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Quasiparticle band structure and excitonic optical response in V2O5 bulk and monolayer
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The electronic band structure of V2O5 is calculated using an all-electron quasiparticle self-consistent (QS) GW
method, including electron-hole ladder diagrams in the screening of W , named QSGŴ and using a full-potential
linearized muffin-tin-orbital basis set. The optical dielectric function calculated with the Bethe-Salpeter equation
(BSE) exhibits excitons with large binding energy, consistent with spectroscopic ellipsometry data and other
recent calculations using a pseudopotential plane-wave-based implementation of the many-body-perturbation
theory approaches. Convergence issues are discussed. Sharp peaks in the direction perpendicular to the layers at
high energy are found to be an artifact of the truncation of the numbers of bands included in the BSE calculation
of the macroscopic dielectric function. The static (electronic screening only) dielectric constant ε1(ω = 0) gives
indices of refraction in good agreement with experiment. The exciton wave functions are analyzed in various
ways. They correspond to charge transfer excitons with the hole primarily on oxygen and electrons on vanadium,
but depending on which exciton, the distribution over different oxygens changes. The dark exciton at 2.6 eV is
the most localized and has the highest weight on the bridge oxygen, while the lowest bright excitons for in-plane
polarizations at 3.1 eV for E ‖ a and 3.2 eV for E ‖ b have their higher weight on the chain and vanadyl oxygens.
The exciton wave functions have a spread of about 5–15Å, with asymmetric character for the electron distribution
around the hole depending on which oxygen the hole is fixed at. The same method applied first to bulk layered
V2O5 is here applied to monolayer V2O5. The monolayer quasiparticle gap increases inversely proportional to
interlayer distance once the initial interlayer covalent couplings are removed which is thanks to the long-range
nature of the self-energy and the reduced screening in a two-dimensional system. The optical gap on the other
hand is relatively independent of interlayer spacing because of the compensation between the self-energy gap
shift and the exciton binding energy, both of which are proportional to the screened Coulomb interaction Ŵ .
Recent experimental results on very thin layer V2O5 obtained by chemical exfoliation provide experimental
support for an increase in gap.

DOI: 10.1103/PhysRevB.110.085102

I. INTRODUCTION

Exciton binding energies in some layered transition metal
oxides were recently found to be extremely high, exceeding
1.0 eV [1,2]. This is related to the relatively low disper-
sion band edges in these materials and the low screening of
the Coulomb interaction in ionic materials, which suggest a
Frenkel type exciton. V2O5 is one such layered material for
which it was recently found that the excitons not only have
strong binding energy but for which these excitons nonethe-
less exhibit not so strongly localized spatial extent and with
an anisotropic delocalization in unexpected directions [2].

The band gap in V2O5 has presented a puzzle for several
years, since the first GW calculations were performed. While
local density approximation (LDA) calculations [3] gave re-
sults close to the experimentally accepted gap of about 2.3 eV,
which was extracted from Tauc plots of the optical absorption
[4], quasiparticle self-consistent (QS) GW calculations gave
a much larger band gap exceeding 4 eV [5]. These results

*Contact author: walter.lambrecht@case.edu

were also confirmed by other G0W0 implementations [6,7].
This puzzle was recently resolved by showing that includ-
ing electron-hole effects in the dielectric function using the
Bethe-Salpeter-Equation (BSE) approach [2] gives good
agreement with spectroscopic ellipsometry and reflectivity
data [8,9]. These data show indeed sharp excitonic peaks
with the lowest one at about 3.1 eV for E ‖ a. The lower
gap extracted from optical absorption is still not completely
understood and may either result from excitons related to
the indirect gap or phonon-mediated activation of a dark
exciton [10].

While most GW and BSE implementations are based on
pseudopotential plane-wave basis set implementations, all-
electron implementations of many-body perturbation theory
have recently become possible with linearized muffin-tin-
orbital and linearized augmented plane-wave basis sets
[11–17]. The BSE approach was recently implemented using
this approach by Cunningham et al. [18,19]. An all-electron
implementation is, in principle, preferable since it avoids the
uncertainties related to choosing pseudopotentials and de-
scribes the core-valence exchange more accurately. Our first
goal with the present paper is to check whether similar strong
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excitons are obtained with an all-electron BSE implementa-
tion and to further check the consistency of the QSGW band
gap between all-electron- and pseudopotential-based imple-
mentations. Furthermore, in the usual QSGW approach and
also in G0W0 approaches, W is calculated in the random-phase
approximation (RPA), meaning that the polarization propa-
gator is calculated as P(1, 2) = −iG(1, 2)G(1, 2) in terms
of the Green’s function and is thus represented by a simple
bubble diagram. (Here 1 is short hand for {r1, σ1, t1} including
position, spin, and time variable.) The screening is thereby
underestimated because it does not include electron-hole in-
teraction effects. This has been recognized for some time as a
deficiency and has been corrected among other via an excur-
sion into time-dependent density functional theory, including
a suitable exchange correlation kernel in the calculation of
the polarization propagator. Shishkin et al. [20] used a kernel
derived from BSE calculations, while Chen and Pasquarello
[21] used the bootstrap kernel. Recently Cunningham et al.
[19] proposed an alternative method to include the ladder
diagrams via a BSE formulation in terms of the four-point
polarization propagator. It can be viewed also as a vertex
correction in the spirit of the Hedin equations [22,23]. Unlike
the approach of Kutepov [15,16], who implemented similar
vertex corrections both in the screened Coulomb interaction
W = v + vPW with P = −iG�G and the self-energy � =
−iGW �, and works directly toward implementing the Hedin
equations self-consistently, the approach of Cunningham uses
the QSGW approach, in which, in each iteration, the full G is
replaced by G0 corresponding to an updated Hermitian non-
interacting Hamiltonian H0. The idea is to make the dynamic
perturbation from H0 as small as possible by incorporating
a static approximation of the self-energy into the exchange
correlation potential of H0. The two Green’s functions dif-
fer by G = ZG0 + G̃ with Z a quasiparticle renormalization
factor and G̃ the incoherent part. But in �, Z is then largely
canceled by the vertex being approximately proportional to
1/Z , � ∝ 1/Z . This suggests that the vertex in � should play
a less important role in the QSGW approach [11]. In practice,
it gives accurate quasiparticle gaps and optical spectra when
BSE is used for the latter without vertex corrections in the
self-energy [1,19]. However, it has thus far been applied only
to a limited number of materials. It is thus of interest to test
how it works for a challenging case like V2O5.

