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As a noble metal, gold is known to possess ultrahigh conductivity and is therefore widely used as a conductor
in a variety of integrated circuits. Recently, a two-dimensional (2D) material made of a single atomic layer
of gold has been successfully produced, called goldene, after the name of graphene. This immediately raises
an interesting question of whether goldene is an excellent conductor, comparable to its three-dimensional
counterpart. In the present paper, by performing the first principles calculations on the conductivity of goldene
arising from electron-phonon (eph) scattering, we find that such a 2D gold has a very high intrinsic conductivity
at room temperature, which is in the same order of magnitudes as that of a lightly doped graphene and much
larger than other 2D materials accessible so far. This result suggests that goldene, instead of its 3D bulk, is an
excellent conductor in future electronic devices based on 2D materials, Then, we make a detailed analysis of
the individual roles of the electronic structure and e-ph scattering strength in contributing to the intrinsic electric
and thermal conductivity of goldene. Finally, we establish a simple deformational potential model to describe
the e-ph interaction, which works very well to reproduce the numerical result of first-principles calculation of
the intrinsic conductivity of goldene.
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I. INTRODUCTION

It is well known that noble metals such as gold (Au)
and silver (Ag) are widely used in a variety of elec-
tronic devices, such as chemical sensors [1], wires [2], and
supercapacitors [3], owing to their excellent electronic trans-
port property. Even in increasingly miniaturized computer
chips, noble metals such as gold are still indispensable as
wires for carrying current [4,5]. Of course, in these de-
vices, the size of the gold conductor decreases with the
whole device, eventually reaching the nanoscale [6,7]. In
this context, the quantum confinement effect, lattice insta-
bility, and weak localization in mesoscopic regime becomes
strong enough to affect the electronic transport property of
gold wires. Therefore, whether the gold conductor at the
nanoscale can still maintain excellent electrical conductivity
becomes one of the key issues limiting the functionality of
the devices.

Over the past two decades, starting with the success-
ful fabrication of graphene, research into 2D materials
has experienced rapid development, which provides us an
unprecedented material platform for designing ultrathin elec-
tronic devices [8–10]. Some promising device prototypes such
as field effect transistors and magnetic tunneling junctions are
experimentally implemented or theoretically proposed based
on a variety of 2D semiconductors and magnetic materials
[11–16]. However, a 2D metallic material with high conduc-
tivity is always desirable for high performance and low-power
device functionality. So far, graphene is believed to be the
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2D materials with highest conductivity, but carrier doping
is required [17]. Other metallic materials, such as MXenes
[18,19] and MBenes [20,21], accessible so far have conduc-
tivities smaller than that of graphene by one or two orders of
magnitudes. Therefore, an excellent 2D metallic material is
still lacking to act as the wires in future devices, like gold in
today’s integrated circuits.

Given the excellent conductivity of 3D bulk materials of
noble metals such as gold, it is natural to produce noble
metal films with increasingly thinner thicknesses to be used
as good 2D conductors. However, it remains a great challenge
to fabricate a noble metal film with a thickness of single
or a few atomic layers [6,7]. Until recently, a substantial
breakthrough for the successful creation of single-atom-thick
gold layers was realized by Kashiwaya et al. through wet
chemical etching of Ti3C2 from nanolamellar Ti3AuC2. Such
a 2D gold is dubbed as “goldene” because of its similar lattice
structure with graphene [22]. This breakthrough immediately
raises the interesting question of whether goldene is an ex-
cellent conductor, possessing high conductivity comparable
to its three-dimensional counterpart. To answer this question,
experimental measurements on goldene samples of macro-
scopic scale should be conducted. Meanwhile, a theoretical
investigation of the electronic transport properties on this 2D
gold material is also significant.

