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Spiral spin liquids possess a subextensively degenerate ground-state manifold, represented by a continuum of
energy minima in reciprocal space. Since a small change of the spiral state wave vector requires a global change
of the spin configuration in real space, it is a priori unclear how such systems can fluctuate within the degenerate
ground-state manifold. Only recently it was proposed that momentum vortices are responsible for the liquidity of
the spiral phase and that these systems are closely related to an emergent rank-2 U(1) gauge theory H. Yan et al.
[Phys. Rev. Res. 4, 023175 (2022)]. As a consequence of this gauge structure, fourfold pinch-point singularities
were found in a generalized spin correlator. In this paper, we use classical Monte Carlo and molecular dynamics
calculations to embed the previously studied spiral spin liquid into a broader phase diagram of the square lattice
XY model. We find a multitude of unusual phases and phase transitions surrounding the spiral spin liquid such
as an effective four-state Potts transition into a collinear double-striped phase resulting from the spontaneous
breaking of two coupled Z2 symmetries. Since this phase is stabilized by entropic effects selecting the momenta
away from the spiral manifold, it undergoes a second phase transition at low temperatures into a nematic spiral
phase which only breaks one Z2 symmetry. We also observe a region of parameters where the phase transition
into the spiral spin liquid does not break any symmetries and where the critical exponents do not match those
of standard universality classes. We study the importance of momentum vortices in driving this phase transition
and discuss the possibility of a Kosterlitz-Thouless transition of momentum vortices. Finally, we explore the
regime where the rank-2 U(1) gauge theory is valid by investigating the fourfold pinch-point singularities across
the phase diagram.

DOI: 10.1103/PhysRevB.110.085106

I. INTRODUCTION

Spin liquids (SLs) are one of the most sought-after states
in the field of modern condensed-matter physics [1–3]. This
is because these disordered yet highly correlated spin states
offer an ideal platform to study a wide range of captivating
emergent phenomena [4–8]. Examples include hidden topo-
logical order, long-range entanglement, fractional excitations,
fracton physics, and many more. In the classical limit, where
spins behave as unit vectors, much attention has been focused
on lattices of corner-sharing frustrated motifs such as triangles
or tetrahedra [9–13]. These lattices allow for a rewriting of
a nearest-neighbor Heisenberg Hamiltonian into a sum of
complete squares over the triangular or tetrahedral building
blocks. Hence, all ground states are determined by local spin
constraints such as the condition of a vanishing total spin on
each of these motifs [14–17]. Prominent examples occur on
kagome and pyrochlore lattices, where extensively degener-
ate ground-state manifolds are connected by local spin flips
and the spin structure factors exhibit characteristic twofold
pinch-point singularities. Upon adding quantum fluctuations
these highly degenerate ground states comprise a well-known
route toward inducing quantum spin-liquid behavior [18–22].
Particularly fascinating is the possibility of realizing emer-
gent gauge theories via these local spin constraints, which in

pyrochlore quantum spin-ice systems gives rise to an effective
U(1) quantum electrodynamics [23,24].

Another kind of spin liquid is the spiral spin liquid induced
by competition between the nearest- and further-neighbor
couplings. Contrary to the aforementioned spin liquids which
result from local spin constraints, this kind of system exhibits
only a subextensively degenerate classical ground-state man-
ifold given by a continuum of minima in reciprocal space,
homotopic to a ring in two dimensions or sphere [or other
two-dimensional (2D) surfaces] in three dimensions [25–34].
In these systems, however, a small change in the spiral wave
vector implies a global, coordinated change of all spins in real
space, contrary to the local spin flips of kagome or pyrochlore
magnets. Thus, it is not a priori clear how spiral spin liquids
can explore the whole ground-state manifold. A solution to
this issue was proposed very recently, identifying the mo-
mentum vortices as the effective local degrees of freedom
responsible for the liquidity of the phase [35]. The prolifer-
ation of these topological defects allows each small patch of
spins in the system to visit different wave vectors along the
spiral surface at very little energy cost.

Furthermore, a low-energy effective theory for a classical
spiral spin liquid was derived, which possesses remarkable
similarities with a rank-2 U(1) gauge theory. The family of
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such theories constitutes higher-rank generalizations of U(1)
electromagnetism known for their unusual kinetically con-
strained fracton quasiparticles [35–37]. As a result of the
tensor structure of the associated Gauss’ law, a rank-2 U(1)
gauge theory exhibits fourfold pinch-point singularities in the
electric-field correlator [38] instead of the usual twofold pinch
points of the electric-field correlator in standard U(1) elec-
tromagnetism. The effective theory also has a close relation
to the fracton theory of smectic matter [39–43]. In partic-
ular, the topological defects known as momentum vortices
have the same exotic feature as those in smectic matter,
namely, the winding number cannot be larger than 1, but can
be any arbitrary negative number. The mathematics behind
this has been discussed in detail in Refs. [35,43].

In the spiral system of Ref. [35], a classical square lattice
XY model with up to third-nearest-neighbor interactions, the
emergent electric field translates into a second-order deriva-
tive of the spin-angle field and the corresponding correlation
function of these objects has indeed been numerically con-
firmed to show fourfold pinch points. Nevertheless, the range
of validity of the rank-2 U(1) gauge theory emerging from a
spiral spin liquid remains uncharted since the exact mapping
requires the radius of the spiral contour in momentum space
to be nearly vanishing. A further question left unanswered in
Ref. [35] is the nature of the thermal phase transition observed
as a sharp heat-capacity peak when the system enters the spiral
spin-liquid regime.

Motivated by the previous results but also by remaining
open questions, in this paper, we revisit the spiral phase of
the classical XY model on the square lattice using classical
Monte Carlo and molecular dynamics calculations. Compared
to Ref. [35] where the system was only studied for a single
parameter set for a fixed, small, and almost circular spiral
ring, here, we explore a larger region of the phase diagram
with varying radii of the spiral contour, revealing the broader
interplay of phases in which the spiral spin liquid is embed-
ded. Particularly, moving away from the circular spiral ring we
study the range of validity of the correspondence between the
spiral spin liquid and the rank-2 U(1) gauge theory. We also
uncover a rich phase diagram in temperature and parameter
space that contains a variety of interesting magnetic phases
beyond the previously studied spiral spin liquid, pancake liq-
uids, and rigid vortex networks. This includes double-stripe
states stabilized by two intertwined entropic selection mech-
anisms that lead to a Z2 × Z2 symmetry breaking of lattice
translation and rotation symmetries. However, since these
selection mechanisms have a finite energy cost, at lower tem-
peratures the system regains one of the broken Z2 symmetries
and enters into a nematic spiral phase. The different broken
symmetries lead to phase transitions belonging to the 2D
Ising and four-state Potts universality classes. Furthermore,
between the pancake and spiral spin liquids, we observe a
phase transition with a logarithmically divergent specific heat
that is not related to any symmetry breaking. We investigate
the behavior of momentum vortices at this transition and
discuss the possibility of a Kosterlitz-Thouless transition of
momentum vortices.

The remainder of the paper is organized as follows: Sec-
tion II introduces the XY model on the square lattice and
the key properties of the spiral contour. In Sec. III we

FIG. 1. Square lattice with up to third-nearest-neighbor ex-
change interactions shown in orange, purple, and blue, respectively,
emanating from an arbitrary site (black).

show the finite-temperature phase diagram as obtained in our
calculations, with different subsections devoted to the indi-
vidual phases. In Sec. IV we investigate the dynamical spin
structure factor and discuss the characteristic spectral features
of the different phases. In Sec. V we discuss the roles of spin
and momentum vortices, especially at the phase transition into
the spiral spin-liquid regime. Finally, in Sec. VI we study the
validity of the rank-2 U(1) gauge theory throughout the phase
diagram. Section VII contains the conclusions of our work.

II. SPIRAL SPIN MODEL

The Hamiltonian for the XY model on the square lattice
considered in this paper is given by

H = J1

∑
〈i j〉1

Si · S j + J2

∑
〈i j〉2

Si · S j + J3

∑
〈i j〉3

Si · S j, (1)

where 〈i j〉1, 〈i j〉2, and 〈i j〉3 indicate first-, second-, and third-
nearest-neighbor sites, respectively (see Fig. 1). The XY spins
Si = (Six, Siy ) are normalized as |Si| = 1 and represented by
an angle φ ∈ [0, 2π ) via Si = (cos φi, sin φi ). Throughout this
work we constrain the coupling parameters as follows: We
fix the nearest-neighbor interaction to be ferromagnetic, J1 =
−1, and consider antiferromagnetic J2 and J3. Furthermore,
we fix J2 > 0.25 and J3 = J2/2, as this gives rise to the spiral
ground states of interest here [35]. It is thus convenient to
use the parametrization δ = J2 − 0.25, such that the transition
between a pure ferromagnet and spin spirals occurs at δ = 0.
The degenerate momenta q = (qx, qy) of the spin spirals lie
on a ring in reciprocal space, determined by the solutions of
the equation

cos(qx ) + cos(qy) = 2

4δ + 1
. (2)

In Fig. 2 we show the continuous manifolds of ground-state
wave vectors in reciprocal space for varying values of δ from
δ = 0 to 0.25. When δ = 0.25 the spiral ring reaches the
special wave vectors (±π

2 , 0) and (0,±π
2 ).

