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Obstacle-insensitive eigenfields due to boundary condition–symmetry compatibility
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It is known that the eigenspectra and eigenfields of wave systems are sensitive to boundary conditions. We
show a counterintuitive result that two hard-boundary sound cavities of different boundary shapes and of different
sizes have a common set of eigenfrequencies. Moreover, their eigenfields at shared frequencies are the same in
some of their common subregions. The reason is that both cavities can be created by cutting along locally
mirror-symmetric lines in a honeycomb lattice, with their boundaries compatible with the hexagonal cavity’s
eigenfields at those common eigenfrequencies. Based on this observation, we have discovered a phenomenon
where cavity eigenfields remain unaffected by obstacles of certain shapes within the cavity. The key lies in
aligning the obstacles’ boundaries with the antinodal lines of the cavity eigenfields, which are easy to find when
the cavity contains some local mirror symmetries. All the results can be generalized to electromagnetic waves
and three-dimensional cavities.
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I. INTRODUCTION

After decades of searching, a hat-shaped monotile that
can only form aperiodic tilings has been discovered [1]. This
monotile has been extended to a continuous family of shapes,
including a turtle-shaped monotile, by adjusting two param-
eters that define the shape [2]. The discovery has ignited
curiosity beyond the realm of mathematics. It was not long
before physicists found interesting graphenelike properties in
a lattice system comprising hat tiles [3]. The discovery of
monotile also inspired the discovery of quasicrystalline tilings
with C6 symmetry [4] and monotiling-based dimer model with
exact solutions [5].

Inspired by the fascinating aperiodic monotile, we wonder
whether a two-dimensional (2D) sound cavity with the shape
of a monotile, hat or turtle, exhibits unique characteristics
in its eigenfield. We hypothesize that a hat- or turtle-shaped
cavity, along with its specific eigenfield, can tile the plane in
such a way that the eigenfields in adjacent cavities connect
smoothly. Our study reveals that some eigenmodes indeed
align with the hypothesis and they display regular patterns.
Moreover, a larger pattern tiled by one of these eigenmodes
exhibits C6v symmetry locally around some points, which
implies a connection between the hat- (turtle)-shaped cavity
and a regular hexagonal cavity. Further studies reveal that
these three cavities share an infinite number of common
eigenfrequencies, corresponding to the regular eigenmodes
previously mentioned in the hat- and turtle-shaped cavities.
The phenomenon of common eigenfrequencies between dif-
ferent cavities can be well explained from the perspective
of symmetries. Building upon the above results of common
eigenfrequencies, we introduce an idea that eigenfields within
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a cavity can exhibit insensitivity to embedded obstacles of
specific shapes. All the results can also be extended to elec-
tromagnetic (EM) cavities and three dimensions.

II. COMMON EIGENFREQUENCIES FOR HAT-SHAPED
AND TURTLE-SHAPED CAVITIES

The hat-shaped and turtle-shaped monotiles that can only
form aperiodic tilings are shown in Figs. 1(a) and 1(b), re-
spectively. The size and shape of the monotile are uniquely
determined by two length parameters, a and b, while the
angles are fixed to be one of {π

2 , 3π
2 , 2π

3 , 4π
3 }, as shown in

Fig. 1. We have b = √
3a for the hat shape and b = √

3a/3
for the turtle shape. Varying the ratio a/b leads to a continuous
family of monotiles [2]. In this work, 2D sound cavities in the
shape of a hat and a turtle are considered. Without loss of
generality, we take b = √

3a =
√

3
2 m and b =

√
3a
3 = 1

2 m for
the hat-shaped and turtle-shaped cavities, respectively.

The eigenvalue problem for a sound cavity, also known
as the Laplacian eigenvalue problem, is described by the
Helmholtz equation (∇2 + k2)p = 0, where p represents the
pressure field and k = ω/c denotes the wave number, with
ω and c being the angular frequency and sound velocity in
air. We consider sound cavities with hard boundaries, i.e.,
Neumann boundary condition ∂n p = 0, where ∂n denotes the
normal derivative at the boundaries. We compute the eigenfre-
quencies and eigenfields using the finite-element method.