Finally, the question arises for such layered materials,
whether the band gap and optical properties will significantly
change when going to the monolayer limit. From Bhandari
et al. [5] it is clear that in the LDA only a small increase in gap
occurs related to the breaking of some interlayer interactions
and hence reduced dispersion of the valence band edge. How-
ever, in two-dimensional (2D) materials, one expects a strong
reduction of the screening when the monolayer is isolated
[24,25]. In Bhandari et al. [5] the QSGW gap was shown to
vary as 1/L, with L the interlayer distance, and this led to an
extremely large gap but which was of course overestimated.
Thus it becomes of great interest to study how the inclusion
of electron-hole interactions in the form of ladder diagrams
will affect the quasiparticle gap in a monolayer and how the
reduced screening will affect the exciton binding energies and
exciton spectrum. This is the second main goal of the present
paper.

II. COMPUTATIONAL METHODS

The density functional theory (DFT) calculations and sub-
sequent many-body-perturbation theory (MBPT) calculations
are performed using the QUESTAAL suite of codes as de-
scribed in Ref. [12]. These use a full-potential linearized
muffin-tin-orbital basis set for the band structure calculations
and an auxiliary mixed interstitial-plane-wave and muffin-tin
partial wave product basis set for the representation of two
point quantities [bare Coulomb v(1, 2), screened Coulomb
W (1, 2) and polarization propagator P(1, 2)] in the MBPT.
The details of the Hedin-GW implementation are given in
Ref. [11] and for the Bethe-Salpeter-Equation approach in
Cunningham et al. [18,19]. Briefly, in the quasiparticle-self-
consistent QSGW method, a static and Hermitian �̃i j =
1
2 Re[�i j (εi) + �i j (ε j )] exchange-correlation potential is ex-
tracted from the energy-dependent �i j (ω) where the matrices
are given in the basis ψi of the H0 Hamiltonian. The �̃i j −
vDFT

xc is then added to the original HDFT
0 and defines an

updated H0 from which the next �(ω) = −iG0(ω) ⊗ W0(ω)
is obtained, where the energy-dependent self-energy �(ω)
is a convolution of the one-particle Green’s function and
the screened Coulomb interaction. When iterated to self-
consistency in �̃, the quasiparticle energies become the
same as the Kohn-Sham eigenvalues of the H0 and the re-
sults are independent of the starting HDFT

0 . Here we use the
generalized gradient approximation (GGA) in the Perdew-
Burke-Ernzerhof [26] functional as starting DFT.

The screened Coulomb interaction W0 = (1 − PRPA
0 v)−1v

is normally obtained from PRPA
0 in the RPA PRPA

0 = −iG0G0

(i.e., using only the bubble diagram). The subscript 0 indicates
that it is calculated from the eigenstates of H0. Instead, in
the QSGŴ method, the polarization propagator used is P,
which includes a summation over ladder diagrams instead
of only the bubble diagram. This is done by converting to
the four-particle generalized susceptibility P and solving a
Bethe-Salpeter equation and then converting back to the two-
particle representation,

P(12) = PRPA(12) −
∫

d (34)PRPA(1134)W (34)P(3422),

(1)

with PRPA(1234) = −iG(13)G(42). In practice this is done
expanding the four-point quantities in the basis set of sin-
gle particle eigenfunctions and amounts to diagonalizing an
effective two-particle Hamiltonian. It should be noted, how-
ever, that this involves solving a BSE at a mesh of q points
because in GW we need W (q, ω). A static approximation is
made for W in Eq. (1) and the Tamm-Dancoff approxima-
tion (TDA) is made. We note, however, that this static, i.e.,
ω = 0 approximation is only made in Eq. (1) for W but the
frequency dependence is maintained in the final P through that
of PRPA. Thus the final W = (1 − vP)−1v used in the QSGW
equations is of course ω dependent.

This approach is equivalent to adding a vertex correction
to P in the Hedin set of equations as explained for example in
Refs. [27,28]. Details of the implementation and its justifica-
tion are discussed in Refs. [1,19].

Once the band structure is obtained in the QSGW
or QSGŴ approximations, from which we obtain the
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fundamental or quasiparticle gap, we can calculate the macro-
scopic dielectric function εM (ω) for q → 0. This involves
another BSE equation with the kernel

K (1234) = δ(12)δ(34)v̄ − δ(13)δ(24)W, (2)

with v̄ the microscopic part of the bare Coulomb interaction
v, i.e., omitting the long-range G = 0 part in a Fourier ex-
pansion. This is again done in the TDA and with a static
Ŵ (ω = 0). Here the first term in the kernel provides the local
field corrections and the second provides the electron-hole
interaction effects. Expanding this four-point quantity in the
basis of one-particle eigenstates ψnk(r), one obtains an effec-
tive two-particle Hamiltonian, given by

H (2p)
n1n2k,n′

1n′
2k′ (q) = (εn2k+q − εn1k )δn1n′

1
δn2n′

2
δkk′

− ( fn2k+q − fn1k )Kn1n2k,n′
1n′

2k′ (q) (3)

with fnk the Fermi occupation function for band n at k.
Diagonalizing this Hamiltonian in the Tamm-Dancoff approx-
imation, where n1 is restricted to be a valence state and n2

a conduction band state, one obtains the exciton eigenvalues
Eλ(q) and eigenvectors Aλ

n1n2k(q). Introducing the shorthand
s = {n1n2k}, the dielectric function is then given by

εM (ω) = 1 − lim
q→0

8π

|q|2�Nk

∑
ss′

( fn′
2k′+q − fn′

1k′ )

× ρs(q)
∑

λ

Aλ
s (q)Aλ∗

s (q)

Eλ(q) − ω ± iη
ρs′ (q)∗ (4)

with the matrix element

ρn1n2k(q) = 〈ψn2k+q|eiq·r|ψn1k〉. (5)

Here we have assumed no spin polarization and a factor two
for spin and Nk is the number of k points in the Brillouin zone.
The limit q → 0 can be taken analytically, eiq·r ≈ 1 + iq · r
and then involves dipole matrix elements 〈ψn2k|r|ψn1k〉 · q̂,
where q̂ gives the direction along which we take the limit to
zero and which corresponds to the polarization directions of
the macroscopic tensor εM (ω). Finally, one converts the dipole
matrix elements between Bloch states to velocity matrix el-
ements divided by the band difference, 〈ψn2k|[H, r]|ψn1k〉 =
(εn2k − εn1k )〈ψn2k|r|ψn1k〉 and we then only need to diagonal-
ize H (2p)(q) at q = 0.