From Eq. (2) it is clear that δ = 0 only allows for the ferro-
magnetic solution q = (qx, qy) = (0, 0). When δ is finite but
δ � 1, solutions in the vicinity of q = (0, 0) can be found by
approximating cos(q) = 1 − q2

2 + O(q4). Inserting this into
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FIG. 2. Continuous ground-state manifolds of wave vectors as a

function of δ corresponding to the spiral solutions of Eq. (2). Contour
lines are shown for δ = 0.001, 0.01, 0.03, 0.05, 0.10, 0.15, and 0.20
from smallest to largest.

Eq. (2) results in circular rings given by
(

qx

4
√

δ

)2

+
(

qy

4
√

δ

)2

= 1, (3)

where the radius is 4
√

δ [35]. This is evidenced in Fig. 2,
where contour lines with small δ close to the origin become
more circular. It is in this limit that the spiral spin-liquid
physics is governed by momentum vortices whose effective
theory corresponds to a rank-2 U(1) gauge theory [35].

III. PHASE DIAGRAM

We perform classical Monte Carlo (cMC) calculations in a
range of the phase diagram given by δ ∈ [0, 0.25], from the
ferromagnetic limit to the point where the spiral ring touches
the wave vectors (±π

2 , 0) and (0,±π
2 ). Note that the last

wave vectors correspond to spirals with a periodicity of four
sites along one lattice direction. The behavior in this case is
expected to be substantially different from the spiral liquid
studied in Ref. [35]. Our core calculations are performed with
the following specifications. We consider square systems with
periodic boundary conditions, with up to N = 200 × 200 =
40 000 sites. A logarithmic cooldown protocol is implemented
with 120 temperature steps from T = 2 down to T = 0.02
(where the units of energy are eliminated via |J1| = 1). Each
temperature step consists of 5 × 105 Monte Carlo steps com-
posed of N Metropolis trials and N over-relaxation steps each.
The acceptance ratio remains close to 50% thanks to the
adaptive Gaussian step [8]. Data for e and cv are collected
after performing half of the cMC steps at a given temperature.
Results are averaged over 10 independent runs. Apart from
these core calculations, we perform additional calculations,
e.g., for the spin structure factors, starting from stored ther-
malized states.

The energy and specific-heat calculations exhibit finite-
temperature phase transitions in the full range of investigated
δ > 0. The phase diagram is presented in the top panel of
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FIG. 3. Top panel: Phase diagram of the Hamiltonian in Eq. (1)
obtained by cMC. The color indicates the size of cv . Open symbols
and lines indicate the positions of the peaks or local maxima in cv

(see main text), except for the orange symbols that are calculated
from an energy crossover. The type of phase transition (for example,
the universality class) is indicated in the legend (SB = symmetry
breaking), and the phases are indicated in the corresponding regions
(SL = spiral liquid, VN = vortex network). The red star corresponds
to the transition into the spiral liquid as obtained in Ref. [35]. Bottom
panel: Specific heat as a function of the temperature for values of
delta from δ = 0 to 0.25 at 0.01 intervals. An artificial shift of 0.05 δ

is used for each curve.

Fig. 3, where the background color indicates the magnitude
of the specific heat cv (T, δ) (which is shown in the bottom
panel for all values of δ). The colors of the lines and sym-
bols indicate the types of phase transitions manifested by
peaks in the specific heat, which we will explain in detail
in the following subsections. Overall, the phase diagram re-
veals many interesting features such as the existence of two
phase transitions (red and green lines) at δ � 0.16, where the
lower critical temperature Tc goes to zero as δ → 0.25. These
transitions surround a double-striped phase which we denote
〈2〉. The central part of the phase diagram is dominated by
incommensurate lattice nematic spirals which can be un-
derstood as stripy spin states in one of the two Cartesian
directions. At small δ � 0.05, the system shows a crossover

085106-3



GONZALEZ, FANCELLI, YAN, AND REUTHER PHYSICAL REVIEW B 110, 085106 (2024)

0 50 100 150
x

0

50

100

150

y

−π −π
2 0 π

2 π
qx

−π

−π
2

0

π
2

π

q y

0.00 0.05 0.10 0.15 0.20 0.25
δ

0.0

0.1

0.2

T

translation symmetry breaking

0

5

lo
g

[S
(q

)]

0.0

0.5

1.0

O 1
(T

,δ
)

(a) (b)

(c)

φ

FIG. 4. Characterization of phase 〈2〉: (a) Snapshot of a real-
space spin configuration from cMC for L = 200 at δ = 0.17 and
T = 0.119 (the inset shows a zoom-in), where colors indicate the
angle φi at each site i. (b) Spin structure factor S(q) (on a logarithmic
scale) for δ = 0.17 and T = 0.119. (c) Order parameter O1 to test for
lattice translation symmetry breaking [see main text and Eq. (6)]. The
blue star indicates the values of T and δ from (a) and (b).

at high temperatures from the paramagnetic regime into a
pancake liquid phase [44]. Upon lowering the temperature fur-
ther, the system undergoes a transition into a spiral spin-liquid
phase (brown line) without displaying any signs of symmetry
breaking. The red star on this line highlights the phase transi-
tion found in Ref. [35]. At even lower temperatures, this phase
turns into a rigid vortex network.

These phase transitions and crossovers depict a rich phase
diagram including the spiral spin-liquid phase at finite tem-
peratures, which we will characterize in the following. Before
we continue describing the individual phases in detail, it is
important to note that the Mermin-Wagner theorem forbids
the spontaneous breaking of the continuous U(1) spin-rotation
symmetry at any finite temperature. Therefore, 〈Si〉 = 0 holds
for any site i at T > 0. This means that whenever we speak of
“symmetry-breaking order” we refer to orders that manifest in
spin-rotation-invariant order parameters (such as spin correla-
tions 〈Si · S j〉) and that break discrete lattice symmetries.

A. Double collinear stripes

Let us start with the parameter regime corresponding to
the 〈2〉 phase (2-up-2-down phase), which consists of nematic
two-site-wide stripes of antiparallel spins [see Fig. 4(a)]. This
phase breaks both lattice translation and rotation symme-
tries and is typically observed in systems with short-ranged
ferromagnetic and long-ranged antiferromagnetic interactions
[45–47]. In the spin structure factor,

S(q) = 1

N

∑
i, j

〈Si · S j〉 eiq·ri j (4)

where ri j = r j − ri is the distance between spins Si and S j ,
the 〈2〉 phase is characterized by peaks at q = (±π/2, 0) or

(0,±π/2) [see Fig. 4(b)]. It is important to note that these
points only belong to the spiral ground-state manifold at ex-
actly δ = 0.25. For δ < 0.25 there is another transition at
lower temperatures that takes the system to the ground-state
manifold.

The selection of q points on the Cartesian axes in reciprocal
space is entropic and happens due to the discrete nature of the
lattice. Naively, breaking the discrete Z2 lattice rotation sym-
metry that transforms the wave vectors q = (±π/2, 0) and
(0,±π/2) into each other would lead to an Ising transition,
as in the well-known J1 − J2 square lattice Heisenberg model
for J2 > 0.5 J1, where simple antiferromagnetic stripes are
selected [48,49]. However, this is not the case here since there
is an extra accidental degeneracy that is responsible for the
formation of the 〈2〉 phase. Specifically, the Hamiltonian in
Eq. (1) implies that all coplanar spin stripes with the periodic
four-site pattern [φAφBφAφB] along one of the two Cartesian
axis have the same energy regardless of the values of φA and
φB (φA and φB indicate two different angles and φA = φA + π

is the opposite direction of φA). Within this manifold there
are spin spirals with a period of four lattice sites and spatially
homogeneous π/2 rotation angles between neighboring spins
(i.e., φA and φB differ by π/2) as well as 〈2〉 phases when
φA = φB or φA = φB. The entropic term of the free energy se-
lects the 〈2〉 states, indicating a preference for collinear states.
The two possibilities ↑↓↓↑↑↓↓↑ . . . or ↓↓↑↑↓↓↑↑ . . . of
breaking the lattice translation symmetry represent an extra
Z2 broken symmetry. Typically, there is no reason why the
two Z2 symmetries should be broken at the same temperature.
However, we observe only one phase transition belonging
to the four-state Potts universality class [50], confirmed by
finite-size scaling from cMC calculations (see Appendix B).
This indicates a strong order-parameter coupling, leading to
a broken Z2 × Z2 = Z4 symmetry. Such an emergent four-
state Potts transition through order by disorder was already
observed in the J1 − J3 kagome lattice Heisenberg model but
as a result of a true fourfold symmetry and not a combination
of two coupled twofold symmetries [51]. One possible reason
for the merging of the two types of symmetry breaking is
that the two order parameters are fundamentally dependent
on each other: Translation symmetry breaking along a lattice
direction can only occur if nematic symmetry breaking has
selected this lattice direction.

