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Temperature dependence of phonon energies and lifetimes in single- and few-layered graphene
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In this work, we have studied the phonon properties of multilayered graphene with the use of molecular
dynamics simulations and the k-space velocity autocorrelation sequence method, for which we provide a
theoretical proof. We calculate the phonon dispersion curves, densities of states, and lifetimes τ of few-layered
graphene consisting of 1–5 layers and graphite. �-point phonon energies and lifetimes are investigated for
different temperatures ranging from 80 to 1000 K. The study focuses on the impact of the interlayer interaction
and temperature on the energies and lifetimes of the �-point phonons, as well as the type of interlayer potential
used. For the latter we used the Kolmogorov-Crespi and the Lennard-Jones potentials. We have found that the
number of layers N has little effect on the intralayer ZO and G mode energies and greater effect on the interlayer
shear and breathing modes, while τ is generally affected by N for all modes, except for the layer shear mode.
The influence of N on the lifetimes was also found to be independent of the type of potential used. For the
Raman-active G phonon, our calculations show that the lifetime increases with N and that this increase is directly
connected to the strength of the interlayer coupling and how this is modeled.

DOI: 10.1103/PhysRevB.110.075434

I. INTRODUCTION

Graphene since its discovery has attracted widespread at-
tention due to its exceptional properties [1], especially for its
excellent electronic conductivity [2], its performance in opto-
electronic devices [3], its mechanical strength [4], and its high
thermal conductivity [5]. This increased interest arose from
the fact that high-quality monolayer graphene (1L) can be
produced by means of mechanical exfoliation of bulk graphite
(BG), as per the famous scotch-tape experiment [6]. There
has also been recent interest in few-layered graphene (FLG),
as it also exhibits interesting properties, ranging from high
electrical [7] and thermal conductivity [8–10], to enhanced
lubricity [11,12], which makes it an ideal filler material in
composites for thermal management applications [13], while
most recently, unconventional superconductivity was discov-
ered in twisted bilayer graphene [14]. All the above properties
are strongly phonon related, as electrical conductivity is hy-
pothesized to be phonon limited [15], while the thermal
conductivity of graphene is almost exclusively due to phonons
[16,17]. It is therefore of interest to examine the change of the
phonon properties of graphene as a function of the number of
layers N , as well as of temperature.

In monolayer graphene (1LG), aside from the three
acoustic modes [longitudinal (LA), transverse (TA), and

*Contact author: markos.poulos@insa-lyon.fr

out-of-plane (ZA)] there exist three optical modes, the out-
of-plane ZO and the in-plane LO and TO modes which at
the � point converges to the doubly degenerate E2g mode,
also known as the G mode due to the Raman G band that it
is responsible for. The presence of multiple layers modifies
the phonon structure of graphene, as new modes appear: ex-
isting intralayer optical modes split into Davydov multiplets,
and new interlayer (IL) modes appear due to the folding
of the Brillouin zone edge acoustic phonons [18,19]. These
emergent interlayer modes are categorized as layer shear and
layer breathing modes, where the layers move as units in
the in-plane and the out-of plane direction, respectively, with
a phase difference between each other. The layer breathing
mode (LBM) can also be found noted as ZO′, while the shear
mode is also denoted as C mode, again due to the Raman
C-band signal.

Davydov splitting, also known as factor group splitting,
refers to the removal of degeneracy of internal degrees of free-
dom due to weak external interactions, in materials whose unit
cell is composed of replicated units, such as molecular crys-
tals and layered van der Waals (vdW) materials [20,21]. The
resulting modes usually have weakly split energies (�ω < 5
cm−1) and not far from the unperturbed system [22], although
in cases of strong interlayer interaction such as in layered
two-dimensional (2D) antimonene, large splits (∼70 cm−1)
have been reported [23]. As a result, in N-layered graphene
there exist (N − 1) shear, (N − 1) breathing, N ZO, and N G

2469-9950/2024/110(7)/075434(16) 075434-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5696-4595
https://orcid.org/0000-0001-5094-9837
https://orcid.org/0000-0002-5069-8334
https://orcid.org/0000-0001-7763-718X
https://orcid.org/0000-0002-1514-5726
https://orcid.org/0000-0002-8521-7107
https://ror.org/050jn9y42
https://ror.org/00s19x989
https://ror.org/01k383v05
https://ror.org/02j61yw88
https://ror.org/03e5bsk66
https://ror.org/03e5bsk66
https://ror.org/02j61yw88
https://ror.org/017wvtq80
https://ror.org/00s19x989
https://ror.org/03gnr7b55
https://ror.org/021fdyt09
https://ror.org/00s19x989
https://ror.org/050jn9y42
https://ror.org/01k383v05
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.075434&domain=pdf&date_stamp=2024-08-29
https://doi.org/10.1103/PhysRevB.110.075434


MARKOS POULOS et al. PHYSICAL REVIEW B 110, 075434 (2024)

phonons. For a more detailed analysis of the phonon modes
of few-layered graphene, we refer the interested readers to the
work of Saha et al. [24].

The dependence on temperature T of the phonon energies
ω(T ) and lifetimes τ (T ) mainly arises due to anharmonicity
in the interatomic interactions. As has been long established
by Maraduddin and Fein, by evaluating the phonon self-
energy �(ω) of an interacting phonon system [25], one can
obtain from its real �(T ) and imaginary part �(T ), re-
spectively, the anharmonic phonon frequency shift and finite
linewidth in the energies ω0 of the harmonic noninteracting
phonons. The T dependence then mainly arises due to the de-
pendence of � and � on the phonon populations n(ω, T ). Lat-
tice thermal expansion also contributes to �(ω) by the implicit
inclusion of higher-order anharmonic terms in the renormal-
ization of the harmonic energy [26] leading to a temperature-
dependent ω0(T ) since at higher temperatures these terms can
no more be considered as small perturbations [27]. However,
if one can determine the lattice thermal expansion indepen-
dently (e.g. experimentally), the shift at a given temperature
can be obtained computing the harmonic frequency at the
lattice parameters corresponding to that temperature.

The phonon energies of layered graphene and graphite
have been experimentally probed quite extensively in the lit-
erature, mostly concerning the zone-center Raman-active G
phonon (ωG ≈ 1580 cm−1). For graphite, the phonon dis-
persion curves by means of inelastic x-ray scattering (IXS)
have been reported [28], and for 1L graphene studies on the
T dependence of ωG(T ) by means of conventional Raman
spectroscopy are also present in the literature, with excellent
agreement between them [29–31]. Studies of the effect of the
number of layers N on the phonon energies of FLG have also
been conducted [32–36], using the linear chain model, which
has been further related to the symmetry of the modeled mul-
tilayer and Raman-active modes as a function of the number
of layers [37].

For the experimental study of the phonon lifetimes of 1L
graphene, conventional Raman spectroscopy is usually per-
formed on suspended samples in order to exclude the effect
of the substrate [31,38]. The lifetime of a Raman-active mode
can be estimated by the linewidth γ in cm−1 as τ = (2γπc)−1

[39,40]. The major contributions to the linewidth are due to
electron-phonon (el-ph) and phonon-phonon (ph-ph) interac-
tions γG = γ

ph-ph
G + γ

el-ph
G . Most notably for the G mode, the

major contribution to γG is due to the electron-phonon part
[31,41,42]. For the G mode, the ph-ph contribution can be
also probed separately by means of time-resolved incoherent
anti-Stokes Raman spectroscopy (TRIARS). It appears com-
monly accepted that for graphite τ

ph-ph
G ranges between 2–2.5

ps at room temperature [41,43]. For 1L, however, reported
values are dispersed, from ∼1–1.5 ps [39,40] to 2.5 ps [42]
for supported samples, and as high as 4.9 ps for samples
supported on colloidal solutions [44]. The growth method and
the sample quality have a big impact in the measured value.
An overview of the different measured values reported in the
literature can be found in Katsiaounis et al. [39].

