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Impact of potential and temperature fluctuations on charge and heat transport in quantum Hall
edges in the heat Coulomb blockade regime
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We present a broad study of charge and heat transport in a mesoscopic system where one or several quantum
Hall edge channels are strongly coupled to a floating Ohmic contact (OC). It is well-known that charge-current
fluctuations emanating from the OC along the edge channels are highly susceptible to the OC charge capacitance
in the heat Coulomb blockade regime (an impeded ability of the OC to equilibrate edge channels). Here, we
demonstrate how potential and temperature fluctuations due to finite OC charge and heat capacities impact the
heat-current fluctuations emitted from the OC. First, by assuming an infinite OC heat capacity, we show that the
output heat-current noise is strongly dependent on the OC charge capacitance, following from a close relation
between one-dimensional charge and heat currents. When also the OC heat capacity is finite, an interplay of
potential and temperature fluctuations influences the heat transport. Concretely, we find that the effect of the
charge capacitance on heat transport manifests in terms of a strongly increased energy relaxation time in the
heat Coulomb blockade regime. Furthermore, we find expressions for a broad set of output observables, such
as charge and heat auto- and cross correlations, as functions of input and OC fluctuations, depending on the
relation between charge and energy relaxation times compared to the frequency of fluctuations and inverse (local)
temperatures as well as on the number of edge channels attached to the OC. Finally, we show that a finite OC
heat capacity transforms the full counting statistics of the output charge from Gaussian to non-Gaussian. Our
findings provide opportunities to experimentally probe and harness the quantum nature of heat transport in
strongly coupled electron circuits.
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I. INTRODUCTION

Manipulation and detection of heat currents in nanoscale
circuits have in recent years enabled detailed experimental
investigations of the quantum nature of heat conduction [1].
These advancements provide plenty of opportunities for both
fundamental discovery, e.g., quantum bounds on heat and in-
formation transfer [2], as well as for developing quantum tech-
nologies, such as nanoscale heat-to-work conversion [3,4].

A versatile platform for this scope in the context of electron
transport is a small, floating Ohmic contact (OC) coupled to
one or several one-dimensional (1D) chiral, ballistic quantum
Hall (QH) edge channels [5–7], see Fig. 1. Such a floating
“probe” [6,8] has previously been used to study a wide range
of fascinating quantum phenomena, both theoretically and
experimentally, such as equilibrium and out-of-equilibrium
dynamical Coulomb blockade [9,10], heat Coulomb blockade
[11,12], electron state teleportation [13,14], Luttinger liquid
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behavior [15–17], charge fractionalization [18,19], Coulomb
mediated heat drag [20], and tunable multichannel Kondo
effects [21,22]. It has also been proposed as a probe for
temperature fluctuations [23–26].

At the heart of these studies is a key parameter of the
single edge channel-OC system, namely, the RC time, τC ≡
RqC, where C is the total OC charge capacitance and Rq ≡
2π/e2 is the resistance quantum (in units where the reduced
Planck’s constant h̄ = 1). The RC time is the characteristic
timescale on which the OC responds to fluctuations of the
charge and it is closely related to the OC charging energy as
EC ≡ e2/(2C) = πτ−1

C . At low temperatures, the combination
of chiral electron transport and a sufficiently short RC time
leads to the OC acting as a highly sensitive bandpass filter for
the edge channels.

Whereas most previous works on the edge channel-OC sys-
tem focused on transport of average charge and heat currents,
as well as on charge-current fluctuations, far less understood
are the heat-current fluctuations [1,20,24–34] emitted from
the OC. Heat-current fluctuations play a key role for, e.g.,
the efficiency and precision in nanoscale heat transport and
thermoelectric conversion [3,35]. To understand how this fun-
damentally interesting system, composed of edge channels
and OC, performs with respect to fluctuations of heat transport
in the quantum regime, detailed studies are needed.

In this paper, we meet this demand and present an ex-
tensive theoretical analysis of heat and charge transport
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impacted by OC potential and temperature fluctuations. To
achieve this, we determine the combined influence of τC

and a second characteristic parameter of the single edge
channel-OC system, namely, the energy relaxation time τE ≡
CE [TOC(t )]/(κ0TOC(t )). Here, CE [TOC(t )] is the OC heat ca-
pacity [which depends on the temporal OC temperature
TOC(t )] and κ0TOC ≡ (π/6)TOC is the heat conductance quan-
tum (in units where h̄ = 1 and the Boltzmann constant kB =
1). Most previous works assumed implicitly ωτE � 1, where
ω is the measurement frequency; a regime which corresponds
to the situation where effects from the energy relaxation time
are fully neglected; see Refs. [25,26] for some exceptions.
When considering both OC potential and temperature fluctu-
ations, but only to leading order, the OC potential fluctuations
and the emitted OC charge-current fluctuations are determined
solely by the injected charge-current fluctuations and by τC .
Likewise, the OC temperature fluctuations and the emitted OC
heat-current fluctuations are determined only by the injected
heat-current fluctuations and by τE . In other words, the emit-
ted charge- and heat-current fluctuations are fully determined
by two separate OC parameters [25,26], i.e., τC , respectively,
τE . An important question that we address in the present paper
is what happens when terms beyond leading order in the OC
potential and temperature fluctuations and their interplay are
included in the charge- and heat-current noises.

Our key results are the following: (i) The heat-current
fluctuations emanating from the OC are, in fact, highly in-
fluenced by the OC RC time τC even in the limit of infinite
OC energy relaxation time, τE → ∞. This result follows from
the close connection between the charge and heat currents
carried by 1D chiral edge channels [see Eq. (4) below]. The
τC dependence in the heat current arises at second order in
the OC potential fluctuations. This feature implies that the
heat Coulomb blockade effect, i.e., a strong suppression of the
equilibration between the edge channel and the OC, is observ-
able not only in charge-current noise measurements [11] but
also in the low-frequency output heat-current noise. (ii) The
output heat-current noise provides an alternative observable
for accessing an effective temperature of the output distri-
bution from the OC. This alternative effective temperature
differs from conventional ones based on zero- and finite-
frequency charge noise measurements. We show that this
discrepancy provides a unique way to study relaxation effects
along the edge channels. (iii) Keeping τE finite (i.e., finite OC
heat capacity), we find that both the output heat-current fluc-
tuations and the OC temperature fluctuations are determined
by a combination of τC and τE . This combination results in
similar bandpass filter effects [see Eqs. (54) below], as the
ones that are at the origin of the heat Coulomb blockade [see,
e.g., Eq. (13) below]. Moreover, we identify the emergence of
an energy relaxation timescale, τ̃E � τE , which depends on
the charge relaxation timescale τC . This interplay implies that
in the heat Coulomb blockade regime, the heat-current fluc-
tuations emanating from the OC become strongly suppressed.
This timescale emerges when we take into account the OC
potential fluctuations exactly, and incorporate the effects of
OC temperature fluctuations to linear order, thereby extend-
ing the works in Refs. [25,26]. (iv) For the multichannel-OC
setup, we show that combinations of charge- and heat-current
auto- and cross correlations provide straightforward access to

FIG. 1. Schematics of a floating Ohmic contact (OC, blue)
connected to a single chiral, one-dimensional quantum Hall edge
channel (dark gray arrow). The OC sits on the boundary (black,
dotted line) between the quantum Hall bulk region (turquoise) and
a fully depleted region (light gray). The edge channel emanates from
a large metallic contact (yellow), characterized by the voltage Vin and
the temperature Tin. Fluctuations carried by the edge channel induce
potential and temperature fluctuations, �VOC, respectively, �TOC, in
the OC. In turn, these quantities produce charge-current δIout and
heat-current δJ tot

out fluctuations in the outgoing channel.

potential- and temperature-fluctuation correlations in the OC,
quantities that are highly challenging to extract in a single-
channel-OC setup. (v) A finite energy relaxation time in the
multichannel OC system changes the full counting statistics
(FCS) of the emitted charges from Gaussian to non-Gaussian
due to the OC temperature fluctuations.

The remainder of this paper is organized as follows: In
Sec. II A, we identify a realistic hierarchy of the characteristic
OC timescales. This motivates the use of a Langevin ap-
proach, which is also presented in that section. In Sec. III, we
study the single-channel setup in Fig. 1 and analyze the charge
and heat currents and their fluctuations. We also define and
discuss effective temperatures of the outgoing, and generally
out-of-equilibrium, edge channel. In Sec. IV, we extend our
analysis to multiple edge channels. Finally, in Sec. V, we
analyze the full-counting statistics of charge transport in pres-
ence of temperature fluctuations. Some detailed calculations
are delegated to Appendices A–C. Throughout the paper, we
use units where kB = h̄ = h/(2π ) = 1.

II. SETUP AND FORMALISM

A. Ohmic contact setup and timescales

We consider the system in Fig. 1, consisting of a floating
OC connected to a single quantum Hall (QH) edge channel.
This channel emanates from another large metallic contact,
taken as an ideal, large Fermi reservoir (or “source”) of elec-
trons. The voltage and temperature of this reservoir are Vin

and Tin, respectively, both with negligible fluctuations. Unless
stated otherwise, we take in this paper Vin = 0, which here
physically amounts to having no externally applied voltage
bias in the device. Since the connected edge channel is chiral,
it has one incoming and one outgoing segment or “branch”
with respect to the OC. The charge and heat currents car-
ried by the incoming channel may induce sizable fluctuations
of the OC electrical potential, VOC(t ) ≡ VOC + �VOC(t ), and
the OC temperature, TOC(t ) ≡ TOC + �TOC(t ), due to the
OC’s finite charge relaxation time, τC , and energy relaxation
time, τE .
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TABLE I. Summary of relevant timescales, their impact on the observables treated in this work, and reference to key equations. FCS
abbreviates full counting statistics, see Sec. V.

Timescale Typical magnitude Impact Key equations

τC 10 − 100ps [11,36] Sout (ω), Jout, SJ
out (ω) (13), (21), (30)

κ , τ̃E , ST
OC(ω), FCS (41), (50), (57), (108), (113)

τe−e 200 ps–100 ns [37–41] Timescale of OC thermalization (1)
τE 10–100 µs [36] SJ,tot

out (ω), τ̃E , ST
OC(ω), FCS (54b), (50), (57), (108), (113)

τe−ph 100 µs at T ≈ 20 mK [42,43] Largest timescale, phonons negligible (1)

We estimate these relaxation times as follows. The charge
relaxation rate is related to the charging energy, EC = πτ−1

C .
Typically, the charging energy EC , namely, the energy re-
quired to add an electron to the OC, scales with the OC charge
capacitance C via D/L2, where L is the typical OC size and D
is the distance to the back gate. With this relation, the charging
energy is of the order EC ∼ e2/C ∼ e2D/(εL2) � 0.1meV ≈
1K, for a typical semiconducting dielectric constant ε ≈ 10.
By contrast, the energy relaxation time, τE , is proportional to
the OC inverse level spacing, δE−1, when the OC is viewed
as a 3D metallic island: τE = CE [TOC(t )]/(κ0TOC) ∼ δE−1,
where CE [TOC(t )] is the OC heat capacity. See Appendix A
for the derivation of this relation. We further estimate the
level spacing of a typical micrometer-sized OC to δE ≈ 0.1 −
1μK. To achieve a larger level spacing, say δE ∼ 1 K for a
3D metallic island with Fermi wave length λF ∼ 10 Å, de-
mands an OC size of L ∼ 10 nm. For a 2D OC, a similarly
large level spacing is reached for L ∼ 100 nm. The above
estimates are consistent with the charging energy EC ≈ 0.3 K
and level spacing δE ≈ 0.2 μK, reported [11] for micrometer-
sized OCs. This level spacing is thus much smaller than the
typical measurement temperature in the 10 mK range.

The estimates for τC and τE , together with typically mea-
sured mesoscopic timescales of electron-electron thermaliza-
tion, τe−e [37–41,44], and electron-phonon thermalization,
τe−ph, at cryogenic temperatures (see Table I) motivate us in
this paper to assume the following hierarchy, or separation, of
timescales:

τC � τe−e � τE � τe−ph. (1)

Here, the first inequality, τC � τe−e states that the response of
the OC’s electrical potential VOC(t ) is faster than the electron
thermalization τe−e. This has the important consequence that
the OC is in an out-of-equilibrium state on the timescale of the
charge-response—a crucial ingredient to the heat Coulomb
blockade effect of interest in this paper. Second, τe−e � τE

states that the emitted energy fluctuations from the OC are
given by a local and time-local, thermal state at temperature
TOC(t ) at the timescale of energy fluctuations. This allows us
to treat fluctuating temperatures. We further assume that the
electron-phonon relaxation time τe−ph is the largest relevant
timescale [42]. This implies that electronic heat exchange
with phonons can be neglected, which is in line with relevant
experiments [36,45]. If the electron-phonon relaxation time is
sizable, phonons enhance the system’s heat conductance [26]
[see also Eq. (5) below].