In the present paper, by performing the first-principles cal-
culations we theoretically study the conductivity of goldene
arising from electron-phonon (e-ph) scattering. It is known the
e-ph interaction is inevitable even in a perfect lattice; hence,
the e-ph scattering-limited conductivity is called the intrin-
sic conductivity, which dominantly determines the electronic
transport property of most materials at and beyond room
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temperature. From numerical results, we find that goldene
indeed has a high intrinsic conductivity at room temperature,
which is of the same order of magnitudes as that of lightly
doped graphene and significantly larger than other 2D ma-
terials available so far, such as the typical 2D materials in
the families of MXenes and MBenes. In addition, the thermal
conductivity of goldene is also found to be very large. These
results suggest that goldene, like its 3D bulk, is an excellent
conductor in future electronic devices based on 2D materi-
als. Besides the first-principles calculations, we establish a
simple acoustic deformational potential (ADP) model [23] to
describe the e-ph interaction in goldene, which works very
well to reproduce the numerical result of first principles cal-
culation of the intrinsic conductivity and thermal conductivity
of goldene.

The rest of this paper is organized as follows: In Sec. II,
we provide a brief description of the theoretical approach,
mainly consisting of the formulas about the Boltzmann trans-
port equation to calculate the electronic transport properties.
It is followed by Sec. III in which the technical details of the
first-principles calculations is introduced. Then, the numerical
results for the intrinsic conductivity of goldene are presented
and discussed in Sec. IV. Finally, the main results are summa-
rized in Sec. V.

II. BOLTZMANN EQUATION

In this paper we employ the semiclassical Boltzmann trans-
port equation (BTE) to calculate the conductivity and thermal
conductivity of goldene subject to the e-ph scattering. It is
well known that the BTE for a macroscopically uniform sys-
tem is established on the following equation [24,25]:(

∂ fnk

∂t

)
coll

= −
(

∂ fnk

∂t

)
diff

, (1)

which says that the variations of electronic distribution func-
tion ( fnk) of an electron in band n and with wavevector k, as a
result of the diffusion and scattering effects, just cancel each
other out if the system remains in a steady state, even under
a driving electric field. Furthermore, the diffusion term on the
right-hand side of the above equation can be approximated by
keeping only up to the linear terms of the electric field strength
E , which is (

∂ fnk

∂t

)
diff

≈ −eE vnk∂ f 0
nk/εnk (2)

where E , εnk, and vnk stand for electric field strength, elec-
tron band energy, and velocity component along the electric
field orientation, and e is the conventional physical constant.
Note that in the right-hand side of the above expression, the
electronic stationary distribution function fnk has been ap-
proximated with the Fermi-Dirac distribution function f 0

nk. In
terms of the first-order perturbation theory, the collision term
arising from the e-ph scattering in Eq. (1) can be derived, and
it takes a form as [26,27](

∂ fnk
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)
coll

= eE

kBT

∑
mq

Pnk,mk+q(Fnk − Fmk+q) (3)

where kB and T are the Boltzmann constant and temperature,
respectively. Fnk is the mean-free path, which will be solved
from the BTE. The e-ph scattering rate Pnk,mk+q between the
specific electron initial state (nk) and final state (mk + q) is
given by

Pnk,mk+q = 2π

h̄

∑
ν

∣∣gν
mn(k, q)

∣∣2
f 0
nk

(
1 − f 0

mk+q

)
× [(nq + 1)δ(εnk − h̄ωνq − εmk+q)

+ nqδ(εnk + h̄ωνq − εmk+q)] (4)

where gν
mn(k, q) stands for the e-ph interaction matrix ele-

ment, which involves the electronic initial, final states and
the phonon mode indexed by (nk), (mk + q), and (νq), re-
spectively. The phonon frequency and boson distribution are
represented by ωνq and nq. To combine the diffusion and
collision term worked out above, the BTE can then be written
in an iterative form with the mean-free path as the unknown.
It reads [26]

F i+1
nk = F 0

nk + τnk

f 0
nk

(
1 − f 0

nk

) ∑
νqm

Pnk,mk+qF i
mk+q (5)

where the superscripts of the mean-free path represent the
order of the adjacent iteration steps; and F 0

nk = τnkvnk. Note
that we have defined the relaxation time of electron in the state
|nk〉 as

τnk =
[ ∑

νqm

Pν
nk,mk+q

]−1

. (6)

Of course, the reciprocal of τnk stands for the electronic-state
resolved scattering rate. For convenience of the discussion of
the numerical results of the intrinsic resistivity shown in the
next section, we need to further define the energy (E ) resolved
scattering rate as

τ (E )−1 =
∑

ν

τ ν (E )−1 =
∑

ν

∑
nkmq Pν

nk,mk+qδ(E − εnk)∑
nk δ(E − εnk)

(7)

in which τ ν (E )−1 stands for the contributions of individual
phonon mode ν to the scattering rate τ (E )−1. Besides, we
need also define the average electronic velocity over an iso-
surface of a given energy E as

v(E ) =
√∑

nk v2
nkδ(εnk − E )

D(E )
(8)

with D(E ) = ∑
nk δ(εnk − E ) as the density of states (DOS).