Phonon energies and lifetimes are usually studied theoret-
ically by means of ab initio methods based on perturbation
theory. Initially, calculations in the literature included the

e-ph and three-phonon (3ph) contributions to the temperature
dependence of τG(T ) in single-layer graphene [45]. These
calculations showed that the e-ph contribution overwhelm-
ingly dominates the temperature dependence, causing γG to
decrease with temperature. This finding starkly contrasts with
all the experimental works cited above. The discrepancy was
only recently resolved. It has been reported that the 4ph con-
tribution is actually much more significant than 3ph, although
the e-ph contribution still remains dominant [31]. The same
authors reported that phonon renormalization due to lattice
thermal relaxation was crucial to avoid overestimating the 4ph
scattering rates [31].

An alternative way to calculate phonon properties without
the above limitations is to employ the k-space velocity auto-
correlation sequence (kVACS) method within classical molec-
ular dynamics (MD) simulations, which we have previously
employed to obtain the temperature dependence of the �-point
phonon energies in 1L graphene [46]. With this method we
can obtain phonon energies and lifetimes for all k points in
the Brillouin zone allowed by the periodic boundary condi-
tions [46,47]. For each k point the spectral energy density is
obtained, which is then fitted by Lorentzian functions. The
positions and widths of the peaks correspond to the phonon
energies and linewidths, respectively. The phonon density of
states (DOS) can be also extracted within the same scheme
and from the same data sets. The two main advantages of
this method are that it inherently takes into account by default
all orders of anharmonicity and lattice expansion, while it is
also applicable to both periodic and nonperiodic systems. The
method has been described extensively in a previous work and
readers interested in the details are referred to it [46]. Further
details of the method are also provided in Appendix A, while
in Appendix B, we provide an analytic proof of the method.

kVACS has been extensively used in the past to study
vibrational properties in condensed matter applications, from
liquids [48] to molecules [49] and the temperature depen-
dence of phonon modes in Si [50], to surface modes in Cu
[51,52]. In more recent studies, it has been applied to ob-
tain the phonon spectra of carbon nanotubes [53], monolayer
graphene [46,54], and nanoscale Si [55]. Recently, it was also
used to investigate the contribution of the phonon vibrational
structure in the mechanism of thermal rectification of certain
nanostructures, as in the example of asymmetric two-phase Si
nanowires [56], and in MoSe2-WSe2 [57] and graphene-hBN
van der Waals lateral heterojunctions [58].

In layered materials, adjacent layers interact with each
other through weak van der Waals (vdW) forces arising
from an attractive spontaneous dipole-dipole dispersion in-
teraction [59] and a repulsive interaction arising from the
Pauli repulsion of orbital overlap [60]. The attractive part is
long ranged, while the repulsive part is short ranged, and
each term is dominant in a respective distance range [60].
In MD simulations this interaction has been modeled quite
extensively with the classical Lennard-Jones (LJ) potential;
however, since it is a two-body radial potential, it has been
found to be too smooth to describe corrugation and variations
in the stacking alignment of layered graphitic materials [61].
For this reason, a new type of interlayer potential for graphitic
materials was proposed by Kolmogorov and Crespi (herby
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denoted as KC), which is a registry-dependent potential that
takes specifically into account the directionality of the re-
pulsive overlap interaction between π orbitals of adjacent
layers [61]. This is the main interlayer potential employed in
this work. Other registry-dependent potentials have also been
developed ever since, such as the ILP potential which includes
Coulomb interactions for polar-layered materials like hBN
[62], the DRIP potential which includes dihedral interactions
for twisted bilayer graphene [63] and the Lebedeva potential
which includes a term dependent on the vertical distance of
the pz orbitals of adjacent atoms, to better describe the com-
pressibility of graphite [64].

The rest of the paper is organized as follows: First, in
Sec. II a synopsis of the computational methods and inter-
atomic potentials used in this paper is made, followed by the
discussion of the results in Sec. III. There, we present the
calculated phonon dispersion curves and density of states for
bulk graphite, and the temperature dependence of the energies
and lifetimes of �-point phonons one-, two-, three-, and five-
layered graphene and graphite, calculated with the KC poten-
tial and compared with all available experimental data. The
calculations of energies and lifetimes are repeated using the
LJ potential and the trends are compared to the corresponding
results obtained with KC. Finally, the effect of the interlayer
coupling strength of the LJ potential on the lifetime of the G
phonon is investigated for two-layered graphene and graphite.

II. METHODOLOGY

In this work we have performed MD simulations on single-
and few-layered pristine graphene (FLG) and bulk graphite
(BG), using the kVACS method. The phonon properties of the
above systems were studied for temperatures ranging from 80
to 1000 K in order to obtain the temperature dependence of
the phonon energies and lifetimes.

The interatomic C-C interactions within the same layer
were modeled with the reparametrized Tersoff potential by
Broido et al. [65]. It shall be pointed out that in a previous
work the LCBOP and the AIREBO potentials were shown
to give a very poor temperature dependence of the energy
of the G phonon in 1L graphene [46]. A machine-learning-
based Gaussian approximation potential for graphene has also
been reported to give very promising results and reproduced
very well the density functional theory (DFT) dispersion
curves and thermal expansion coefficients [66]. However,
the increased computational cost of such potentials was pro-
hibitive for the purposes of our work, which mainly focuses
on probing the interlayer interactions, which are independent
on the intralayer potential used. For the above reasons, the
revised Tersoff potential was deemed the best solution. For
the interlayer interactions we used the reparametrized full
Kolmogorov-Crespi potential with a taper function, with the
parameters taken from Ref. [67] and whose form is also given
in Appendix C. In order to investigate the impact of the na-
ture of the interlayer potential and the effect of the coupling
strength, we repeated part of the calculations using the classi-
cal Lennard-Jones (LJ) potential for comparison, given by

VLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
. (1)

For the KC potential, a global cutoff of rc = 12 Å was chosen.
For the LJ potential, the used parameters ε = 4.6 meV and
σ = 3.276 Å were taken from Lindsay et al. [18]. In all of our
calculations, all layers can interact with all the others, which
mostly happens via the long-range part of the vdW interaction,
which “passes through” layers. As it has been underlined in
previous works, in few-layered graphene the cleavage energy
(CE) (the energy required to split a bulk material in half along
a basal plane) and the per-layer interlayer binding energy (BE)
(the energy required to separate a bulk material into individual
noninteracting layers) is different, which is a sign of interlayer
interactions longer than between adjacent layers [68]. Exper-
imental measurements of CE and the BE of graphite support
this claim, as their difference was found to be ∼15% [69].

The FLG systems studied were 1L, 2L, 3L, and 5L
graphene and BG, all in Bernal (AB) stacking. The AA stack-
ing is known to be thermodynamically metastable [70], and
some lattice dynamics calculations that we perfomed with
AA stacking on 2LG and graphite with KC showed that the
�-point shear mode has imaginary frequency, indicating that
this configuration would be mechanically unstable to shearing
motion, even for infinitesimal displacements. The computa-
tional cell used consisted of 40 × 40 primitive triclinic unit
cells [46] with periodic boundary conditions (PBC), having
sides of 10 nm in total. Each system was first structurally
and thermally relaxed for every temperature step: an initial
conjugate gradient (CG) static energy minimization followed
by a 125-ps NVE initial equilibration, a 250-ps NPT structural
relaxation, and a final 125-ps NVT thermal equilibration.

