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We found a mistake in the original paper, namely, the statement that the second derivative of the � functional with respect
to the gauge field returns the gauge kernel [Eq. (10) of the original paper]. The Ward identities (WIs) presented in the original
paper are nonetheless correct, provided that one does not interpret the object labeled as Kμν as the gauge kernel but as the second
derivative with respect to the gauge field of the generating functional � computed at zero fields. The physical meaning, the
usefulness, and the computation of such object are left for future research. In the following, we present a revised derivation of
the WIs for the actual gauge kernel Kμν , both for the case of a U(1) and of an SU(2) symmetry.

I. U(1) SYMMETRY

We consider a fermionic theory, described by the Grassmann fields ψ and ψ and coupled to a U(1) gauge field Aμ, and
governed by the action S[ψ,ψ, Aμ]. We define the U(1) gauge kernel as

Kμν (x, x′) ≡ 〈 jμ(x) jν (x′)〉c + 〈Pμν (x, x′)〉, (1)

with jμ(x) ≡ δS
δAμ(x) |Aμ=0 the paramagnetic current operator, Pμν (x, x′) ≡ − δ2S

δAμ(x)δAν (x′ ) |Aμ=0 the diamagnetic current operator,
and where the (connected) average is taken by means of the path integral defined by S . The gauge kernel can also be defined as
the second derivative at zero source fields of the G-generating functional of the original paper [Eq. (1)]

Kμν (x, x′) ≡ − δ2G[J, J∗, Aμ]

δAμ(x) δAν (x′)

∣∣∣∣
J=J∗=Aμ=0

. (2)

The U(1) gauge kernel obeys the relation

∂μKμν (x, x′) = 0, (3)

even in presence of spontaneous symmetry breaking. This can be readily derived from Eq. (7) of the original paper. The above
relation is somewhat obvious as it implies charge conservation, which must be fulfilled even in the superconducting state [1].
Fourier transforming Eq. (3), one obtains

iωK0ν (q, ω) − iqαKαν (q, ω) = 0, (4)

where α is only a spatial index and a sum over it is implied. Here and henceforth we use Einstein’s convention for repeated
indices, unless otherwise specified. Note that for the derivative in Eq. (3) to make sense, Aμ needs to be defined on a continuous
space-time, which implies, in case of a lattice system, that Eq. (4) is valid only for those values of |q| that are much smaller than
the inverse lattice spacing. Setting ν = 0, q = 0, and ν = β (with β also a spatial index), ω = 0, respectively, one gets

K00(q = 0, ω) = 0, (5a)

Kαβ (q, ω = 0) � Jαβ (q) − [Jαγ (q)qγ ][Jβδ (q)qδ]

Jγ δ (q)qγ qδ

, (5b)

where Jαβ (q) is a function approaching the superfluid stiffness for q → 0 in the superconducting state. Equation (5b) is the most
general form that Kαβ (q, 0) can take to obey qαKαβ (q, 0) = 0. The above relations clearly show that Eqs. (19) of the original
paper cannot be correct if the correlator K appearing there is the gauge kernel. While δG/δAμ = δ�/δAμ descends from the
properties of the Legendre transform, a similar relation does not apply to the second derivative of the G and � functionals with
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respect to the gauge field. The correct form of Eq. (10) is

δ2�

δAμ(x)δAν (x′)

∣∣∣∣
Aμ=φ=0

= −Kμν (x, x′) +
∫

x′′,x′′′
Lμ,a(x, x′′)χ−1

ab (x′′, x′′′)Lν,b(x′, x′′′), (6)

with

Lμ,a(x, x′) = − δ2G
δAμ(x)δJa(x′)

∣∣∣∣
Aμ=J=0

. (7)

A proof of this relation is given in Appendix. This proves that the K correlator in Eq. (10) of the original paper is not the gauge
kernel. Thus, in Eqs. (15)–(20) of the original paper one should replace Kμν (q, ω) with (minus) the right-hand side of Eq. (6).