In the form of the BTE given by Eq. (5), the mean-free
path can be obtained by performing iteration algorithm. When
F i

nk’s of adjacent iteration steps converge, the numerically
accurate result of the mean-free path is obtained. In contrast,
without any iteration procedure we have Fnk ≈ F 0

nk, and such
a treatment is called the energy relaxation time approximation
(ERTA) of the solution of the BTE. Finally, with the obtained
mean-free paths, the intrinsic conductivity (σ ) and thermal
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conductivity (κ) can be calculated via the following expres-
sions:

σ = e2

NSkBT

∑
nk

f 0
nk

(
1 − f 0

nk

)
vnkFnk, (9)

κ = 1
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(
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[∑
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f 0
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(
1 − f 0

nk

)
(εnk − E f )vnkFnk

]2

, (10)

where E f , N , and S are the Fermi energy and the number of
unit cells and the area of the unit cell.

III. SIMULATION DETAILS

Using the Quantum ESPRESSO (QE) [28,29] software
package along with norm-conserving pseudopotential [30],
we performed the first-principles calculations about the elec-
tronic band structure and phonon dispersion within the
theoretical framework of density functional theory (DFT)
[31] and density functional perturbation theory (DFPT)
[32]. The generalized gradient approximation (GGA) in the
Perdew-Burke-Ernzerhof (PBE) [33] form is used as the
exchange-correlation functional. The plane-wave basis is used
with a sufficiently high-energy cutoff of 680 eV for better
accuracy. Then, a 16 × 16 × 1 Monkhorst Pack grid is used to
sample k points in the Brillouin zone (BZ) for the calculation
of the electronic structure, while a 8 × 8 × 1 grid of q points
is used in the phonon calculations. Such a BZ sampling is far
from dense enough for reaching a high-precision calculations
on the electronic transport coefficients since only a few k
and q points fall in the vicinity of Fermi surface. However,
first-principles calculations on a much finer k mesh or q mesh
imply a huge computational burden. To circumvent such a
prohibitive task, we adopt a generalized Fourier interpolation
approach, realized by the EPW code [34] in real space, which
allows affordable and accurate calculations of the electronic
and phonon energy spectra as well as the e-ph interaction
matrix elements on ultrafine k mesh and q mesh.

IV. NUMERICAL RESULT

The lattice structure of goldene is shown in Fig. 1(a). It
can be seen that goldene bears an analogy with graphene
in that they have the same Bravais lattice and all atoms are
strictly positioned in the same planar sheet without undula-
tion. However, unlike graphene, in each unit cell of goldene
there is only one Au atom. The optimized lattice constant
of goldene is 2.77 Å, which is close to the experimental
results (2.62 Å [22]). The phonon dispersion calculated by
DFPT is shown in Fig. 1(b). Since gold is a heavy atom,
we have also calculated the phonon dispersion after taking
into account the spin-orbit coupling (SOC). It can be seen
that SOC modifies the phonon dispersion trivially, causing
only a slight hardening of the long-wavelength phonons of the
out-of-plane vibration mode. What is more, from Fig. 1(b) we
observe no imaginary frequencies in the phonon dispersion,
regardless of whether the SOC is taken into account. This
suggests that goldene maintains a stable 2D lattice structure.

Since the unit cell contains only one atom, there are only three
acoustic phonon modes and no optical phonons. It can also be
seen in this figure that the highest frequency, i.e., the Debye
frequency, of these acoustic phonons is also very low, only
180 cm−1 (about 259 K).