As already mentioned, the phase 〈2〉 breaks translation
symmetry by one lattice spacing. As we will see later, other
phases of our system (such as the nematic spiral) also break
translation symmetry but remain invariant under combined
translation and spin rotation. What is special about the 〈2〉
phase is that it also breaks all possible combinations of
translation symmetry by one lattice spacing and global spin
rotations. To explicitly prove this it is useful to consider the
following order parameter:

Ox
1 = 1

N

∣∣∣∣
∑
x,y

(−1)x〈Sx,y · Sx+1,y〉
∣∣∣∣, (5)

where we have slightly changed the notation in the sense
that the subscripts x, y in Sx,y now indicate the Cartesian
coordinates of the square lattice sites i. This order parameter
takes into account all nearest-neighbor correlations in the x
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direction with alternating signs. Analogously, Oy
1 can be de-

fined that detects translation symmetry breaking by one lattice
spacing in the y direction. To take into account both types
of translation symmetry breaking along the x and y axes we
consider the order parameter

O1 = Ox
1 + Oy

1. (6)

It is easy to see that for an ideal 〈2〉 state (with either stripes
along the x or y directions), O1 = 1. In the same manner, one
can check that O1 = 0 for ferromagnetic, antiferromagnetic
Néel, and spiral states with homogeneous rotation angles.

The results for O1 as a function of T and δ are shown
in Fig. 4(c), where the blue star indicates the values of T
and δ for Figs. 4(a) and 4(b). The order parameter O1 takes
a finite value only in the region encapsulated by the green
and red curves at high values of δ, that has been denoted 〈2〉
in Fig. 3. Even though favored by thermal fluctuations, the
〈2〉 phase (and more generally, all [φAφBφAφB] states) is not
a part of the ground-state manifold for δ < 0.25. Therefore,
we cannot strictly speak of order by disorder due to thermal
fluctuations. As a consequence, another phase transition must
occur at lower temperatures for δ < 0.25, taking the system to
the ground-state manifold. This is confirmed by the recovery
of the translation symmetry at lower temperatures (below the
green line), where O1 takes again small values.

We note that there is still some reminiscence of the 〈2〉
phase after the system passes through it at lower temperatures,
manifested by the nonzero value of O1 below the green line
at high values of δ. The boundary conditions are responsible
for this spurious effect, as the system tries to evolve from a
four-spin periodic structure (〈2〉 phase) onto an incommen-
surate spiral phase. The frustration induced by the boundary
conditions may forbid the system from fully rearranging into
a nematic spiral. Another consequence of this is the larger
energy difference between these states when we reach T = 0
and the exact ground-state energy (see Appendix A). Even
though we observe that this spurious signal is reduced as the
system size increases, a more appropriate approach would re-
quire a spin-update algorithm (involving clusters) that allows
the system to rearrange properly, something which, however,
is beyond the scope of this work.

B. Nematic coplanar spirals

The nematic spiral phase exists below the green curve in
the phase diagram of Fig. 3 and only breaks the lattice rotation
symmetry by choosing two equivalent points on the spiral
ring [see Figs. 5(a) and 5(b)]. The spiral states in this phase
are characterized by spatially homogeneous rotation angles
between spins on neighboring sites. For δ � 0.16, the nematic
spiral phase is reached through the recovery of the translation
symmetry that is broken in the 〈2〉 phase. The corresponding
transition is found to belong to the Ising universality class (see
Appendix B for finite-size scaling analysis) which becomes
evident when approaching the phase boundary from the low-
temperature side. Below the phase transition, the system only
breaks π/2 lattice rotation symmetry while translation sym-
metry (in combination with a properly chosen spin rotation)
is intact. On the other hand, above the phase transition (i.e.,
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FIG. 5. Characterization of the nematic spiral phase: (a) Real-
space configuration for L = 200 at δ = 0.14 and T = 0.0001 (the
inset shows a zoom-in), where colors indicate the angle φi at each
site i. (b) Spin structure factor (in logarithmic scale) for δ = 0.14
and T = 0.02. (c) Order parameter O2 to test for lattice rotation
symmetry breaking (see main text). The blue star indicates the values
of T and δ from (b).

in the 〈2〉 phase), an extra Z2 translation symmetry is broken,
explaining the Ising nature of the transition.

For 0.05 � δ � 0.15, the nematic spiral phase is directly
reached from the paramagnetic regime, populating a large
region of the phase diagram. In this δ region, the transition is
also in the Ising universality class due to the broken Z2 lattice
rotation symmetry (see Appendix B for finite-size scaling
analysis). For most values of δ, these spirals are incommen-
surate since the wavelength changes smoothly with δ. For
example, commensurate spirals with wavelengths of 4, 5, and
6 lattice spacings are realized for values δ given by 0.25,
∼0.131, and ∼0.083, respectively [see Eq. (2)]. As a conse-
quence, finite lattices have an extra degree of frustration due
to the boundary conditions which lead to deviations from the
ideal wave vectors (qx, 0) and (0, qy). These effects, however,
vanish in the thermodynamic limit where order-by-disorder
effects can select the exact wave vectors (qx, 0) and (0, qy) on
the spiral ring.

An order parameter that detects the lattice rotation sym-
metry breaking can be constructed in terms of the local
momentum (i.e., local wave vector) of the spiral. At each site,
we can define the local momentum via q = ∇φ [35] (where
∇ is implemented as a discrete derivative on the square lat-
tice) which is a two-component vector in the xy plane. Then,
our order parameter for lattice rotation symmetry breaking is
defined by

O2 = 1

N

∣∣∣∣
∑
i∈N

〈∣∣q̂x
i

∣∣〉 − 〈∣∣q̂y
i

∣∣〉 + 〈∣∣q̂x+y
i

∣∣〉 − 〈∣∣q̂x−y
i

∣∣〉∣∣∣∣, (7)

where q̂i = qi/|qi| is the normalized unit vector of qi at site
i of the square lattice. Furthermore, the superscripts indicate
the components of q̂i where x + y and x − y are symbolic
notations for the two diagonal lattice directions. Even though
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these two directions are not favored by entropy, we include
them to account for canted stripes that appear due to finite-size
effects. In practice, this makes the results slightly smoother at
small δ. The O2 order parameter vanishes when there is no
imbalance between the total momentum of the spirals in the
x and y directions (or the x + y and x − y directions). On the
other hand, O2 = 1 if a spiral is aligned along a Cartesian or
a diagonal direction.

The results for O2 are shown in Fig. 5(c), where the blue
star indicates which T and δ are used for Fig. 5(b). We find
that O2 is always sizable below the green curve. This con-
firms that the peak in the heat capacity at 0.05 � δ � 0.15,
identified as an Ising transition, is due to lattice rotation
symmetry breaking. The small but nonzero signal observed
at δ � 0.05 can be attributed to the phase’s slow dynamics
(or bad thermalization) and a small number of independent
runs trapped in a nematic state near the orange boundary. The
O2 order parameter provides evidence of the existence of the
phase transition shown in orange, which is not captured by
the specific heat and which we will discuss in detail later.
It is also important to note that the poor signal obtained in
the 〈2〉 region originates from the discrete definition of the
momentum. Due to the collinear double-stripe nature of the
phase, the relative angles φi − φ j between neighboring sites i
and j vary vastly on the scale of one lattice distance, making
discrete derivatives ill defined. Still, the nonzero values of
O2 confirm that the 〈2〉 phase also breaks the lattice rotation
symmetry.

C. Pancake and spiral liquids

Finally, for δ � 0.06, the heat-capacity peak indicating
a finite-temperature phase transition splits into two, a wide
shoulder at higher T signaling a crossover and a sharp peak at
lower T that gets smaller and shifts to T = 0 as δ decreases
(brown curve in Fig. 3). The broad shoulder, shown by the
light-blue curve in Fig. 3, is only discernible for δ � 0.05
and does not exhibit critical behavior (no scaling with system
size) indicating a crossover. Generally, this part of the phase
diagram is well represented by the results for δ = 0.03 in
Ref. [35]. The onset of spin correlations at the broad high-
temperature peak leads to a phase known as pancake liquid
[44], where the spin states have contributions from spiral
wave vectors ranging from q = 0 up to the spiral ring [see
Figs. 6(a) and 6(b)]. This property leads to a spin structure
factor featuring an almost uniform disklike signal (pancake
shape) within the spiral surface.

Further decreasing the temperature leads to a phase tran-
sition into the spiral spin-liquid phase [see Figs. 6(c) and
6(d)], which does not show any symmetry breaking. Contrary
to the pancake liquid, this phase presents a nearly isotropic
signal in the spin structure factor only along a circle inside the
spiral ring [highlighted by dashed white lines in Fig. 6(d)].
This phase shows liquidlike fluctuations between spin spirals
with all possible directions of spiral wave vectors, justifying
the name spiral spin liquid. These fluctuations give rise to
well-defined momentum vortices and antivortices represent-
ing local defects in the spiral configurations [35] [see up and
down arrows in Fig. 6(c) and zoom-ins in Figs. 6(e) and 6(f)].
The circle formed in the spin structure factor slightly enlarges
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φ

FIG. 6. Pancake liquid phase: (a) Real-space configuration for
L = 200 at δ = 0.04 and T = 0.119 (the inset shows a zoom-
in), where colors indicate the angle φi at each site i, and
(b) the corresponding spin structure factor calculated by averaging
over independent runs (in logarithmic scale). Spiral liquid phase:
(c) Real-space configuration for δ = 0.04 and T = 0.081 where one
momentum vortex and antivortex are indicated by an up and down
arrow, respectively, and (d) the spin structure factor calculated by
averaging over independent runs. (e), (f) Show a zoom-in of the
momentum vortex and antivortex indicated by arrows in (c).

as the temperature decreases until it reaches the spiral surface
corresponding to the ground-state manifold. At the same time,
the dynamics of the phase are slowed down and thermalization
becomes difficult in the cMC runs. The transition separating
the pancake and spiral spin liquids has a logarithmically di-
vergent specific heat (see Appendix B), corresponding to a
critical exponent α = 0. Typically, α = 0 could be associated
with an Ising transition, as it is found for δ > 0.05. However,
in this case, the critical exponent for the correlation length ν

is not consistent with an Ising universality class, and the spiral
spin liquid does not exhibit any signs of symmetry breaking.
This evidences that the transition falls out of the standard
paradigm of phase transitions, and we will argue in Sec. V
that it is possibly a Kosterlitz-Thouless transition driven by
momentum vortices.