During the data production step to obtain the kVACS spec-
tra, 10 independent equilibrium NVE runs with randomized
initial velocities were performed. This statistical sampling
was done in order to obtain good ensemble averages and to en-
sure ergodicity. For the simulations using KC as the interlayer
potential, each run consisted of 655.360 time steps or 327.68
ps, for a total of 3.28 ns of production time per studied case.
The sampling rate of the velocity data was every 10 time steps
or 5 fs, giving an ω resolution of 0.102 cm−1. Comparative
convergence tests with higher resolution were performed for
the 2L case and are presented in Sec. 2 of the Supplemental
Material [71]. No significant deviation of the calculated ω and
τ with resolution were found. For the case of LJ potential,
convergence tests showed that resolution gave poor results.
For this reason, for all the LJ results presented in this paper the
per-run simulation time was 655.36 ps, double that of KC, and
the sampling rate was every 15 steps, giving an ω resolution
of 0.05 cm−1. The number and frequency of sampled data
points were eventually the result of a compromise between
computational efficiency and sufficient ω resolution. For all
simulations, the time step used was 0.5 fs. All MD simulations
were performed using the LAMMPS code [73].

The phonon properties were calculated using the kVACS
method and the spectra obtained were fitted using simple
Lorentzian functions. The Brillouin zone was sampled along
the path �-K-M-�. The lattice dynamics (LD) simulations
were also performed using LAMMPS’s dynamical_matrix com-
mand to calculate and output the force constant matrix of the
systems under study. The dynamical matrices for specific k
points were calculated by performing a spatial Fourier trans-
form over the equilibrium positions and finally the phonon
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FIG. 1. (Left) The calculated phonon dispersion curves of bulk graphite (full symbols) at T = 300 K, together with data from IXS
measurements (open symbols) [28,74]. The magnitude of the kVACS symbols is a measure of the calculated lifetime. Straight lines connecting
points are b splines serving as visual guides. (Right) The calculated phonon DOS for bulk graphite at T = 300 K (straight lines), along with
data from INS measurements [75] (open symbols). All DOS are normalized to unit area.

energies were obtained by the diagonalization of the dynami-
cal matrix.

Finally, an important point should be raised, concerning
the resolution of the k points examined. As we are using finite
computational cells and PBC, not any arbitrary k can be sam-
pled, but only those that are linear combinations of 1

N1
b1 and

1
N2

b2, where b1 and b2 are the primitive inverse lattice vectors
of the respective unit cell and N1, N2 the number of unit cells
along each lattice vector, respectively. Here, N1 = N2 = 40.
The procedure to obtain the correct k-point resolution has
been extensively documented in a previous study [46] and for
further details we refer the reader to that work.

III. RESULTS AND DISCUSSION

For all multilayered systems, as has been mentioned in
the Introduction, all optical modes (shear, LBM, ZO, and
G) appear in multiplets, therefore, a choice of representation
must be made. In the rest of this work, the highest-energy
ZO Davydov multiplet is chosen to represent this mode,
which corresponds to a vibration where the crystallographi-
cally equivalent C atoms of each layer vibrate in phase. For
the G mode, the lowest-energy multiplet is chosen, which
also corresponds to the in-phase vibration of the equivalent C
atoms. This guarantees that the G mode chosen will be Raman
active, independent of the number of layers [24,37]. Concern-
ing the interlayer modes, both for the LBM and the C-mode
branches for each N the highest-lying branch corresponds to
an antiphase layer vibration, while the lowest-energy branches
correspond to phonons where mostly the outer layers vibrate
[36]. For reasons of consistency with the experimental stud-
ies, we will represent the shear modes by the highest-energy
branch (antiphase), while for the breathing mode we choose
the lowest-lying one, where layers oscillate like an accordion.

The reason for this choice is that these modes represent an
actual layer shearing and breathing vibrational pattern, while
also being always Raman active and giving the highest in-
tensity [34]. These modes will be hereafter referred to as
the true shear-breathing mode, respectively, for each N . A
useful remark about the LBM of graphite should be made
since it does not follow the aforementioned vibrational pat-
tern, as all layers vibrate out of phase. A visual illustration
of the vibrational patterns of all the modes mentioned above
is provided in Figs. SM-1 and SM-2 of the Supplemental
Material [71].

From a first comparison of the results, it turns out that the
number of layers N affects differently the intralayer (acoustic,
ZO, and G) and the interlayer (C and LBM) modes across the
entire Brillouin zone and throughout the entire temperature
range. Specifically for the intralayer modes, the calculated
energies increase slightly going from 1L to FLG and BG in the
order of 1–5 cm−1, therefore, no visible difference was seen
between the corresponding phonon dispersion curves for dif-
ferent N and different T , especially looking at the energy scale
covering all mode energies (0–1700 cm−1). For this reason,
the dispersion curves of graphite were thus chosen to represent
the intralayer curves of FLG for all N , which we present in
Fig. 1, along with information about the calculated lifetimes,
in comparison with data from inelastic x-ray scattering (IXS)
measurements [28,74]. We also provide the calculated phonon
density of states (DOS) of graphite, compared with IXS mea-
surements from another study [75], both at T = 300 K. The
interlayer modes are affected in a more intricate way and
further details will be provided below. A comparison of all
phonon branches for all N is also provided in Fig. SM-8 of
the Supplemental Material [71].

We directly observe from Fig. 1 that the acoustic modes
are described with very good accuracy by the Tersoff-2010
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potential with respect to experimental data, as was the case in
the initial work of potential reparametrization by Broido et al.
[65], where the dispersion curves were obtained using LD.
Concerning the calculated lifetimes, they fall within the range
of ∼1–20 ps and two principal remarks are to be made. First
of all, the out-of-plane intralayer modes (ZA and ZO) have
noticeably much larger lifetimes than the in-plane ones (TA,
LA, LO, TO), ranging between ∼5–20 ps and increasing close
to the � point. Interestingly, the ZA and ZO mode lifetimes
have similar values. This is in stark contrast with the in-plane
modes, where the acoustic ones globally have larger lifetimes
(5–10 ps) than optical ones (1–5 ps).

The energies of the LO and TO branches are overestimated
by ∼10% at the � point, while the ZO branch is significantly
overestimated at about 45%. The description of the LO and
TO branches is satisfactory close to the � point, with the ex-
ception that, contrary to experiment, the calculated branches
have a zero and continuous slope at �. Our calculations also
predict a splitting of the TO branch at the KM path by 30%
of the energy of the LO branch, while experimentally those
branches are degenerate along KM (see Fig. 1, left). Also, the
TO branch has higher energies than the LO branch, which has
also been observed in Ref. [46] and can be attributed to the
Tersoff potential. In fact, in Ref. [46] both the large LO and
TO splitting along KM and the reversal of their order was
observed in other classical potentials commonly used with
graphitic materials, like AIREBO, LCBOP, and the original
Tersoff. The original Tersoff was the only one that predicted
correctly that ωLO > ωTO, but the LO and TO splitting on
the KM path was present in all of them. As the splitting is
strikingly more prominent at K , the authors of Ref. [46] have
attributed this feature to the absence of dielectric screening
due to the Kohn anomaly in all classical atomistic simulations
like MD that do not take into account the electron-phonon
coupling, and this energy discrepancy also affects the energies
of other k points around K , along both �K and KM. The Kohn
anomaly is also known to be responsible for the discontinuity
found experimentally in the slope of the LO-TO branch at �,
mentioned above. For further comments on the discussion, we
refer the interested readers to the work of Ref. [46] and the
references therein.

