdown of the CST
flow, e.g., the second derivative of the ground-state energy
or the sublattice magnetization. Taking only the values in
the immediate proximity of the breakdown into account, we
found nonphysical behavior of the critical exponents in all
considered cases. To circumvent these artifacts, we set up a
method to choose the fit interval of the coupling as close as
possible to the critical point, but not too close either to avoid
spurious effects of the divergence of the CST flow.

The values of the observable are computed on an equidis-
tant grid of the coupling. For the Néel phase of the square
lattice Heisenberg bilayer we used a grid with spacing

λ⊥ = 0.01 and for both, the Néel and the columnar phase
of the J1-J2 model, a grid with spacing 
λ = 0.001.

FIG. 15. A representative result for the exponents of the square
lattice Heisenberg bilayer received by the described procedure for
L = 18. (Top) A result for the exponent β and (bottom) a result for
the exponent α. The averages of the exponents over the considered
couplings are plotted in the upper panels and the corresponding
standard deviations in the lower panels as function of the coupling.
The circles mark the local minimum in the standard deviation and the
associated exponent, which is extracted for the given system size.

Then we start with the last determined value on the grid,
which is closest to the divergence of the flow and take it as the
upper bound of the fitting interval of the first run. We choose
a lower bound so that n = nmin grid points are in the interval.
(For the analysis of the melting of the columnar phase the role
of upper and lower bound need to be swapped.) In this interval
a least-square fit of a power law to the values of the observable
is performed. The fit parameters are restricted to physically
reasonable ranges to make them numerically robust. Firstly,
the λc of the fit may not exceed λc found by the divergence
of the flow by more than 10% . Secondly, the exponent is
restricted to be between zero and one. Thirdly, the prefactor
of the power law is set to be positive for β and negative for
α. The fitting procedure is repeated for n + 1 values, i.e.,
for the lower bound reduced by one step, and iterated up to
nmax values in the interval. This yields a set of values for
the exponent under study. From this set the average and the
standard deviation are calculated and assigned to the value of
the upper bound of this first run.
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Then the upper bound value is reduced by 
 and a second
run is carried out analogous to the first one. Average and
standard deviation are assigned to its upper bound. Such run
can be continued till most of the values of the grid were
chosen as upper bound. The averages and standard devia-
tions are plotted as function of the upper bounds in Fig. 15
for a representative analysis. Finally, we choose the average

exponent of the upper bound where the standard deviation
displays a local minimum not too far away from the critical
point. Concretely, we restrict the region where to look for
the local minimum to at maximum ≈10% below the value
of λc from the flow divergence. In our analyses, the val-
ues nmin = 5 and nmax = 20 produced the most consistent
results.
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