As mentioned before, two different phases are observed
at low temperatures around δ ≈ 0.05. On one hand, we find
nematic spirals for δ � 0.05, which break the lattice rotation
symmetry (green curve in Fig. 3). On the other hand, we find
a spiral liquid or a vortex network for δ � 0.05, which do
not break any lattice symmetries (below the brown curve in
Fig. 3). Thus, a phase transition must exist between these two
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FIG. 7. Energy-level crossings between the nematic spiral and
spiral liquid and vortex network phases. Dashed lines indicate
decreasing δ sweeps starting from δ = 0.07. Full lines indicate in-
creasing δ sweeps starting from δ = 0.03. Black dots indicate the
crossing points.

phases. However, no such phase transition is captured by the
specific heat, even when very small δ steps are considered (see
Appendix C). The phase transition is also not observed for
any other lattice size L � 200 tried, nor by imposing open
boundary conditions. Furthermore, performing δ sweeps at
constant T , coming from either of the two phases, for any
size or boundary conditions, we could not tune the system
from one phase into the other. This can be attributed to the
large change of spin configuration needed to go from one
phase to the other, the slow dynamics of spin fluctuations at
these temperatures, and/or the frustration generated by the
boundary conditions. Similar problems already arose when
transitioning from the 〈2〉 to the nematic phase, generating
a spurious signal in Fig. 4. Therefore, no finite-size analysis
was possible to determine the presence of the phase transition
(and its order) that has to exist between the nematic phase
and the spiral liquid or vortex network at about δ = 0.05. We
suggest that the solution here requires other update methods
for cMC, probably involving cluster updates which allow the
system to evolve through rigid spin textures without getting
stuck. However, we leave this to future work.

Despite the difficulties in evolving the two phases into each
other, we can infer the existence of a phase transition from
energy considerations (apart from the symmetry arguments
elaborated above). Specifically, Fig. 7 shows an energy-level
crossing in our δ sweeps at constant T , when either starting
in the nematic spiral phase and decreasing δ (dashed lines) or
starting in the spiral liquid/vortex network phase and increas-
ing δ (full lines). The crossing points are denoted by black
dots and are shown by orange symbols in Fig. 3. This line
roughly agrees with the region in the phase diagram where
the order parameter O2, detecting lattice rotation symmetry
breaking, vanishes. Nonetheless, it is worth noticing that this
method of locating the phase transition is only strictly valid
at T = 0 or when the two phases have the same entropy
(which is probably not the case here). Therefore, the orange
line in Fig. 3 should only be understood as a rough estimate
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FIG. 8. Vortex network phase: (a) Real-space configuration for
L = 200 at δ = 0.03 and T = 0.02, and (b) the corresponding spin
structure factor. (c) Real-space configuration for δ = 0.03 and T =
0.0001, where the black arrow shows an elongated momentum an-
tivortex. (d) Ripple state obtained for δ = 0.03 and T = 0.02 with
open boundary conditions.

for the transition. Furthermore, we can only detect the transi-
tion through this method in a limited range of temperatures.
The actual transition should further reach up in temperature,
connecting to the point where the nematic Ising transition
(denoted in green in Fig. 3) turns into the transition without
symmetry breaking (denoted in brown in Fig. 3). However,
we cannot specify the exact value of δ in which the transitions
will meet. Finally, since we could not observe the system’s
evolution from one phase to the other, we could also not detect
any hysteresis behavior to determine the order of the phase
transition.

D. Vortex network or ripple state

As mentioned in the previous section, the ringlike signal in
the spin structure factor characterizing the spiral liquid (see
Fig. 6) grows as the temperature is lowered until it reaches
the spiral ring of the exact ground-state manifold. Around this
temperature, a crossover to a rigid vortex network state occurs,
where the spirals are well defined and correspond to four
different wave vectors q = (±q, 0) and (0,±q) [35] selected
by an order-by-disorder mechanism. A typical spin config-
uration is shown in Fig. 8(a), with the corresponding spin
structure factor presented in Fig. 8(b). This rigid vortex net-
work does not show any indications of symmetry breaking and
realizes an approximate square arrangement of momentum
vortices and antivortices (therefore the name vortex network)
connected by straight domain walls [35]. Furthermore, these
structures are rigid, in the sense that they evolve very slowly
in Monte Carlo time. This makes the system very prone to
getting stuck in a metastable spin configuration. For example,
while the wave vectors q = (±q, 0) and (0,±q) are favored
by entropic effects at finite temperature, we still find config-
urations with q = ±(q, q) and ±(q,−q), indicating that the
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FIG. 9. Bottom part of a lattice with an open boundary and the
remaining couplings to the system of a spin at the edge (black circle).

cMC runs are affected by thermalization issues, as well as by
finite sizes and boundary conditions.

Other studies of a closely related model on the honeycomb
lattice found that the low-temperature phase is a ripple state
for systems with open boundary conditions [44]. The ripple
state consists of a single momentum vortex from which spin
spirals extend in all directions. Interestingly, we also find
such a state in the vortex network regime when imposing
open boundary conditions [see Fig. 8(d)]. The discrepancy
between the two boundary conditions indicates that they play
an essential role in determining the bulk spin configurations
even for large lattice sizes. This applies in particular to the
limit δ → 0 where the spiral wavelength diverges such that it
is not possible to make a sensible extrapolation to the ther-
modynamic limit. Nonetheless, at finite temperatures, a ripple
state in the thermodynamic limit seems peculiar because this
would imply that spins far away from the ripple center are
affected by it, regardless of the distance. In what follows, we
provide a simple understanding of why the single vortex state
is favored by the open boundary condition.

As an example, we examine the bottom boundary of a
square-shaped system (i.e., a boundary oriented along the x
axis) and investigate the Hamiltonian at the boundary. The
other three boundaries of the system can be treated analo-
gously. Assuming that the spins are in a spiral state with
wave vector q = (qx, qy), the energy of a spin closest to the
boundary can be obtained by computing the Hamiltonian in
Eq. (1) for the spiral state but omitting the contributions from
the bonds that are cut by the boundary. This leads to an energy
contribution from such a spin given by (see Fig. 9)

2ebdry = 2J1 cos (qxa) + J1 cos (qya)

+ J2 cos (qxa + qya) + J2 cos (−qxa + qya)

+ 2J3 cos (2qxa) + J3 cos (2qya), (8)

where we recall that J1 = −1, J2 = 1/4 + δ, J3 = 1/8 + δ/2
and a = 1 is the nearest-neighbor distance. Minimizing ebdry

as a function of qx and qy leads to a wave vector q′ = (0,±q′
y)

with q′
y given by

cos(q′
ya) = 1 − 4δ

1 + 4δ
. (9)

Note that since cos(0) + cos(q′
ya) = 2

1+4δ
, the wave vector

(0,±q′
y ) is exactly on the spiral ring [see Eq. (2)].

This analysis shows that open boundaries energetically
prefer spirals whose stripelike spin patterns are parallel to the
boundary, as is (approximately) realized for the ripple state in

Fig. 8(d). While the bulk energy is minimized by a domain
with a single wave vector q on the spiral ring, such a state
costs much energy on the boundary (growing linearly with
the linear system size L) since a single domain cannot simul-
taneously satisfy the energetic preferences at all boundaries.
Hence, the system forms a single momentum vortex in the
bulk which reduces the energy costs at the boundary (note
that the bulk energy of a single momentum vortex only scales
logarithmically in the system size L [35]). This mechanism
stabilizes the single vortex ripple state in Fig. 8(d) at low
temperatures when open boundary conditions are imposed.

Upon further decreasing the temperature, systems with
periodical boundary conditions show a re-organization of
momentum vortices associated with a bending of the spi-
ral wavefronts. This leads to spin configurations shown in
Fig. 8(c) obtained at T = 0.0001. The bending of the wave-
fronts gives rise to momentum antivortices with a very
elongated shape along one Cartesian direction [shown by the
black arrow in Fig. 8(c)]. Selecting one of the two lattice
directions corresponds to a Z2 symmetry breaking and im-
plies a certain degree of lattice nematicity in the system. This
spontaneous breaking of a Z2 symmetry is expected at low
but finite temperatures. However, due to the aforementioned
thermalization issues in the vortex network phase, most in-
dependent cMC runs do not present any signatures of this
transition in the specific heat such that the numerical evidence
for the spontaneous symmetry breaking remains rather weak.
On the other hand, the decreasing density of momentum vor-
tices at low temperatures is a very robust observation. When
the distance between momentum vortices becomes compara-
ble to the system size, the results are largely affected by the
boundary conditions and therefore cannot be trusted. We thus
conclude that the vortex network regime is the numerically
most challenging part of the phase diagram and a thorough
understanding of this phase is still lacking.