It should be further noted that the discrepancy in the ener-
gies of the optical modes shall not be attributed to the kVACS
method since even in the initial work, the dispersion curves
for the optical modes, obtained by lattice dynamics, exhibited
the same level of discrepancy with experiment [65]. Besides,
as it will be later shown, the relative difference between LD
and kVACS energies of the ZO and G phonons is of the order
of 1%. The authors in Ref. [65] attributed the failure of the
simultaneous fitting of both optical and acoustic modes to the
short range of the potential.

The DOS calculated with the kVACS method is com-
pared with inelastic neutron scattering (INS) measurements
for graphite [75], both presented in Fig. 1 (right). Both calcu-
lated and experimental DOS are normalized to unit area. We
attribute the differences with experimental data to the optical
modes since, from the comparison of the dispersion curves in
Fig. 1 (left), the acoustic modes are accurately matching the
experimental data. Also, in our calculations no account of the
k points along the out-of-plane direction (�A) of the Brillouin

(a)

(b)

FIG. 2. The calculated dependence of the FLG (a) shear and
(b) breathing modes at T = 300 K on the number of layers N (full
symbols), along with the fitting of energies as given by Eqs. (3) and
(4) (solid line). Experimental measurements by Tan et al. [34] and
Lui et al. [36], respectively, are also shown for comparison (hollow
symbols).

zone of graphite was taken, those modes are therefore missing
from the DOS.

It is also of interest to investigate the effect of N on the
energy of the interlayer phonon modes. For this, in Figs. 2(a)
and 2(b) we plot the energy of the true shear and breathing
modes at T = 300 K, as a function of N . As it can be clearly
seen, the two modes have opposite trends, as the C mode
hardens with increasing N , while the LBM softens, as is
also attested by the experimental measurements [34,36]. This
trend can be explained by a simple linear chain model, where
layers are modeled by single particles and the interlayer mode
frequencies are given by [76]

ω(i,N )
ν =

√
2kν

μ

{
1 − cos

(
(i − 1)π

N

)}
, (2)

where N is the number of layers present, ν = 1, 2, 3 rep-
resents the interlayer mode branch (ν = 1, 2 the doubly
degenerate C mode and ν = 3 the LBM), of N modes each,
indexed by i = 1, 2, 3 . . . N (i = 1 refers to rigid translation).
Also, k is a measure of the force constant per unit area
that corresponds to each vibration (shear force for the C
mode and tensile force along the c axis for the LBM) and
μ is the mass per unit area of a single layer, taken equal
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to μ = 7.6 × 10−27 kg Å−2. The model has been successful
to capture the trends in experimental data for the shear [34]
and breathing modes [36], by simply setting i = N and 2 in
Eq. (2), respectively. After some manipulation, these energies,
measured in cm−1 become

ωC (N ) = 1

πc

√
α

μ
cos

( π

2N

)
, (3)

ωLBM(N ) = 1

πc

√
b

μ
sin

( π

2N

)
. (4)

In Eqs. (3) and (4), α and b are different symbols used
to represent kν for the shear and tensile force constants, re-
spectively, and c = 2.997 × 1010 cm s−1 is the speed of light.
It should also be noted that in Eqs. (3) and (4) the prefac-
tors of the trigonometric functions stand for the C mode and
LBM energies of graphite, respectively. Again for the LBM of
graphite, this energy does not derive from limN→∞ ωLBM(N )
of Eq. (4) since the former refers to an antiphase vibration and
not the “accordionlike” motion of the true LBM (see Fig. SM-
1 of the Supplemental Material [71]), which for N → ∞ tends
to zero.

From the comparison with the model, both the experimen-
tal data and the kVACS simulations follow the model in an
excellent way. Namely, for graphite ωcalc

C = 37.8 cm−1 and
ω

expt
C = 43.4 cm−1, while the fitting of the C-mode energies

using Eq. (3) gives a shear force of αcalc = 0.96 × 1019 N m−2

for the interlayer interaction, which is very close to the value
of αexpt = 1.27 × 1019 N m−2 obtained from the experimental
fitting [34]. Accordingly, the trend of the LBM energies fol-
lows very closely the model of Eq. (4), as it predicts an energy
of ωcalc

LBM = 108.8 cm−1 for graphite which is very close to
the experimental value ω

expt
LBM = 114.6 cm−1. Again by using

Eq. (4), we obtain bcalc = 7.97 × 1019 N m−2, while bexpt =
8.84 × 1019 N m−2. Interestingly, if we calculate the same
interlayer phonon energies for graphite using lattice dynamics
with the same potential parameters, which completely ignores
thermal motion and anharmonicity, we obtain ωLD

C = 42 cm−1

and ωLD
LBM = 123 cm−1, which give αLD = 1.19 × 1019 N m−2

and bLD = 10.18 × 1019 N m−2.
From the above discussion we can extract two useful con-

clusions. First, even though the KC potential is a complex
multiparameter potential, and despite the inclusion of thermal
motion and anharmonicity within kVACS, the behavior of
the interlayer phonon energies eventually follows a simple
linear chain model, with a single adjustable parameter, the
interlayer force constants kν . Second, part of the discrepancy
with experiment can be tracked down to the parametrization of
the KC potential, reflected by the difference of the shear and
tensile force constants αcalc and bcalc with the experimentally
determined ones. This is also supported by the LD calcula-
tions, which, especially for the case of the LBM, reveal that
thermal motion and anharmonicity can significantly reduce
the effective interlayer force constants and phonon energies.
This is more or less expected, as the parametrization of the
KC potential used in this work was done via DFT, a zero-
temperature method [67].

In the following, we obtained the temperature dependence
of phonon energies and lifetimes for the shear, breathing,

TABLE I. The energy slopes with temperature χT for each �-
point phonon mode and for various numbers of layers calculated via
kVACS. Experimental slopes are taken from [78,79]. All values are
given in cm−1 K−1.

Shear LBM ZO G
No. of layers (×10−3 cm−1 K−1)

1 −36 −51
2 −6.2 −9.7 −35 −47
3 −5.9 −6.3 −34 −48
5 −5.7 −3.6 −35 −49
BG −4.4 −5.6 −35 −50
Expt −21

ZO, and G modes of FLG. For temperatures higher than
the mode-specific Debye temperature �D = h̄ω/kB, where ω

is the harmonic energy of the phonon in question, ω(T ) is
linear or quadratic (classical limit), depending of whether the
dominant anharmonic process is the three or four phonon
[80]. As MD obeys classical statistics, though, this behavior
is expected to be present even at low temperatures, due to
the equipartition of energy being valid at all temperatures in
Boltzmann statistics, but only at temperatures T � �D for
Bose statistics. Therefore, the slopes χT = dω

dT are a character-
istic measure of phonon anharmonicity and they are presented
in Table I for all �-point phonon modes and all numbers of
layers.