Let us start with the hat-shaped cavity. Due to its irregular
shape and lack of apparent symmetry, we do not expect a high
degree of regularity in the cavity eigenmodes. Some of the
eigenmodes indeed have rather irregular patterns as illustrated
in Fig. 2(a). However, there are also many cavity modes that
exhibit highly regular field patterns, of which the two lowest
ones at 229 and 396 Hz are shown in Fig. 2(b). Figure 2(c)
shows that a tiling of hat-shaped structures with the field
pattern at 229 Hz forms a larger structure. The simple tiling of
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FIG. 1. The monotiles in the shape of (a) a hat and (b) an upside-
down turtle. The length parameters are assumed to be b = √

3a in (a)
and b = √

3a/3 in (b), respectively.

the field becomes the eigenmode of the larger structure, which
aligns with our hypothesis that the fields in any two neigh-
boring cavities connect smoothly. The field pattern shown in
Fig. 2(c) displays C6v symmetry locally around several points
and appears as if the eigenfields of regular hexagonal cavities
were pieced together. Similar results are also found for the
turtle-shaped cavity. These results prompt us to investigate
the connection between the hat- (turtle)-shaped cavity and the
regular hexagonal cavity in terms of their eigenspectra and
eigenfields.

We computed the eigenfields of 2D acoustic cavities in the
shape of the hat, turtle, regular hexagon, and 30 °–60 °–90 °
triangle, noting that the latter is the basic building block of
the other three shapes [see Figs. 3(b)–3(e)]. Figure 3(a) de-
picts their eigenspectra as blue, orange, green, and red lines,
respectively. We found that the spectra of the hat, turtle, and
regular hexagon share a common subset that coincides with
the spectrum of the triangle, which is labeled accordingly. The
eigenfields of the four cavities in different shapes at the two
lowest common frequencies, 229 and 396 Hz, are depicted in
the first and second rows of Figs. 3(b)–3(e). Some auxiliary
lines in Figs. 3(b)–3(d) are used to divide the shapes into
30 °−60 °−90 ° triangles, each of which has the same field
pattern as those displayed in Fig. 3(e).

We will provide a detailed account for the phenomenon of
common eigenfrequencies shown in Fig. 3 from the aspect of
symmetry in Sec. III.

III. EXPLANATION FROM A SYMMETRY PERSPECTIVE

The point group for a regular hexagonal cavity can be
denoted by C6v = {E ,C2, 2C3, 2C6, 3σx, 3σy}, which includes

(b)

(c)(a)

0min max

FIG. 2. (a) Examples of irregular eigenfields of a hat-shaped
acoustic cavity. (b) Examples of regular fields. (c) A tiling of regular
eigenfields of the hat-shaped cavity exhibits locally C6v-symmetric
pattern.

the identity, inversion, two rotations of ± 2π
3 , two rotations of

±π
3 , and six reflections pertaining to two different types of

mirror axes.
The cavity eigenfields can be classified into eight classes

based on their even or odd parity under mirror-symmetry
operations, as shown in Fig. 4 [6,7]. The eigenfields in each
class are even (odd) with respect to the solid (dashed) lines.
Each class is labeled by a notation like “++a” and illustrated
by an eigenmode. The first “±” in the notation means even
(odd) parity with respect to x → −x, and the second “±”
represents even (odd) parity with respect to y → −y. The
letters “a” and “b” distinguish between eigenmodes that in-
volve two and six mirror-symmetry lines, respectively. There
are six irreducible representations (irreps) for C6v: four one-
dimensional irreps (A1, A2, B1, and B2) and two 2D irreps
(E1 and E2), as labeled in Fig. 4 next to each eigenfield
class [8,9].