Besides shifts of the oscillator strength in the continuum, it
can lead to bound excitons below the quasiparticle gap. The
lowest bright excitons provide the exciton gap. At present,
only direct dipole matrix elements are included between the
one-particle states, so we only obtain direct excitons. Lower
indirect excitons which would involve a phonon assisted tran-
sition could exist but are not calculated here. The exciton
eigenstates are a mixture of the vertical transition (between
valence v and conduction c band states at a fixed k), given by

�λ(rh, re) =
∑
vck

Aλ
vckψvk(rh)ψck(re) (6)

with rh, re the hole and electron position of the electron-hole
pair bound in the exciton. The summation over k can lead
to dark excitons if Aλ

vck at symmetry equivalent k cancel
each other even if the dipole matrix elements between these
states are not zero at k. The coefficients Aλ

vck, which are the

FIG. 1. Crystal structure (top) and Brillouin zone (bottom)
of V2O5.

eigenvectors of the two-particle Hamiltonian can be used to
ascertain, which band pairs vc and at which k points con-
tribute to a given exciton. The exciton wave-function modulo
squared gives the probability to find the electron at position re

for a fixed rh or vice versa and is used to visualize the exciton
spatial extent.

Further detail of the calculations are as follows. We use
a spdf spd basis set on V and O atoms, meaning that two
sets of Hankel function energy κ2 and smoothing radius Rsm

are used for the envelope functions of the LMTO basis set
and with angular momenta up to l = 3 for the first set and
l = 2 for the second set. Inside the spheres, the basis functions
are augmented by radial functions up to lmaxa = 4 and V3p

semicore orbitals are treated as local orbitals, which means
they are included in the basis set rather than in the core but
have only an on-site contribution and are not augmented into
other spheres. We use slightly different muffin-tin spheres for
the chemically different O atoms optimized to avoid overlap
between muffin-tin spheres. These are standard, well con-
verged settings of the basis set. The GW self-energy matrix
is calculated up to a maximum energy of 2.56 Ry and ap-
proximated by an average diagonal value above it as explained
in Ref. [11]. Other details of the implementation, such as the
construction of the mixed product basis set, which determines
the dynamical screening, the contour integration approach for
the self-energy and the offset � method used to deal with the
q → 0 integrable divergence of W all follow the approaches
explained in Refs. [11,29].

The experimental structure in the Pmnm space group is
used as reported by Enjalbert and Galy [30] and with lattice
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FIG. 2. Band structure of V2O5 in GGA (green solid), QSGW
(blue dashed), and QSGŴ (red dotted) lines. The zero is placed at
the VBM of GGA.

constants a = 11.512 Å, b = 3.564 Å, and c = 4.368 Å. The
structure is shown in Fig. 1 and consist of weakly van der
Waals bonded layers, in the c direction and double zigzag V-O
chains in the ab-plane along b. The O in the chain are called
chain oxygen, Oc and the chains are connected by bridge
oxygens Ob. The vanadyl oxygens Ov are bonded to a single
V and point alternating up and down along the chains but
in the same direction across a bridge or rung of the ladders.
This is called a ladder compound with ladders consisting of
the V-Ob-V rungs. Each V is surrounded by an approximately
square pyramid of five oxygens, one Ov , one Ob, and three
Oc. The corresponding Brillouin zone labeling is also shown
in Fig. 1.

III. RESULTS

A. Bulk

1. Band structure

First we show the band structure obtained in the GGA,
QSGW , and QSGŴ approximations in Fig. 2. The zero is
placed at the valence band maximum (VBM) of the GGA. We
can thus see how the GW separately shifts valence bands down
and conduction bands up. This assumes the charge density is
not changing too much between them. We can see that the
gap correction from GGA to QSGW occurs primarily in the
conduction band. When adding the ladder diagrams, the VBM
shifts back almost to the GGA position and the conduction
band minimum (CBM) goes down slightly. The gaps are given
in Table I. Our present QSGW calculation differs from the
older one by Bhandari et al. [5,31] in using a more complete
basis set including f orbitals. The CBM occurs at �, the VBM
at T , the lowest direct gap at Z . We give the indirect gap
� − T , the lowest direct gap at Z and the direct gap at �. We
can see that the inclusion of ladder diagrams reduces the gap
correction beyond GGA by a factor ∼0.77, close to a factor
0.8 as has been observed before for many other materials [32].
Interestingly, our all-electron QSGŴ gaps agree closely with
the QSGW pseudopotential gaps of Gorelov et al. [2]. This
indicates that the screening of W at the RPA levels is slightly

TABLE I. Band gaps in eV for bulk V2O5.

Method Indirect Minimum direct Direct at �

GGA 1.759 2.041 2.392
QSGW 4.370 4.799 5.075
QSGŴ 3.781 4.178 4.452
QSGW -pseudo a 3.8 4.4
Eg(QSGŴ )−Eg(GGA)
Eg(QSGW )−Eg(GGA) 0.774 0.775 0.768

QSGW b 4.00 4.45 4.83

aFrom Gorelov et al. [2].
bFrom Bhandari et al. [5] and [31].

underestimated in Ref. [2] compared to ours and this error
is almost the same as the subsequent reduction of W to Ŵ
due to he inclusion of electron-hole interactions via ladder
diagrams.

2. Imaginary part of the dielectric function

Next, in Fig. 3 we show the macroscopic dielectric function
in the IPA and BSE both using the QSGŴ bands. We can
see that the BSE strongly alters the dielectric function and
exciton peaks with large binding energies appear significantly
below the quasiparticle gap. This is in good agreement with
experimental results obtained from reflectivity by Mokerov
et al. [8] and more recent spectroscopic ellipsometry results as
shown in Gorelov et al. [2]. We also show a comparison with
the BSE results by Gorelov et al. [2]. The agreement is quite
good, considering that a completely different code is used in
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FIG. 3. Imaginary part of the dielectric function for bulk V2O5

for three polarization, comparing IPA to BSE and to experimental
results from Mokerov et al. [8] and experimental and calculated data
from Gorelov et al. [2].
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that work and that the intensities in the exciton region were
found to be quite sensitive to details of the calculation. Some
of the differences with the work of Gorelov et al. [2] are that
our calculation of the BSE two particle Hamiltonian includes
30 valence bands and 20 conduction bands, i.e., all O-2p and
V-3d related bands, while Gorelov et al. used 15 valence
bands and 16 conduction bands. We used a 1 × 5 × 5 k-point
mesh (our 2 × 6 × 6 k-mesh calculation is identical with
1 × 5 × 5 k-mesh calculation with only ∼20 meV difference
in band gap) in the BSE and GW calculations while Gorelov
et al. used a 6 × 6 × 6 grid. We used a smaller number of
k points in the a direction because the unit cell is largest in
this direction and hence the Brillouin zone is smaller in this
direction. Furthermore because of the anisotropy in structure,
the dispersion of the bands is larger in the b than the a or
c directions. Although it is difficult to fully trace the differ-
ences between the pseudopotential plane-wave calculation of
Gorelov et al. [2] and the present calculation, the main differ-
ence appears to lie in the calculation of the screened Coulomb
interaction W or the inverse dielectric function. In the mixed
product basis set representation ε−1