IV. DYNAMICS

To study the signatures of the different phases in the
dynamical spin structure factor which is experimentally ac-
cessible through inelastic neutron scattering, we perform
molecular dynamics (MD) calculations. These simulations
start from XY spin configurations obtained from cMC for a
set of coupling parameters at a given temperature and then
calculate the system’s time evolution by solving the Landau-
Lifshitz equations (without a damping term) [12,52]. The
dynamical spin structure factor is then calculated as

S(q, ω) = 1

N
√

Nt

Nt∑
nt =0

N∑
i, j

〈Si(t ) · S j (0)〉 ei(q·ri j−ωt ), (10)

where the time is given by t = ntδt , for a given time step δt
[53,54]. It is important to note that in the Landau-Lifshitz
dynamics, the time evolution of a spin is obtained through
the cross product between that spin and the effective field
that acts on it. Since the cross product is only defined for
three-component spins, for the MD calculations, we use the
XY Hamiltonian from Eq. (1) but let it act on three-component
spins [55]. This means that the spin’s z component (which
vanishes in the initial spin state from cMC) does not contribute
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FIG. 10. Spin structure factor S(q, ω) from MD calculations
at δ = 0.18 for two different temperatures, corresponding to the
collinear 〈2〉 phase (top panel) and the coplanar nematic spiral phase
(bottom panel). The dashed white lines are the spin-wave bands
obtained by LSWT at T = 0, and the dashed blue vertical lines
indicate momenta on the spiral ring. The inset shows the plotted
path in momentum space (red) and the spiral ring corresponding to
the ground-state manifold (blue). The white dashed boxes indicate
spurious ghost signals (see main text).

to the energy. Throughout the time evolution, the z component
becomes finite, allowing the in-plane components to evolve
as well. Then, we calculate the dynamical structure factor
taking into account only the in-plane spin-spin correlations.
During the MD runs, the energy per spin is conserved up to
the fifth decimal digit, indicating that the time evolution is
well performed and the spins do not wander far off the xy
plane. The dynamical spin structure factors in Figs. 10 and
11 are obtained by averaging over 120 independent initial
configurations. We point out that the vertical high-intensity
signals extending from ω = 0 to the upper boundary of the
plotted regions are artifacts generated by the Fourier transform
in time, which can be explained as follows. The mismatch
between the period of spin oscillations and the simulation time
generates a finite offset in the Fourier-transformed signal. Al-
though this offset is much smaller than the height of the peak,
it is visible for the momenta where the intensity is highest.
The MD results are compared with the zero-temperature spin-
wave bands from linear spin-wave theory (LSWT), calculated
with the software SPINW [56].

In Fig. 10 we show results for δ = 0.18 at two different
temperatures, above and below the low-temperature phase
transition between the 〈2〉 phase and the nematic spiral phase.
The bottom panel shows results for the nematic spiral phase,
where the magnetic Bragg peak occurs at a wave vector on the
spiral ring close to q = (0, π/2). Momenta on the spiral ring
that lie on the plotted path are indicated by dashed blue lines.
As a reference, we also plot the spin-wave bands obtained
with LSWT, shown as dashed white lines in Fig. 10. Over-
all, the spectral weight obtained within MD closely follows
the dispersive bands from LSWT. Another relevant feature
revealed by both methods is that, away from the Bragg peak
the spectrum is always gapped, even for momenta q on the
spiral ring, which is a consequence of the XY anisotropy. A
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FIG. 11. Spin structure factor S(q, ω) from MD calculations at
δ = 0.03 for two different temperatures, corresponding to the pan-
cake liquid (top panel) and the spiral spin liquid (bottom panel).
The white and green dashed lines correspond to the spin-wave bands
obtained by LSWT at T = 0 for ground-state nematic spirals with
wave vectors q = (q, 0) and q = (0, q) on the spiral ring, respec-
tively. The dashed blue vertical lines indicate the momenta on the
ground-state spiral ring. The plotted path in q space is shown in the
inset (red), together with the spiral ring (blue). Note that the color
scale is logarithmic.

band minimum with a small but finite gap is found close to
q = (0, π/2) and is related to the proximity to the 〈2〉 phase
at δ = 0.25. Finally, it should be noted that some lower-energy
“ghost” excitations are also observed, highlighted by dashed
white rectangles. These are spurious signals originating from
the passing through the collinear 〈2〉 phase, as was already
found in the translation symmetry-breaking order parameter
O1 (see Fig. 4). These features should be disregarded as rem-
nants from the 〈2〉 phase.

The top panel of Fig. 10 corresponds to the higher-
temperature collinear 〈2〉 phase, where the magnetic Bragg
peak is located at q = (0, π/2). Note that in this case, LSWT
cannot be applied because the order is unstable at T = 0 (it
does not belong to the ground-state manifold for δ = 0.25). In
addition to the gapless excitations at the Bragg peak, there are
further low-energy band minima at the wave vectors where
the plotted path crosses the spiral ring (indicated by dashed
blue lines). In contrast to the coplanar nematic spiral phase,
the spectrum is more dispersed and the weight is not concen-
trated along well-defined narrow excitation modes. Overall,
apart from the low-energy signal around the Bragg peak, the
intensity distributions in the collinear 〈2〉 and the coplanar
spiral phases are rather different. This is a remarkable obser-
vation given that the wave vectors of the two corresponding
orders are very similar.

We now turn to the other end of the phase diagram at
δ = 0.03, where the pancake and spiral spin liquids are found.
Figure 11 shows the MD results for the dynamical spin struc-
ture factor for two different temperatures corresponding to
both phases. The pancake liquid phase receives its name due to
the nearly homogeneous contributions from all wave vectors
inside the spiral ring. This property is also observed in the dy-
namical spin structure factor of the pancake liquid, displayed
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in the top panel of Fig. 11. The intensity distribution shows
a strong signal at low energies for all wave vectors enclosed
by the spiral ring (i.e., between the dashed blue lines) without
any particular Bragg peak. Here, the white and green dashed
lines represent the LSWT bands at T = 0 for wave vectors
q = (q, 0) and q = (0, q) on the spiral ring, respectively. In
Fig. 11 one can appreciate that the spectral weight of the pan-
cake liquid follows these bands while displaying a continuum
of excitations in the region enclosed by them.

When decreasing the temperature at δ = 0.03, the system
enters the spiral spin-liquid phase where only wave vectors
close to the spiral ring coexist. This implies that spin spirals
are well defined but their momentum direction can vary in real
space. The dynamical spin structure factor of the spiral spin
liquid in the bottom panel of Fig. 11 displays this property
where the low-energy signal is now more concentrated around
the spiral ring (blue dashed lines). Also at higher energies
the spectral weight is sizable only close to the T = 0 LSWT
bands, while the region enclosed by them remains empty,
representing a significant difference from the pancake liquid.
Overall these features help to distinguish the two types of spin
liquids by their excitation spectrum.

V. EFFECTS OF SPIN AND MOMENTUM VORTICES

As mentioned in Sec. III C, the phase transition between
the pancake liquid and the spiral spin liquid shows unusual
properties. It is not associated with any spontaneous symmetry
breaking and its scaling behavior falls out of the standard
classification of second-order phase transitions. Specifically,
the specific heat is logarithmically divergent (see Appendix B)
but the critical exponent ν is not consistent with the known
universality classes. Here, we revisit the nature of this phase
transition and discuss whether it could be driven by vortices,
either formed by spin or momentum. Since both degrees of
freedom are planar quantities, a Kosterlitz-Thouless transition
seems to be a natural possibility [57,58].

To obtain insights into whether spin or momentum vortices
show any special behavior across the phase transition, we
first examine the density of vortices within cMC. We start
investigating spin vortices which are identified by the total
spin-rotation angle along elementary four-site loops of the
square lattice and whose density we denote nv . The results for
nv are shown in the top panel of Fig. 12 while the bottom panel
displays its derivative with respect to temperature ∂nv/∂T .
In the small δ regime the spin-vortex density nv shows a
pronounced drop at rather large temperatures T ∼ 0.4. As
a result of this pronounced decrease, at the low-temperature
phase transition between the pancake liquid and the spiral
spin liquid (brown line) nv is negligibly small. This makes
it evident that the transition is not related to spin vortices and
we, therefore, rule out a Kosterlitz-Thouless transition from
the spin degree of freedom. Furthermore, nv increases with δ,
and close to the Ising transition indicated by the green line
the system is still populated by a considerable number of spin
vortices.

It is worth emphasizing that our investigation of the vortex
density is only to check whether there is a general connection
between vortices and the spiral liquid transition. The vortex
density is expected to be smooth across a Kosterlitz-Thouless
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FIG. 12. Top panel: Spin vortex density nv (defined by the num-
ber of spin vortices per number of sites) as a function of temperature
T and δ. Bottom panel: Derivative of nv with respect to the temper-
ature. The lines and circles indicate the phase boundaries obtained
from peaks in the specific heat.

transition [59,60], however, the derivative has been shown to
exhibit a peak at the same position as that of the specific heat
[59]. Despite coinciding, these peaks occur at temperatures
slightly above the Kosterlitz-Thouless transition and do not
diverge on the square lattice XY model [61]. Thus, nv is no
good quantity to precisely locate a Kosterlitz-Thouless tran-
sition. We, nevertheless, study the vortex density here since
more standard quantities for identifying a Kosterlitz-Thouless
transition, such as the correlation length, are difficult to calcu-
late accurately due to the spiral nature of the magnetic parent
state (which leads to oscillating correlation functions).