For eigenfields in the six classes shown in columns 2–4
of Fig. 4, nodal lines with p = 0 appear at the dashed lines.
The eigenfield and eigenvalue will remain unchanged if we
place a soft boundary at a nodal line, since the soft bound-
ary condition p = 0 is satisfied there. Similarly, for the six
classes shown in columns 1, 3, and 4 of Fig. 4, the eigenfields
will have antinodal lines at the solid lines, where the normal
derivative of pressure vanishes, i.e.,∂n p = 0. If we place hard
boundaries at these antinodal lines, the eigenfield and eigen-
value do not change since the hard boundary condition ∂n p =
0 is already satisfied there. We refer to such a cooperation
between the hard boundary conditions and mirror symmetries
as boundary condition–symmetry compatibility. It explains
why the triangle and hexagon share some eigenfrequencies
and dictates how their eigenfields are related at the shared
frequencies as illustrated in Fig. 3.

We now use the 30 °−60 °−90 ° triangles with hard-wall
boundaries together with their eigenfields as building blocks.
By tiling the space with this triangular building block, we
can create the the hat and turtle structures. By removing
the interior hard boundaries of the triangles, the eigenfields
will automatically become the eigenmodes of the bigger hat
(turtle) at the same frequency [see Figs. 3(b) and 3(c)] be-
cause the boundary conditions are satisfied. The eigenfields
are obviously symmetric between each pair of adjacent tri-
angles in the building process. In this way, the boundary
condition–symmetry compatibility is used. Similarly, we can
use the triangular building blocks to tile the eigenfields of
the regular hexagon that fall under the ++b class shown
in Fig. 4. Since the eigenfields of the 30 °−60 °−90 ° tri-
angle serve as the basic unit for tiling some eigenfields of
the hat, turtle, and regular hexagon, the spectrum of the
triangle must be a common subset of the spectra for the
latter three shapes. It is now easy to comprehend why the
regular eigenfield of the hat (turtle), when tiled together,
exhibits local C6v symmetry around some points. The fact
that the hat (turtle) shares the same tiling unit as the highly
symmetric regular hexagon can be viewed as a latent sym-
metry in the hat (turtle), where the high regularity of some
eigenmodes is not a direct consequence of the symmetry
of the overall structure but originates from more subtle
mechanisms.
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FIG. 3. (a) Spectral overlap among the hard-boundary cavities in the shape of a hat (blue), a turtle (orange), a regular hexagon (green), and
a 30 °−60 °−90 ° triangle (red). (b)–(e) The eigenmodes of the hat, the turtle (inverted), the regular hexagon, and the triangle at their common
frequencies: 229 Hz (first row) and 396 Hz (second row).
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FIG. 4. The eight classes of the eigenfields of the hexagonal cavity. The eigenfields are even (odd) about the solid (dashed) lines. In the
notation “+−a”, “+−” means that the wave function is even with respect to x → −x and odd with respect to y → −y. The notations “a”
and “b” represent the involvement of two and six mirror-symmetry lines, respectively. The labels A1, A2, B1, B2 and E1, E2 denote the
corresponding one-dimensional and two-dimensional irreducible representations, respectively.

075435-3



YI-XIN XIAO AND C. T. CHAN PHYSICAL REVIEW B 110, 075435 (2024)

The common eigenfrequencies, i.e., the spectrum of the
30 °−60 °−90 ° triangle in Fig. 3(e), are given by

fc = 2c

3L

√
m2 + mn + n2, (1)

where n � m � 0 and m, n ∈ Z, and c = 343 m/s and L =
1 m are the acoustic speed in air and the length of the hy-
potenuse of the 30 °−60 °−90 ° triangle, respectively [10,11].
Here, we used the fact that the 30 °−60 °−90 ° triangular
cavity with hard boundaries has the same spectrum as the
equilateral triangular cavity, except that it does not exhibit
degeneracies. The reason is that there is an even mode at every
eigenfrequency for the equilateral triangular cavity, possibly
besides a degenerate odd partner, and each even mode corre-
sponds to a mode of the 30 °−60 °−90 ° triangular cavity.