As for the electronic structure of goldene, the calculated
energy bands along high symmetric lines in the BZ and the
corresponding DOS spectrum is shown in Fig. 1(c). Firstly, it
can be seen from the energy band structure that goldene is a
metal, and there is only one energy band passing through the
Fermi level. Secondly, the dispersion of the band around the
Fermi level is very sharp, which gives a large average Fermi
velocity (1.05×106 m/s), even larger than the average Fermi
velocity of graphene (4.45×105 m/s). This result implies that
goldene is expected to be a good conductor, comparable to
the carrier-doped graphene. The SOC effect is also taken into
account in the calculation of the energy bands. Just like the
case of the aforementioned phonon dispersion, SOC does
not bring about nontrivial modification on the energy bands,
especially around the Fermi energy. From the DOS spectrum
it can be seen that the DOS around the Fermi energy is very
small, in comparison to that of other energy region, consistent
with the local strong dispersion of the band around Fermi
level, as mentioned above. The energy bands around the Fermi
level are mainly contributed by atomic px and py orbitals
(52%), with a certain percentage of s orbitals (22%), degen-
erated dx2−y2 and dxy orbitals (26%) as well. This is slightly
different compared to the bulk material of gold, where the
energy bands near the Fermi surface are mainly contributed by
s and p orbitals [35]. As for the band much above the Fermi
level, three p orbitals play the dominative role, while the band
deep below the Fermi level is mainly composed of dxz, dyz,
and dz2 . Given that goldene is a monolayer two-dimensional
material, the interatomic bonding is expected to align within
the xy plane. Moreover, the primary extension direction of
the aforementioned orbitals also lies within the xy plane, thus
rendering the aforementioned results comprehensible. Finally,
the Fermi surface is shown in Fig. 1(d), and we can see that
goldene has a very sizable hexagonal Fermi surface, filling the
most part of the BZ.

As the central task of present paper, we now turn to in-
vestigate intrinsic resistivity (ρ = σ−1) of goldene, which,
generally speaking, determines the transport characteristic of
metallic materials at room temperature. With the formulation
presented above, we can perform the first-principles calcula-
tion on the ρ-T relation of goldene. The numerical results are
shown in Fig. 2(a) where we fix the electric field orientation
along the a axis specified in Fig. 1(a). However, since the
anisotropy of the intrinsic resistivity is small (� 5%) accord-
ing to our numerical results, we will not specifically mention
the transport direction hereafter. The weak anisotropy of the
intrinsic resistivity is a direct reflection of the Fermi sur-
face geometry without a strong anisotropy. As observed from
Fig. 2(a), first of all, ρ-T curves start to show linear profile
from an onset temperature even below room temperature. This
is a reasonable result since the Debye temperature of goldene
is only 259 K. According to our previous study [36], the linear
temperature dependence of the intrinsic resistivity of metallic
materials usually occurs even from a lower temperature than
the Debye temperature. Then, it can be found that the iteration
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FIG. 1. (a) Top view of the crystal structure of goldene, the unit cell is marked by the black lines. (b) The phonon dispersion without
and with spin-orbit coupling (SOC) is plotted as black and red lines respectively. Inset shows the detail of the phonon dispersion in the
long-wavelength limiting. (c) The energy bands (left panel) and DOS (right panel). The results without and with SOC are plotted in black
and red respectively. The Fermi energy is set as the energy reference point. The DOS spectrum projected to atomic s, p, and d orbitals is
also plotted. Since px and py, dxz, and dyz, and dxy and dx2−y2 contribute equally to the DOS spectrum, we have drawn them together. (d) The
Fermi surface of goldene, plotted in yellow. The black boundary represents the first Brillouin zone. The numbers label the three sets of parallel
boundaries of the Fermi surface. The orange arrows denote the reciprocal lattice vectors. Fermi surface nesting effect can be realized by some
specific wavevectors connecting the opposite boundaries of the quasihexagonal Fermi surface, shown as an example by the green-dashed lines.