As we discussed above, the separation τC � τE is reason-
able since a very short energy relaxation time τE becomes
relevant only for an extremely small OC, and consequences

of this can be detected only at very high measurement fre-
quencies. However, in the model we present in this paper,
considering the opposite limit τE � τC → ∞ may be relevant
in the exotic but intriguing case where only fully charge-
neutral particles (e.g., neutral modes in the fractional QH
regime [46–48]) are injected into the OC. We postpone studies
of this possibility to the future.

Estimates for all experimentally relevant timescales, their
corresponding energy scales, and their impact on the studied
observables in this paper are summarized in Table I.

B. Charge and heat dynamics—Langevin approach

The hierarchy (1), together with the fact that temperatures
TOC, Tin � τ−1

E , motivates us to use a Langevin approach
to study the edge channel-OC system. Otherwise, for TOC

of similar magnitude as the OC level spacing, an accurate
description demands instead a fully coherent quantum me-
chanical treatment, along the lines of Ref. [25].

Our Langevin analysis of the system in Fig. 1 starts by
considering charge conservation, which establishes the fol-
lowing relation between the temporal OC charge Q(t ), and the
incoming and outgoing edge charge currents Iin(t ) and Iout (t ),
respectively:

dQ(t )

dt
= Iin(t ) − Iout(t ). (2)

Equation (2) is nothing but Kirchoff’s current law describing
the rate of change of the OC charge in terms of incoming
and outgoing currents: The output charge current fluctuates
with contributions from two sources: First, there are fluctu-
ations coming from the fluctuating OC electrical potential
�VOC(t ) ≡ �Q(t )/C. Second, fluctuations are induced also
due to the local OC temperature, which we model as a thermal
equilibrium Langevin source, denoted δIOC(t ) [its correlations
are given in Eqs. (14) below]. We thus have

δIout(t ) = �Q(t )

τC
+ δIOC(t ). (3)

By definition, the fluctuations of any quantity, in particular,
here of the OC charge as well as the thermally induced current
vanish on average: 〈δIOC(t )〉 = 0 = 〈�Q(t )〉.

Next, we note that for a single 1D channel with linear
energy dispersion, which is an appropriate description at suf-
ficiently low energy [5], the heat-current operators, J , and
charge current operators, I , are generically related by the
identity

J = Rq

2
I2. (4)
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This identity is most easily derived with the bosonization
technique (see Appendix B) and holds in standard fermionic
scattering theory [49] when the energy-dependence of the
velocity of scattering states is neglected. We would like to
emphasize that Eq. (4) does not involve normal ordering (see,
e.g., Ref. [50]), which we instead take care of when we com-
pute observables. Crucial for this work is that the identity
(4) permits us to exactly compute the average heat current
carried by the chiral channels, its charge-current noise and its
heat-current noise, by using only charge-current correlation
functions [51].

However, to account for heat transport in the presence of
OC temperature fluctuations, the relation (4) is not sufficient,
and we also need to consider fluctuations in the OC energy
U (t ). We therefore complement Eqs. (2)–(4) with energy con-
servation

dU (t )

dt
= J tot

in (t ) − J tot
out(t ). (5)

Here, J tot
in (t ) and J tot

out (t ) are the total, time-resolved incom-
ing and outgoing heat currents in the edge channels. Note
that a non-negligible phonon contribution would add to the
right-hand side of Eq. (5). The phonon contribution scales
as ∼T p

OC for p > 2. For low temperatures, we assume this
phonon contribution to be negligible (see experimental results
underlining this assumption for temperatures TOC � 70 mK in
GaAs [36] and for TOC � 60 mK in graphene [45]).

We now exploit the separation of timescales in Eq. (1). This
permits us to write the following Langevin equation for the
total output heat-current fluctuations:

δJ tot
out(t ) = �U (t )

τE
+ δJout(t ), (6)

which thus have two distinct contributions. The fluctuations
in the internal energy, in the presence of OC temperature
fluctuations and a finite OC heat capacity, emerge on the
timescale τE that is much longer than the scale governing the
charge fluctuations, see Eq. (1). The energy fluctuations can
be written within the Langevin approach as

�U (t ) ≈ CE [TOC]�TOC(t ), (7)

where we kept �TOC only to linear order [52] and thus take the
heat capacity CE [TOC(t )] ≈ CE [TOC], i.e., it depends only on
the average OC temperature TOC. The impact of higher orders
of �TOC(t ) are negligible due to the large τE . Combining
Eqs. (6) and (7), we obtain a linearized Langevin equation for
the total output heat-current fluctuations as

δJ tot
out(t ) = κTOC�TOC(t ) + δJout(t ). (8)

Here, κTOC ≡ CE [TOC]/(τE TOC) × TOC is the output heat
conductance (to be computed below). The heat-current fluc-
tuations δJout(t ) are directly related via Eq. (4) to the total
charge-current fluctuations in Eq. (3) and take place on the
timescale τC , which is much shorter than the energy relaxation
time τE .

The heat-current fluctuations in Eqs. (6) and (8) are hence
the fluctuations with respect to a heat current obtained from a
double averaging procedure, δJ tot

out(t ) ≡ J tot
out(t ) − 〈〈J tot

out(t )〉〉E ,
namely, by averaging with respect to the (fast) charge fluctua-
tions, denoted by simple brackets as 〈· · · 〉, and with respect to

the (slow) temperature fluctuations, denoted as 〈· · · 〉E . With
this averaging procedure, the average rate of change of U
equals the heating/cooling power applied to the OC, e.g.,
Joule heating or cooling by phonons.

III. SINGLE EDGE CHANNEL DYNAMICS

A. Charge current, charge-current noise, heat current, and
effective output temperature

For completeness, in this subsection we follow Ref. [53]
closely, and recapture the steps to determine the output charge
current and charge-current noise in the standardly considered
limit where τE → ∞. We discuss how one can determine
the average heat current of the generically out-of-equilibrium
output channel, define a corresponding effective output tem-
perature, and show how it is affected by the heat Coulomb
blockade.

1. Output charge current and charge-current noise

To solve the output charge-current dynamics, Eqs. (2) and
(3), it is convenient to do the analysis in frequency space,
Iout (ω). The solution takes the form of a linear combination
of the input and OC currents:

Iout (ω) =
∑

p=in,OC

Tp(ω)Ip(ω), (9)

Tin(ω) = 1 − TOC(ω) = [1 − iωτC]−1. (10)

Here, the frequency-dependent coefficients Tp(ω), with p ∈
{in, OC}, depend also on the RC time τC , and can be viewed
as scattering amplitudes of bosonic density fluctuations [54]
carried along the chiral edge channel and by excitations inside
the OC; see Appendix B for details. Charge current conserva-
tion together with Eqs. (9) and (10) leads to equal average
input and output charge currents:

Iout (ω = 0) = Iin(ω = 0). (11)

The finite-frequency output charge-current noise Sout (ω)—
here, presenting its nonsymmetrized form for compactness—
is defined as the two-point correlation function of the output
fluctuations δIout (ω) ≡ Iout (ω) − 〈Iout (ω)〉:

〈δIout (ω)δIout (ω
′)〉 ≡ 2πδ(ω + ω′)Sout (ω). (12)

The OC Langevin source, δIOC(t ), results from the thermally
induced uncertainty in the OC occupation and is hence de-
scribed by a local equilibrium. Therefore, all averages 〈...〉
are taken with respect to the product of the thermal input
state (note that the input channel emanates from a large Fermi
reservoir in equilibrium) and the thermal OC Langevin source
state. By combining the output-current solution (9) and the
definition for the charge-current noise (12), one finds the out-
of-equilibrium finite-frequency charge-current noise

Sout (ω) =
∑

p=in,OC

|Tp(ω)|2Sp(ω) (13a)

= Sin(ω) + SOC(ω)ω2τ 2
C

1 + ω2τ 2
C

(13b)

→
{

Sin(ω) ωτC � 1
SOC(ω) ωτC � 1,

(13c)
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where Sp(ω) is the charge-current noise of subsystem p, given
in the equilibrium form as

〈δIp(ω)δIp(ω′)〉 ≡ 2πδ(ω + ω′)Sp(ω), (14a)

Sp(ω) = ωR−1
q

1 − e−ω/Tp
. (14b)

Here, Tp is the input channel temperature for p = in and it is
the OC temperature for p = OC. It follows from the scattering
amplitude definitions (10) that

∑
p=in,OC

|Tp(ω)|2 = 1, (15)

which reflects charge conservation. It is important to point
out that Sout (ω) in Eqs. (13) is generally not in equilibrium
form (14) but will be so if either Tin = TOC or in the limits
ωτC → 0,∞, to be discussed further in Sec. III B 3 below.
Equations (13) thus indicate that the OC acts as a bandpass
filter for the chiral edge channel, i.e., the value of the param-
eter ωτC determines whether it is the input channel or the OC
that dominates in the output noise contribution.

2. Effective output temperature and output
heat current

The output charge-current noise (13) can be used to estab-
lish an effective temperature of the output channel, which is
generally not in thermal equilibrium. One possibility would be
to parallel the Johnson-Nyquist relation [55,56] and define a
Johnson-Nyquist temperature T JN

out ≡ RqSout (0) with Eqs. (13).
Here, taking the zero-frequency limit amounts to considering
frequencies ωτC, ω/Tp � 1, leading to

T JN
out = RqSout (0) = Rq

∑
p=in,OC

Tp(0)Sp(0)

= Rq
(
R−1

q Tin + 0
) = Tin. (16)

Physically, this result is a consequence of the OC being float-
ing and that only a single, chiral edge channel is connected.
Charge conservation then demands that the low-frequency
output fluctuations must equal the low-frequency input fluc-
tuations [see Eq. (11)] which are indeed characterized by
Tin. In other words, charge-current fluctuations averaged over
very long timescales do not see effects of the OC charge
capacitance C. As an effective temperature taking into account
OC effects, Eq. (16) is hence not a very useful quantity. Note,
however, that when taking the limit ω/Tp � 1, but ωτC � 1
in Eqs. (13), one finds instead T JN

out = RqSOC(0) = TOC [57].
Physically, this special limit means that for an infinite OC
charge capacitance, any information carried by the input edge
state, such as its injection temperature, is lost upon particles
entering and then exiting the OC. The OC then acts like a
proper thermal reservoir for the output channel.

The shortcoming of the Johnson-Nyquist temperature (16)
demands an alternative definition of the effective output tem-
perature, that captures features of the noise over a broader
frequency range. This can be achieved by considering the
following equilibrium relation between the 1D heat current

[2] Jeq and the temperature T :

Jeq =
∫ ∞

0

dω

2π
ωnB(ω) = Rq

4π

∫ ∞

−∞
dω

[
S(ω) − ωθ (ω)

Rq

]

= πT 2

12
≡ κ0

2
T 2. (17)

Here, the term ωθ (ω)/Rq, where θ (ω) is a step function, can
be interpreted as a subtraction of vacuum fluctuations (the
T = 0 contribution):

Sp(ω) = R−1
q ω

1 − e−ω/Tp
→ ωR−1

q θ (ω). (18)

The edge channel heat current is thereby expressed via the
thermal energy carried by the bosonic fluctuations, given in
terms of the Bose-Einstein distribution:

nB(ω) ≡ 1

exp(ω/T ) − 1
. (19)

In the second equality in Eq. (17), one further uses that nB(ω)
is related to the equilibrium noise (14) as

ω[1 + nB(ω)] = RqS(ω). (20)

The relation (17) holds in equilibrium for any Abelian 1D
chiral channel, charged or not, fractional or not, since the heat
current does not depend on Rq.

One can now define an effective temperature as the analo-
gous expression of (17) but for a generic charge-current noise
(i.e., not requiring equilibrium). For the setup in Fig. 1, this
yields the output heat current as the integral over the output
charge-current noise:

Jout = Rq

4π

∫ ∞

−∞
dω

[
Sout (ω) − ωθ (ω)

Rq

]
≡ κ0

2
T 2

out. (21)

For the output charge-current noise (13), the sum rule (15)
ensures convergence of the integral in Eq. (21). Moreover,
Eq. (21) is consistent with the heat current obtained by in-
tegrating the, generally out-of-equilibrium, output electronic
distribution; see Appendix C.

To explicitly compute Tout for the system in Fig. 1, one
thus inserts the output noise (13) into the integral (21) and
substitutes the scattering amplitudes (10) and the equilibrium
noises (14). After a series of algebraic manipulations, this
yields

T 2
out = T 2

OC + 6

τ 2
Cπ2

[
F

(
1

τCTin

)
− F

(
1

τCTOC

)]
, (22)

which is expressed in terms of the dimensionless integral
function

F (a) ≡
∫ ∞

0

z

z2 + a2

1

ez − 1
dz

= 1

2

[
ln

( a

2π

)
− π

a
− ψ

( a

2π

)]
. (23)

Here, ψ (z) is the logarithmic derivative of the gamma func-
tion. Two useful limits of F (a) are

F (a � 1) ≈ π2

6a2
− π4

15a4
, (24a)

F (a � 1) ≈ π

2a
. (24b)
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Equation (22) demonstrates that Tout depends explicitly on the
competition between the RC time τC and the thermal time
scales set by the input and OC temperatures Tin and TOC.