Equation (20) of the original paper, despite being correct if one properly replaces Kμν (q, ω), is not particularly useful as it
is not clear how to compute the second derivative of the � functional with respect to the gauge field within a diagrammatic
approach. In the following, we present a revised and more useful derivation of the Ward identities making use of the sole G
functional.

We consider Eq. (7) of the original paper using the parametrization in Eqs. (8). We write J1(x) = h + δJ1(x), where h is a
uniform symmetry-breaking field. Taking the derivative of Eq. (7) of the original paper once with respect to Aμ and once with
respect to J2 and setting Aμ = J2 = δJ1 = 0, we obtain

∂μKh
μν (x, x′) = −2hLh

ν,2(x′, x), (8a)

∂μLh
μ,2(x, x′) = −2hχh

22(x, x′) + 2ϕh
0δ(x − x′), (8b)

where Kh
μν (x, x′), χh

ab(x, x′) ≡ − δ2G
δJa (x)δJb(x′ ) |δJ1=J2=Aμ=0, ϕh

0 ≡ − δG
δJ1(x) |δJ1=J2=Aμ=0, and Lh

μ,a(x, x′) are the gauge kernel, sus-
ceptibility, condensate fraction, and L correlator, respectively [see Eq. (7)], computed in presence of a uniform explicit
symmetry-breaking field h. Combining the two equations above, we obtain

∂μ∂ ′
νKh

μν (x, x′) = 4h2

(
χh

22(x, x′) − ϕh
0

h
δ(x − x′)

)
, (9)

where ∂ ′
ν is a derivative over x′.

Considering the global U(1) symmetry of the problem, one can obtain a relation similar to Eq. (7) of the original paper:∫
x

[
δG

δJ2(x)
J1(x) − δG

δJ1(x)
J2(x)

]
= 0, (10)

where
∫

x is an integral over the spatiotemporal coordinates. From the above relation, one readily obtains

χh
22(q = 0, ω = 0) = ϕh

0

h
. (11)

This, combined with the properties χh
22(−q, ω) = χh

22(q,−ω) = χh
22(q, ω), implies that the Fourier transform of the right-hand

side of Eq. (9) is at least quadratic in frequency and/or momentum. We can thus assume the following small-q and small-ω
expansions of χh

22(q, ω):

χh
22(q, ω) � 4

(
ϕh

0

)2

−χh
n ω2 + Jh

αβqαqβ + 4hϕh
0

. (12)

Taking the Fourier transform of Eq. (9), one gets

lim
ω→0

Kh
00(0, ω) = −4h2 1

2
∂2
ωχh

22(0, ω)
∣∣
ω→0 = −χh

n = −4
(
ϕh

0

)2 1

2
∂2
ω

(
1

χh
22(0, ω)

)∣∣∣∣
ω→0

, (13a)

lim
q→0

Kh
αβ (q, 0) = −4h2 1

2
∂2

qαqβ
χh

22(q, 0)
∣∣
q→0 = Jh

αβ = 4
(
ϕh

0

)2 1

2
∂2

qαqβ

(
1

χh
22(q, 0)

)∣∣∣∣
q→0

. (13b)

Finally, taking the h → 0 limit, we obtain

χn = lim
h→0

lim
ω→0

Kh
00(0, ω) = −4(ϕ0)2 1

2
∂2
ω

(
1

χ22(0, ω)

)∣∣∣∣
ω→0

, (14a)

Jαβ = lim
h→0

lim
q→0

Kh
αβ (q, 0) = 4(ϕ0)2 1

2
∂2

qαqβ

(
1

χ22(q, 0)

)∣∣∣∣
q→0

, (14b)

where χn and Jαβ are the coefficients of the expansion (12) obtained in absence of a symmetry-breaking field. In particular, Jαβ

is the superfluid stiffness. Also, ϕ0 and χ22(q, ω) are the condensate fraction and susceptibility obtained for zero h.
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The equations above are a more useful version of the Ward identities presented in the original paper. The calculation of
limh→0 Kh

μν can be performed in the same way as one computes the gauge kernel, introducing a symmetry-breaking field, and
sending it to zero at the end of the calculation. The equations above also clearly prove that the dynamical [Eq. (14a)] or static
[Eq. (14b)] limits do not commute with the h → 0 limit in the gauge kernel. Inverting their order, one would obtain Eqs. (5)
instead of those above.