procedure does not bring about a substantive variation on the
intrinsic resistivity, although it results in a somewhat quan-
titative modification of the value of ρ, in comparison with
the result of ERTA. As seen from Fig. 2(a), what we would
like to emphasize is that at 300 K the intrinsic resistivity of
goldene is about 18.6 �, from the numerical result of the
iteration approach with the SOC effect. It is a very small
value, comparable to that of lightly doped graphene (with
hole doping concentration of 1.73×1010 cm−2), and smaller
by one or two orders of magnitude than other 2D metal-
lic materials experimentally accessible such as MXene and
plumbene [18,27,37,38]; a detailed comparison can be found
in Table I. Besides, by a simple valuation, we find that the
conductance of goldene monolayer is equal to that of a gold
film with a thickness of about 1 nm. However, it is doubtful
whether the thickness of a gold film can be reduced to such
a small size even by the state-of-art nanotechnology, with the
excellent conductivity of 3D bulk surviving to nanoscale. In
contrast, the goldene is so far available. Thus, we can say that
goldene is a good 2D conductor with ultrahigh conductivity in

a much wider temperature range around the room temperature.
In view of its thickness of single atom layer and perfect planar
structure, goldene is expected to be a promising material of

TABLE I. The electrical conductivity and thermal conductiv-
ity of goldene, hole-doped graphene, borophene, plumbene, Ti3C2,
Ti2C, and Ti2B2 at room temperature (300 K).

2D material
Conductivity

(mS)
Thermal conductivity

(nW/K)

Goldene 53.8 237
Doped graphene 119 476
Borophene 38.1 [39] 43.3 [40]
Plumbene 3.26 [27] 0.467–5.33 [41]
Ti3C2 (MXenes) 1.63 [42] 33.7 [43]
Ti2C (MXenes) 11.1 [44] 27.1 [45]
Ti2B2 (MBenes) 3.41 [46] 37.5 [47]
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FIG. 2. (a) Intrinsic resistivity of goldene as a function of temperature, where the results obtained by ERTA and iteration method for the
two cases with and without SOC are shown in distinct colors, as specified by the legend in the figure. (b) The scattering rates τ−1

nk of the
electronic states in the Fermi shell, plotted in the order of energy. The results with and without SOC are compared. (c) The energy resolved
scattering rates τ (E )−1 and τ ν (E )−1 corresponding to the ZA, TA, and LA phonons. These results are plotted in black, red, blue, and green,
respectively. For comparison, τ (E )−1 of carrier doped graphene is also plotted in purple, which is much smaller than its counterpart in goldene.
(d) The average modular square of e-ph interaction matrix elements over the Fermi shell is plotted as a functions of the phonon wavevector
q. As labeled with vertical axis, such a quantity is denoted as |gν (q)|2, which is defined as |gν (q)|2 = 〈|gν

mn(k, q)|2〉 where 〈· · · 〉 means an
averaging over n, m, and k for the electronic states in the Fermi shell. The red, green, and blue curves denote the results of ZA, TA, and LA
phonons, respectively.

conductive wires in the electronic devices of next era, instead
the 3D bulk gold.

We now go into details about the respective roles of the
electronic structure and e-ph scattering on the intrinsic resis-
tivity of goldene. At first, from Fig. 2(a), we can see that SOC
cause a slight decrease of the calculated resistivity in the entire
temperature range shown. It implies that SOC facilitates the
electronic transport, although it is not a very strong effect. In
Fig. 2(b), we plot the scattering rates τ−1

nk of all the electronic
states in the Fermi shell, a relatively thin energy region around
Fermi surface of a thickness of 0.4 eV. It is easy to understand
that in the temperature range considered in Fig. 2(a) only
the electronic state in such a Fermi shell is active for the
electronic transport. We can see from Fig. 2(b) that in com-
parison with the case without SOC, the high scattering rates
of some electronic states are effectively suppressed, which
perhaps arises from the quantum interference between the
electronic probability amplitudes of two opposite spin compo-
nents introduced by SOC. Besides, our numerical calculation
indicates that the average velocity v(E ) in the Fermi shell is

also slightly enhanced by SOC, although it is so small that the
difference of the band dispersion around Fermi level between
the two cases with and without SOC is indistinguishable on
the scale as shown in Fig. 1(c). It is obvious that such an
enhancement of v(E ) by SOC favors the electronic transport.
These two factors, i.e., the suppression of large 1/τnk of some
electronic states and the slight enhancement of v(E ), combine
to be responsible for the mild decrease of resistivity by SOC
observed in Fig. 2(a).