3. Single-channel heat Coulomb blockade

The implication of Eq. (22) is most conveniently analyzed
in two important limits: (i) a very cold OC, TOC � Tin, and
(ii) a very cold input channel Tin � TOC. Taking these two
limits amounts to setting τCTp → 0, for p = oc and p = in,
respectively, in Eq. (22). For configuration (i), by using the
asymptotics (24), we thus find

Tout

Tin
≈

{√
1 − 3π2(τCTin )2/5 τCTin � 1

√
3/(πτCTin ) τCTin � 1.

(25)

Here, the small correction to 1 for τCTin � 1 has not been
previously reported, and thus extends the result in Ref. [53].
From Eq. (25), we see that for sufficiently small τCTin, the
effective temperature of the output signal approaches the in-
put temperature, Tout = Tin. It hence seems that the electron
distribution of the input channel does hardly interact with the
OC. This shows how the OC acts as a bandpass filter, resulting
in a type of ‘teleportation effect [13,14], hindering a (full)
equilibration of the input signal with the OC distribution. By
contrast, for large τCTin, the input and output temperatures
become related as Tout ∝ √

Tin. The limit Tout = TOC = 0 is
then furthermore reached when τCTin → ∞ for fixed input
temperature Tin, namely, when the OC charge response be-
comes very slow and the equilibration becomes efficient.

For configuration (ii), by using the asymptotic limits (24)
for the output temperature of Eq. (22), we instead find that

Tout

TOC
≈

⎧⎨
⎩

√
2
5πτCTOC τCTOC � 1

√
1 − 3/(πτCTOC) τCTOC � 1.

(26)

Also here, the asymptotic limit for τCTOC � 1 has not been re-
ported before and it extends the results in Ref. [53]. Again, the
ability of the OC to equilibrate the cold input state is impeded
(i.e., one finds Tout → Tin → 0) due to the bandpass filter or
teleportation effect, in this case for sufficiently small τCTOC.
For large τCTOC, one finds Tout ≈ TOC, so the equilibration
instead is very efficient.

We plot the limits (25) and (26) together with the full ex-
pression (22) in Figs. 2(a) and 2(b), respectively. The impeded
equilibration effect that is displayed here lies at the heart of the
heat Coulomb blockade effect [14]; see also Sec. IV B for the
multichannel case, below.

B. Impact of potential fluctuations on the heat-current noise

We now go beyond the analysis in Sec. III A, most of
which was previously reported in Ref. [53], and investigate
the heat-current fluctuations of the output channel and how
they are impacted by the heat Coulomb blockade effect. We
first consider the commonly studied regime, where τE → ∞
and TOC is hence fixed.

(a)

(b)

O
C

OC

FIG. 2. (a) Blue, solid line: Ratio of output and input effective
temperatures, Tout/Tin, vs τCTin. The dashed, gray and black lines are
the analytically obtained limits (25). The lines are shown in the limit
of a cold OC, τCTOC � 1. (b) Blue, solid line: Ratio of output and
OC effective temperatures, Tout/TOC, vs τCTOC. The dashed, gray, and
black lines are the analytically obtained limits (26). The lines are
shown in the limit of a cold input channel, τCTin � 1.

1. Relation between finite-frequency charge-
and heat-current noise

Our starting point here is the observation that, for charge-
current noise, S(ω), and heat-current noise, SJ (ω), defined as

〈δI(ω)δI (ω′)〉 ≡ 2πδ(ω + ω′)S(ω), (27a)

〈δJ(ω)δJ (ω′)〉 ≡ 2πδ(ω + ω′)SJ (ω), (27b)

the charge-heat relation (4) implies the following relation (see
Ref. [20] for a derivation):

SJ (ω) = R2
q

4π

∫ ∞

−∞
dω1S(ω1)S(ω − ω1). (28)

Performing the integral for S(ω) in the equilibrium form (14)
gives

SJ (ω) = ω

48π
[(2πT )2 + ω2]

(
1 + coth

( ω

2T

))
, (29)

in agreement with the equilibrium heat-current noise derived
in Ref. [29]. The two important limits of SJ (ω) are for ω/T �
1 and ω/T � 1, producing SJ (ω) ∼ T 3 and SJ (ω) ∼ |ω|3,
respectively.

The relation (28) is valid for a chiral 1D edge channel with
linear dispersion. Since Eq. (4) is an operator identity, this
identity and, in turn, Eq. (28) hold for any edge channel—
and, in particular, for the output channel. We thus obtain the
output heat-current noise by inserting into (28) the output
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charge-current noise Sout (ω) from Eqs. (13) and find

SJ
out (ω) = R2

q

4π

∫ ∞

−∞
dω1

∑
p=in,OC

|Tp(ω1)|2Sp(ω1)

×
∑

k=in,OC

|Tk (ω − ω1)|2Sk (ω − ω1). (30)

For the remainder of this subsection, we focus on the low-
frequency heat-current noise SJ

out (0), i.e., frequencies ω �
Tin, TOC, τ−1

C . As a first check, we consider the global equilib-
rium case for which Tin = TOC = T . Using these parameters
in the equilibrium charge-current noise (14) and the sum rule
(15), Eq. (30) reduces to

SJ
out (0) = 1

4π

∫ ∞

−∞
dω1

ω1

1 − e−ω1/T

−ω1

1 − eω1/T
= κ0T 3, (31)

which is indeed the equilibrium heat-current noise [29]. The
physical interpretation of the absence of τC in Eq. (31) is
simply that for a global, uniform temperature T , the RC time
of the OC is completely immaterial for the heat-current noise,
since the particle distributions are always at the same temper-
ature, regardless of the OC charge relaxation time.

2. An alternative effective temperature

At this point, we note that the relation (31) suggests an
alternative definition for an effective output temperature,

T̃ 3
out ≡ SJ

out (0)

κ0
, (32)

which parallels the definition (21). While it is clear that the
temperature definitions (22) and (32) agree in equilibrium, so
T̃in = Tin and T̃OC = TOC, we now show that this is not the case
for the out-of-equilibrium output channel.

To this end, we consider the same two configurations as
in the previous subsection. For configuration (i), we take in
Eq. (32) the limit TOC � Tin and obtain the integral expression

SJ
out (0) = T 3

in

2π

∫ ∞

0
dz

ezz2((τCTin )2z2 + 1) − (τCTin )2z4

(ez − 1)2((τCTin )2z2 + 1)2
.

(33)

In the two interesting limits τCTin � 1 and τCTin � 1, we find
that Eq. (33) can be analytically approximated as

SJ
out (0)

SJ
in(0)

= T̃ 3
out

T 3
in

≈
{

1 + ( 72ζ (5)
π2 − 8π2

5

)
(τCTin )2 τCTin � 1

3
4π

(τCTin )−1 τCTin � 1,
(34)

where ζ (z) is the Riemann zeta function (with ζ (5) ≈ 1.04)
and SJ

in(0) = πT 3
in/6 is the zero-frequency input heat-current

noise. From Eq. (34), we see that also the heat-current noise
reveals that for τCTin � 1, the OC cannot cool the input chan-
nel. For large τCTin, we have T̃out ∼ T 2/3

in , which differs from
Tout ∼ √

Tin as obtained in Eq. (25). We plot the full integral
(33) and the asymptotics (34) in Fig. 3(a).

(a)

(b)

OC

O
C

FIG. 3. (a) Red, solid line: Ratio of output and input tempera-
tures vs τCTin, where τC = RqC is the RC time and Tin is the input
temperature. The plots are made for the limit of a cold OC τCTOC �
1. The dashed, gray, and black lines are the analytically obtained
limits (34). (b) Red, solid line: Ratio of output and OC temperatures
vs τCTOC, where TOC is the OC temperature. The plots are made for
the limit of a cold input channel τCTin � 1. The dashed, gray, and
black lines are the analytically obtained limits (36).

For configuration (ii), we take TOC � Tin in Eq. (32) in-
stead and find

SJ
out (0) = T 3

OC

2π

∫ ∞

0
dz

(τCTOC)2z4[ez((τCTOC)2z2 + 1) − 1]

(ez − 1)2((τCTOC)2z2 + 1)2
.

(35)

In the two limits τCTOC � 1 and τCTOC � 1, this integral can
be analytically approximated as

SJ
out (0)

SJ
OC(0)

= T̃ 3
out

T 3
OC

≈
{

72ζ (5)
π2 (τCTOC)2 τCTOC � 1

1 − 3
4π

(τCTOC)−1 τCTOC � 1,
(36)

where SJ
OC(0) = πT 3

OC/6 is the zero-frequency OC heat-
current noise. We thus see that for τCTOC � 1, the OC cannot
equilibrate the input channel. For small τCTOC, we have T̃out ∼
T 5/3

OC , to be contrasted with Tout ∼ T 2
OC in Eq. (26). We plot the

numerically evaluated integral (35) together with the asymp-
totics (36) in Fig. 3(b).

We have thus in this subsection demonstrated that heat
Coulomb blockade (in the sense that the OC’s finite charge ca-
pacitance impedes equilibration between the OC and the edge
channel) is manifest also in the zero-frequency heat-current
noise SJ

out (0). In turn, this quantity can be interpreted as an
output temperature according to Eq. (32). That not only the
output charge-current noise but also the output heat-current
noise is affected by τC is a direct consequence of the charge-
heat relations (4) and (28), valid for 1D chiral transport at low
energies. The results of this subsection hold because we take
into account the OC potential fluctuations exactly. The impact
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(a)

(b)

FIG. 4. Comparison between the effective output temperatures
Tout (solid blue lines) in Eq. (22) and T̃out (solid red lines) in Eq. (32).
(a) The temperatures are compared in the cold Ohmic contact limit,
where τCTOC � 1 and Tin is kept finite. The blue and red dashed lines
are the asymptotic expressions (25) and (34), respectively, both for
τCTin � 1. (b) Comparison in the cold input limit, where τCTin � 1
and TOC is finite. The blue and red dashed lines are the asymptotic
expressions (26) and (36), respectively, both for τCTOC � 1.

of τC on the heat-current noise is indeed absent to linear order
in the OC potential fluctuations, as reported in Ref. [26].

Before we move to describing the full dynamics of the
outgoing heat-current fluctuations, we compare the alternative
effective-temperature definitions and also demonstrate two
additional important and experimentally relevant instances
where the heat transport is affected by the OC potential fluc-
tuations.

3. Comparison of effective output temperatures

To compare the two output-temperature definitions T̃out and
Tout [Eqs. (22) and (32), respectively], we plot in Fig. 4 the
full integral expressions (22), (33), and (35) for configurations
(i) and (ii). We see that both temperature definitions agree
well when the OC efficiently equilibrates the edge channel
(τCTin � 1 for τCTOC → 0, or τCTOC � 1 for τCTin → 0) but
clearly deviate when the equilibration is poor and the output
channel is out of equilibrium due to the heat Coulomb block-
ade effect. Importantly, we therefore find that a measurement
of contrasting values for the two effective output temperatures
(22) and (32) is therefore a strong indication that the output
channel is out-of-equilibrium.

We can understand the distinctive characteristics of the
two effective output temperatures in more detail by analyzing
the output bosonic distribution function nout (ω). To derive
this function, we start from Eq. (20), which relates the equi-
librium charge-current noise S(ω) [see Eqs. (14)] and the
Bose-Einstein distribution nB(ω) [see Eq. (19)]. By using this
relation in the expression for the output charge-current noise

(13), we find that

nout (ω) =
∑

p=in,OC

|Tp(ω)|2nB,p(ω)

= nB,in(ω) + nB,oc(ω)ω2τ 2
C

1 + ω2τ 2
C

, (37)

where nB,p = (exp(ω/Tp) − 1)−1, with p ∈ {in, OC}, are the
Bose-Einstein distributions for the density fluctuations (which
are bosonic) of the input and OC Langevin source subsystems.
Next, we use the output distribution (37) to rewrite the output
heat current (21) as the following integral over the output
bosonic distribution function:

Jout = κ0

2
T 2

out =
∫ ∞

0

dω

2π
ωnout (ω). (38)

With the bosonization technique (see, e.g., Ref. [58] and
Appendix B), one may further show (see Appendix C) that
Eq. (38) is fully equivalent to an energy integral over the
output electronic distribution function. From Eq. (38), we
see that the output temperature Tout, as previously defined in
Eq. (21), is an integrated linear combination of the input and
OC Bose-Einstein distributions weighted by ω.

Next, we consider the zero-frequency output heat-current
noise, i.e., Eq. (30) for ω = 0. By inserting the relation (20)
into Eq. (30) and using the sum rule (15) for |Tp(ω)|2, as well
as the relations |Tp(ω)|2 = |Tp(−ω)|2 and 1 + nB,p(−ω) =
−nB,p(ω), we obtain

SJ
out (0) = κ0T̃ 3

out = 1

2π

∫ ∞

0
dω ω2nout (ω)(1 + nout (ω)).