Weyl’s law tells us the number of eigenvalues of the
Laplace operator smaller than λ is given by N (λ) ∝ ωd μd

(2π )d λd/2

for λ → ∞, where d denotes the dimension of the system, μd

is the area (volume) for d = 2 (d = 3), and ωd = πd/2

�(d/2+1) is
the volume of the unit ball in d dimensions [12]. Therefore,
using Weyl’s law, the ratio of common frequencies to the
entire spectrum of the hat-shaped cavity is estimated to be

rhat = S�

Shat
= 1

16
, (2)

where S� and Shat denote the areas of the 30 °−60 °−90 °
triangle and the hat shape in Figs. 3(b) and 3(e), respectively.
That is, modes that exhibit regular patterns pertaining to the
++b hexagonal modes account for about 1/16 of all modes of
the hat-shaped cavity. Similarly, we have rturtle = S�/Sturtle =
1/20 for the turtle-shaped cavity.

An alternative perspective is that the eigenfields of the hat
(turtle), for the common frequencies, can be viewed as cutouts
from the eigenfields of hexagons that are pieced together.
This is suggested by the auxiliary lines in Figs. 3(b) and
3(c). To ensure that the hard boundary condition ∂n p = 0
is met at the boundaries of the hat (turtle), it is necessary
for the cutting path to align with the antinodal lines of the
fields. This alignment renders boundary condition–symmetry
compatibility. This requirement selects all the eigenmodes of
a hexagon that belong to the ++b class illustrated in Fig. 4.
The perspective of cutting also clarifies why the hat, turtle,
and hexagon share a common set of eigenfrequencies that
correspond to the 30 °−60 °−90 ° triangle.

We point out that an arbitrarily shaped cavity can exhibit
antinodal lines in its eigenfields. By cutting along the antin-
odal lines of a specific eigenfield at an eigenfrequency, say f0,
we create a smaller cavity. Under hard boundary conditions,
this smaller cavity will also have the same eigenfrequency
f0. However, without symmetries involved, the two cavities

generally will not share other common frequencies. Moreover,
the cutting path cannot be determined until an eigenfield is
computed to give us the antinodal lines, which contrasts with
our cavities pertaining to regular hexagons.

It is worth noting that both the construction and cutting
approaches need only to consider the boundary conditions
related to the gluing or cutting operation, as the Helmholtz
equation is satisfied elsewhere. We found that some eigen-
modes belonging to the ++b class have a degenerate partner
in the −+b class. However, these −+b modes are eliminated

(a) (b) (c)(a)

FIG. 5. (a)–(c) The eigenmodes at a common frequency of 594
Hz for the 3D sound cavities with hard boundaries. The cavities in
(a) and (b) can be constructed by using 6 and 8 smaller cubic cavities
in (c), respectively. The cube in (c) has a side length of 0.5 m.

by the cutting procedure as the hard boundary condition is not
satisfied along the whole cutting path. Besides the hat (turtle)
shapes, these methods can be used to create other shapes that
share some eigenfrequencies with a regular hexagon and may
not be able to tile the plane. One can also substitute another
symmetric shape for the regular hexagon.

It should be emphasized that the occurrence of shared
eigenfrequencies among 2D cavities of different shapes can be
extended to three dimensions by assigning those 2D cavities
with heights of Z1h, Z1h, Z3h, and so on, where h is any
height and Zi are integers. We can also achieve the goal
by constructing distinct three-dimensional (3D) cavities by
using the same 3D basic block, where boundary condition–
symmetry compatibility is implicitly utilized. For illustration,
Fig. 5 displays the eigenmodes of 3D cavities at their com-
mon eigenfrequency of 594 Hz. The smaller cubic cavity in
Fig. 5(c) is the basic block to build the cavities in Figs. 5(a)
and 5(b). There are infinitely many other common eigenfre-
quencies for the three cavities, which constitute the spectrum
of the cavity in Fig. 5(c).