In Fig. 2(c) we plot the numerical results of the phonon
mode resolved scattering rates τ ν (E )−1 versus E in the Fermi
shell, which indicates that the TA and LA phonons have
larger scattering rate than the ZA phonon. This is due to the
decoupling of the flexural phonon, i.e., the ZA phonon in
the long-wavelength limit, from e-ph interaction, which also
occurs in other 2D materials such as graphene with mirror
symmetry normal to the material plane. Such a situation is
demonstrated by the numerical result shown in Fig. 2(d) where
the average modular square of the e-ph interaction matrix ele-
ment between electron in Fermi shell and phonons in different
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modes as a function of q along a high symmetry line ( − M)
is plotted. As expected, the e-ph interaction matrix element
of the ZA phonon is much smaller than that of the LA and
TA phonons. This is why the ZA phonon contributes a very
small scattering rate despite being the most easily excited
phonon mode. Herein, to digress for a moment, let us make
a few remarks on the effect of ripples in actual sample as a
kind of disorder on the electronic transport in goldene. The
ondulations of the actual structure of any goldene sample are
inevitable, which had been observed in the original study of
synthesizing the goldene sample [22]. The structural ondula-
tion, also called ripples, is ubiquitous in many 2D material
of single-atomic-layer thickness, e.g., goldene and graphene
[48], As a kind of disorder, ondulations will impact necessar-
ily the electronic transport property in goldene to some extent.
If the ondulation is weak enough to be viewed as a pertur-
bation, just following the decoupling mechanism of flexural
phonon from e-ph scattering process as discussed in the con-
text of our paper, such a disorder is expected to be free from
scattering electrons in transport process in goldene, thanks to
the mirror symmetry. However, when the ondulation has large
amplitude in the normal direction of the sample sheet and its
leading wavelength reduces to nanoscale, it can no longer be
viewed as a perturbation (the mirror symmetry is broken). It
modifies the electronic states, the phonon spectrum and the
e-ph interaction nontrivially. As a result, it will influence the
conductivity of goldene in a very complicated way. So far it
remains a formidable task to study the effect of the structural
ondulation on the intrinsic resistivity of 2D materials on the
level of first-principles calculations. This is beyond the scope
of the present paper. Now let us come back to discuss the
results presented in Fig. 2; from Fig. 2(c) we can also find that
the total scattering rate τ (E )−1 = ∑

ν τ ν (E )−1 of goldene is
much larger than that of doped graphene. This is because that
the Au atom is much heavier than C atom. Consequently, the
phonon dispersion in goldene is overall much lower than that
in graphene, which is thus easier to be excited to take part
in e-ph scattering. The strong e-ph scattering justifies why the
intrinsic resistivity of goldene around room temperature is still
larger than that of the lightly doped graphene, although the
latter has smaller Fermi velocity and DOS at Fermi surface.

It is well known that the large-angle e-ph scattering plays
the leading role in limiting the intrinsic resistivity of a metal
or semiconductor. Goldene has a very large Fermi surface,
which implies that the large-angle e-ph scattering to determine
the intrinsic resistivity is realized by phonons with relatively
large q. In addition, because of the hexagonal geometry of the
Fermi surface as shown in Fig. 1(d), Fermi surface nesting
is expected to be the important mechanism to determine the
intrinsic resistivity. In Fig. 3(a), the typical sets of q’s for
realizing Fermi surface nesting are labeled. It is obvious that
those nesting vectors q’s connecting the opposite boundaries
of the Fermi surface realize the large-angle scattering. There-
fore, they correspond to the phonons (TA and LA), which
have the leading contribution to the resistivity. In Fig. 3(b) we
plot the calculated nesting function, i.e., ξ (q) = ∑

nmk δ(εnk −
E f )δ(εmk+q − E f ), which demonstrates unambiguously the
importance of the nesting vectors q’s plotted together with the
Fermi surface in Fig. 3(a).