(39)

Hence, it is clear that SJ
out (0) measures an aspect of the output

bosonic distribution nout (ω) that is distinct from that which
Jout measures. It is only when nout (ω) takes the form of
an equilibrium Bose-Einstein distribution that the two mea-
sures agree and produce Tout = T̃out. This happens in three
particularly important cases: (i) In global equilibrium, i.e.,
for Tin = TOC = T , we have that Tout = T̃out = T . (ii) For
|Tin(ω)|2 = 1 − |TOC(ω)|2 → 0, we have Tout = T̃out = TOC.
(iii) For |TOC(ω)|2 = 1 − |Tin(ω)|2 → 0, we obtain Tout =
T̃out = Tin. Cases (ii) and (iii) are in full agreement with the
temperature comparisons in Fig. 4.

The above analysis suggests that the two effective output
temperatures Eqs. (22) and (32) can be viewed as defining two
distinct out-of-equilibrium thermometers: The heat-current-
based thermometer (22) targets the average energy, ωnout (ω),
carried by the output (particlelike) bosonic density fluctua-
tions. The broadening of the average energy can be seen as
a temperature measure. This is the temperature that is reached
by relaxation with a perfectly coupled floating temperature
probe [59].

In contrast, the heat noise-based thermometer (32) tar-
gets deviations from the average energies of the output
(particlelike) bosonic density fluctuations, i.e., ω2nout (ω)(1 +
nout (ω)), which can also be viewed as a temperature measure.
In contrast to the average heat-current-based thermometer,
the heat-current noise thermometer is generally a nonlinear
quantity in the input and OC distributions.
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While Tout and T̃out agree in equilibrium, one might find in-
teresting insights into the edge-channel thermalization process
from the way the two temperature approach the equilibrium
value, when, e.g., modifying the edge-channel length.

4. Impact of potential fluctuations on the heat conductance

As a next step, we investigate the impact of potential fluc-
tuations on the heat conductance κTOC of the output channel.
The heat conductance is an additional relevant observable, in
which the effect of the heat Coulomb blockade is experimen-
tally accessible. At the same time, this quantity is of relevance
for the discussion of heat-current noise in the presence of
temperature fluctuations, presented below in Sec. III C. Within
the linear approximation (7), the first term in the heat-current
Langevin equation (8), is equivalent to the linear-response co-
efficient of the output heat current induced by a small change
in the OC temperature TOC(t ):

κTOC ≡ ∂Jout

∂TOC
. (40)

To compute this quantity, we differentiate the output heat
current (21) with respect to TOC and, by using Eq. (22), we
find

κTOC = κ0TOC + 1

4πTOCτ 2
C

+ 1

4τC
− ψ ′( 1

2πTOCτC

)
8π2T 2

OCτ 3
C

. (41)

Here, ψ ′(z) is the derivative of the function ψ (z) defined
below Eq. (23). We remark here that a non-negligible phonon
contribution to κ would add to the right-hand side of Eq. (41),
but as argued below Eq. (5), phonons can be neglected under
typical experimental conditions. Equation (41) shows that κ

approaches different asymptotic values depending on the di-
mensionless parameter τCTOC:

κ

κ0
=

{
4π2

5 τ 2
CT 2

OC τCTOC � 1

1 − 3
2π

(τCTOC)−1 τCTOC � 1.
(42)

In particular, we see that for τCTOC � 1, the heat conductance
is strongly suppressed because the edge channel teleports
across the OC and the particles in the output channel are not
influenced by the OC. We plot Eqs. (41) and (42) in Fig. 5(a).

5. Heat-current cross correlations

Another important consequence of the linearized heat-
current Langevin equation (8) is that, in contrast to a
conventional Langevin theory, the source term δJout (t ) is, in
fact, correlated with the incoming heat-current fluctuations,
i.e.,

〈δJin(ω)δJout (ω
′)〉 ≡ 2πδ(ω + ω′)SJ

io(ω) �= 0. (43)

We obtain the heat-current cross correlations SJ
io(ω) with the

same approach as for the output noise Eq. (30), with the result

SJ
io(ω) = R2

q

4π

∫ ∞

−∞
dω1|Tin(ω1)|2Sin(ω1)Sin(ω − ω1). (44)

(a)

(b)

FIG. 5. (a) Blue solid line: Renormalization of the heat conduc-
tance κTOC/(κ0TOC) in Eq. (41) vs τCTOC, where τC = RqC is the RC
time and TOC is the OC temperature. Black and gray dashed lines are
the asymptotic limits in Eq. (42). (b) Blue solid line: Renormalization
of the energy relaxation time τ̃E/τE = κ0/κ in Eq. (50) vs τCTOC.
Black and gray dashed lines are obtained from Eq. (42).

In the zero-frequency limit, this expression reduces to the
dimensionless integral expression

SJ
io(0) = T 3

in

4π

∫ ∞

−∞
dz

z2

(ez − 1)(1 − e−z )

1

((τCTin )2z2 + 1)
,

(45)

with the asymptotic limits comparing to SJ
in(0) = κ0T 3

in ,

SJ
io(0)

SJ
in(0)

≈
{

1 − 4π2

5 (τCTin )2 τCTin � 1
3

2π
(τCTin )−1 τCTin � 1.

(46)

Hence, also these nonvanishing correlations between input
and output heat-current fluctuations are affected by the heat
Coulomb blockade.

We end this subsection by emphasizing that its results only
hold in the limit of negligible OC temperature fluctuations
�TOC(t ) = 0, which amounts to assuming an infinite heat
capacity, CE [TOC(t )] ∝ τE → ∞. It is, however, known [26]
that heat-current fluctuations are highly sensitive to sizable
temperature fluctuations and energy relaxation times. It is
therefore natural to ask which additional features in the heat
dynamics that emerge in the presence of finite OC heat capac-
ity and OC temperature fluctuations. This is the question to
which we turn next.

C. Heat dynamics in the presence of temperature fluctuations

We now analyze how the output heat-current noise is
impacted by sizable fluctuations of the OC temperature,
TOC(t ) = TOC + �TOC(t ). Their origin in the setup in Fig. 1
is due to a finite OC heat capacity CE [TOC(t )].

In general, the average temperature in the floating,
energy-conserving OC, TOC is given by a power-balance equa-
tion based on Eq. (5) for the average energy currents. This
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average temperature depends on the type of input to the OC
and on possible coupling to further heat baths, e.g., a phonon
bath, see Ref. [26]. In the simple situation considered in the
present section and as indicated in Fig. 1, we will always find
TOC = Tin.

To obtain the fluctuations of the heat current as a result of
both potential and temperature fluctuations, we follow analo-
gous steps to the calculation of the charge-current fluctuations
in Sec. III A. More concretely, using a Fourier transform, we
solve Eqs. (5) and (6) for the total output heat-current fluctu-
ations δJ tot

out (ω), i.e., including also temperature fluctuations.
The solution reads [60]

δJ tot
out (ω) = T J

in (ω)δJin(ω) + T J
out (ω)δJout (ω), (47a)

T J
in (ω) = 1 − T J

out (ω) = [1 − iωτ̃E ]−1. (47b)

We will in the following discuss the relevant ingredients to
these fluctuations occurring at different timescales as well as
the resulting heat-current noise.

1. Fast heat-current fluctuations

Under the assumption of the separation of timescales (1),
the OC temperature fluctuations can be viewed as slow fluc-
tuations (with characteristic timescale τE ) superimposed on
fast heat-current fluctuations induced by charge-current fluc-
tuations (with timescale τC � τE ). This is captured by the
heat dynamics equations (6)–(8). The starting point for our
analysis of the total (i.e., including also temperature fluctua-
tions) output heat-current noise is the second, “source,” term
in Eq. (8) given as

δJout(t ) ≡ Rq

2
[(δIout (t ))2 − 〈(δIout (t ))2〉]. (48)

This term takes the role of a semiclassical source of heat-
current fluctuations due to charge-current fluctuations. The
noise corresponding to these fast heat-current fluctuations
δJout (t ) is given by the previously calculated heat-current
noise of the OC subject only to potential fluctuations (30),
i.e.,

〈〈δJout (ω)δJout (ω
′)〉〉E ≡ 2πδ(ω + ω′)SJ

out (ω). (49)

This identification connects the Langevin approaches for
charge and heat currents and ensures consistency of our
approach.

2. Enhancement of the energy relaxation time

From the influence of the RC time τC on the heat con-
ductance κTOC in Eqs. (41) and (42), we see that in the heat
Coulomb blockade regime, a new timescale emerges:

τ̃E ≡ CE [TOC]

κTOC
∼ τE

T 2
OCτ 2

C

� τE , for τCTOC � 1. (50)

This timescale enters in Eq. (47b). In physical implemen-
tations as considered here, where timescales of charge and
energy dynamics are separated (1), it is much larger than the
energy-relaxation time τE . Its dependence on the RC time is
shown in Fig. 5(b). Equation (50) hence implies that in the
heat Coulomb blockade regime, namely, for τCTOC � 1, the
OC temperature fluctuations, induced by the finite CE [TOC],

are strongly suppressed, as shown in Fig. 5(b). The con-
sequences of this feature for the dynamics of temperature
fluctuations are further shown in Eq. (59) below.

3. Total heat-current noise impacted by potential
and temperature fluctuations

From Eqs. (47a) and (47b), we obtain the total output
heat-current noise in the presence of temperature fluctuations,
denoted as

SJ,tot
out (ω) ≡ 2πδ(ω + ω′)

〈〈
δJ tot

out (ω)J tot
out (ω

′)
〉〉

E . (51)

The separation of timescales, τ̃−1
E � Tin, TOC, implies that

the contributions from all faster heat-current fluctuations, i.e.,
SJ

in(ω), SJ
io(ω), and SJ

out (ω), are well captured in SJ,tot
out (ω) by

their zero-frequency contributions only. Therefore, by insert-
ing the solutions (47a) and (47b) into (51), we find

SJ,tot
out (ω) =

∑
p=in,out

∣∣T J
p (ω)

∣∣2
SJ

p(0). (52)

Interestingly, the heat-current cross correlations SJ
io(ω), de-

fined in Eq. (43), do not enter in Eq. (52), due to a cancellation
by the identity T J

in (ω)T J
out (−ω) = −T J

out (ω)T J
in (−ω). Instead,

the absolute values of T J
p enter Eq. (52). They fulfill a sum

rule ∑
p=in,out

∣∣T J
p (ω)

∣∣2 = 1, (53)

similar to the charge dynamics, but which here reflects energy
conservation.

We emphasize that the expressions (47)–(52) hold in a limit
where we consider OC potential fluctuations exactly, but treat
the OC temperature fluctuations to linear order. Therefore,
Eq. (52) extends the result in Ref. [26] by incorporating the
additional effects of OC potential fluctuations into the modi-
fied energy relaxation time τ̃E .

From the results Eqs. (40)–(50), we are now able to com-
pute the total output heat-current noise in the presence of both
OC potential and OC temperature fluctuations. We find

SJ,tot
out (ω) = SJ

in(0) + ω2τ̃ 2
E SJ

out (0)

1 + ω2τ̃ 2
E

(54a)

→
{

SJ
in(0) ωτC � ωτ̃E � 1

SJ
out (0) ωτC � 1 � ωτ̃E ,

(54b)

where SJ
in(0) and SJ

out (0) are the input and output low-
frequency heat-current fluctuations in the absence of tempera-
ture fluctuations, respectively. Equations (54) are a key result
of our paper, showing that the modified time scale of the
energy dynamics induces a further bandpass filtering effect,
impacting the heat-current fluctuations. This new bandpass
filtering effect is formally analogous to the one underlying
the heat Coulomb blockade, but is due to a physically dis-
tinct effect, namely, it is induced by a finite heat capacity.
At frequencies far below the inverse of the modified en-
ergy relaxation time, the total output heat-current fluctuations,
SJ,tot

out (ω), are uniquely given by the low frequency input heat-
current fluctuations SJ

in(0). Hence, the equilibration by the OC
is impeded. This is a consequence of energy conservation
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FIG. 6. Total output heat-current noise SJ,tot
out (ω) in Eqs. (54) vs

ωτ̃E , where ω is the measurement frequency, and τ̃E is the enhanced
energy relaxation time (50). The different curves depict different
values of the ratio SJ

out (0)/SJ
in (0) in the limit TOC/Tin → 0, ranging

from 0 (bottom curve) to 1 (top curve) in steps of 1/3.

and the floating nature of the OC. In other words, at suffi-
ciently low measurement frequency, the averaged heat-current
fluctuations do not see effects of the OC heat capacity. An
important insight from this feature is that the OC temperature
fluctuations can result in an averaging effect that fully masks
the heat-current fluctuations induced by potential fluctuations,
which would in the limit of τE → ∞ always be visible, even
in the low-frequency output heat-current noise, see Eq. (30).
Indeed, with growing frequency, the fast output heat-current
fluctuations induced by the OC potential fluctuations increas-
ingly contribute to the total output heat-current noise. This can
be seen in Fig. 6, where we, for concreteness, plot Eqs. (54)
in the configuration of a very cold OC. In this case, the ratio
SJ

out (0)/SJ
in(0) ranges between 0 and 1, see Eq. (34), depending

on the parameter τCTin.
We remark that for the single-channel setup considered

here, the experimentally required measurement frequency
might be hard to reach, due to the strong renormalizaton of the
energy-relaxation time, see Eq. (50) and Fig. 5(b). Particular
care must be taken when τ̃E approaches τe−ph, see Eq. (1).
The multichannel setup, where the renormalization is weaker,
see Eq. (95) below, might facilitate reaching low enough fre-
quency.