II. SU(2) SYMMETRY

Most of the considerations above also apply to the case of a spontaneously broken SU(2) symmetry, with minor modifications.
The SU(2) gauge kernel has a similar definition to its U(1) counterpart. Also in this case, the SU(2) gauge kernel can only be
obtained by taking the derivative of the G functional (and not from the � functional).

Relations similar to Eqs. (6) and (7) can be obtained for a system with SU(2) symmetry, making, also in this case, Eq. (40) of
the original paper not useful for practical calculations. In the following, we derive WIs for the actual SU(2) gauge kernel.

The analog of Eq. (7) is, in the SU(2)-symmetric case,

∂μ

(
δG

δAa
μ(x)

)
− εa�m

[
δG

δJ�(x)
Jm(x) + δG

δA�
μ(x)

Am
μ (x)

]
= 0. (15)

We now set Ja(x) = ha(x) + δJa(x), where ha(x) is a symmetry-breaking field. Its spatial dependence must take the same form
as the spin condensate Sh

a (x) = −δG/δJa(x)|Aμ=δJ=0. In essence, for every point x, we have Sh
a (x) = (ϕh

0/h)ha(x), where h =√
ha(x)ha(x) and ϕh

0 are constants.
With some algebra, we can derive from Eq. (15) the following set of equations:

∂μKh;ab
μν (x, x′) = εa�mLh;b

ν,� (x′, x)hm(x) + εab�Bh;�
ν (x)δ(x − x′), (16a)

∂μLh;a
μ,b(x, x′) = εa�mχh

�b(x, x′)hm(x) − εab�Sh
� (x)δ(x − x′), (16b)

∂μBh;a
μ (x) = εa�mSh

� (x)hm(x) = 0, (16c)

where the first (second) equation has been obtained deriving (15) with respect to Aν (x′) [Jb(x′)] and setting Aμ = δJ = 0. The
third equation can be derived from (15) setting Aμ = δJ = 0. Its right-hand side is zero because we have assumed Sh

a (x) and
ha(x) to be parallel. We have also defined

Lh;a
μ,b(x, x′) = − δ2G

δAa
μ(x)δJb(x′)

∣∣∣∣
Aμ=δJ=0

, (17a)

Bh,a
μ (x) = − δG

δAa
μ(x)

∣∣∣∣
Aμ=δJ=0

. (17b)

Kh;ab
μν and χh

ab are the gauge kernel and spin susceptibility in presence of a symmetry-breaking field.
Combining all Eqs. (16), we get

∂μ∂ ′
νKh;ab

μν (x, x′) = εa�mεbprχh
p�(x, x′)hm(x)hr (x′) + (2δa�δbm − δamδb� − δabδ�m)Sh

� (x)hm(x)δ(x − x′)

= εa�mεbprχh
p�(x, x′)hm(x)hr (x′) + h ϕh

0

(
ha(x)hb(x)

h2
− δab

)
.