IJ (q, ω) the screening on
small spatial scales is dealt with via products of partial waves
in the spheres, which is easier to converge than by using high
reciprocal lattice vectors G in ε−1

GG′ (q, ω). The virtues of the
product basis set were first introduced by Aryasetiawan and
Gunnarsson [33]. The idea of describing the linear response
using partial wave function inside the spheres to avoid the
need of high-lying band states was fruther elaborated in in
recent work by Betzinger et al. [34]. Thus, we guess that, in
spite of the careful convergence studies of the band gap as
function of number of bands at the G0W0 level in Ref. [2], their
RPA W might still be slightly underestimated and agree better
with our Ŵ . However, given a certain value of W (r, r′, ω),
which is in practice represented by a different basis set, the
two totally different codes eventually agree on the quasiparti-
cle band gaps resulting from it and the optical gap as obtained
subsequently by the BSE. This indicates, that the calculation
of the GW self-energy in terms of number of bands included
as well as the BSE calculaton are well converged in both
approaches. While [2] used a plasmon-pole approximation, it
was tested against the more more rigorous contour integration
approach used in the QUESTAAL code and detailed in Ref. [11].
While a pseudopotential treatment of the interaction with core
and semicore states is different from an all-electron approach,
it should be noted that Gorelov et al. included V-3s and
V-3p states as valence electrons. In our approach, V-3s states
are treated with atomic boundary conditions at the muffin-tin
sphere radii while V-3p states are included as local orbitals.
This means the 3p states are allowed to hybridize with the
other valence states, but 3s states contribute only through
their contribution to the total charge density, which affects the
Hartree and exchange correlation potentials. In contrast in a
pseudopotential approach, the Hartree and exchange correla-
tion potentials are obtained from the valence electron density
only. However, the 3s states lie about 2 Ry below the 3p states
which already lie at 3 Ry below the VBM. The core-treatment
of the 3s electrons is thus certainly adequate. The effect of
neglecting hybridisation of the 3p electrons was studied in
Ref. [31]. Treating V-3p as core instead of local orbital lowers
the QSGW gap by about 0.5 eV while it lowers the LDA

gaps by only 0.2 eV. However, this is not an issue as we do
include the V-3p orbitals as local orbitals and thus as valence
electrons. Thus we can safely conclude that these band struc-
ture atomic basis set aspects are adequately treated in both
our and Gorelov et al.’s calculation. The main difference thus
lies in the basis sets used to represent the screening and the
Hamiltonian.

For the purpose of visualizing the excitons, we subse-
quently used a 3 × 5 × 5 mesh because this avoids over-
lapping exciton wave functions from the periodic images.
However, this gives negligible differences in terms of the
energy spectrum itself.

In the polarization direction perpendicular to the layers
E ‖ c we may notice the strong suppression of BSE compared
to IPA but also a sharp peak at about 13.5 eV. This was not
shown in Ref. [2] because the energy scale was cutoff at lower
energy but is also present in that calculation. It can also be
seen in Ref. [10] although somewhat less pronounced. The
suppression of the imaginary part in the BSE compared to
IPA in the energy range up to 10 eV or so, is a result of
strong local field effects in layered systems [35]. This is the
well-known classical depolarization effect. When a dielectric
layer is placed in an external field, it induces a dipole which
produces a field opposite to the external field and this reduces
the local field inside the layer by the dielectric constant [36].
The sharp peak at 13.5 eV, which lies just above the largest
band to band transitions may also be related to local field
effects. As discussed in Cudazzo et al. [37] for 2D metals and
also in an analysis of periodic boundary conditions artifacts
in the modeling of local field effects by Tancogne-Dejean
et al. [38], the imaginary part of the dielectric function ε2(ω)
in systems with strong inhomogeneity can resemble the loss
function −Im[ε−1(ω)]. This then explains both the suppres-
sion of the low-energy region of the dielectric function but
also the occurrence of a plasmon like peak above the energy
range of the band pairs included. This feature is not present
in the independent particle approximation and this in itself
indicates that it is a local field effect. The sharp peak we
see here does not quite look like a plasmon, because the
latter is typically much broader. The loss function was in
fact calculated for V2O5 in Gorelov et al. [10]. However,
as demonstrated in the Supplemental Material [39] the sharp
peak becomes suppressed when we include a higher number
of conduction bands Nc = 30 instead of Nc = 20. In fact, there
are similar sharp features at even higher energy and these
become suppressed but a sharp feature then still occurs at even
higher energy. These in turn are reduced when adding addi-
tional valence bands such as the deep lying O-2s bands. This
indicates that it is the interaction of the sharp plasmon-like
feature with the continuum of higher lying electron-hole pairs
that leads to a strong plasmon damping. The higher in energy
we want to obtain a converged ε2(ω) the higher number of
bands are needed in the BSE active space.

3. Macroscopic dielectric constant from q → 0 limit

In the results shown in Fig. 3 the limit q → 0 of Eq. (4)
is taken analytically, which requires to evaluate matrix el-
ements of the commutator [H, r]. For a local potential,
these amount to well-known momentum matrix elements.
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TABLE II. Indices of refraction n = √
ε1(ω = 0) for different

directions and in different approximations.

nx ny nz

RPA 1.88 1.83 1.75
BSE q → 0 2.37 2.23 1.92
BSE q = 0 2.44 2.42 1.99
Expt.a 2.07 2.12 1.97

aKenny and Kannewurf [4].