4. OC temperature fluctuations

We finally investigate the behavior of the OC temperature
fluctuations due to the emergence of the new energy relaxation
time (50) in the Coulomb blockade regime. To this end, we
analyze the OC temperature-fluctuation correlation function,
defined as

〈〈�TOC(ω)�TOC(ω′)〉〉E ≡ 2πδ(ω + ω′)ST
OC(ω). (55)

We obtain this function by solving Eqs. (5), (7), and (47a) and
obtain

ST
OC(ω) = SJ

in(0) − 2SJ
io(0) + SJ

out (0)

κ2T 2
OC

(
1 + ω2τ̃ 2

E

) , (56)

where SJ
in(0) = κ0T 3

in , SJ
out (0) is obtained from Eq. (30) by

taking ω = 0, and SJ
io(0) is given in Eqs. (45) and (46). The

relation (56) establishes a connection between heat-current
fluctuations and local temperature fluctuations. In the simple
single-channel setting with a thermal input, where we have

Tin = TOC = T for the average temperatures, Eq. (56) evalu-
ates to

ST
OC(ω) = 2T

κ
(
1 + ω2τ̃ 2

E

) . (57)

We see that this takes the same functional form regardless of
whether the OC is in the heat Coulomb blockade regime or
not. This result is related to the fact that in equilibrium, we
have Sin(ω) = SOC(ω) = S(ω), which implies that the numer-
ator in Eq. (56) simplifies as

SJ
in(0) − 2SJ

io(0) + SJ
out (0)

= R2
q

∫ ∞

−∞

dω′

2π
(1 − |Tin(ω′)|2)S(ω′)S(−ω′)

= T 2∂T Rq

∫ ∞

−∞

dω′

2π
|TOC(ω′)|2S(ω) = 2κT 3. (58)

Here, in the first equality, we used Eqs. (30) and (45), and in
the second equality, we used the sum rule (15). In the time
domain, Eq. (57) corresponds to an exponential suppression
of the temperature correlations:

〈〈�TOC(t )�TOC(0)〉〉E = 〈〈�T(t )�T(0)〉〉E

= T 2

CE [T ]
e−|t |/τ̃E . (59)

While the amplitude of the temperature-fluctuation correla-
tion function (59) is the universal, expected result (see, e.g.,
Ref. [1]), its decay rate, τ̃E , is in fact sensitive to τC via
Eqs. (42) and (50), even in the global equilibrium case. In
other words, as a result of heat Coulomb blockade, for tem-
peratures τCT � 1, the temperature-fluctuation correlations
decay much slower than for τCT � 1.

IV. GENERALIZATION TO MULTIPLE EDGE CHANNELS

In the previous sections, we focused on the simplest setting
of a single edge channel connected to the OC; see Fig. 1.
Here, we generalize this description to the situation with
N incoming and N outgoing edge channels, as depicted in
Fig. 7. Such multichannel setups have been used extensively
to extract the edge heat conductance of a broad range of
QH states [36,45,61–67]. For simplicity, we assume in the
following that all connected edge states are identical by bor-
dering bulk regions with the same filling factors, chosen here
as ν = 1. This means that they have equal charge conduc-
tances, R−1

q = e2/2π , and equal heat conductance prefactors
κ0. Technically, we take the channels to have equal central
charges c = 1, see, e.g., Ref. [68]. Our approach can, however,
be straightforwardly extended to setups with composite edge
states, including non-Abelian edge channels with c �= 1 (see,
e.g., Refs. [62,67,69,70] for descriptions of such setups).

In comparison to the single-channel setup, several unique
features emerge in the multichannel setup. With our N-
channel charge dynamics equations (62), we confirm the heat
Coulomb blockade effect [11,71] which in the N-channel
setup is manifest by a reduction of the total heat conductance
by one unit of κ0TOC [see Eqs. (83) and (84) below]. We
further show in Eq. (95) below how this reduction impacts the
N-channel OC energy relaxation time. Finally, we also show
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FIG. 7. Schematics of an Ohmic contact (OC, blue) connected
to multiple (here N = 3), chiral edge channels in the quantum Hall
(QH) regime. Pairs of incoming (outgoing) edge channels appear
on the boundaries (black, dotted lines) between QH bulk regions
(turquoise regions, filling factor ν) and depleted regions (gray re-
gions). All input channels are fed from large metallic contacts (in
yellow) characterized by input voltages, Vin, and input temperatures,
Tin, for m = 1, . . . , N . Fluctuations carried by the input edge chan-
nels generate potential, �VOC, and temperature, �TOC, fluctuations.
In turn, these quantities produce charge- and heat-current fluctuations
in the outgoing channels, which can be detected in the drain contacts
(in light yellow).

how combinations of auto- and cross correlations can be used
to extract the OC potential and OC temperature fluctuations,
which is a highly nontrivial task in the single-channel case.

A. Multichannel Langevin approach

To proceed, we generalize the Langevin approach pre-
sented in Sec. II B to the multichannel situation as sketched
in Fig. 7. For the charge dynamics in the N-channel case, the
Langevin equations (2) and (3) generalize to

dQ(t )

dt
=

N∑
m=1

[Iin,m(t ) − Iout,m(t )], (60a)

δIout,m(t ) = �Q(t )

NτC,N
+ δIOC,m(t ). (60b)

Here, �Q(t ) are the temporal OC charge fluctuations and
Iin,m(t ), Iout,m(t ), and IOC,m(t ) are the incoming, outgoing,
and thermally induced charge currents on branch m, respec-
tively, with δ... denoting the corresponding fluctuations. Here,
“branch” refers to one pair of input and output channels; see
Fig. 7. Moreover, τC,N ≡ τC/N denotes the total RC time of
the OC when N channels are attached.

For the N-channel heat dynamics, Eqs. (5) and (8) general-
ize to

dU (t )

dt
=

N∑
m=1

[
J tot

in,m(t ) − J tot
out,m(t )

]
, (61a)

δJ tot
out,m(t ) = κmTOC�TOC(t ) + δJout,m(t ), (61b)

δJout,m(t ) ≡ Rq

2
[(δIout,m(t ))2 − 〈(δIout,m(t ))2〉]. (61c)

Here, U (t ) is the internal OC energy, J tot
in/out,m(t ) is the total

incoming/outgoing time-dependent heat current on branch m,
with δ... denoting the corresponding fluctuations, and �TOC(t )
are the OC temperature fluctuations. The explicit form of the
heat conductance κmTOC will be discussed later, see Eq. (82).
Similarly to the single-channel case [see Eq. (48)], the heat
source term (61c) for branch m is given in terms of the charge-
current fluctuations on the same branch, via Eq. (4).

B. Multichannel charge dynamics

We start by considering charge current fluctuations in the
standard heat Coulomb blockade regime, namely, where tem-
perature fluctuations can be neglected.

1. Charge-current auto- and cross correlations in the presence of
OC potential fluctuations

Analogously to the single-channel case, see Sec. III A,
we solve Eqs. (60a) and (60b) for the output average charge
currents and charge-current fluctuations,

Iout,m(ω) =
∑

p=in,OC

N∑
n=1

Tp,mn(ω)Ip,n(ω), (62a)

δIout,m(ω) =
∑

p=in,OC

N∑
n=1

Tp,mn(ω)δIp,n(ω), (62b)

with the coefficients

TOC,mn(ω) ≡ δmn − N−1[1 − iωτC,N ]−1, (62c)

Tin,mn(ω) ≡ N−1[1 − iωτC,N ]−1, (62d)

and find the output charge-current noise:

Sout,m(ω) =
∑

p=in,OC

N∑
n=1

|Tp,mn(ω)|2Sp,n(ω). (62e)

For simplicity we take, here and below, the input charge-
current noises from all branches to be equal, Sin,m(ω) =
Sin(ω), by choosing all source contacts to have the same
temperature, Tin,m = Tin. In addition, we choose Vin,m = 0;
as a consequence, also the average OC potential vanishes,
VOC = 0. We furthermore use the fact that the thermal OC
charge-current fluctuation contributions to each output chan-
nel are equal Soc,m(ω) = SOC(ω). With these choices, spelling
out Eq. (62e), results in

Sout,m(ω) = Sin(ω) + SOC(ω)
[
N − 1 + Nω2τ 2

C,N

]
N

(
1 + ω2τ 2

C,N

) . (63)

This means that the charge-current noise is independent of the
specific output channel m, but depends on the total number of
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channels N . In the zero-frequency limit, ωτC,N � 1, Eq. (63)
reduces to

Sout,m(0) = Sin(0) + SOC(0)(N − 1)

N

= R−1
q (Tin + TOC(N − 1))

N
. (64)

As expected, Eq. (64) reduces to Eq. (16) for N = 1. However,
Eq. (64) shows that a measurement of the low-frequency out-
put noise in the multi-channel setup with N > 1 gives access
to the OC temperature TOC. The low-frequency noise is often
used in the process of extracting the heat conductance of edge
channels, see, e.g., Ref. [64] for a detailed analysis.

What has been much less considered in this context is that
the N-channel setup introduces cross correlations between
current fluctuations of different output channels. For m �= n,
we define the charge-current cross correlations as

〈δIout,m(ω)δIout,n(ω′)〉 ≡ 2πδ(ω + ω′)Sout,m,n(ω), (65)

evaluating to

Sout,m,n(ω) = Sin(ω) − SOC(ω)

N
(
1 + ω2τ 2

C,N

) , N > 1. (66)

As expected, for global equilibrium conditions Tin = TOC,
the cross correlations vanish. They are also irrelevant with
respect to the autocorrelation difference Sin(ω) − SOC(ω) on
frequency (respectively, time) scales, for which ωτC,N is very
large. Equation (66) for the finite-frequency charge-current
cross correlations can be connected to the autocorrelations by
comparing with the charge-current noises at finite frequency,
(63) and (66). We obtain the relation

Sout,m,n(ω) = Sout,m(ω) − SOC(ω), N > 1. (67)

In the low-frequency limit, ωτC,N � 1, and when the OC
temperature and the temperatures of the source contacts differ,
Sout,m,n(ω) reduces to

Sout,m,n(0) = R−1
q (Tin − TOC)

N
, N > 1. (68)

By combining the expressions for the zero-frequency output
auto- and cross correlations, Eqs. (64) and (68), we obtain the
sum rule

N∑
m=1

Sout,m(0) +
N∑

n=1,m �=n

Sout,m,n(0) = NSin(0), (69)

which reflects charge conservation in the N-channel setup.
Interestingly, charge-current auto- and cross correlations

in multiterminal systems also give access to the OC poten-
tial fluctuations: By combining Eq. (67) with the N-channel
Langevin equation (60b), we extract the OC potential-
fluctuation correlation function, 〈�VOC(ω)�VOC(ω′)〉, as a
combination of output noises:

〈�VOC(ω)�VOC(ω′)〉

= 2πδ(ω + ω′)
R2

q

N2

× Sin(ω) + Sout,m(ω) − Sout,m,n(ω)

N
(
1 + ω2τ 2

C,N

) , for N > 1. (70)

We thus see that a combination of noise measurements gives
access to the OC potential-fluctuation correlation function.
This possibility should be contrasted with the single-channel
setup, N = 1, where the OC potential-fluctuation correlations
cannot be straightforwardly separated from the thermally in-
duced charge-current fluctuations δIOC coming from the OC.
Indeed, solving Eqs. (2) and (3) for �VOC(ω) = �Q(ω)/C,
we find the correlation function for the single-channel case,

〈�VOC(ω)�VOC(ω′)〉

= 2πδ(ω + ω′)R2
q

Sin(ω) + SOC(ω)(
1 + ω2τ 2

C

) , for N = 1, (71)

so both Sin(ω) and SOC(ω) are needed to fully classify the OC
potential correlations in this single-channel case.

2. Heat-current auto- and cross correlations in the presence of OC
potential fluctuations

Going beyond the charge-current noise, we now compute
the output heat-current noise in the presence of potential fluc-
tuations, while still neglecting temperature fluctuations. As for
the charge dynamics presented in the previous section, we find
that there are heat-current autocorrelations, SJ

out,m(ω), as well
as heat-current cross correlations SJ

out,m,n(ω) with m �= n,

〈δJout,m(ω)δJout,m(ω′)〉 ≡ 2πδ(ω + ω′)SJ
out,m(ω), (72a)

〈δJout,m(ω)δJout,n(ω′)〉 ≡ 2πδ(ω + ω′)SJ
out,m,n(ω), (72b)

with the heat-current fluctuations δJout,m(ω) from Eq. (61c).
The identity (4) allows us to compute the heat-current

noises (72) by inserting Eqs. (63), respectively Eq. (66), into
the convolution formula (28). This results in

SJ
out,m(ω) = R2

q

4π

∫ ∞

−∞
dω1Sout,m(ω1)Sout,m(ω − ω1), (73a)

SJ
out,m,n(ω) = R2

q

4π

∫ ∞

−∞
dω1Sout,m,n(ω1)Sout,m,n(ω − ω1).