Furthermore, the phenomenon of shared eigenfrequencies
can be generalized to 2D EM cavities with perfect electric
conductor (PEC) boundaries and air/dielectric filling, noting
that the Hz field in a 2D PEC cavity acts like the pressure
field p in a 2D acoustic cavity. For a 3D PEC cavity that
is uniform in z and has a height of h, the Hz field for the
TE cavity modes also satisfies the Helmholtz equation like
sound waves in 2D cavities, apart from a simple dependence
on z, that is, sin( pπz

h ), p = 1, 2 · · · . Therefore, we can achieve
shared eigenfrequencies among TE modes in different 2D/3D
PEC cavities as we have done for sound cavities. The story
for the Ez field of TM cavity mode is slightly different: (1)
It is Dirichlet boundary condition at the PEC side walls that
needs to be satisfied by Ez, which corresponds to soft bound-
ary condition for sound waves; and (2) The dependence on
z becomes cos( pπz

h ), p = 0, 1, 2 · · · . With (1), the boundary
condition–symmetry compatibility required to achieve shared
eigenfrequencies among TM modes in different PEC cavities
changes accordingly, that is, the fields in every neighboring
pair of basic building blocks need to exhibit odd parity instead
of even parity.

IV. CAVITY EIGENFIELDS INSENSITIVE TO OBSTACLES

In a typical situation, when an object is inserted into a
cavity, we expect the cavity’s eigenmode frequency to change.
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FIG. 6. Insensitivity of 2D acoustic cavity eigenfields to (a) a hat-shaped or (b) a turtle-shaped obstacle with hard boundaries. (c), (d)

Replacing the hard obstacle with a steel hat-shaped or turtle-shaped obstacle has negligible effect on the cavity eigenfields outside the obstacle.

Inspired by the observation of shared eigenfrequencies among
cavities of different sizes and shapes, we have found a re-
markable event where the eigenfields of a cavity remain
unaltered by obstacles of specific shapes inserted into the
cavity. Figures 6(a) and 6(b) demonstrate that the eigenfields
as well as the eigenfrequencies remain unchanged when a
hat- (turtle)-shaped hard obstacle is inserted into the cavity.
This occurs because of boundary condition–symmetry com-
patibility: The cutting path, which creates hard boundaries,
aligns with the antinodal lines of the eigenfield (i.e., the local
mirror-symmetry lines) in the large cavity. The insensitivity
to obstacles applies to infinitely many eigenfields that cor-
respond to the ++b class in Fig. 4. This occurrence can be
extended to cavities and obstacles in different shapes.

While hard-wall boundary conditions are idealized con-
structs, in practical situations, steel and other rigid materials
can serve as hard walls when they create an interface with
an air domain, due to the significant impedance mismatch
between them. We can opt to replace the perfectly hard walls
in Figs. 6(a) and 6(b) with hat- (turtle)-shaped steel obstacles,
as depicted in Figs. 6(c) and 6(d). As expected, the eigen-
fields relevant to the ++b class exhibit negligible changes in
the presence of obstacles, and their eigenfrequencies remain
largely unaltered. We can approximate the steel region sur-
rounded by air as a cavity with soft boundaries. This cavity has
its lowest eigenmode at 2269 Hz. As the frequency increases,
the steel obstacle gradually stops acting like a hard wall, al-
lowing pressure fields inside it. Consequently, the insensitivity
deteriorates and eventually vanishes at higher frequencies.
The simulations indicate that the insensitivity observed at
229 Hz in Fig. 6(c) holds almost perfectly up to around
1600 Hz.

The insensitivity of eigenfields to obstacles inside a cavity
occurs more frequently than initially expected. For illustra-
tion, the eigenfield insensitivity can also be observed in a
square-shaped cavity that contains an obstacle in the shape
of the so-called isospectral pair of geometries depicted in
Figs. 7(a) and 7(b) [13,14]. Isospectrality refers to the prop-
erty that two nonisometric cavities have identical eigenvalue
spectrum [13,14]. The isospectrality between the cavities de-
picted in Figs. 7(a) and 7(b) is shown by the overlapping blue