Next, we investigate the density of momentum vortices
nqv in the δ − T phase diagram. If φ(r) evolves smoothly
throughout the lattice, we can define the momentum field
q(r) = ∇φ(q) locally as the discrete derivative of φ(r) and
identify momentum vortices in the local momentum texture
q(r). The results are shown in the top panel of Fig. 13 while
the derivative ∂nqv/∂T is presented in the bottom panel. One
sees that for all values of δ, the momentum vortices have a
strong presence at temperatures above the phase transitions.
Furthermore, nqv drops abruptly at the transitions as evidenced
by its derivative, which is peaked along the brown line. At
δ = 0, where there is no finite-temperature phase transition,
the momentum vortex density remains high down to the low-
est temperatures. This observation indicates that momentum
vortices play a key role in driving the phase transition between
the pancake liquid and the spiral spin liquid.

The close connection between the spiral liquid transition
and momentum vortex proliferation motivates us to analyze
more closely whether this transition could be a Kosterlitz-
Thouless transition of momentum vortices. A common way
to pinpoint a Kosterlitz-Thouless transition from spin de-
grees of freedom is to calculate the stiffness, which presents
a universal jump at the critical temperature TKT when it is
normalized by TKT. However, in our case, it is not clear
how the corresponding momentum stiffness can be calcu-
lated since there is no obvious way in which a twist in the
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FIG. 13. Top panel: Momentum vortex density nqv (defined by
the number of momentum vortices per number of sites) as a func-
tion of temperature T and δ. Bottom panel: Derivative of nqv with
respect to the temperature. The lines and circles indicate the phase
boundaries from the specific heat.

momentum direction could be imposed to determine the as-
sociated stiffness. Therefore, we investigate the behavior of
the momentum-momentum correlation length ξqq, which is
expected to diverge at a Kosterlitz-Thouless transition TKT

according to [58,61]

ξqq(T ) ∼ e
b
√

TKT
T −TKT (11)

when approaching TKT from above. Here, b is a nonuniver-
sal, dimensionless number. To obtain ξqq(T ) we calculate the
momentum-momentum correlation function 〈q(r) · q(r′)〉 for
distances r − r′ along the x and y Cartesian directions. We av-
erage the correlation function over the whole lattice and over
10 independent cMC runs. The results are shown by circles in
the top panel of Fig. 14 for L = 200 and δ = 0.03, and the col-
ors indicate the temperature ranging from 0.409 (red) to 0.029
(blue). The black circles indicate the temperature of the peak
in the specific heat for this lattice size. The lines correspond to
exponential fits, from which we extract the correlation length
ξqq whose temperature dependence is shown in the inset. It
becomes evident that there is a sudden growth of the corre-
lation length close to the critical temperature (indicated by
the dashed black line), which can be interpreted as the start
of a divergence. The expected divergence in the correlation
length for the Kosterlitz-Thouless transition corresponds to a
power-law decay in the entire temperature region T < TKT.
However, in our case, a clean divergence ξqq → ∞ cannot be
detected due to the finite size of our system. The pink curve
in the inset of Fig. 14 shows a fit of ξqq in the range from
T = 0.204 to 0.084 above the critical temperature to the afore-
mentioned functional dependence of ξqq(T ) according to the
Kosterlitz-Thouless theory. Apart from the high-temperature
regime and the temperature region near the observed transi-
tion, the fit shows good agreement with our data. Finally, the
bottom panel of Fig. 14 displays the behavior of ξqq across the
whole phase diagram, showing the sudden increase of ξqq at
the phase transition in a wider δ region.
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FIG. 14. Top panel: Decay of momentum-momentum correla-
tions 〈q(r) · q(r′)〉 as a function of the distance between sites |r − r′|
at δ = 0.03. The temperature ranges from T = 0.409 (red) to 0.029
(blue), and lines correspond to exponential fits (black lines and points
indicate data near the critical temperature). The extracted correlation
lengths ξqq are shown in the inset and fitted by the pink curve be-
tween T = 0.204 and 0.084. Bottom panel: Momentum-momentum
correlation length ξqq as a function of temperature T and δ.

Overall, our numerical results are consistent with a
Kosterlitz-Thouless transition associated with momentum
vortices, but cannot ultimately resolve the nature of this
transition. If present, such a transition would constitute a
rather uncommon and previously unexplored occurrence of
Kosterlitz-Thouless physics. In fact, momentum degrees of
freedom are quite different from the usual microscopic condi-
tions of a Kosterlitz-Thouless transition, which, at first sight,
rather speaks against a Kosterlitz-Thouless transition from
momentum vortices. First, the system does not have an exact
global U(1) rotation symmetry of the momentum q. Rather,
an exact energy-conserving U(1) transformation of spiral mo-
menta is only possible in the ground-state manifold. Second,
from q(r) = ∇φ(q) it follows that the momentum field q(r)
is curl free, ∇ × q(r) = 0, a condition that does typically
not exist for more standard planar degrees of freedom such
as XY spins. Third, as a result of the last property, it was
shown in Ref. [35] that momentum antivortices have a larger
excitation energy than momentum vortices giving rise to a
peculiar disparity between both vortex types. These arguments
led the authors of Ref. [35] to be reluctant to the possibility
of a Kosterlitz-Thouless transition from momentum vortices.
If our present numerical indications in favor of such a tran-
sition are true, this would indicate a striking robustness of
Kosterlitz-Thouless physics. However, to eventually resolve
this question, further studies are necessary.
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VI. EFFECTIVE RANK-2 ELECTRODYNAMICS
AND PINCH-POINTS

An effective continuum theory for a spiral spin liquid was
recently derived in the small δ limit where the spiral ring is
approximately circular [35]. One of the assumptions of this
theory is that the spin texture φ(r) is a smooth function in real
space so that the momentum field q(r) = ∇φ(r) is curl free,
∇ × q(r) = 0. Note that this excludes the possibility of spin
vortices which represent a local source of curl, ∇ × q(r) =
δ(r). The Hamiltonian of the continuum theory for small δ

and q = |q| reads as

H =
∫

d2r
(

q4

16
− 2δq2

)
+

∫
d2r(QμνCμνρσQρσ ), (12)

where Cμνρσ = 1
16 (δμρδνσ + δμσ δνρ − δμνδρσ ) is a combina-

tion of Kronecker deltas and Qμν = ∂μ∂νφ is the Hessian
matrix of φ(r) [35]. The Hamiltonian in Eq. (12) has two
terms [35]; the first term is an effective potential for spin spi-
rals that governs the energy cost of a homogeneous spiral with
momentum q. The second term describes a spiral stiffness that
captures the energy cost of deforming spiral configurations in
real space. Importantly, within this effective theory a matrix-
valued field Eμν can be defined via

Eμν = εμρενσQρσ , (13)

that is subject to the constraint

∂μ∂νEμν = 0, (14)

again under the assumption that spin vortices are absent. In
Eq. (13), εμρ denotes the Levi-Civita symbol. The condition
in Eq. (14) can be interpreted as a generalized Gauss law
in a charge-free rank-2 electrodynamics theory, where the
emergent electric field Eμν is a rank-2 tensor as opposed to the
vector-valued electric field in conventional electrodynamics.
Inspired by the unusual kinetic properties of the associated
charged matter fields (in this case called fractons) which
retain their mobility only within subdimensional manifolds
[36,37,62], such higher-rank versions of electrodynamics have
become a topical research field. For further details about the
mapping between a spiral spin liquid and a rank-2 electrody-
namics theory, we refer the interested reader to Ref. [35].

A characteristic feature of a rank-2 electrodynamics theory
is a fourfold pinch point (4FPP) in the electric-field correlation
function defined by

CEE (q) = 1

N

∑
r,r′

〈Exx(r)Eyy(r′)〉 eiq·(r′−r). (15)

For an exact fulfillment of Eq. (14), the 4FPP in the electric-
field correlator has the form

CEE (q) ∝ q2
x q2

y

|q|4 ∝ sin2(2θ ) (16)

at small q. In the rightmost expression of Eq. (16) we have
used a polar representation of the momentum, i.e., qx =
q cos(θ ) and qy = q sin(θ ). This expression makes it obvi-
ous that an ideal 4FFP does not have a dependence on q.
Importantly, the sharpness of the nonanalyticity of Eq. (16)
at q = 0 serves as a useful measure for the fulfillment of the

generalized Gauss law in Eq. (14). In Ref. [35], well-defined
4FPP in CEE (q) have already been observed in the spiral
spin-liquid phase at δ = 0.03 using numerically obtained spin
configurations.

The mapping between a spiral spin liquid and a rank-2
electrodynamics theory, however, depends on various assump-
tions such as small δ � 1 and the absence of spin vortices,
both of which are not fulfilled in large parts of the phase
diagram. Furthermore, the exact 4FPP shape of the electric-
field correlator in Eq. (16) does not take into account possible
thermalization problems, which, however, are known to occur
in our spiral model and which limit the configuration space
the system can explore. Therefore, it is a priori unclear to
what extent the analogy between the spiral spin liquid and
the rank-2 electrodynamics theory is valid across the phase
diagram. To answer this question, we calculate the correlation
function CEE (q) in Eq. (15) from spin configurations obtained
by cMC in the entire δ − T phase diagram and investigate the
intactness of 4FPPs.

Note that even for an exact lattice realization of a rank-2
electrodynamics theory Eq. (16) is only valid at small q while
near the boundary of the Brillouin zone, lattice effects play a
role that leads to deviations from the exact 4FPP shape. For
a large part of the phase diagram, we observe four symmetric
lobes in CEE (q) resembling the shape of 4FPPs at intermediate
values of q. The decisive property, however, is the behavior of
these lobes at q → 0.