In Figs. 3(a) and 3(b) we present the calculated T depen-
dence of the interlayer shear and breathing mode energies for
FLG, along with linear fittings and the corresponding energies
obtained from lattice dynamics. Experimental measurements
for the 2LG Shear mode by Cong et al. [77] are also presented.
The calculated classical ω(T ) appears linear throughout the
entire temperature range, which of course contrasts with the
real behavior, as quantum phenomena are absent in MD and
more prevalent at low T [see the experimental data at low
T in Fig. 6(d)]. Also, with increasing N , the slopes have
distinctly decreasing values for the interlayer modes. For the
Shear mode, they go from with −6.2 × 10−3 cm−1 T−1 for
bilayer, down to −4.4 × 10−3 cm−1 T−1 for graphite. The
same trend is observed for the LBM, where the slopes are
ranging from −9.7 × 10−3 cm−1 T−1 for bilayer, down to
−3.6 × 10−3 cm−1 T−1 for pentalayer. Again for the LBM
of graphite, neither the energies nor the slope follow the
above trend, as the energies are higher than those of bilayer,
while the slope is between the values of 3ML and 5ML, at
−5.6 × 10−3 cm−1 T−1. To our knowledge, no experimental
work on the temperature dependence of the energies of the
LBM of FLG has been published so far.

A completely different picture is observed for the intralayer
modes, where both the energies and the slopes are almost
insensitive to N . In Figs. 3(c) and 3(d) we present the temper-
ature dependence of the intralayer ZO and G-mode phonon
energies for FLG’s with different N . The energies are slightly
upshifted by ∼1–5 cm −1 going from 1L to graphite. Exper-
imental measurements on the G mode also confirm these
findings [32–34]. The LD energy is not significantly affected
by N either, as are the slopes χT , which are also practically
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(a)

(b)

(c)

(d)

FIG. 3. The calculated temperature dependence of the true FLG (a) shear, (b) breathing, (c) ZO, and (d) G-phonon mode energies for
different numbers of layers N . The correspondence of symbols with N is as follows. 2L: green squares, 3L: red diamonds, 5L: blue stars, BG:
black circles. The hollow symbols represent experimental data by Cong et al. [77], Yang et al. [78], and Liu et al. [79]. The straight lines with
the same color correspond to the least-square linear fittings of the associated data. The dashed lines represent the LD energies for each N .

constant with N and one order of magnitude larger than for
the interlayer modes (see Table I).

By comparing with the experimental measurements, we
notice again that the Tersoff-2010 potential significantly over-
estimates the G-mode energies by a factor of ∼5.5%, and the
slope χT by a factor of ∼2.5 [78,79]. Furthermore, the experi-
mental measurements of Yang et al. in multilayered graphene
demonstrated that going from monolayer to FLG’s, ωG is
slightly reduced [78], in contrast to our findings. However,
all the measurements in their work were performed on 1ML
supported on a Si substrate. Whether the discrepancy is due to
the limitations of the reparametrized Tersoff potential or to the
presence of the substrate in the experimental measurements
cannot be determined by this comparison.

Finally, the phonon lifetimes due to anharmonicity τ ph-ph

were determined from the linewidth �ph-ph of the kVACS
peaks [full width at half-maximum (FWHM)] by the simple
relation

τ ph-ph = h̄

�ph-ph
. (5)

For convenience with units, we use h̄ = 5.29 ps cm−1. The
minimum FWHM value of the peaks is determined from
the spectral resolution of �ω = 0.1 cm−1, which results in a
maximum lifetime of τmax ≈ 50 ps, which tends to be found
for some modes at lower temperatures where linewidths are
smaller. Thus, all data points above this limit have been omit-
ted in the corresponding figures (Figs. 4 and 7). We have also
estimated the uncertainty in the calculations of the lifetimes
from the fitting error of � to not more than 5% of the absolute

value, in all data points presented. The error has an increasing
trend the closer a value gets to the resolution-imposed limit of
≈ 50 ps.

In Figs. 4(a) and 4(b), we present the calculated tem-
perature dependence of lifetimes of the interlayer shear and
breathing modes, respectively, for various numbers of lay-
ers. Concerning the shear mode, it appears that within the
uncertainties of peak fitting, τ ph-ph is practically insensitive
to N . This is in agreement with reported DFT calculations
and experimental measurements, where it is suggested that
the e-ph contribution in τ total of the shear mode is indepen-
dent of the number of layers, due to the very low C and
G peak Raman intensity ratio and also according to their
DFT results. Their measured linewidths were, thus, directly
associated with γ

ph-ph
C and changed very little with N ,which

they attributed to the similarity of the anharmonic scattering
phase space for different N [34]. Other authors, though, have
calculated a dominant e-ph contribution and the measured
C-band linewidth appears decreasing with temperature [77],
which is a sign of e-ph dominated linewidth. On the contrary,
for the LBM τ ph-ph increases with increasing N , with the
exception of graphite, which appears to have values very close
to 2LG. Again, the graphite LBM is an antiphase mode and
its eigenvectors resemble more those of the bilayer LBM,
which could also explain the similar τ ph-ph(T ) trends of the
two systems. This could also explain the increase of τLBM

with increasing N since the eigenvectors for the true LBM
are mostly zero for the inner layers and mainly the outer
layers vibrate. For graphite all layers vibrate, leading to more
scattering of the LBM.
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(a) (c)

(b) (d)

FIG. 4. The calculated temperature dependence of τ ph-ph of the FLG (a) shear, (b) breathing, (c) ZO, and (d) G modes for different numbers
of layers N . The correspondence of symbols with N is as follows. 2L: green squares, 3L: red diamonds, 5L: blue stars, BG: black circles. For
the G mode, the experimental data from Chatzakis et al. [41] are also presented (hollow circles). Dashed lines connecting points are b splines as
visual guides. The missing points correspond to FWHM’s that are below the resolution limit of �ω = 0.1 cm−1, which results in a τmax ≈ 50 ps.

Finally, the calculated lifetimes of the intralayer modes
are presented in Figs. 4(c) and 4(d) for ZO and G, respec-
tively. Interestingly, for both modes the lifetimes increase with
increasing N along the entire temperature range, with 1LG
having τ

ph-ph
G = 1.9 ps while for graphite τ

ph-ph
G = 5.6 ps,

more than double that of the monolayer. Although to our
knowledge no experimental study has so far directly measured
the τ

ph-ph
G (T ) of high-quality, monocrystalline suspended 1L

graphene, one would expect intuitively that the weak in-
terlayer interaction in FLG should not significantly affect
phonon lifetimes, compared to the monolayer.

Experimentally, the total γG of suspended 1L graphene
at T = 300 K has been measured at 16 cm−1 [38], giv-
ing an estimated value of the total lifetime τG = 0.33 ps.
For graphite, τ

ph-ph
G (T ) has been experimentally measured

at around ∼2.5 ps by multiple authors [41,43], which is al-
most two times lower than our calculated values with the
KC potential (∼5.6 ps). For supported 1L samples, values
of ∼1–1.5 ps have been reported, increasing with increasing
the number of layers N [39,40], while some authors have
measured τ

ph-ph
G -2.5 ps, equal to that of graphite [42]. Values

for 1L suspended on colloidal solutions as high as 4.9 ps for
τ

ph-ph
G have also been reported [44].

We have also compared our calculations for τ
ph-ph
G with

DFT calculations and existing experimental data, shown in
Fig. 5. The DFT calculations are for free 1LG and are ex-
tracted from the work of Han et al. by using only the �ph-ph

from the renormalized 3ph + 4ph processes [31], and in-
serting it in Eq. (5). The experimental data are taken from
TRIARS measurements of supported 1L graphene by Kang
et al. [40]. The kVACS and DFT curves agree well with each
other, although the DFT absolute values are systematically

∼40% lower. The experimental values exhibit a different
trend, with τ

ph-ph
G remaining almost constant for a temperature

range 300 K � T � 600 K. The authors have also reported
that τ

ph-ph
G values for 1L are significantly lower than for

graphite, and an increasing trend with increasing N , similar to
the one observed in Fig. 4(d). However, they have attributed
this behavior to the effect of the substrate [40].