and orange lines in Fig. 7(e). The isospectral pair as well as
the square in Fig. 7(c) can be built using the isosceles right
triangle in Fig. 7(d) as the building block. Consequently, the
isospectral pair and the square share a set of eigenfrequencies
that make up the spectrum of the isosceles right triangle. This
is demonstrated in Fig. 7(e), where the blue, orange, green,
and red lines correspond to the spectra of the cavities listed
in Figs. 7(a)–7(d), respectively. Figures 7(a)–7(d) display the
eigenfields of the four cavities at their second-lowest common
frequency, f = 243 Hz. When a hard obstacle in the shape of
either of the isospectral pair is placed inside the square cavity,
the eigenfield for any common eigenfrequency remains unaf-
fected outside the obstacle. This is depicted in Fig. 7(c), where
the obstacle is represented by the magenta/green dashed lines.

The eigenfield insensitivity to obstacles can be extended to
three dimensions and EM cavities as per our discussions at the
end of Sec. III.

V. CONCLUSIONS AND DISCUSSION

We have shown a rather counterintuitive result that a
hat-shaped sound cavity and a turtle-shaped sound cavity,
despite their different boundary shapes and sizes, have a set
of eigenfrequencies in common. By tiling the eigenfields of
a hat-shaped (or turtle-shaped) cavity at those common fre-
quencies, we can obtain a pattern that locally resembles the
eigenfields of a regular hexagonal cavity in the ++b class. We
explained this by boundary condition–symmetry compatibil-
ity. Specifically, all the hard boundaries of the hat (turtle) can
be aligned with the antinodal lines, due to mirror symmetries,
of the ++b eigenfields of the regular hexagon. As a result,
some eigenfields of the hat (turtle) cavity can be obtained by
placing a hard-boundary hat (turtle) at the antinodal lines of
the ++b eigenfields of several hexagons tiled together, with-
out changing the eigenfrequencies. Furthermore, based on the
observation of shared eigenfrequencies among distinct cavi-
ties, we have discovered an unexpected phenomenon where
cavity eigenfields remain unaffected by obstacles of certain
shapes within the cavity. We emphasize that the findings can
be extended to EM waves and three dimensions.
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(a) (b) (c) (d)

Eigen-frequencies (Hz)
172 243 343 384 485 515 543 619

(e)

1m

FIG. 7. (a)–(d) Eigenfields of four sound cavities at 243 Hz, including (a), (b) an isospectral pair, (c) a square, and (d) an isosceles right
triangle. (c) also shows that inserting a hard obstacle in the shape of (a) or (b) inside the square does not alter the eigenfield. (e) The spectra
of the four cavities in (a)–(d) are represented by the blue, orange, green, and red lines, respectively. They share common frequencies that form
the spectrum of the isosceles right triangle.

The existence of a set of common eigenfrequencies shared
among cavities with different geometries reminds us of
isospectral billiards, which refer to nonisometric billiards
with identical eigenvalue spectrum [13,14]. The discovery
of 2D isospectral billiards answered Kac’s celebrated ques-
tion, “Can one hear the shape of a drum?” with a definitive
“no” [13–16]. Kac’s question, along with isospectral bil-
liards, has greatly stimulated research on a range of inverse
spectral problems [16–24]. Our research demonstrates that
different cavities can be partially isospectral: While not all
their modes have the same frequencies, they do share a certain
percentage of resonant frequencies. The partially isospec-
tral cavities we discovered can be seen as an extended and
less strict version of isospectral billiards, which improves
our understanding of how the cavity’s shape relates to its
eigenfrequencies. Constructing partially isospectral billiards
(or cavities) is straightforward when applying the concept of
boundary condition–symmetry compatibility, which requires

each pair of adjacent basic building blocks to be symmet-
rically arranged. It contrasts sharply with the formidable
challenge of finding fully isospectral billiards.

Our work on insensitivity of cavity eigenfields to obstacles
bears resemblance to invisibility cloaking and related inverse
problems [19,20,25–31] since we cannot detect the presence
of obstacles solely through observation of cavity eigenfields.
Moreover, the imperceptibility of the obstacles holds true at
a series of frequencies, unlike most invisibility cloaks that
function at only a single frequency.
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