We observe distinctly different behaviors in this limit
across the δ − T phase diagram, for which we show two
representative examples in Fig. 15. Figures 15(a) and 15(c)
display CEE (q) from cMC results at δ = 0.03 and T = 0.081
(close to the phase transition between the pancake and spiral
spin liquids). Ideal pinch-point singularities have an intensity
that only depends on the angle θ in momentum space and
not on the distance q from the origin. To check this, we plot
in Fig. 15(c) the signal along the circular paths θ ∈ [0, 2π ]
with constant q as indicated in Fig. 15(a). We observe that
all curves overlap for different radii q down to q = 0.1, very
close to the origin, indicating an intact 4FPP. On the other
hand, we show in Figs. 15(b) and 15(d) results for δ = 0.10
and T = 0.119 (close to the phase transition between the
paramagnet and the nematic spiral). In this case, we see that
the intensity vanishes as the radius q decreases, signaling the
absence of a singularity. Such a smearing of pinch points may
indicate that emergent charge fluctuations are soft and become
thermally activated [6].

To investigate the behavior of 4FPP at small momenta more
systematically and over the whole phase diagram, we define a
quality measure of pinch points in the following way. For the
10 different values of the radii qi ranging from 0.1 to 1.0 in
steps of 0.1, we fit the data to A(qi ) sin2(2θ ) and extract A(qi ).
We then define our quality measure as Q = b2/|a| where a and
b are obtained from a fit to a linear function A(q) = aq + b.
The choice of defining Q with b2 in the numerator as opposed
to just b is to suppress the influence of a small fluctuating
background signal for a, b ∼ 0. Then, Q takes large values
when A(q) is approximately constant (a → 0), signaling a
sharp singularity. On the other hand, Q takes negligible val-
ues if the slope a is finite and/or b vanishes (featureless
electric-field correlator), indicating deviations from the exact
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FIG. 15. Electric-field correlator CEE (q) [see Eq. (15)]: (a) for
δ = 0.03, T = 0.081 and (b) for δ = 0.10, T = 0.119. (c), (d) Show
the corresponding signal along circular paths θ ∈ [0, 2π ] with radii
q ranging from 0.1 to 1.0 at 0.1 intervals [indicated by color lines in
the first quadrants of (a) and (b)].

pinch-point shape in Eq. (16). The results for Q as a function
of δ and T are shown in Fig. 16, where it becomes clear
that the quality of 4FPPs is highest around and below the
phase transition into the spiral spin liquid (brown line). This
demonstrates that the fluctuations in the spiral spin liquid can
indeed be described by an effective Gauss law associated with
a higher-rank generalization of electromagnetism. In the ne-
matic spiral phase (below the green line), fourfold-symmetric
lobes with CEE (q) ∼ A sin2(2θ ) are also observed, as shown
in Fig. 15. However, in this case, the magnitude A = A(q)
depends on the distance q from the origin.
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FIG. 16. Pinch-point singularity quality Q as a function of T
and δ (see main text). Lines and symbols correspond to the phase
transitions indicated by the heat capacity.

VII. CONCLUSIONS

We have used classical Monte Carlo and molecular dynam-
ics simulations to study the finite-temperature phase diagram
of a prototypical spiral spin model on the square lattice with
XY spins. We have identified a variety of interesting phases
and emergent phenomena in this model. First investigating
the regime of large δ, at δ = 0.25 we found that the ground-
state manifold contains spiral stripes with a wavelength of
four sites, as well as collinear stripes with two-up-two-down
magnetic unit cells, called the 〈2〉 order. At finite tempera-
tures, entropic effects select ordering wave vectors along the
x or y directions corresponding to a discrete Z2 symmetry
breaking of the C4 lattice rotation symmetry down to C2. On
top of this, entropy selects the collinear 〈2〉 states over the
homogeneous spin spirals which constitutes an additional Z2

symmetry breaking related to lattice translation. We found that
the two Z2 symmetries are broken at the same temperature
due to order-by-disorder effects, leading to a Z2 × Z2 = Z4

symmetry breaking into the 〈2〉 phase. We verified that the
critical exponents agree with a second-order Ashkin-Teller (or
four-state Potts) phase transition.

We found that the phase transition into the 〈2〉 phase per-
sists for 0.16 � δ � 0.25, even though the 〈2〉 order is no
longer part of the ground-state manifold. As a consequence,
a second phase transition into a nematic spiral state arises at
lower temperatures. This implies a restoration of the broken
lattice translation symmetry (while lattice rotation symmetry
remains broken). We verified that this second phase transition
belongs to the Ising universality class. For 0.05 < δ � 0.15,
the system shows only one finite-temperature phase transition
into the nematic spiral state which breaks lattice rotation sym-
metry. This transition is again associated with a broken Z2

symmetry and the transition belongs to the Ising universality
class.

For δ < 0.05, the peak in the specific heat splits into
two peaks. A wide shoulder shifts to higher temperatures as
δ decreases, while a sharp low-temperature peak decreases
in intensity and shifts towards T → 0 as δ → 0. The high-
temperature feature shows an off-critical behavior, indicating
a crossover into a pancake spin liquid, where spirals with all
wave vectors inside the spiral ring coexist. On the other hand,
the low-temperature transition leads into a spiral spin-liquid
phase and shows a logarithmic divergence of the specific heat
in system size, consistent with a critical exponent α = 0 and
reminiscent of an Ising transition. However, no spontaneous
symmetry breaking is observed across this transition and the
critical exponent ν is inconsistent with an Ising transition, ex-
cluding a standard second-order transition. Instead, we found
indications that the transition is driven by momentum vortices.
While the density of momentum vortices shows a sudden
decrease at the transition, the momentum-momentum corre-
lation length increases sharply, pointing to the possibility of
an unusual and hitherto unexplored Kosterlitz-Thouless tran-
sition from momentum degrees of freedom.

We also performed molecular dynamics calculations to
characterize the dynamical spin structure factor of the dif-
ferent phases. The collinear 〈2〉 phase shows low-energy
spin-wave bands at all momenta on the spiral ring, contrary to
the nematic spiral phase where all modes are gapped, except
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for the Goldstone mode. On the other hand, the pancake liquid
shows abundant low-energy excitations for all wave vectors
inside the spiral ring with a continuum of excitations extend-
ing to higher energies. For the spiral spin liquid, low-energy
modes are only observed in the vicinity of the spiral ring
while at higher energies a fading of the continuum and spec-
tral weight mostly concentrated along well-defined spin-wave
bands is found.

Finally, we verified the claim of Ref. [35] that the fluctua-
tions in the spiral spin liquid can be captured by an effective
rank-2 Gauss law for an emergent matrix-valued electric
field as it appears in a so-called rank-2 U(1) electrodynam-
ics theory. We took the sharpness of the characteristic 4FPP
singularities in the electric-field correlator as a measure to
determine the regions in the phase diagram where the map-
ping onto a rank-2 electrodynamics theory holds. We, indeed,
verified that the sharpest 4FPP are observed in the spiral spin-
liquid regime, demonstrating the close connection between
this phase and an emergent rank-2 electrodynamics.

In total, our work presents a coherent picture of a spin
model that, even on the classical level, displays a wealth
of fascinating features ranging from spiral spin liquids, the
entropic selection of states outside the ground-state mani-
fold, and unusual Kosterlitz-Thouless transitions to emergent
higher-rank gauge theories. While our work resolves many
unanswered questions from previous studies, it also points
to several aspects that deserve further investigation. For ex-
ample, developing a deeper understanding and verification of
the proposed Kosterlitz-Thouless transition from momentum
degrees of freedom would be a worthwhile future research
effort.

Furthermore, the inclusion of quantum fluctuations and
their effects on the rank-2 electrodynamics theory may give
rise to even more fascinating emergent phenomena in this
spin system. Spiral spin liquids have already been proposed
as a possible route towards quantum spin liquids [31], and
there are candidate materials that seem to host a spiral spin
liquid such as the quasi-two-dimensional S = 5

2 FeCl3 [33]
and MnSc2S4 [27,28], and the S = 1

2 Ca10Cr7O28 [63,64].
However, it is not clear how the electric-field correlator could
be measured experimentally to confirm the presence of rank-
2 electrodynamics, in contrast with usual U(1) spin liquids
where pinch-point singularities can be observed directly from
the spin structure factor [6,65–67]. In the end, these questions
leave many open paths to continue studying spiral liquids both
theoretically and experimentally.
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APPENDIX A: EXACT VS CMC GROUND-STATE ENERGY

The ground-state energy can be obtained via cMC as a
continuation of the cooldown process to T = 0. In Fig. 17 we
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FIG. 17. Top panel: Ground-state energy per site e0 obtained
from cMC (blue circles) compared to the exact energies for the spiral
ground state (orange line) and the ferromagnetic state (green line).
Bottom panel: Energy difference eMC

0 − e0 between the cMC result
and the exact value.

compare these results for L = 200 and periodical boundary
conditions with the exact values of the ground-state energy
for the spiral solutions. At low values of δ, we can see that
the energy of the ferromagnetic state (green line) lies very
close above the spiral state. This can explain why at finite
temperatures, when these ferromagnetic states can be realized,
a pancake liquid emerges that displays strong ferromagnetic
and spiral correlations up to the edge of the spiral ring in
reciprocal space.