In order to clarify the trend of τ ph-ph(T ), we have repeated
part of the calculations replacing KC with the Lennard-Jones
potential for the interlayer interaction. Namely, the T de-
pendence of the �-point phonon energies and lifetimes for

FIG. 5. The calculated temperature dependence of τ ph-ph of the
monolayer Raman-active G phonon (black triangles). DFT calcu-
lations including 3ph + 4ph processes and phonon renormalizaton
[31] are also shown (crossed red squares). Calculations are compared
with experimental data from TRIARS measurements of supported 1L
graphene [40] (hollow blue squares). Dashed lines connecting points
are b splines as visual guides.
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TABLE II. Comparison of energy slopes with temperature χT

of each phonon mode for bilayer graphene and graphite, between
the two interlayer potentials used (Lennard-Jones and Kolmogorov-
Crespi).

KC LJ

(×10−3 cm−1 K−1) Bilayer Graphite Bilayer Graphite

Shear −6.2 −4.3 −0.4 −0.5
LBM −9.7 −5.6 −11.8 −6.8
ZO −35.4 −34.8 −35.8 −35.2
G −47.9 −50.0 −52.7 −47.9

2L and bulk graphite were repeated, for 80 K � T � 900 K.
The slopes χT were also calculated and are presented in Ta-
ble II. To ensure that the trends for both potentials are within
the linear regime, the least-square fitting was performed for
T > 200 K for both potentials.

In Figs. 6(a) and 6(b) we present the comparison for the
interlayer mode energies, where the trends of the phonon
energies ωinter(N ) with increasing number of layers is as ex-
pected for both potentials (increasing for the shear mode and
decreasing for LBM). However, the absolute values obtained
with LJ are in poor quantitative agreement with experiment.
The LBM energy is significantly overestimated (at T = 300 K
the error is 30%–35%, compared to only 0.5%–5% for KC),
while on the contrary the shear mode is enormously underes-
timated (at T = 300 K the difference with experiment is 75%,
compared to only 15% for KC), both for 2L and graphite.
Also, the LJ gives for the shear mode a slope χT that is an
order of magnitude lower than the one by KC and essentially

predicts that the shear mode energy is practically constant
with temperature. The comparison of the slopes for all modes
are presented in Table II. The above findings, especially the
failing to simultaneously predict the shear and LBM mode en-
ergies, is a direct indication that interlayer forces have clearly
distinct the shear and perpendicular components, which can-
not be simultaneously described by a simple two-parameter
and two-body potential like LJ.

As for the intralayer mode energies, presented in Figs. 6(c)
and 6(d), the differences between the two potentials are much
less pronounced, as the intralayer modes are little affected
by the weak interlayer interactions. The slopes χT calculated
with both potentials agree very well with each other, as can
be clearly seen in Table II. A small but noticeable difference
is that for the ZO mode, the relative difference in energies
between 2L and graphite is much more important with LJ
(∼3 × 10−3) than with KC (∼2 × 10−4).

Subsequently, we shall discuss the impact of the choice of
interlayer potential on phonon lifetimes with respect to the
number of layers N . In Figs. 7(a) and 7(b) we present this
comparison for the interlayer mode lifetimes. It shall first
of all be noted that the shear mode spectral energy density
(SED) peaks obtained from kVACS exhibit a poor Lorentzian
shape and therefore the lifetimes τ

ph-ph
C (T ) calculated with LJ

have large uncertainties, but are nonetheless presented for rea-
sons of consistency. The LJ results [Fig. 7(a)], however, also
demonstrate that for the shear mode τ ph-ph(T ) is, within the
uncertainty of the fitting, practically unaffected by N , as was
also seen with KC. In terms of absolute values, however, the
LJ potential systematically underestimates lifetimes by a fac-
tor of 2 compared to KC. As for the LBM lifetimes [Fig. 7(b)],
again LJ gives systematically underestimates τ

ph-ph
LBM (T ) and

(a)

(b)

(c)

(d)

FIG. 6. The calculated temperature dependence ω(T ) of phonon energies for the (a) shear, (b) breathing, (c) ZO, and (d) G modes in 2L
(squares) and graphite (circles), using KC (black symbols) and LJ (red symbols) as interlayer potentials.
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(a)

(b)

(c)

(d)

FIG. 7. The calculated temperature dependence τ ph-ph(T ) of phonon lifetimes for the (a) shear, (b) breathing, (c) ZO, and (d) G modes
in 2L (full squares) and graphite (full circles), using KC (black symbols) and LJ (red symbols) as interlayer potentials. For the G mode, the
experimental data for graphite from Chatzakis et al. [41] are also presented (hollow circles). Dashed lines connecting points are b splines
as visual guides. The missing points correspond to FWHM’s that are below the resolution limit of �ω = 0.1 cm−1, which results in a
τmax ≈ 50 ps.

predicts that for graphite and 2L the LBM lifetimes have
practically the same value.

Finally, we shall focus on the comparison of the ZO and G-
mode lifetimes, presented in Figs. 7(c) and 7(d), respectively.
Beginning with the ZO mode, one may first of all observe that
τ

ph-ph
ZO (T ) for 1L and 2L are practically equal, independently

of the interlayer potential used. However, as for the case of
the interlayer modes discussed above, LJ gives lower values
than KC and predicts that the values for graphite are equal
to those of 1L and 2L, in contrast to KC, which predicts that
τBG

ZO > τ 1L
ZO, τ 2L

ZO.
Last, focusing on the G-mode lifetimes, one can make the

following observations: Both potentials give values that are in
general agreement with experiment. With respect to the num-
ber of layers N , both potentials predict a clear monotonous
increase of τ

ph-ph
G with N , although again LJ predicts lower

values. Also, for temperatures close to room temperature, the
LJ values for 1L and graphite agree closer with TRIARS ex-
perimental data by Chatzakis et al. for graphite [41], all giving
a value of approximately τ

ph-ph
G (300 K) ≈ 2 ps, while the KC

value for graphite is more than two times larger (5.6 ps). In
any case, these results confirm that with increasing the number
of layers, the G-mode lifetime also increases, although the
amount of increase depends on the type of interlayer potential
used.

To conclude this work, and in order to shed further light
on how the nature of the interlayer interaction affects the
lifetimes in FLG, we have performed further calculations on

the G-mode lifetime of bulk graphite, using the LJ potential
modified with a coupling strength factor χ , which simply
multiplies the LJ energy by χ . We have calculated the lifetime
for BG with χ ranging from 0 (noninteracting single layers)
to 10 (strongly interacting layers) and present it in Fig. 8.
There are two main points that can be made from these results.
First of all, increasing χ increases τG, and for large enough

FIG. 8. The effect of the coupling strength χ on the G-mode
lifetimes for BG calculated with the LJ potential. The horizontal line
(black) represents the calculated value for the 1LG. The vertical line
(red) represents the value χ = 1, which corresponds to the normal
coupling strength that gives τG = 3.6 ps. Dashed lines connecting
points are b splines as visual guides.
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χ > 2, the lifetime reaches a plateau of ∼4 ps, which could be
understood as the strong-coupling limit. Second, the increase
of the BG lifetimes with the coupling strength may indicate
that the increasing trend of τG with N is due to an increase of
the interlayer interaction strength with N , as with increasing
N each layer interacts with more nonadjacent layers (mainly
through the long-range part of the interlayer vdW interaction).