(18)

Similarly to the previous section, one can derive a functional identity for G descending from the global SU(2) symmetry of the
system, reading as ∫

x
εa�m δG

δJ�(x)
Jm(x) = 0. (19)

Taking a functional derivative with respect to Jn(x′), multiplying by εbnphp(x′), summing over n and p, setting δJa = Aa
μ = 0,

and integrating over x′, we obtain∫
x

∫
x′

εa�mεbnpχh
�n(x, x′)hm(x)hp(x′) = ϕh

0

h

∫
x

(δabδ�m − δa�δbm)h�(x)hm(x). (20)
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A. Spiral order

In the case of spiral order, we have h(x) = h( cos(Q · x), sin(Q · x), 0) and Sh(x) = ϕh
0 ( cos(Q · x), sin(Q · x), 0). Equa-

tion (20) then gives

χ̃h
22(0, 0) = ϕh

0

h
, (21a)

χ̃h
33(Q, 0) = χ̃h

33(−Q, 0) = ϕh
0

h
, (21b)

where χ̃h
ab is the susceptibility in a rotated spin basis, and it is connected to χh

ab with relations similar to Eqs. (55) of the original
paper. Setting a = b = 1, 2, 3 in Eq. (16), Fourier transforming and using the above relations, one obtains

lim
ω→0

Kh;11
00 (0, ω) = lim

ω→0
Kh;22

00 (0, ω) = −h2

4
∂2
ωχ̃h

33(Q, ω)|ω→0, (22a)

lim
q→0

Kh;11
αβ (q, 0) = lim

q→0
Kh;22

αβ (q, 0) = −h2

4
∂2

qαqβ
χ̃h

33(q, 0)|q→Q, (22b)

lim
ω→0

Kh;33
00 (0, ω) = −h2

2
∂2
ωχ̃h

22(0, ω)|ω→0, (22c)

lim
q→0

Kh;33
αβ (q, 0) = −h2

2
∂2

qαqβ
χ̃h

22(q, 0)|q→0, (22d)

where, as in the original paper, Kab
μν (q, ω) is the translational invariant component of the SU(2) gauge kernel.

Assuming the following forms for the susceptibilities,

χ̃h
22(q, ω) �

(
ϕh

0

)2

−χh;�
dyn ω2 + Jh;�

αβ qαqβ + hϕh
0

, (23a)

χ̃h
33(q, ω) �

∑
η=±

(
ϕh

0

)2
/2

−χh;⊥
dyn ω2 + Jh;⊥

αβ (q − ηQ)α (q − ηQ)β + hϕh
0/2

, (23b)

one can prove, following the steps performed in the U(1)-symmetric case, the final form of the Ward identities for a spiral magnet

χ⊥
dyn = lim

h→0
lim
ω→0

Kh;11
00 (0, ω) = lim

h→0
lim
ω→0

Kh;22
00 (0, ω) = − (ϕ0)2

2
∂2
ω

(
1

χ̃33(Q, ω)

)∣∣∣∣
ω→0

, (24a)

J⊥
αβ = lim

h→0
lim
q→0

Kh;11
αβ (q, 0) = lim

h→0
lim
ω→0

Kh;22
αβ (q, 0) = (ϕ0)2

2
∂2

qαqβ

(
1

χ̃33(q, 0)

)∣∣∣∣
q→Q

, (24b)

χ⊥
dyn = lim

h→0
lim
ω→0

Kh;33
00 (0, ω) = −(ϕ0)2∂2

ω

(
1

χ̃22(0, ω)

)∣∣∣∣
ω→0

, (24c)

J�
αβ = lim

h→0
lim
q→0

Kh;33
αβ (q, 0) = (ϕ0)2∂2

qαqβ

(
1

χ̃22(q, 0)

)∣∣∣∣
q→0

. (24d)

Also in this case, the static or dynamic limit does not commute with the h → 0 limit.

B. Néel order

The Ward identities in the case of Néel order can be straightforwardly derived following the steps performed in the previous
subsection. Assuming Sh(x) = ϕh

0 (−1)x(1, 0, 0) and h(x) = h(−1)x(1, 0, 0), they read as

χdyn = lim
h→0

lim
ω→0

Kh;22
00 (0, ω) = −(ϕ0)2∂2

ω

(
1

χ33(Q, ω)

)∣∣∣∣
ω→0

, (25a)

Jαβ = lim
h→0

lim
q→0

Kh;22
αβ (q, 0) = (ϕ0)2∂2

qαqβ

(
1

χ33(q, 0)

)∣∣∣∣
q→Q

, (25b)

where now Q takes the form (π, π ). The above equations remain valid upon exchanging the index “2” with “3.”