On the other hand, due to the frustrating boundary condi-
tions for incommensurate spiral phases, it is expected that the
exact ground-state energy differs from the cMC result (bottom
panel). However, we can see that the difference is small. Two
parts show larger differences: One is the region where the
system passes through the 〈2〉 phase. As explained in the main
text, there are reminiscences of the passage through this phase
in the form of small but finite O1 order-parameter values [see
Eq. (6)] that lead to a higher ground-state energy in cMC.
On the other hand, also when the system goes through the
vortex network, the cMC ground-state energy differs from
the exact one, showing that the dynamics of these structures
are slow and that the systems need more space to accommo-
date properly.

APPENDIX B: FINITE-SIZE SCALING AND
UNIVERSALITY CLASSES OF PHASE TRANSITIONS

To determine the order of the different phase transitions
and the corresponding universality classes, we perform cMC
calculations on a large range of lattice sizes starting from
L = 4 up to L = 80. In some cases, the peaks in the specific
heat cv (T ) get sharp (thin and high) very fast with increasing
system size. In such cases, it becomes difficult to obtain an
accurate value of the peak, cmax

v , while Tc is well defined.
The correlation length of the system near the critical

point diverges like ξ ∝ |T − Tc|−ν , where ν is the critical
exponent. However, in finite systems, the correlation length
cannot be larger than ∼L. Therefore, we can assume that
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FIG. 18. Finite-size scaling of cmax
v and Tc for the phase transition

at δ = 0.25 between the paramagnetic phase and the 〈2〉-ordered
phase. Points correspond to the cMC calculations, while fits to extract
the critical exponents are shown with lines (see main text).

|Tc(∞) − Tc(L)|−ν ∝ L where Tc(L) is the position of the
peak in the specific heat for a given linear size L and Tc(∞) is
the value in the thermodynamic limit L → ∞. Then we obtain
the finite-size scaling law [68–70]

Tc(L) = Tc(∞) + a L−1/ν . (B1)

Using this, we can fit the positions of the peak in cv (T ) as
a function of 1/L and obtain Tc(∞), a, and ν from the fit.
While typically Tc(∞) is well defined by these fits, ν tends
to present larger uncertainties because the curvature of Tc(L)
is affected by the values on small lattices, where the effect
of the boundary conditions on the state of the systems is
more visible. On the other hand, the specific heat behaves
like cv ∝ |T − Tc|−α around the critical point, such that it is
straightforward to see that [70]

cmax
v (L) ∝ Lα/ν. (B2)

In this case, a log-log plot allows the extraction of the quotient
α/ν as the slope of a linear fit, whereas in the case of Eq. (B1)
an unknown constant Tc(∞) needs to be removed before using
the same method. For this reason, the determination of α/ν is
more precise than that of ν from Tc(L). However, obtaining
a precise value for cmax

v (L) is complicated for large lattices
because the peak becomes too thin and high, leading to large
differences in cmax

v (L) for small deviations in Tc(L).
In practice, there are two different routes for calculating the

specific heat and obtaining cmax
v (L) and Tc(L). One consists of

calculating cv (T ) = N[〈e(T )2〉 − 〈e(T )〉2]/T 2, where e(T ) is
the internal energy per site and 〈·〉 is the cMC average over
different Monte Carlo steps at a given temperature. Then,
cv (T ) is averaged over several independent runs. The second
route consists of taking the discrete derivative of e(T ) in the
temperature grid available. This is done after averaging e(T )
over independent runs. Ideally, both approaches should lead
to the same result but, in practice, we find that the second
option leads to less noisy results. Still, the specific-heat cal-
culations are not always smooth for small temperature steps
�T because small uncertainties in the energy e lead to large
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FIG. 19. Finite-size scaling of cmax
v and Tc for the phase transition

at δ = 0.17 between the 〈2〉 phase and the nematic spiral phase. Note
that the top panel uses a logarithmic scale only on the x axis but not
on the y axis because α = 0 for an Ising transition and the leading
term becomes cmax

v (L) ∝ log(L). The parameter that indicates the
goodness of the fit, R2, is shown in the legend and is close to the
optimal value of 1.

ones when calculating �e/�T . To overcome this, we use a
Savitzky-Golay filter to smooth the curves and improve the
finite-size scaling [71].

In Fig. 18, we show the results for the high-temperature
phase transition at δ = 0.25, where the system goes from
a paramagnetic phase to a phase with 〈2〉 order. We obtain
α/ν ≈ 1.0, which is consistent with a four-state Potts (or
Ashkin-Teller) transition in two dimensions (top panel). These
four possible states are realized by combinations of horizontal
or vertical stripe configurations and the two possibilities for
the two patterns of stripes (φφφφ and φφφφ) related by a
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FIG. 20. Finite-size scaling of cmax
v and Tc for δ = 0.10, extracted

from the transition between the disordered and the nematic spiral
state. Note that the top panel does not show a log-log plot but a
lin-log plot to obtain the leading term cmax

v (L) ∝ log(L) for an Ising
transition where α = 0.
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FIG. 21. Finite-size scaling of cmax
v and Tc for the low-

temperature peak at δ = 0.03, where the system evolves from the
pancake to the spiral spin liquid. The orange square corresponds to
the result of Ref. [35] for L = 400.

lattice translation of one nearest-neighbor distance. In the
bottom panel of Fig. 18, we see that ν takes values close to
the expected ν = 2

3 for the four-state Potts transition.
In Fig. 19, we show the results for the low-temperature

phase transition between the 〈2〉 phase and the nematic spiral
phase at δ = 0.17. In this case, the peaks in the specific heat
become very thin as the system size increases, and it becomes
difficult to determine the height accurately (top panel). How-
ever, the critical temperature shown in the bottom panel is very
well fitted by ν ≈ 1.1. This is consistent with ν = 1 expected
for an Ising transition in two dimensions. We can think of
this transition coming from the nematic spiral phase at lower
temperatures. Then, when the temperature increases and the
system evolves to the 〈2〉 phase, there are two possible choices
of double stripes (φφφφ and φφφφ). An Ising transition is
characterized by α = 0 and the next relevant term in Eq. (B2)
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FIG. 22. Specific heat cv as a function of δ and T in a smaller
region of the δ-T space than in Fig. 3, for lattice size L = 200 and
periodical boundary conditions.

is ∝log(L). The top panel of Fig. 19 shows that the numerical
result for cmax

v (L) as a function of log(L) is indeed well fitted
by a linear function.

In Fig. 20 we show the results for δ = 0.10, where there is a
transition between a disordered and a nematic spiral state. As
in the previous case, the transition is expected to be of Ising
type because of the selection of stripes along the x or y direc-
tions. This is confirmed by the linear growth of the peak in the
specific heat cmax

v (L) as a function of log(L) (top panel). On
the other hand, Tc(L) shows an approximate linear behavior as
a function of 1/L, indicating ν = 1, as expected for an Ising
transition. The large deviation in the values Tc(L) for small
systems can be associated with the frustration induced by the
boundary conditions, which is stronger for incommensurate
spirals in the case of small lattices.

Finally, in Fig. 21 we show the finite-size scaling for the
low-temperature peak at δ = 0.03, where the system goes
from the pancake liquid to the spiral spin liquid. In this case,
we observe that cmax

v (L) diverges logarithmically with system
size, indicating that the corresponding critical exponent van-
ishes, α = 0. However, Tc(L) does not evolve linearly with
1/L, as expected for an Ising transition (α = 0). Instead, the
critical exponent is closer to ν = 1

2 , which corresponds to a
linear behavior in L−1/ν = N−1. As explained in the main text,
this transition is connected to the proliferation of momentum
vortices and antivortices and may be a Kosterlitz-Thouless
transition of momentum vortices. However, a more thorough
investigation is needed to confirm this scenario.

APPENDIX C: TRANSITION BETWEEN THE SPIRAL SPIN
LIQUID AND NEMATIC SPIRAL PHASE

As discussed in the previous section and in the main text,
the phase transition for δ > 0.05 belongs to the Ising uni-
versality class and leads to a nematic stripe spiral order. On
the other hand, for δ < 0.05 the transition does not fit in any
universality class and presents no symmetry breaking. Since
the two low-temperature phases are fundamentally different
in terms of broken symmetries, a phase transition has to exist
between them. However, as shown in Figs. 3 and 22, such a
phase transition is not observed in the specific heat. For the
enlarged view in Fig. 22, we performed independent cMC
runs for δ between 0.03 and 0.07 in 0.001 steps. At δ = 0.07,
there is a clear transition from a disordered state into a nematic
spiral state. As δ is lowered, the transition is weakened, i.e.,
the peak decreases and shifts to lower temperatures. Fur-
thermore, a wide shoulder emerges at higher temperatures
(as evidenced by the contour lines). The latter indicates the
onset of correlations leading to the pancake liquid phase. The
low-energy transition indicates the passage into the spiral spin
liquid without symmetry breaking. As shown in the previ-
ous section, all along the low-temperature phase transition,
the specific heat diverges logarithmically. The fact that the
specific-heat calculations cannot resolve this transition even
with this small δ step size indicates that the single-spin update
algorithm might not be sufficient to capture it and further
studies are needed to confirm its presence. Nonetheless, as
discussed in the main text, the transition can be detected via
the calculation of appropriate order parameters and evidenced
by energy-level crossings in δ sweeps.
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