However, for the QSGW case, the evaluation of the com-
mutator involves the nonlocal self-energy operator �̃(r, r′),
which requires evaluating ∇k�̃(r, k) in which the r′ variable
is Fourier transformed to reciprocal space [40]. Taking this
derivative from the explicit expressions of the self-energy in
terms of the LMTO basis functions is cumbersome and in the
current implementation of the codes involves some additional
approximations, which experience has shown to lead typically
to an overestimate of the matrix elements. Alternatively, we
may consider directly the dielectric function at small but fi-
nite q, which is obtained as part of the GW procedure, and
extrapolate numerically to q → 0 along the three directions,
x̂ ‖ a, ŷ ‖ b and ẑ ‖ c. This can then be done both at the RPA
or the BSE level. This allows us to more accurately evaluate
ε1(ω = 0). This amounts to the static value but including only
electronic, not phonon contributions, to screening, which is
conventionally called ε∞. Experimentally, this corresponds to
the index of refraction squared at a frequency well below the
bands but also well above the phonon frequencies, which we
can compare to experimental data by Kenny and Kannewurf
[4], who obtained it by extrapolating the behavior of the index
of refraction n(ω) for ω → 0 in the region above the phonon
bands. This provides an important test of the methodology
because good agreement indicates that the QSGŴ method
adequately describes dielectric screening.

Using finite small q comes with its own set of numerical
difficulties. It turns out that to avoid unphysical behavior such
as negative values of ε2(ω) it is necessary to replace the bare
Coulomb interaction, 4π/q2, by a Thomas-Fermi screened
4π/(q2 + q2

TF) with a small qTF. We thus need to extrapolate
both q → 0 and qTF → 0. Details of this procedure are given
in the Supplemental Material [39]. The main results for the
index of refraction are given in Table II.

We can see that the RPA calculated dielectric constants are
systematically lower than the BSE calculated ones and the
RPA is clearly seen to underestimate the experimental values.
The BSE results obtained with the numerical extrapolation are
slightly smaller than the ones obtained with the analytically
calculated matrix elements, which we call q = 0 instead of
q → 0. The values for a and b direction are close but in
inverse order from the experiment and larger than for the c
direction but for the c direction the analytically calculated
value is closer to the experiment than the numerical extrap-
olation while the opposite is true for the in-plane directions.
This illustrates the numerical difficulties with either approach.
Nonetheless, overall the error in the indices of refraction is at
most 15%.
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FIG. 4. Eigenvalues of the two particle Hamiltonian with relative
oscillator strengths on a log scale. The colors indicate polarization:
(black) E ‖ a, (red) E ‖ b, and (green) E ‖ c.

4. Exciton analysis

Besides the bright excitons, there are also several dark
excitons. An overview of the eigenvalues of the two-particle
Hamiltonian up to about the quasiparticle gap is shown in
Fig. 4 as a set of bar graphs with the oscillator strengths
on a log scale. (Note that these were obtained with Nv = 30
and Nc = 30 but for these low-energy excitons the results
are equivalent for Nc = 20.) Any level which has an oscil-
lator strength lower than 0.1 may be considered dark as it is
1000 times smaller than the bright exciton oscillator strengths.
These oscillator strengths are not normalized and thus given
in arbitrary units. Only their relative value is important here.
It is notable that an approximately doubly degenerate very
dark exciton occurs well below the first bright excitons and
near 2.6 eV. As was already mentioned in Ref. [2] these result
from a destructive interference of the exciton eigenstates at
symmetry equivalent k points rather than from zero dipole
matrix elements at each individual k.

We study the composition of the excitons in various ways.
First, we show the bands that contribute significantly to a
given exciton λ by selecting a narrow energy window con-
taining just one exciton eigenvalue and by plotting W λ

vk =∑
c |Aλ

vck|2 as a color weight on the band plot, where the
sum is over c, when plotting the weight on the valence
band v. Similarly, W λ

ck = ∑
v |Aλ

vck|2 gives the weight on
the conduction bands. These are shown in the first row of
Figs. 5(a)–5(c) for different excitons of interest. Next, in
�λ = ∑

vck Aλ
vckψ

h
vkψ

e
ck, we can expand the Bloch functions

ψvk into the muffin-tin-orbital basis functions in a Mulliken
analysis, and sum these over angular momenta per atom to
obtain a contribution per atom and hence per atom pair of the
exciton. The ± superscript indicates the hole or electron atom
location. This is a fully real space analysis. In other words,
an inverse Fourier sum is applied to the LMTO basis Bloch
functions depending on the k mesh used. For a N × N × N
k mesh, we obtain contributions in a N × N × N supercell
in real space. We select the most important contributions and
indicate them as a percentage on a pie chart in the second row
[Figs. 5(d)–5(f)]. For example V−O+

c means all contributions
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(a) (b) (c)

(d) (e) (f)
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(p) (q) (r)

FIG. 5. Exciton wave-function analysis: Panels (a)–(c) give the exciton weight W λ
v(c)k along symmetry lines; panels (d)–(f) give integrated

decompositions on atom pairs as a pie-chart; panels (g)–(i) give real space figures as function of re when hole is placed on the Ob, panels (j)–(l)
on Oc, panels (m)–(o) on Ov , and panels (p)–(r) as function rh when electron is fixed at V. The location of the fixed hole or electron is indicated
by the blue sphere. Cases (a), (d), (g), (j), (m), and (p) refer to the dark 2.65-eV exciton, (b), (e), (h), (k), (n), and (q) to the 3.1-eV E ‖ a bright
exciton, and (c), (f), (i), (l), (o), and (r) for the 3.2-eV E ‖ b bright exciton.
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from an electron on a V and a hole on an Oc regardless of
the relative position of the two atoms. Third, we can pick
a location for the hole and then display the probability to
find the electron around it as a isosurface or fix the electron
and visualize the hole distribution. We here analyze the dark
exciton at 2.65 eV, the E ‖ a bright exciton at 3.1 eV and then
the 3.2 eV E ‖ b exciton from left to right.

First, from the band weight plots, we can see that all three
excitons are derived primarily from the top valence band
and lowest conduction band with some smaller contributions
from bands farther away from the band edges. They are very
spread out in k space, and hence localized in real space. The
localization in real space depends somewhat on the arbitrary
choice of isosurface value cutoff which we pick around 10%.
Nonetheless they are spread in real space over a few neigh-
bor distances in each direction. One can see from the band
plots that the exciton weights are slightly different for the
three excitons. For example, the E ‖ a exciton had a stronger
contribution from UT R and SY � lines while the E ‖ b exciton
has larger contributions from X�ZU . The dark exciton is even
more equally spread in k space and hence even more localized
in real space. This is consistent with a similar analysis by
Gorelov et al. [2].