(73b)

The cross correlations (73b) are thus related to the charge-
current cross correlations (66) and, hence, they do not depend
on the chosen pair of channels m, n. Moreover, SJ

out,m,n(ω)
vanishes for global equilibrium, i.e., for Tin = TOC = T , since
then Sout,m,n(ω) = 0 according to Eq. (66). In what follows,
we focus on the behavior of the low-frequency components
of the output heat-current noise, ω � Tin, TOC, τ−1

C . To this
end, we consider the same two configurations as in previous
sections.

In configuration (i), we consider a very cold OC and take
the limit TOC � Tin in the output heat-current auto- and cross
correlations (73). After some algebraic manipulations, we ob-
tain the integral expressions

SJ
out,m(0) = T 3

in

2π

∫ ∞

0
dz

z2(1 + (ez − 1)g(z, Tin ))

(ez − 1)2(g(z, Tin ))2 , (74a)

SJ
out,m,n(0) = T 3

in

2π

∫ ∞

0
dz

z2

(ez − 1)2(g(z, Tin ))2 , (74b)

where we defined g(z, T ) ≡ N ((τC,N T )2z2 + 1). We plot the
expressions (74) in Fig. 8(a), and we see that the heat-current
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(a)

(b)

FIG. 8. (a) Ratio of the low-frequency heat-current auto- and
cross correlations (74a) and (74b) vs τC,N Tin in the limit of a cold
OC. Blue, red, and green curves depict cases with N = 2, 3, and 4
pairs of attached channels, respectively. Dashed lines are the limits
Eqs. (75) and (76) for τC,N Tin � 1. (b) Ratio of the low-frequency
heat-current auto- and cross correlations (77a) and (77b) vs τC,N TOC

in the limit of cold input channels. Dashed lines are the limits (78)
and (79) for τC,N TOC � 1 and unity for τC,N TOC � 1.

noises decay to zero for τC,N Tin � 1 but saturate to constant
values for τC,N Tin � 1. We find these asymptotic values ana-
lytically as

SJ
out,m(0)

SJ
in(0)

≈
{

π2+6(N−1)ζ (3)
π2N2 τC,N Tin � 1

3
4πN2 (τC,N Tin )−1 τC,N Tin � 1

(75)

and

SJ
out,m,n(0)

SJ
in(0)

≈
{

π2−6ζ (3)
π2N2 τC,N Tin � 1
3

4πN2 (τC,N Tin )−1 τC,N Tin � 1,
(76)

with SJ
in(0) = κ0T 3

in and ζ (3) ≈ 1.2. That both SJ
out,m(0) and

SJ
out,m,n(0) become negligible with respect to SJ

in(0) for
τC,N Tin � 1 indicates that the OC efficiently equilibrates the
input channels so output channels emanate close to the very
cold OC distribution. In contrast, for τC,N Tin � 1, the OC’s
ability to equilibrate the input channels is suppressed, but not

fully impeded. This can be seen from the fact that SJ
out,m(0) is

not negligible with respect to SJ
in(0), but nonetheless modified

with respect to it, in contrast to the single-channel case, where
SJ

out,m(0) → SJ
in(0). At the same time, nonvanishing cross cor-

relations are a manifestation of a nonequilibrium distribution
in the outgoing channels, given by a mixture of input and OC
distributions.

For configuration (ii), we take instead Tin � TOC in
Eq. (73) and find the expressions

SJ
out,m(0) = T 3

OC

2π

∫ ∞

0
dz

× z2(1 − g(z, TOC)(1 + ez ) + (g(z, TOC))2ez )

(ez − 1)2(g(z, TOC))2 ,

(77a)

SJ
out,m,n(0) = T 3

OC

2π

∫ ∞

0
dz

z2

(ez − 1)2(g(z, TOC))2 . (77b)

We note that the cross correlation (77b) is equal to that in
Eq. (74b) upon substituting TOC ↔ Tin. This happens because
the two considered limits, TOC � Tin and TOC � Tin, cause
either Sin(ω) or SOC(ω) to dominate in Eq. (66). The resulting
cross-correlations are thus determined by only one of these
two noises and are otherwise identical except for an overall
sign; they then enter quadratically in Eq. (73b). We plot the
expressions (77) in Fig. 8(b) and see that SJ

out,m(0) is strongly
suppressed with respect to the OC noise for τC,N TOC � 1 and
that it saturates to a constant value for τC,N TOC � 1. The
cross-correlation noise SJ

out,m,n(0) is suppressed with respect
to SJ

OC(0) for τC,N TOC � 1 and approaches a constant value
smaller than SJ

OC(0) for τC,N TOC � 1. These limiting charac-
teristics are given by the expressions

SJ
out,m(0)

SJ
oc(0)

≈
⎧⎨
⎩

(N−1)((N−1)π2+6ζ (3))
N2π2 τC,N TOC � 1

1 + 3(1−4N )(τC,N TOC )−1

4πN2 τC,N TOC � 1
(78)

and

SJ
out,m,n(0)

SJ
oc(0)

≈
{

π2−6ζ (3)
π2N2 τC,N TOC � 1
3

4πN2 (τC,N TOC)−1 τC,N TOC � 1,
(79)

with SJ
OC(0) = κ0T 3

OC. Equations (78) and (79) show that in
configuration (ii) the limit τC,N TOC � 1 causes the OC to
efficiently equilibrate the cold input channels and all out-
put channels emanate with the hotter OC distribution. For
τC,N TOC � 1, the equilibration is instead suppressed, but not
fully impeded. The nonvanishing cross correlation further re-
flects the fact that the output channels are characterized by an
out-of-equilibrium distribution, arising from a mixture of the
input and OC distributions.

The autocorrelation results presented in this subsection
for N → 1 all reduce to the single-channel limits given
in Eqs. (33)–(36), as expected. Furthermore, we see from
Eqs. (75), (76), (78), and (79) that the presence of N > 1 chan-
nels aids equilibration in comparison to the case of N = 1,
see Eqs. (34) and (36). This happens since the N − 1 neutral
modes of the input channels in the multi-channel setup al-
ways equilibrate efficiently. This feature was demonstrated in
Ref. [53] for the charge-current noise. We have here explicitly
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demonstrated that this effect also impacts the heat-current
noise and how it manifests. In addition to the presented cross
correlations between output currents in different channels
m, n, we find that—similarly to the single-channel case [cf.
Eq. (43)]—there are nonvanishing cross correlations between
incoming and outgoing heat-current fluctuations of any chan-
nels m, n. To find them, we analyze the fast source term
δJout,m(t ) in Eq. (61b) and compute the correlation function:

〈δJin,m(ω)δJout,n(ω′)〉 ≡ 2πδ(ω + ω′)SJ
io,m,n(ω). (80)

As above, we choose all input temperatures to be equal,
Tin,m = Tin, so the heat-current cross correlations SJ

io,m,n(ω) do
not depend on the input or output channel indices m and n. The
asymptotic values, analogous to (46), of the zero-frequency
heat-current cross correlations (80) are then given as

SJ
io,m,n(0)

SJ
in(0)

≈
⎧⎨
⎩

1
N2 − 4π2

5N2 (τC,N Tin )2 τC,N Tin � 1
3

2πN2
1

τC,N Tin
τC,N Tin � 1,

(81)

with SJ
in(0) = κ0T 3

in . This result shows how the finite correla-
tions between input and output heat-current fluctuations are
affected by the potential fluctuations on the timescale τC,N

and, consequently, how the OC in the heat Coulomb-blockade
regime acts as a source of heat-current fluctuations in the
absence of temperature fluctuations.

3. Impact of potential fluctuations on the total heat conductance:
Multichannel heat Coulomb blockade

Based on Eqs. (62), we establish in this subsection the
heat Coulomb blockade effect in the heat conductance of the
N-channel setup, confirming previous results in Refs. [11,71].
Note that we here still consider the limit τE → ∞; siz-
able temperature fluctuations are instead analyzed below in
Sec. IV C.

In the N-channel setup, the heat Coulomb blockade effect
amounts to the suppression of exactly one measured heat con-
ductance quantum [11,71]. To demonstrate this effect with our
model, we compute the linear response coefficient of the mth
channel output heat current, Jout,m, when N pairs of channels
are attached to the OC. It is given as

κmTOC ≡ ∂Jout,m

∂TOC
= κ0TOC + 1

4πNTOCτ 2
C,N

+ 1

4NτC,N
−

ψ ′( 1
2πTOCτC,N

)
8π2NT 2

OCτ 3
C,N

, (82)

where we inserted the finite-frequency noise (63) into the
heat-current expression (21) and then differentiated with re-
spect to TOC. To get insights into the behavior of the heat
conductance, we consider the following two limiting cases of
Eq. (82):

κm

κ0
=

⎧⎨
⎩

1 − 1
N + 4π2

5N τ 2
C,N T 2

OC τC,N TOC � 1

1 − 3
2π

1
NτC,N TOC

τC,N TOC � 1.
(83)

Summing up the equal contributions from each of the N output
channels, we find that the total heat conductance in the limit

τC,N TOC � 1 becomes

κN TOC ≡ NκmTOC = κ0(N − 1)TOC. (84)

Hence, the total heat conductance is reduced by precisely one
unit. This reduction can be interpreted as the total charge mode
(with resistance Rq/N) of the impinging channels being tele-
ported across the OC [11,14], thereby retaining its incoming
distribution function. Hence, the heat current of this single
effective mode has no TOC dependence and therefore drops
out in the heat conductance. By contrast, the N − 1 impinging
neutral (or “dipole”) modes emanate with the OC distribution
function and thus contribute with N − 1 units to the net heat
conductance. For N = 1, the heat conductance vanishes, in
agreement with the single-channel case (42), where the single
channel coincides with the charge mode. In the opposite limit,
τC,N TOC � 1, we find instead

κN TOC = NκmTOC =
(

Nκ0 − 3κ0

2πτC,N TOC

)
TOC, (85)

i.e., there is a small correction per channel which decreases
with increasing τC,N TOC, with κN eventually reaching κN =
Nκ0. The correction term can be written in terms of the OC
single-particle charging energy EC = πτ−1

C as

3κ0

2πτC,N TOC
= 3κ0

2π2TOC
× NEC, (86)

which thus increases linearly with increasing charging energy
and the number of attached channels N [71]. We plot the heat
conductance ratio κN/κ0 ≡ Nκm/κ0, with κm from Eq. (82),
in Fig. 9(a), explicitly displaying the full crossover from N to
N − 1 channels contributing to the total heat conductance.

C. Multichannel heat dynamics

We now release the constraint of an infinitely large energy
relaxation time τE and investigate the role of temperature
fluctuations on the heat dynamics of the N-terminal setup for
τE � τC , but still finite.

1. Multichannel Langevin equations for heat-current fluctuations
and OC temperature fluctuations

Having computed the correlation function (72) of the fast
heat-current fluctuations δJout as well as the heat conductance
(82), we now solve Eqs. (61) for the total output heat-current
fluctuations. The solution reads

δJ tot
out,m(ω) =

∑
p=in,out

N∑
n=1

T J
p,mn(ω)δJp,n(ω), (87a)

T J
out,mn(ω) ≡ δmn − N−1[1 − iωτ̃E ,N ]−1, (87b)

T J
in,mn(ω) ≡ N−1[1 − iωτ̃E ,N ]−1. (87c)

Using these expressions, we obtain the sought-for total
heat-current noise SJ,tot

out,m(ω),〈〈
δJ tot

out,m(ω)δJ tot
out,m(ω′)

〉〉
E ≡ 2πδ(ω + ω′)SJ,tot

out,m(ω), (88a)
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(a)

(b)

FIG. 9. (a) Renormalization of the total N-channel heat con-
ductance κN TOC/(κ0TOC) in Eq. (82) vs τC,N TOC, where τC,N is the
multichannel OC RC time and TOC is the OC temperature. Blue, red,
and green depict the heat conductance when N = 2, 3, or 4 pairs of
channels, respectively, are connected. Black and gray dashed lines
depict the asymptotic limits N − 1 and N . (b) Renormalization of the
N-channel energy relaxation time τ̃E ,N/τE ,N in Eq. (89), vs τC,N TOC.
Blue, red, and green solid lines depict the energy relaxation time
when N = 2, 3, or 4 pairs of channels, respectively, are connected
to the OC. Gray dashed lines depict the asymptotic limits N/(N − 1)
for τC,N TOC � 1 and the asymptotic limit of unity (independently of
N) for τC,N TOC � 1.

which provides the multichannel generalization of Eqs. (54),
namely,

SJ,tot
out,m(ω) = SJ

in(0) + SJ
out,m(0)

[
N − 1 + Nω2τ̃ 2

E ,N

]
N

(
1 + ω2τ̃ 2

E ,N

)
− SJ

out,m,n(0)

1 + ω2τ̃ 2
E ,N

. (88b)

The characteristic energy relaxation time entering in
Eq. (88b) is the total energy relaxation time of the OC, namely,

τ̃E ,N ≡ τ̃E ,m

N
, (89)

where τ̃E ,m = CE [TOC]/(κmTOC) for the multichannel case
with κm from Eq. (83). We will discuss more details concern-
ing τ̃E ,m in Sec. V below. In deriving Eq. (88b), we used that
when the temperature fluctuations are taken into account, the
contributions from the input and OC heat-current noises in
Eq. (88b) are given by SJ

p(0), for p ∈ {in, out}, paralleling the
discussion on the timescale separation in Sec. III C.