079902-4



ERRATA PHYSICAL REVIEW B 110, 079902(E) (2024)

III. EXPLICIT CALCULATION FOR A SPIRAL MAGNET

Section III of the original paper is fully correct, as the microscopic expressions for the spin stiffnesses and dynamical
susceptibilities correspond to those derived in presence of a small symmetry-breaking field that is sent to zero at the end of
the calculation.

A misprint is present in Eq. (A4) of the original paper. Its correct form is

κ31
α (0) = −�

4

∫
k

{[
hk

ek

(
∂kα

gk
) + (

∂kα
hk

)] f ′(E+
k )

ek
+

[
hk

ek

(
∂kα

gk
) − (

∂kα
hk

)] f ′(E−
k )

ek
+ hk

e2
k

(
∂kα

gk
) f (E−

k ) − f (E+
k )

ek

}
, (26)

that is, compared to the original paper, the prefactor is � and not �2.

IV. NOTE

In Ref. [2] the expressions for the spin stiffnesses and dynamical susceptibilities derived in the original paper have been used.
Even though it was not explicitly stated, they have been derived applying a small symmetry-breaking field to the system and
sending it to zero after performing the dynamical or static limit. The expressions in Ref. [2] are therefore correct within the
(renormalization group improved) random phase approximation employed in the paper.

During the review process of this Erratum, Ref. [3] appeared, which presents a similar derivation of the Ward identities above,
and, as also discussed here, identifies the presence of an infinitesimal symmetry-breaking field as crucial to obtain the correct
formulas for the spin stiffnesses.
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APPENDIX: DERIVATION OF EQ. (6)

In this Appendix, we present a derivation of Eq. (6). The identity

δ�

δAμ(x)
= δG

δAμ(x)
(A1)

descends directly from the properties of the Legendre transform that connects G and �. Taking a further derivative with respect
to the gauge field in the above equation, we get

δ2�

δAμ(x)δAν (x′)
= δ2G

δAμ(x)δAν (x′)
+

∫
x′′

δ2G
δAμ(x)δJa(x′′)

δJa(x′′)
δAν (x′)

. (A2)

Setting the fields to zero, we obtain

δ2�

δAμ(x)δAν (x′)

∣∣∣∣
Aμ=φ=0

= −Kμν (x, x′) −
∫

x′′
Lμ,a(x, x′′)

δJa(x′′)
δAν (x′)

∣∣∣∣
Aμ=φ=0

, (A3)

with Lμ,a(x, x′′) defined as in Eq. (7). At this point, one needs to express the source field Ja(x) in terms of the “classical” field
φa(x), which � depends on. Since we only need its derivative with respect to the gauge field at zero sources, we are allowed to
expand the relation connecting φa(x) and Ja(x) to linear order in the fields:

φa(x) ≡ − δG
δJa(x)

≈ ϕ0,a +
∫

x′
[χab(x, x′)Jb(x′) + Lμ,a(x′, x)Aμ(x′)] + · · · , (A4)

with ϕ0,a ≡ − δG
δJa(x) |J=Aμ=0 the condensate fraction. Solving for Ja(x), we obtain

δJa(x)

δAμ(x′)

∣∣∣∣
Aμ=φ=0

= −
∫

x′′
χ−1

ab (x, x′′)Lμ,b(x′, x′′), (A5)
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with the inverse susceptibility χ−1
ab (x, x′) obeying∫

x′′
χac(x, x′′)χ−1

cb (x′′, x′) = δ(x − x′)δab. (A6)

Inserting Eq. (A5) into (A3), we obtain Eq. (6).
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