The atom pair analysis shows that the exciton weights stem
primarily from electrons on V and holes on the various O.
This is consistent with the band analysis, since the lowest con-
duction bands are V-O antibonding states and have primarily
V-3d content, while the top valence bands are V-O bonding
states and have primarily O-2p content. It is interesting that
the different O do not contribute equally. For the dark exciton,
the primary contribution is from the Ob (∼40%) with a small
contribution from chain oxygens (∼9% and ∼30%) of the
vanadyl O. This distribution occurs in spite of the fact that
each V has one Ov , three Oc neighbors and only one Ob is
shared by two V across a bridge. For the bright excitons,
instead we see primarily contribution around 40% from the
chain O and only a small contribution (about 16% and 6% for
a and b directions, respectively) from the bridge O and and
around 21–26% of the vanadyl oxygen.

We next show the real space figures for each exciton when
the hole is fixed on Ob, Oc, and Ov and when the electron is
fixed on V. We can compare the 3.1- and 2.65-eV excitons
for the hole fixed on the bridge O with the work of Gorelov
et al. [2]. In that paper the exciton appeared more extended
in the a direction perpendicular to the chains, and a simple
tight-binding model with exciton wave functions centered on
the V-Ob-V bridge was developed to understand their spread,
comparing in particular the dark and the bright exciton for
E ‖ a as even and odd partners to each other in their k and −k
components. In retrospect that model, while instructive, may
be somewhat oversimplified [41,42].

One might ask to what extent the real space distributions
are sensitive to the precise location of the fixed hole (or
electron). The code used to make these figures snaps the
position we give as input to the nearest grid point in the
real space mesh and this can sometimes be slightly off from
the more symmetric atom position we target. For example,
Fig. 5(i) appears to have the electron distribution skewed
to the right of the bridge O. Nonetheless in Figs. 5(g) and
5(h) we choose the exact same hole location and yet these

appear more symmetric. On the other hand, in Figs. 5(k)
and 5(l) we use the same Oc position and yet for the 3.1-
eV exciton the wave function spreads more the the left and
for the 3.2 eV one more to the right. In view of their
different k-space localization, these appear to be genuine
differences between these excitons and not just artifacts of
the precise location of the fixed particle in the exciton and we
further tested that they are robust to small displacements of the
assumed hole position. Complementary information is gained
by fixing the electron on a V and examining the corresponding
hole distribution. These are show in Figs. 5(p)–5(r). In these
figures we can recognize the O-p like character, while in the
previous ones, we can recognize the dxy like character on V.

The consistent picture that emerges from these various vi-
sualizations is that the dark exciton at 2.65 eV is significantly
more localized than the two bright excitons considered here.
They have a rather complex distribution spread over a size of
about 5–15 Å and are charge transfer like excitons. Overall,
these examples confirm the main finding from Gorelov et al.
[2] that the excitons are not Frenkel excitons, which one
might expect to stay localized on a single atom or molec-
ular fragment like the V-Ob-V bridge, but are more spread
out than one would expect for such large exciton binding
energies. However, they are more complex than previously
thought. Similar strongly anisotropic (almost unidirectional)
and strongly bound excitons have been observed in the puck-
ered two-dimensional magnet CrBrS [43,44]. Much as the
strongly bound excitons in V2O5 those excitons also extend
up to ∼3 to 4 unit cells. However, in strong contrast to the
excitons in V2O5, excitons in CrBrS originate from partially
filled d-states and are magnetic in nature and have both large
on-site dd and significant intersite dipole d p characters [45]
to them. The V2O5 excitons, however, have barely any onsite
components and mostly share the electrons and holes on the
V-O (d p) dipole. In other words, as already pointed out by
Gorelov et al. [2] they can be viewed as charge-transfer exci-
tons. It is in that sense that these excitons are significantly
different from dd Frenkel excitons as observed in several
strongly correlated ferro- and antiferromagnets [46,47].

B. Monolayer

1. Quasiparticle and optical gaps

Having established good agreement with prior work for
V2O5 in spite of some differences, we move on to study the
monolayer. To calculate the monolayer, we simply increase
the distance between the V2O5 layers by increasing the c-
lattice constant and keeping the layer atomic positions fixed.
Using the z coordinate difference between the vanadyl oxy-
gens sticking out on either side of the layer as a measure of the
thickness of the layer, the layer has a thickness of 4.096 Å. The
c lattice constant is 4.368 Å and the V-Ov vertical distance is
1.575 Å, so between the Ov of one layer and the V above
it in the next layer, the distance is 2.793 Å. When we set
the cmono = abulk the vacuum thickness is 7.416 Å and the
distance from the Ov to the next layer V is 9.9Å. Using
cmono = 1.5abulk the vacuum layer is 13.17Å and the vertical
distance from the Ov to the V above it is 15.69 Å. These seem
sufficiently large to represent well isolated monolayers from
the point of view of having negligible hopping between the
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FIG. 6. Band structure of monolayer V2O5 in GGA (green
solid line), QSGW (blue dot-dashed), and QSGŴ (red dotted) for
c/a = 1.5.

layers. In fact, we will show that by this distance the GGA
gap is well converged but the QSGW gap is not. The band
structure of the monolayer using cmono = 1.5abulk is shown
in Fig. 6. Note that strictly speaking for a monolayer with
infinite separation, the Brillouin zone edge in the c-direction
kz = π/c should go to zero. However, by showing the bands
also in the kz = π/c plane, ZUT R, we show explicitly how
flat the bands are along the c direction for the c/a used.
The bands in the ZUT R plane are then equal to the �XSY
and the extent to which this is true indicates whether the c
distance is large enough to avoid interlayer hopping. To check
the convergence of the gaps we plot the direct and indirect
band gaps as function of a/c in Fig. 7 and use a linear extrap-
olation of the QSGW gaps in the range where the behavior
does indeed become linear.
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FIG. 7. Quasiparticle gaps in V2O5: Direct gap at � (circles)
lowest direct gap (diamonds), and indirect gap (squares), as function
of a/c, in GGA (black), QSGW (red), and QSGŴ (blue) with straight
line interpolations in the linear region; lowest exciton gap for E ‖ a in
BSE (green) using either QSGW (solid line), or QSGŴ self-energy
(dashed line).

The band structure plot Fig. 6 shows that already at the
GGA level, the indirect gap is slightly increased compared to
the bulk, primarily because the highest valence band in the
T RUZ plane (at kz = π/c) is now almost the same as in the
�XSY plane (at kz = 0). The upward dispersion from �-Z in
the bulk case is missing. This indicates that this dispersion
is related to the interlayer hopping interaction in the bulk.
Several changes happen in the band structure: the smallest
direct gap, which in bulk occurs at Z now occurs at � because
the bands along the �-Z direction become flat. Second, the
indirect gap, which in bulk occurs between the VBM at or
near T and the CBM at � now shifts to a point between X-S
and �. The self-energy shifts are significantly higher than in
the bulk.