IV. CONCLUSIONS

This study presents a systematic analysis of the phonon
properties of few-layered graphene. We explore the effects
of the number of graphene layers, which has not been com-
prehensively studied computationally before, as well as the
temperature dependence of phonon properties, including the
calculation of the temperature dependence of the layer breath-
ing mode (LBM) energy. Furthermore, we investigate the
influence of the type of interlayer potential and the strength
of interlayer coupling on phonon properties. Our investiga-
tion focuses particularly on phonon lifetimes, which present
both experimental and computational challenges. The above
properties were studied with the kVACS method, for which
we have provided a theoretical proof.

The behavior of interlayer and intralayer phonon modes
exhibits notable differences. Interlayer phonon energies are
significantly more affected by the presence and type of in-
terlayer interactions. As for the lifetimes, both intralayer and
LBM lifetimes increase with the number of layers, whereas
for the shear mode they are unaffected by the number of
layers. One notable finding is that the Raman-active G-mode
phonon lifetime τG increases with the number of layers N ,
regardless of the type of interlayer potential. This dependence
is more pronounced with the use of the Kolmogorov-Crespi
potential, while the Lennard-Jones potential yields systemati-
cally lower values, potentially indicating increased scattering.
The effect of interlayer coupling strength on G-mode lifetimes
was also investigated. Increasing the LJ interlayer coupling
strength leads to an increase of τG for graphite, up to a certain
threshold value of the strength, where it reaches a plateau that
indicates a strong-coupling limit. This observation suggests
that the increase in τG with the number of layers may be
attributed to the increasing interlayer coupling strength with
the addition of more layers.

The Kolmogorov-Crespi potential was proven to be highly
effective in describing interlayer interactions for multilay-
ered graphene, particularly for the shear forces, which are
challenging to model with simpler potentials. It manages to
fairly reproduce the experimental shear and breathing mode
energies, although it tends to overestimate the lifetimes of the
Raman-active G mode in graphite by a factor of 2. Conversely,
the Lennard-Jones potential performs poorly in describing
C-C interlayer interactions. It fails to simultaneously capture
both shear and perpendicular interlayer forces. Particularly for
the shear mode, the LJ potential exhibits undesirable behavior,
including the prediction of extremely low values of energy,
which practically remained constant with temperature, and a
poor Lorentzian shape of the spectral energy density, leading
to significant uncertainties in phonon lifetimes.

We advocate for further research combining density func-
tional theory simulations with experimental studies to explore

the effect of the number of graphene layers on phonon life-
times due to phonon-phonon interactions. This includes DFT
simulations in multilayer graphene and TRIARS experiments
in high-quality suspended and monocrystalline FLG, in order
to isolate the anharmonic contribution to the phonon lifetime.
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APPENDIX A: THE k-SPACE VELOCITY
AUTOCORRELATION (kVACS) METHOD

The central quantity that is calculated with this method
is the velocity autocorrelation sequence (kVACS) denoted by
Z p

x (k, ti ). In order to arrive at its definition, we first define the
k-space velocity Fourier transform v

p
x (k, t ) given by

vp
x (k, t ) = 1√

N

N∑
l=1

vx
(
rp

l , t
)
e−ik·Rl , (A1)

where x denotes the Cartesian component, rp
l is a label for the

atom species labeled p inside the primitive unit cell labeled l ,
and vx(rp

l , t ) its respective velocity at time t . Also, Rl marks
the position of the primitive unit cell l within the computa-
tional cell. The kVACS Z p

x (k, ω) is then defined as the Fourier
transform of the correlation function

Z p
x (k, ω) =

∫
dτ eiωτ

〈
v∗p

x (k, τ )vp
x (k, 0)

〉
, (A2)

where the brackets 〈. . . 〉 denote time averaging, the asterisk
denotes complex conjugation, and τ is the correlation time.
It should be noted that normally the angular brackets denote
ensemble averages, which are not directly computable in MD
simulations. Instead we use time averages and since within the
timescales of the samples we obtained (in the order of 350 ps)
ergodicity is not guaranteed, we perform multiple independent
simulations which we average to obtain the final Z p

x (k, ω).
Therefore, a combination of time and ensemble averaging is
effectively performed. By adding the contributions of all atom
species p we obtain the polarized kVACS Zx(k, ω), and again
by summing over all polarizations x, we get the total

Ztotal(k, ω) =
∑

x

∑
p

mpZ p
x (k, ω). (A3)

In Appendix B we show that the kVACS is approximately
a superposition of Lorentzian peaks having central positions
and FWHM’s equal to the energies ωk, j and scattering rates
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2�k, j , respectively, of the phonon mode j at point k, given by

Ztotal(k, ω) =
∑

j

A j

(ω − ωk, j )2 + �2
k, j

(A4)

which is exactly the phonon spectral energy density (SED)
of the system. As it has been already mentioned before [46],
taking the velocity as a wide-sense stationary (WSS) random
process, we can apply the Wiener-Khintchine theorem [81]
to prove that Z p

x (k, ω) ∝ �
p
x (k, ω), where �

p
x (k, ω) is the

phonon SED, given by [53]

�p
x (k, ω) =

∣∣∣∣
∫

dt eiωtvp
x (k, t )

∣∣∣∣
2

:= ∣∣vp
x (k, ω)

∣∣2
. (A5)

Again, by summing over all Cartesian components x and
atom species p, we get the total �(k, ω) = ∑

x,p mp�
p
x (k, ω).

The conditions for a random process to be a WSS is to be
square integrable, having a stationary mean value and an au-
tocorrelation function that does not depend on the reference
time t0, which are in general fulfilled for the velocity of a
stationary system in thermal equilibrium. What is more, cal-
culating �x(k, ω) instead of Zx(k, ω) is computationally more
efficient, as the latter via Eq. (A2) is of order O(N2), while the
SED in Eq. (A5) is of order O(N logN ), with respect to the
total number N of sampled time points.

Finally, �x(k, ω) can be related to the phonon density of
states (DOS) g(ω) by the relation

g(ω) =
∑

x

∑
p

mp

∫
�p

x (k, ω)dk

= 1

3kBT

∑
x

∑
p

mp

∑
l

∣∣∣∣
∫

dt eiωtvx
(
rp

l , t
)∣∣∣∣

2

(A6)

whose proof can be found in Ref. [82].