We see that depending on ωτ̃E ,N , the total output heat noise
in Eq. (88b) interpolates between

SJ,tot
out,m(ω) =

{
SJ

in (0)+SJ
out,m (0)[N−1]−NSJ

out,m,n (0)
N ωτ̃E ,N � 1

SJ
out,m(0) 1 � ωτ̃E ,N ,

(90)

where we always have ωτC,N � 1, ωτ̃E ,N . This total heat-
current noise depends on the fluctuations of the OC Langevin
source SOC(0) through the outgoing heat-current noise SJ

out,m.
In the limit ωτ̃E ,N � 1, the output heat noise is not impacted
by temperature fluctuations, but only by voltage fluctua-
tions, as discussed for the single-channel case, Eqs. (54), in
Sec. IV B 2. For frequencies smaller than the inverse modified
energy relaxation time, temperature fluctuations did com-
pletely mask the effect of SJ

OC(0) in the single-channel case;
this is very different in the multiterminal case, where both
SJ

out,m(0) and SJ
out,m,n(0), and hence also SJ

OC(0) contribute
to the total heat-current noise even when temperature fluc-
tuations are sizable. Formally, this is again similar to the
multiterminal heat Coulomb blockade induced by voltage
fluctuations, however, being due to the heat capacitance, it has
a physically very different origin here.

The sum rule (53) also holds in the N-channel setup and
reflects energy conservation. By using this sum rule, we see
that the output heat-current noise (88b) has equilibrium form
for Tin = TOC = T . The heat-current cross-correlations (73b)
that enter in the final term in Eq. (88b) are given by the
convolution of the charge-current cross correlations (65) with
themselves. This contribution thus vanishes in global equilib-
rium, as explicitly seen from the definition (66).

We also compute the heat-current cross correlations, de-
fined for m �= n as〈〈

δJ tot
out,m(ω)δJ tot

out,n(ω′)
〉〉

E ≡ 2πδ(ω + ω′)SJ,tot
out,m,n(ω), (91)

and obtain

SJ,tot
out,m,n(ω) = SJ

in(0) − SJ
out,m(0)

N
(
1 + ω2τ̃ 2

E ,N

) + SJ
out,m,n(0)ω2τ̃ 2

E ,N

1 + ω2τ̃ 2
E ,N

. (92)

We find a relation similar to that between charge-current auto-
and cross correlations, Eq. (67), also for the heat-current fluc-
tuations due to the structural similarity of the equations. This
relation reads

SJ,tot
out,m,n(ω) = SJ,tot

out,m(ω) + SJ
out,m,n(0) − SJ

out,m(0). (93)

The interpolating behavior of the cross correlations is

SJ,tot
out,m,n(ω) =

{
SJ

in (0)−SJ
out,m (0)

N ωτ̃E ,N � 1

SJ
out,m,n(0) ωτ̃E ,N � 1.

(94)

Here, the former limit shows how the OC temperature fluc-
tuations impact the heat-current cross correlations, while the
latter limit manifests the situation in Sec. IV B 2, where tem-
perature fluctuations are fully neglected.

2. Impact of heat Coulomb blockade on the energy relaxation time

Here, we analyze the characteristics of the modified en-
ergy relaxation time, focusing on the heat Coulomb blockade
regime, i.e., with the heat conductance (83) taken in the limit
τC,N TOC � 1. Then, to leading order in τC,N TOC, we find that
the energy relaxation time (89) becomes

τ̃E ,N ≈ CE [TOC]

(N − 1)κ0TOC
, N > 1. (95)

We thus see that the contribution from exactly one channel is
missing due to the reduced heat conductance (84). This en-
hancement of the energy relaxation time τ̃E ,N/τE ,N is plotted
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in Fig. 9(b). In contrast to the single-channel case (50), the
ratio τ̃E ,N/τE ,N does not diverge in the limit τC,N TOC → 0,
but saturates instead to the value τ̃E ,N/τE ,N = N/(N − 1), see
Fig. 9(b). As described above in Sec. IV B 3, it is only the total
charge mode (i.e., the charged sector of the edge channels)
that is affected by the heat Coulomb blockade. We see here
that the blockade implies that this mode does not contribute
to the enhancement of the energy relaxation time either, as
it “teleports” [13,14] through the OC and does therefore not
aid in relaxing the OC energy. In contrast, the N − 1 neutral
modes efficiently contribute to the OC energy relaxation.

3. OC temperature fluctuations in the multichannel setup

The modified energy relaxation time, naturally, has a direct
impact on the OC temperature fluctuations. To show its im-
pact, we compute the OC temperature-fluctuation correlation
function by using the solution of the Langevin equation (87a)
in combination with Eq. (61b), and find

〈〈�TOC(ω)�TOC(ω′)〉〉E ≡ 2πδ(ω + ω′)ST
OC(ω), (96)

ST
OC(ω)

= N2

κ2
N T 2

OC

SJ
in(0)−2NSJ

io,m,n(0) + NSJ
out,m,n(0) + SJ

out,m(0)

N
(
1 + ω2τ̃ 2

E ,N

) .

(97)

Similarly to the single-channel case, we consider for simplic-
ity only the case of equal temperatures Tin = TOC = T . In this
case, heat-current cross correlations SJ

out,m,n(0) vanish from
(97). Next, by using the asymptotic form of SJ

io,m,n(0), given
in (81), we obtain

ST
OC(ω) = 1

κN

2T(
1 + ω2τ̃ 2

E ,N

) (98)

due to a cancellation similar to that for the single-channel case
in Eq. (58). Explicitly, we have

SJ
in(0) − 2NSJ

io,m,n(0) + SJ
out,m(0)

= R2
q

∫ ∞

−∞

dω′

2π
(1 − N |Tin,mn(ω)|2)S(ω′)S(−ω′)

= T 2∂T Rq

∫ ∞

−∞

dω′

2π
|TOC,mn(ω)|2S(ω) = 2κmT 3, (99)

independently of τC,N T . In the time domain, Eq. (98) becomes

〈〈�TOC(t )�TOC(0)〉〉E = 〈〈�T (t )�T (0)〉〉E

= T 2

CE [T ]
e−|t |/τ̃E ,N . (100)

Hence, similarly to the single-channel case (59), the ampli-
tude of the OC temperature-fluctuation correlation function
is universal [1], but its decay rate, here τ̃E ,N , depends even
in equilibrium on the charge relaxation time via Eqs. (83)
and (89).

V. NON-GAUSSIAN FULL COUNTING STATISTICS DUE
TO TEMPERATURE FLUCTUATIONS

When the OC temperature fluctuations are negligible, it has
been shown, see, e.g., Ref. [53], that the edge channel-OC

system is well described by a quadratic bosonized model,
as briefly reviewed in Appendix B. This quadratic nature
implies that the FCS [72,73] of the output charge and heat
currents only contain first and second cumulants, i.e., the
FCS is Gaussian. This feature can change when tempera-
ture fluctuations come into play. Indeed, it has been shown
[25] that the FCS of the emitted energy show non-Gaussian
correlations in the presence of temperature fluctuations. In
this section, we demonstrate a complementary effect of siz-
able OC temperature fluctuations, namely, a non-Gaussian
FCS of the output charge current, induced by temperature
fluctuations.

To calculate cumulants of the FCS of the charge current, we
focus on the charge current in one of the output channels, m,
in the N-channel setup, see Fig. 7. We define the net electrical
charge fluctuations δq that traverse the cross section of this
channel in the observation time interval τobs as

δq(τobs) ≡
∫ τobs/2

−τobs/2
dt δIout,m(t ) ≡

∫ τobs/2

−τobs/2
dt δI (t ). (101)

Here, we assume the time interval of observation to be very
long, meaning that we focus on the zero-frequency FCS. For
notational ease, we denote δIout,m(t ) ≡ δI (t ) in Eq. (101) and
in the remainder of this section.

Without temperature fluctuations, the system is, as men-
tioned above, Gaussian, and statistical quantities, like the third
and fourth cumulants of the transferred charge fluctuations

C3 ≡ 〈(δq(τobs))3〉, (102a)

C4 ≡ 〈(δq(τobs))4〉 − 3(〈(δq(τobs))2〉)2 (102b)

vanish due to Wick’s theorem. However, in the presence of
OC temperature fluctuations, we show in the remainder of
this section that the different timescales of charge end energy
dynamics produce additional nonzero contributions, which
we denote as �C j , for j = 3, 4, to the right-hand sides of
Eqs. (102).

These contributions can be thought of as “noise of noise”
contributions and are very similar to so-called cascade correc-
tions considered previously in Refs. [25,74–76]. These earlier
works studied the FCS of a chaotic cavity, which is a large
conductor connected to two metallic leads with their number
of transmission channels being controllable by quantum point
contacts. Analogously to the edge channel-OC system consid-
ered here, such a cavity is characterized by both an RC time
and by slow fluctuations of its particle distribution function (in
the present paper, these slow fluctuations are instead produced
by temperature fluctuations). The results we obtain in this
section are comparable to the inelastic hot-electron regime
in the previously studied case of a cavity with symmetrically
connected channels. However, in contrast to previous works,
we consider here only fully chiral edge channels as the con-
nected transmission channels. Still, the case of N = 2 chiral
channels is very closely related to two nonchiral channels
symmetrically connected to the cavity, and our results in this
limit agree with the ones found in Ref. [75].
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A. Fourth cumulant

To compute the correction, �C4, to C4 in Eq. (102b),
we explicitly include the time-dependent fluctuations of the
OC temperature, TOC(t ) = TOC + �TOC(t ), in the two-point
charge-current correlation functions. We therefore write the
correction to the fourth cumulant as the leading order term in
a functional derivative expansion, using the double averaging
procedure introduced in Sec. II B. We find that the correction
is given by

�C4 ≡
4∏

n=1

∫ τobs/2

−τobs/2
dtn(〈〈δI (t1)δI (t2)δI (t3)δI (t4)〉〉E

− 3〈〈δI (t1)δI (t2)〉〉E 〈〈δI (t3)δI (t4)〉〉E )

≈ 3
2∏

n=1

∫ τobs/2

−τobs/2
dtn

(
∂Sout,m(0, TOC)

∂TOC

)2

× 〈〈�TOC(t1)�TOC(t2)〉〉E . (103)

Here, the factor of 3 is the number of possible ways to
pair the currents into two-point charge-current correlation
functions. We also have that Sout,m(0, TOC) (with the TOC

dependence explicitly highlighted here) is the low-frequency
output charge-current noise given in Eq. (64). In the following,
we show how to derive the second step in Eq. (103).

Equation (103) thus represents the nonvanishing leading
order contribution to the fourth cumulant and arises due
to a competition of dynamics on two different timescales
(taken care of by the double averaging procedure). On
timescales corresponding to an averaging over charge fluctu-
ations, the charge current fluctuations are Gaussian. We may
thus use Wick’s theorem for these fluctuations, so

4∏
n=1

∫ τobs/2

−τobs/2
dtn 〈〈δI (t1)δI (t2)δI (t3)δI (t4)〉〉E

=
4∏

n=1

∫ τobs/2

−τobs/2
dtn 〈〈δI (t1)δI (t2)〉〈δI (t3)δI (t4)〉〉E . (104)

Note that in the second line, the average 〈...〉E is taken over
a product over two averages 〈...〉. In the absence of tem-
perature fluctuations, the correlation function 〈δI (t1)δI (t2)〉 ≡
S(t1, t2) = S(t1 − t2) is the shorthand notation for the Fourier
transformed output charge noise power (63), i.e., the output
charge-current noise in the time domain. We see that the
time difference t1 − t2 governs the dynamics of this quan-
tity. However, due to the OC temperature fluctuations, the
correlation function S(t1, t2) �= S(t1 − t2), i.e., it loses this
time-translational invariance.