In Fig. 7, we can see that these changes occur as soon as
the layers become decoupled already for a modest increase
in interlayer distance (a/c = 2.3 or c = 5 Å). The smallest
direct gap becomes equal to the direct gap at � and in the
GGA, the band gaps have essentially converged at this point
and stay constant. On the other hand, the QSGW and QSGŴ
gaps keep on increasing linearly as we further increase c. This
slow convergence with the size of the vacuum region is caused
by the long-range nature of the self-energy � which is propor-
tional to the screened Coulomb interaction 1/εr because of
the screened exchange term. With increasing size of the vac-
uum the effective dielectric constant of the system becomes
smaller. Effectively, the long-range part of the Coulomb inter-
action becomes unscreened and dominated by the vacuum or
surrounding medium for a thin 2D system. This is well known
since the work of Keldysh [25] and discussed in detail in
Cudazzo et al. [24]. The monolayer is thus predicted to have a
significantly higher gap than bulk layered V2O5. The linearly
extrapolated direct quasiparticle gaps are 7.4 and 6.1 eV in the
QSGW and QSGŴ approximations. The difference between
direct and indirect gap stays approximately constant as we
increase c. Also, the difference between QSGW and QSGŴ
stays more or less constant.

On the other hand, the BSE optical gap stays almost con-
stant. The lowest optical gap shown in Fig. 7 is for E ‖ a
and is a mixture of various direct interband transitions spread
throughout k space. It is not dominated by the lowest gap
direct gap (which is at Z in the bulk case) as we have seen
in Fig. 5. It does not show the initial increase of the direct and
indirect gaps as we start increasing c. It also does not increase
as the QSGW gaps. This is because the exciton binding energy
is also proportional to W and hence an increase in W due to
lower screening results both in an increased self-energy and
quasiparticle gap but is compensated by an increased exciton
binding energy. The optical gap is thus expected to change
only minimally. This applies both when we use W or Ŵ . In the
latter case, the gap seems to go slightly down for larger c, but
this is within the error bar. It might indicate that the increase
in Ŵ with c/a is more directly reflected in the exciton binding
energy than in the quasiparticle self-energy. This also implies
that the exciton gap will be less affected by substrate dielectric
screening if the monolayer is placed on top of a substrate.
Our optical calculations only provide the excitons derived
from direct transitions and the bound excitons are a mixture
of vertical band-to-band transitions spread over the whole
Brillouin zone. Therefore, the lowest exciton gap (green lines)
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FIG. 8. Imaginary part of the dielectric function in IPA and BSE
for the monolayer limit c/a = 1.5

does not show the rapid increase with increasing c/a starting
from the bulk values. There should also be an indirect exciton
related to the indirect excitation of an electron-hole pair via
a combined photon and phonon interaction in second order
perturbation theory and modified by the electron-hole interac-
tion. At present we cannot calculate this but expect it to follow
the dependence of the indirect quasiparticle gap as function of
interlayer distance. In fact, this indirect gap changes k-point
location and thus the character of the corresponding exciton
will also change. Assuming that the exciton binding energies
of direct and indirect excitons are similar we note that the in-
direct quasiparticle gap between bulk and monolayer changes
by about 0.1 eV and hence we expect a similar change in
indirect exciton with interlayer distance.

Next we examine the dielectric functions of the monolayer
representative cells as function of interlayer distance in Figs. 8
and 9 in some more detail. First, in Fig. 8 we can now see
an even stronger suppression of the ε2(ω) in the BSE for
E||c. Again, at higher energies, sharp features occur for the

FIG. 9. Real and imaginary part of the dielectric function for
polarization E ‖ a as function of interlayer spacing; solid lines: ε1,
dashed lines ε2; bulk (black), c/a = 1 (red), and c/a = 1.5 (blue).

polarization perpendicular to the layers but these are dis-
missed as unrealistic artifacts from the BSE active space
truncation. This indicates that the local field effects are even
stronger in the monolayer case. The excitons are still promi-
nent for the in-plane polarizations, but the lowest peaks still
occur near 3.0 eV not too far from the bulk case. Still, the
shape of the ε2(ω), i.e., the exciton spectrum, is significantly
different from the bulk case.

Next we look a little more closely at the change in di-
electric functions, both real and imaginary parts, as function
of interlayer spacing in Fig. 9. We can see first of all that
the amplitude of the ε2(ω) and the values of ε1(ω = 0) are
much reduced in the monolayer cases compared to the bulk
and increasingly more so as the thickness of the vacuum
layer increases. This can simply be understood in terms of
a model of capacitors in series. Essentially, there is a thicker
and thicker region of relative dielectric constant 1 in between
the layers. Since the capacitance is inversely proportional to
its thickness d and proportional to the dielectric constant in
that region, the effective dielectric constant can be obtained
from adding the capacitance of the layer and of the vacuum
region in series, which gives

c

εeff
= cb

ε
+ c − cb

1
, (7)

where cb is the c-lattice constant for bulk and c the one in
the monolayer model. In the limit c → ∞ this goes to 1,
the dielectric constant of vacuum, and in the limit c → cb it
gives εeff = ε of bulk V2O5 We caution that these dielectric
functions of the periodically repeated layers do not represent
the true dielectric screening behavior inside an isolated mono-
layer but rather that of the overall system including vacuum.
For c → ∞ the overall dielectric function would go to 1 as it
becomes dominated by vacuum. On the other hand the screen-
ing in two dimensions becomes strongly distance dependent
with qualitatively different behavior at distances smaller than
the thickness of the layer and larger than it, as is well known
since the work of Keldysh [25] and Cudazzo et al. [24].