We now pay attention to the electronic thermal conduc-
tivity of goldene. In view of its high conductivity revealed
above, goldene is highly likely to be an excellent thermal
conductor if it obeys the empirical Wiedemann-Franz law,
which says that κ/(σT ) = L0. As a good approximation for
a lager number of metals, the so-called Lorenz constant has

a standard value L0 = π2

3
k2

b
e2 = 2.44 × 10−8 W�K, which is

only determined by physical constant, regardless of the detail
of materials. With the use of Eq. (10), we calculate the thermal
conductivity of goldene as a function of temperature. The
numerical result is shown in Fig. 3(c). It can be seen that at
room temperature κ = 237 nW/K, which is lower than the
thermal conductivity of the doped graphene (476 nW/K). But
it is still an excellent value of thermal conductivity, in com-
parison with other 2D materials. The thermal conductivities of
typical 2D materials are presented in Table I for comparison
with our result of goldene. Notice that we have not taken into
account the phonon thermal conductivity since the thermal
conductivity of goldene as a good metal is mainly determined
by the electronic contribution, and a recent theoretical study
reported that the phonon thermal conductivity is much smaller
than our above numerical result [49]. Moreover, from Fig. 3(c)
it can be seen that the thermal conductivity as a function of
T presents a peak on the low-temperature side (about 50 K),
then followed by a slow-varying region (100 K ∼ 400 K)
and finally decreases rapidly in the high-temperature side
(>400 K). This result can be briefly explained as follows: In
the low-temperature region, with the increase of temperature,
the occupation number of the electron states with relatively
high energy is enhanced, which favors the thermal transport.
However, the e-ph scattering also increases with temperature
since more phonons are excited, which goes against the elec-
tronic thermal transport. As a result, the thermal conductivity
shows a peak at 50 K. The interplay of these two opposite
factors brings about the slow-varying behavior of κ in the in-
termediate temperature shown in Fig. 3(c). When temperature
increases further, the e-ph scattering becomes the main mech-
anism to affect the electronic thermal transport, hence κ goes
down rapidly in the high-temperature side as seen in Fig. 3(c).
In addition, from this figure it can be found the calculated ratio
κ/(σT ) is always smaller than the standard Lorenz constant
in the whole temperature range with the maximal deviation
amounting to 25%. However, at 300 K such a deviation is
smallest. Thus, goldene conforms to Wiedemann-Franz law
satisfactorily at room temperature. From Fig. 1(c) we can see
that no nontrivial variation of the energy band dispersion oc-
curs around Fermi level in a large energy range. This suggests
that the Fermi surface maintains nearly the same geometry and
size even as the Fermi level shifts within this energy range.
Consequently, the conductivity and thermal conductivity of
goldene are expected to be insensitive to the carrier doping
by which the Fermi level is shifted. We calculate σ and κ

as functions of Fermi energy level variation relative to its
intrinsic value of the charge neutrality, which is shown in
Fig. 4(b). It can be seen that both of σ and κ show a flat
region within the range −0.60 ∼ 0.40 eV of the Fermi level
variation. This energy range corresponds to a range of the
carrier doping concentration from –5.59 ×1013 cm−2 (hole)
to 5.80 ×1013 cm−2 (electron). This is another feature of
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FIG. 3. (a) The intact and partial hexagons mimic the Fermi surface of goldene as shown in Fig. 1(d) duplicated in the adjacent BZs. Three
sets of nesting wavevectors associated with the two opposite boundaries 1 and 1′ of the Fermi surface are labeled by arrows and denoted by
q(1 − 1′), q(1′ − 1), and q(1 − 1), respectively. Note that the similar nesting wavevectors associated with the other boundaries of the hexagonal
Fermi surface are not shown for brevity. (b) Plot of the nesting function vs q, where the horizontal and vertical axes gives the projections of
wavevector q along the reciprocal lattice vectors G1 and G2 as labeled in Fig. 1(d). Some highlighted lines just correspond to the nesting
wavevectors shown in (a). The remaining highlighted lines correspond to the nesting wavevectors associated with other boundaries of the
Fermi surface. (c) Thermal conductivity and Lorenz number vs temperature. The green-dashed line indicates the standard value of Lorenz
number, i.e., L0 = 2.44 × 10−8 W�K. (d) Conductivity and thermal conductivity as a function of the variation of the Fermi level relative to its
intrinsic value of the charge neutrality.

FIG. 4. (a) The average modular square of the e-ph interaction matrix elements (black square) as a function of q. With a given q the
averaging is performed over the electronic states in the Fermi shell. As a result of numerical fitting, the modular square (red line) of the e-ph
interaction matrix elements of the ADP model is also shown for comparison. (b) The numerical results of conductivity and thermal conductivity
vs temperature obtained by ADP and the first-principles calculations for comparison.
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the transport properties of goldene as a good 2D conductor,
besides the high electric and thermal conductivity.