APPENDIX B: PROOF THAT Zi(k, ω) ∝ 1
(ω−ωi,0 )2+�2

i

In this Appendix we shall prove that the kVACS Zi(k, ω)
is approximately a superposition of Lorentzian peaks having
a central positions and FWHM’s equal to the energies ωk, j

and scattering rates 2�k, j , respectively, of the phonon mode
(k, j) where k is the wave vector and j is the phonon branch.
First, we shall recall from basic quantum mechanics that the
velocity operator vl in the Heisenberg representation is given
by

ul (t ) := ei H
h̄ t ul e

−i H
h̄ t , (B1)

vl (t ) := pl (t )

m
= ∂ul (t )

∂t
= − i

h̄
[ul (t ), H], (B2)

where pl (t ) is the momentum operator, ul (t ) is the displace-
ment operator, and H is the Hamiltonian of the system. The
subscript index l is an index of atoms. As a corollary, the
spatial Fourier transform (FT) of the velocity operator is given

by

v(k, t ) :=
∑

l

vl (t )e−ik·Rl = − i

h̄
[ul (k, t ), H], (B3)

where Rl is the equilibrium position of atom l , and is not an
operator. Also, ul (k, t ) is the spatial FT of the displacement
operator ul (t ). Now, we shall focus on the treatment of the
main quantity Zxy(k, ω). As per Eq. (A2), it is defined as

Zxy(k, ω) =
∫

dτ eiωτ 〈v†
x (k, τ )vy(k, 0)〉

=
∫

dτ eiωτ 〈vx(−k, τ )vy(k, 0)〉, (B4)

where τ is the correlation time. The second equality results
from the relation A†(k, t ) = A(−k, t ) which is true for a
Hermitian operator Al (t ) depending on the atom index l . We
shall finally use the quantity Bxy(k, ω) defined as

Bxy(k, ω) =
∫

dτ eiωτ 〈ux(−k, τ )uy(k, 0)〉. (B5)

This quantity is closely related to the phonon propaga-
tor, which gives the phonon self-energy �k j (ω) = �k j (ω) +
i�k j (ω) [83]. In the seminal work by Maradudin and Fein,
it was proven that if the anharmonic terms in the crystal
potential are small enough to be considered as perturbations,
that is �k j, �k j  ωk j , then they can both be considered as
independent of ω, giving [25]

Bxy(k, ω) = 1

Nm

(
h̄

1 − e−β h̄ω

) ∑
j

[
e∗

x (k, j)ey(k, j)

ωk, j

]

× �k j

(ω − ωk j − �k j )2 + �2
k j

, (B6)

where N is the number of unit cells, m is the atomic mass,
ex(k, j) is the x coordinate of the eigenvector of the phonon
mode j at point k, β = 1/kBT , and kB is the Boltzmann
constant.

We shall now proceed to prove that Zxy(k, ω) =
ω2Bxy(k, ω). First, we recall that the thermodynamical av-
erage in the canonical ensemble of an operator X is given
by [83]

〈X 〉 = 1

Z

∑
a

eβEa〈a|X |a〉, (B7)

where Z is the partition function and |a〉 is the eigenstate of the
Hamiltonian with energy Ea. Therefore, starting from Eq. (B4)
and applying the resolution of identity, we have

Zxy(k, ω) = 1

Z

∑
a

eβEa
∑

β

∫
dτ eiωτ

× 〈a|vx(−k, τ )|β〉〈β|vy(k, 0)|a〉. (B8)

Now, focusing only on the integral of the second line in
Eq. (B8), if we expand the commutator of Eq. (B3) and apply
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the Hamiltonian on the eigenstates, we get(
− i

h̄

)2 ∫
dτ eiωτ 〈a|ux(−k, τ )H − Hux(−k, τ )|β〉〈β|uy(k, 0)H − Huy(k, 0)|a〉

=
(

− i

h̄

)2 ∫
dτ eiωτ 〈a|ux(−k, τ )|β〉〈β|uy(k, 0)|a〉[−(Ea − Eβ )2]

= −
[

i(Ea − Eβ )

h̄

]2 ∫
dτ eiωτ 〈a|ei H

h̄ τ ux(−k)e−i H
h̄ τ |β〉〈β|uy(k, 0)|a〉

=
(

Eβ − Ea

h̄

)2

〈a|ux(−k)|β〉〈β|uy(k)|a〉
∫

dτ ei(ω− Eβ −Ea
h̄ )t (B9)

= ω2〈a|ux(−k)|β〉〈β|uy(k)|a〉δ
(

ω − Eβ − Ea

h̄

)
. (B10)

As the integral in Eq. (B9) is a Dirac delta function, the
only nonzero terms in the integral of Eq. (B8) that survive
are those where ω = Eβ−Ea

h̄ , therefore, we can directly replace

( Eβ−Ea

h̄ )2 by ω2, obtaining Eq. (B10). From this point it is
straightforward to rewrite Eq. (B10) backwards as

ω2
∫

dτ eiωτ 〈a|ux(−k, τ )|β〉〈β|uy(k, 0)|a〉 (B11)

which is exactly the integral of Eq. (B8). Finally, as the ω2

factor stays outside the double summation
∑

a

∑
β , we have

that

Zxy(k, ω) = ω2
∫

dτ eiωτ 〈ux(−k, τ )uy(k, 0)〉

= ω2Bxy(k, ω). (B12)

Therefore, we have proven that relation for the quantum-
mechanical correlation functions (CF). The usual “recipe”
to obtain the classical CF from the quantum mechanical CF
is to apply the limit h̄ → 0 [84]. By applying this limit to
the expression for Bxy(k, ω) in Eq. (B6), we obtain for the
prefactor

lim
h̄→0

h̄

1 − e−β h̄ω
= lim

h̄→0

h̄

1 − (1 − β h̄ω)
= 1

βω
. (B13)

Another important point to be mentioned is the behavior of
the self-energy components �k j (ω) and �k j (ω) in the limit
h̄ → 0. As was pointed out in Eqs (5.11a) and (5.11b) in
Maradudin and Fein [25], this limit is equivalent to taking the
limit T → ∞ and is found to be finite and nonzero. Therefore,
combining Eqs. (B6), (B12), and (B13), we can finally write

Zxy(k, ω) = ωkBT

Nm

∑
j

[
e∗

x (k, j)ey(k, j)

ωk j

]

× �k j

(ω − ωk j − �k j )2 + �2
k j

(B14)

which is not exactly Lorentzian, as it has a prefactor that de-
pends on ω. However, as per the assumption that �k j, �k j 
ωk j , the prefactor is varying much more slowly than the
Lorentzians, which almost behave as delta functions, there-
fore, we can approximate it as a constant ω ≈ ωk, j , finally

getting

Zxy(k, ω) = kBT

NM

∑
j

�k je∗
x (k, j)ey(k, j)

(ω − ωk j − �k j )2 + �2
k j

, (B15)

which is now a superposition of Lorentzians, with positions
(ωk j + �k j ) and FWHM 2�k j as was to be proven.

As a side note, the above derivation was done for a
crystal having a single-atom species in its unit cell. It is
straightforward to extend this to multiple species, by simply
replacing m → mp and ex(k, j) → ep

x (k, j), where now p is
an index to atom species. Then, by remembering that for
each phonon mode (k, j) the eigenvectors are orthonormal∑

x,p ep
x (k, j)e∗p

x (k, j) = 1, we can write Ztotal(k, j) as

Ztotal(k, ω) =
∑
x,p

mpZxx(k, ω)

= kBT

N

∑
j

�k j

(ω − ωk, j − �k j )2 + �2
k j

, (B16)

where we have used the correspondence between Eqs. (A3)
and (B4) as Zx(k, ω) = Zxx(k, ω).

APPENDIX C: KOLMOGOROV-CRESPI (KC)
INTERLAYER POTENTIAL

The KC potential is given by [61]

V (ri j, ni, n j ) = e−λ(ri j−z0 )[C + f (ρi j )+ f (ρ ji )] − A

(
ri j

z0

)−6

,

ρ2
ji = r2

i j − (niri j )
2,

f (ρ) = e−(ρ/δ)2
∑

C2n(ρ/δ)2n, (C1)

where ni is the local normal to the sp2 plane in the vicinity
of atom i, pointing to the direction of the pz orbitals of atom
i and ρ ji the transverse distance of the pz orbitals of atoms i
and j belonging to different layers. C, λ, z0, A, δ, and C2n are
fitting parameters. Upon reparametrization, the KC potential
has been shown to be able to reproduce very accurately the
interlayer binding energy curve and sliding energy surfaces of
bilayer graphene [67].
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