The real space spread of the first bright exciton for E ‖ a in
the monolayer is shown in Fig. 10 for the hole placed on the
bridge Ob and as function of electron position. It looks quite
similar to that in the bulk case, shown in Fig. 5(h). The differ-
ence is it that is entirely confined to one monolayer while in
the bulk case, it spreads slightly to neighboring layers. This is
not visible in the projection figures here but can be ascertained
by viewing the exciton wave function from different angles.
Its spread in a direction appears slightly larger here than in
Fig. 5(h) but this is because we here used a 2 × 5 × 1 mesh.
Apparently two k points in the a direction is not yet sufficient
to completely avoid overlap of the excitons in adjacent cells
from the periodic boundary conditions in the a direction. We
note that similar to the bulk, dark excitons also exist at lower
energy for the monolayer. In Fig. 11 we show the oscillator
strengths of the exciton eigenvalues up to 4 eV on a log scale.
Similar to the bulk case, we find a pair of dark excitons near
2.48 and 2.49 eV, while the first bright excitons occur at 2.91
and 3.03 eV for E ‖ a and E ‖ b, respectively. Surprisingly,
these lie actually slightly lower than the bulk case, even
though the quasiparticle gap was strongly increased. This is

085102-10



QUASIPARTICLE BAND STRUCTURE AND EXCITONIC … PHYSICAL REVIEW B 110, 085102 (2024)

FIG. 10. First bright exciton E||a in monolayer V2O5 for the
hole place on the bridge oxygen as function of electron position and
calculated for c/a = 1.5.

consistent with the slight decrease for increasing c seen in
Fig. 7 for the QSGŴ case.

2. Comparison to experiment

Monolayer V2O5 has not yet been realized although at-
tempts at exfoliation have resulted in ultrathin layers of order
8–10 atomic layers thick [48]. Only recently, layers as thin
as bi- or trilayer of V2O5 were realized by sonification after
swelling of the interlayer distance by intercalation with for-
mamide molecules as reported by Reshma et al. [49]. These
studies showed an increase in optical absorption edge by about
1.3 eV for the thinnest samples which contained individual
layers of order 1.1–1.5 nm, corresponding to two to three lay-
ers. It is not straightforward to interpret the onset of the Tauc
plot as the direct gap because of the large excitonic effects
and disorder related band tailing effects. The Tauc plot pre-
diction of an absorption coefficient proportional to

√
E − Egap

for direct allowed transitions is valid only for band to band
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FIG. 11. Relative oscillator strengths of exciton eigenvalues for
the monolayer case c/a = 1.5 on a log scale: Black, red, and green
correspond to a, b, and c polarizations.

transitions. However, including polaritonic effects it may also
correspond to indirect excitons [50]. The value reported for
bulk in Ref. [49] is 2.39 eV, which is close to the gap reported
by Kenny and Kannewurf [4] but much smaller than the direct
excitonic peak seen in spectroscopic ellipsometry [2]. See also
Fig. 3. Thus, the Tauc-plot onsets more likely correspond to an
indirect exciton but may also be influenced by defects. While
the direct exciton gap is not expected to vary significantly with
layer separation according to our present calculations, because
such excitons are a mixture of band to band transitions at
different k points, and because of the compensation of exciton
binding energy and gap shift, the indirect gap exciton might
have a somewhat higher binding energy and be more localized
in k space. For the bulk we obtain a lowest direct gap at 4.2 eV
and the lowest bright exciton is at 3.1 eV, indicating an exciton
binding energy of EB ≈ 1.1 eV. Assuming that an indirect
exciton associated with the indirect gap of 3.8 eV has a similar
binding energy, we would find the optical indirect exciton gap
in bulk at about 2.7 eV. This is still 0.3 eV larger than the
onset of the Tauc plot in Ref. [49]. Thus we hypothesize that
the exciton binding energy is larger for the indirect exciton.
Nonetheless, we might expect the indirect exciton to more
closely follow a specific band edge and thus increase slightly
with increasing layer separation. Furthermore the nature of
the indirect transition changes to another k location of the
VBM and the difference between direct and indirect quasi-
particle gap is reduced from that in bulk. Similar changes in
direct/in-direct nature of the band gap going from the bulk
to the monolayer limit are observed in several layered vdW
systems [51,52]. We may thus expect that for monolayers the
optical gap even if still indirect might approach more closely
the direct gap exciton. Still our calculations of the indirect
band gap shift between bulk an monolayer indicate this shift
would be of only 0.3 eV or so, which is significantly smaller
than what is reported in Ref. [49]. To better understand this
discrepancy it will be necessary to calculate indirect exciton
gaps and to obtain a more detailed experimental analysis of
monolayer optical properties.

IV. CONCLUSIONS

In this paper we presented all-electron quasiparticle band
structure calculations using a modified QSGŴ method, and
optical response function calculations using the BSE ap-
proach. The inclusion of ladder diagrams in calculating the
polarization function which determines the screened Coulomb
interaction W of the GW method is shown to reduce the self-
energy correction of the gap beyond DFT by about a factor
0.77. Our quasiparticle band gaps for the bulk including these
electron-hole effects are in good agreement with the litera-
ture using a pseudopotential implementation but without this
electron-hole reduction of the W . Because of this somewhat
fortuitous agreement on the quasiparticle gap, in spite of the
different approximations made in the calculation of W , we
then find the excitons and imaginary part of the dielectric
function to also be in good agreement with prior work for
bulk. There thus remains some discrepancy on how to obtain
the correct W but once W is established, good agreement is
obtained in band structures and optical dielectric response.
Some effects of the strong local field effects in the direction
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perpendicular to the layers were observed here and the ap-
pearance of unphysical high-energy sharp peaks was shown
to be an artifact of the truncation of the active space in the
BSE. Finally, the electronic screening only static dielectric
constant was evaluated using an extrapolation from finite q
and found to give good agreement for the indices of refraction
with experiment to within about 15%. This confirms that in
the QSGŴ approach both the band gaps and the screening are
consistently in good agreement with experiment.

For monolayers, we find an increased quasiparticle gap but
slow convergence of the quasiparticle gap with the distance
between the layers, as observed in other 2D systems. On the
other hand, the optical direct exciton gap converges much
faster because as the quasiparticle gap increases, so increases
the exciton binding energy because both are proportional to
W , which is increased by reduced screening in a 2D system.
The local field effect perpendicular to the layer were found
to be even stronger in the monolayer than in the bulk. While
the direct gap at � does not change much between bulk and
monolayer at the GGA level, the top valence band becomes
flattened out and this increases both the smallest direct gap at
Z and the indirect gap. Assuming a similar exciton binding
energy for the (not yet calculated) indirect exciton as for the
direct excitons, we predict a slight increase of the optical
absorption onset in monolayers. An increase in optical gap
was recently observed for exfoliated two- to three-layer-thin

samples but was found to exhibit larger shifts than we here
predict.

The data pertaining to various figures are available at Ref.
[53]. In particular, XCRYSDEN [54] (.xsf) and VESTA [55]
(.vesta) datafiles related to Fig. 5 g − r are available to fa-
cilitate 3D viewing.
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