For semiconductors and metals with small Fermi surface,
the relevant phonons to determine the intrinsic resistivity is
limited in the long-wavelength region. In such a situation,
one can often employ a simple theoretical model to describe
the e-ph scattering, called the acoustic deformational potential
(ADP) model. And usually, such a model can give semiquan-
titative evaluation of the intrinsic resistivity of materials. In
this model the modular square of the complex e-ph inter-
action matrix elements is approximated by a simple form
as |gν

mn(k, q)|2 ≈ |g(q)|2 = �2|q|, where � is an empirical
parameter, i.e., the so-called ADP parameter. For the case of
goldene, as mentioned above, the intrinsic resistivity is not
limited by the long-wavelength phonons. In such a case, we
wonder whether an appropriate ADP model can be established
to describe the e-ph scattering limited transport properties
satisfactorily. By numerical calculations we find such a ADP
model is available if the ADP parameter takes a proper value.
We obtain such a parameter value by calculating 〈|gν

mn(k, q)|2〉
as a function of q where 〈· · · 〉 means an averaging over the
phonon modes ν’s and electronic wavevector k and band
indices of electronic states in the Fermi shell. Then, by a
simple fitting 〈|gν

mn(k, q)|2〉 ≈ |g(q)|2 = �2|q|, we can get

the proper value of � = 11.6 meV
√

Å. 〈|gν
mn(k, q)|2〉 and

|g(q)|2 = �2|q| as a function of q along a high symmetric line
in the BZ is plotted in Fig. 4(a). Note that in our ADP model
a cutoff value of q is required, specifically qc = π/a. When
q > qc we use q = q − qc. In Fig. 4(b), we compare the σ -T
and κ-T curves obtained by the first-principles calculations
and the ADP model. We can see that simple ADP model
works very well in calculating these transport coefficients of
goldene.

V. CONCLUSIONS

In the present paper, by means of the first-principles cal-
culations, we perform a systematic study on the electronic
structure, phonon dispersion, and electronic transport prop-
erties limited by e-ph scattering of goldene, a planar single
atomic layer of gold successfully fabricated much recently.
First of all, we find that goldene hosts only three acoustic
phonon modes owing to its crystal nature of a monatomic
Bravais lattice. The Debye frequency (259 K) is much lower
than many typical 2D materials such as graphene due to the

relatively heavy mass of gold atom. Goldene is a 2D metal,
and the electronic structure around Fermi level is simple.
There is only one band spanning the Fermi level. But it
is notable that in goldene the electron around Fermi level
is featured by a very large Fermi velocity, more than dou-
ble of that in graphene. This electron feature is in favor of
the outstanding electronic transport properties of such a 2D
gold material. Then, by calculating the intrinsic conductivity
limited by e-ph scattering, we find goldene does possess an
ultrahigh conductivity in a wide temperature range around
300 K, which ranks only second to the carrier doped graphene,
and much higher than other typical 2D metallic materials
such as MXenes and MBenes. According to these a numerical
results, we estimate that goldene, as an atomically thin 2D
metal, has the conductance equivalent to that of a 1-nm-thick
gold film, assuming that the excellent electronic transport
properties of 3D gold bulk are remained at the nanoscale. In
more details, we find that the intrinsic resistivity of goldene
shows a linear temperature dependence even below 300 K.
Such a low temperature onset for the linear ρ-T relation
is closely related to the fact that goldene has a low Debye
frequency. The LA and TA phonons play the leading role on
determining the intrinsic resistivity of goldene. In contrast, the
ZA mode corresponding the out-of-plane atomic vibration al-
most completely decouples from the e-ph scattering due to the
mirror symmetry. Finally, we establish a simple deformational
potential model to describe the e-ph interaction, which works
very well to reproduce the numerical result of first-principles
calculation of the intrinsic conductivity of goldene. Therefore,
this model is very useful for quickly interpreting experimental
results on the electronic transport properties of goldene sam-
ples. In short, our theoretical findings indicate that the recently
created goldene presents ultrahigh intrinsic electrical and ther-
mal conductivity. Therefore, it is expected to be a promising
material for conductive wires in the next-generation electronic
devices, instead of the 3D bulk gold.
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