To account for this time dependence, we now change the
time integration variables in Eq. (104) into the sum, ts = (t1 +
t2)/2, and difference, td = t1 − t2, of times (and similarly for
t3 and t4). Even though not time-translation invariant anymore,
the charge-current noise S(t1, t2) is still peaked around zero
with respect to the time difference td on the timescale τC,N .
This makes us identify td with the characteristic timescale of
the charge dynamics. By contrast, the time dependence of the
much slower OC temperature fluctuations must occur on the
td -independent timescale ts. For the first set of time integrals

in Eq. (104), we may thus write

2∏
n=1

∫ τobs/2

−τobs/2
dtn 〈S(t1, t2)〉E

≈
∫ τobs

−τobs

dtd

∫ τobs/2−|td |/2

−τobs/2+|td |/2
dts 〈S(td , TOC(ts))〉E , (105)

and similarly for the analogous integrals involving t3 and t4.
Since the observation time τobs → ∞ is the largest timescale,
we next assume that the integration boundaries over ts are in-
dependent of td . This assumption can again be justified by the
fact that we consider measurement frequencies ωτC,N � 1,
such that S(td , TOC(ts)) will be peaked around td = 0 with
a width given by τC,N . On the short time-interval given by
τC,N , the temperature can further be assumed to be constant
i.e., TOC(ts) ≈ TOC. This means we can evaluate the integral
in Eq. (105) over td only. The combination of the above
approximations allows us simplify the following integral:

Sout,m(0, TOC(ts))

=
∫ τobs

−τobs

dtd S(td , TOC(ts))

≈ Sout,m(0, TOC) +
∫ ∞

−∞
dt

δSout,m(0, TOC(ts))

δTOC(t )
�TOC(t )

= Sout,m(0, TOC) + ∂Sout,m(0, TOC)

∂TOC
�TOC(ts). (106)

Here, in the first line, we have integrated to obtain the zero-
frequency noise. In the second and third lines, we expanded
around the weak time dependence of the OC temperature
fluctuations. We now use the approximation (106) in Eq. (105)
and insert it into Eqs. (104) and (103). Then, also inserting the
temperature-fluctuation correlation function in Eqs. (96) and
(97), we find that the fourth cumulant (102b) evaluates to

C4 ≈ �C4 = 3τobs

(
N − 1

RqN

)2 1 − e−τobs/(2τ̃E ,N )

Nκ2
mT 2

OC

× (
SJ

in(0) − 2NSJ
io,m,n(0) + NSJ

out,m,n(0) + SJ
out,m(0)

)
,

(107)

where the heat current noises on the right-hand side are given
by Eqs. (73), Eq. (80), and SJ

in(0) = κ0T 3
in . For global equi-

librium conditions, Tin = TOC = T , we may further use the
heat-current noise identity (99) with which Eq. (107) reduces
to

C4 ≈ �C4 = 6T τobs

Nκm

(
N − 1

RqN

)2

(1 − e−τobs/(2τ̃E ,N ) ). (108)

We note that the fourth-cumulant correction terms (107)
and (108) are both nonzero whenever N �= 1 and τ̃E ,N [see
Eq. (89)] is finite. For the special case N = 1, the OC temper-
ature fluctuations do not produce a nonzero fourth cumulant,
even for finite τ̃E ,N . The reason is that for a single connected
channel, the output charge current and zero-frequency charge
current noise do not depend on TOC(t ) due to charge conserva-
tion, see Eqs. (11) and (16). The fourth cumulant is therefore,
in this case, unaffected by the OC temperature fluctuations
and vanishes.
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With the fourth cumulant presented in Eq. (107), we have
thus demonstrated that finite temperature fluctuations in the
OC produce a unique relationship between the fourth cumu-
lant of the emitted charge and second cumulants (i.e., the
variance or noise) of the emitted heat—a relation which ex-
plicitly renders the FCS non-Gaussian. This feature emerges
both for equilibrium Tin = TOC and out-of-equilibrium Tin �=
TOC conditions. For negligible temperature fluctuations, the
generally out-of-equilibrium output channel has Gaussian
FCS. It is the finite OC heat capacity and the separation of
timescales in the OC, Eq. (1), that produces a non-Gaussian
FCS in the multiedge channel-OC setup.

B. Third cumulant in the presence of finite voltage bias

Until now, our analysis of the multi-edge-channel OC sys-
tem focused on the case of no voltage bias in the system,
i.e., Vin,m = 0, so there is no average potential on the OC
either, VOC = 0. Here, we will show that a finite VOC is needed
to obtain a finite correction, �C3, to the odd cumulant C3

in Eq. (102a). This emergence of the third cumulant is of
interest since detecting the third cumulant may be more exper-
imentally feasible than the detection of the fourth cumulant,
motivating the following additional calculation at finite VOC.

If we voltage bias a single input channel (see Fig. 7), e.g.,
by taking Vin,m = V δm,1, the energy dynamics of the system,
given by Eqs. (61), is no longer fully described by heat cur-
rents. Instead, we must in this equation take

Jin,m(t ) → IE
in,m(t ) = Jin,m(t ) − V δm,1Iin,m(t ), (109a)

Jout,m(t ) → IE
out,m(t ) = Jout,m(t ) − VOCIout,m(t ), (109b)

where from Kirchoff’s voltage law, we have that VOC = V/N .
From conservation of the average energy currents

∑
m IE

in,m =∑
m IE

out,m, we find that the average OC temperature in the
presence of the bias is fixed via

κmT 2
OC = κ0T 2

in + N − 1

N2

V 2

Rq
, (110)

where the thermal conductance κmTOC is given in Eq. (82).
With the substitutions (109), the energy conservation

equation (61a) determining the OC temperature fluctuations
becomes

d�U (t )

dt
≈ CE [TOC]

d�TOC(t )

dt

=
N∑

m=1

[
δJin,m(t ) − δJ tot

out,m(t )

− V
(
δIin,1(t )δm,1 − N−1δIout,m(t )

)]
, (111)

which thus contains a crucial term that is linear in the charge-
current fluctuations. We now show that this modification
results in a correction to the third cumulant of the emitted
charge at finite bias. This correction, denoted �C3, takes the
form

�C3 ≡
3∏

n=1

∫ τobs/2

−τobs/2
dtn〈〈δI (t1)δI (t2)δI (t3)〉〉E ,

where we remember that δI (t ) is shorthand notation for
δIout,m(t ). Just as for the fourth cumulant, the third cumulant
vanishes in the absence of temperature fluctuations due to
the Gaussian nature of the charge fluctuations, leaving the
correction �C3 as the only nonvanishing component.

With the same approach as for the fourth cumulant above,
we write the leading order correction term as

�C3 ≈ 3
2∏

n=1

∫ τobs/2

−τobs/2
dtn

∂Sout,m(0)

∂TOC
〈〈�TOC(t1)δI(t2)〉〉E .

(112)

To compute these time integrals, we start by solving the en-
ergy conservation equation (111) and then combine it with the
heat Langevin equation (87a). We then apply the separation
of fast and slow timescales according to Eq. (106). Finally,
by using the identity for the charge-current noises at zero
frequency (69), we arrive at

C3 ≈ �C3 = 3τobs

(
N − 1

RqN

)2

(1 − e−τobs/(2τ̃E ,N ) )
V Tin

NκmTOC
.

(113)

This expression is indeed finite only when the voltage bias
is finite V �= 0 and for N > 1. The requirement of N > 1 is,
just as for the fourth cumulant, needed for the emitted charge
current and zero-frequency charge current noise to depend on
TOC(t ).

The third cumulant (113) was obtained in Ref. [74] for the
particular case of N = 2 and a symmetric cavity in the regime
τC,N TOC � 1. Our calculation thus generalizes the third cu-
mulant to generic values of τC,N TOC. We further note that for
N > 2, neither the third (113) nor the fourth cumulant (107)
coincides with the corresponding cumulants in Ref. [74], even
in the regime τC,N TOC � 1. This happens due to different def-
initions of the transmitted charge in the chiral and nonchiral
conduction channels for N > 2. We finally remark that a finite
voltage bias would of course also modify the correction to
the fourth cumulant, presented for the zero-voltage case in
Eq. (107).

VI. SUMMARY AND OUTLOOK

We have presented a theory of charge and heat transport
along quantum Hall edge channels strongly coupled to an OC,
where the latter is characterized by not only a charge relax-
ation (or RC) time, τC = RqC, but also an energy relaxation
time τE ≈ CE [TOC]/(κTOC). We have thus comprehensively
described the edge channel-OC system beyond the usually
considered limit ωτE � 1.

Based on the experimentally motivated timescale hierarchy
in Eq. (1), we formulated a Langevin-based approach and de-
termined the charge- and heat-current fluctuations emanating
from the OC, as well as the OC potential and temperature
fluctuations. Broadly, our findings reveal the delicate interplay
between the charge and heat transport that is generated along
1D chiral edge channels when they are strongly coupled to an
OC.

More specifically, we found that while only τC affects the
charge transport, the heat transport is impacted by the com-
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bined effect of τC and τE . Moreover, we established that the
emitted charge-current noise, heat currents, and heat-current
noise all display bandpass filtering effects due to the OC
dynamics and highlight the out-of-equilibrium properties of
the system. This is interesting from an out-of-equilibrium
thermometry point of view and also extends the heat Coulomb
blockade effect coming from the finite RC time to other quan-
tities and other timescales. Notably, the interplay of charge-
and energy relaxation times results in a modified energy-
relaxation time which governs the emitted heat-current noise
and generates a non-Gaussian full counting statistics of the
OC’s emitted charge.

We end by discussing the feasibility to experimentally
measure the predicted effects in this paper. Experimental se-
tups with 1D edge channels strongly coupled to an OC have
been realized in both GaAs [36] and in graphene [63] devices.
Moreover, charge currents and the charge-current noise are
routinely measured in such devices and the charge-current
noise dependence on the RC time at low temperatures have
also been observed, although so far only in GaAs [11]. To
also analyze the heat-current fluctuations and the impact of τE

will require two important steps, which we believe should be
within reach of state-of-the-art technology: (i) The fabrication
of an OC, such that τE becomes sufficiently small. Either,
this can be achieved with a sufficiently small-sized OC (see
Sec. II A and Appendix A for estimates) or by exploiting the
reduction of τE in a lower-dimensional OC. (ii) An exper-
imental method to measure heat-current fluctuations in the
QH regime. One possible way to measure these was proposed
in Refs. [33,77]. In short, quantum dots, side-coupled to the
outgoing edge channels, can, via thermoelectricity, convert the
edge channel heat-current fluctuations to more easily measur-
able charge-current fluctuations. Alternatively, heat-current
fluctuations can be converted to temperature fluctuations via
floating probe contacts [26]. Hence, complementing the se-
tups in Figs. 1 and 7 with quantum dots or probe contacts
connected to the output channels extends the edge channel-
OC system to a versatile platform to experimentally determine
fundamental connections between heat and charge transport in
a mesoscopic electronic circuit.
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APPENDIX A: DERIVATION OF THE OC HEAT CAPACITY
AND THE ENERGY RELAXATION TIME

In this Appendix, we compute the heat capacity, CE [T ],
and the energy relaxation time, τE , under the assumption that

the thermal properties of the OC can be described in terms
of a free, three-dimensional (3D) Fermi gas with size L3 and
at temperature T . We further assume that the OC does not
behave classically, i.e., we consider low temperatures T � TF,
where (in the units chosen here) the Fermi temperature is
identical to the Fermi energy EF = k2

F/(2m), with kF the Fermi
momentum and m the electron mass.

In a free Fermi gas, the increase in internal energy due to a
finite temperature T compared to the zero-temperature limit,
�U (T ), is given as

�U (T ) =
∫ ∞

0
dE ED(E ) f (E ) −

∫ EF

0
dE ED(E ). (A1)

Here, f (E ) = (e(E−μ)/T + 1)−1 is the Fermi-Dirac distri-
bution, μ is the electrochemical potential, which in the
low-temperature case considered here equals the Fermi en-
ergy EF, and D(E ) is the density of states. For a 3D gas,
we have D(E ) ∝ √

E . Since the number of electrons, N =
L3k3

F/(3π2), is conserved when increasing the temperature
from zero to T , we have the useful identity:

N =
∫ EF

0
dE D(E ) =

∫ ∞

0
dE D(E ) f (E )

⇒
∫ EF

0
dE D(E )( f (E ) − 1) +

∫ ∞

EF

dE D(E ) f (E ) = 0.

(A2)

To compute the heat capacity CE [T ], we differentiate Eq. (A1)
with respect to the temperature and use Eq. (A2). We then find

CE [T ] ≡ d�U (T )

dT
=

∫ ∞

0
dE (E − EF)D(E )

∂ f (E )

∂T

≈ D(EF)T
∫ ∞

−∞
dx

x2ex

(ex + 1)2
= π2

2

T

TF
N , (A3)

where we assumed that T � TF = EF and take the value of
the density of states at the Fermi energy D(E ) ≈ D(EF) ≡
3N /(2EF).

We now compare CE [T ] in Eq. (A3) to the Fermi gas level
spacing, δE . The level spacing is given by the inverse density
of states at the Fermi level 1/D(EF) and, hence, for a 3D
Fermi gas of size L3,

δE ≡ 1

D(EF)
= 2EF

3N = 1

(3π2N )
1
3

π2

mL2
, (A4)

which has the characteristic energy scale π2/(mL2) and
decreases with increasing electron number N . Combining
Eq. (A4) with Eq. (A3) gives the scaling CE [T ] ∼ T δE−1

and the energy relaxation time thus increases linearly with the
inverse level spacing,

τE ≡ CE [T ]

κ0T
∼ δE−1, (A5)

where κ0 = π/6 is the heat conductance quantum.
For comparison, for a 2D Fermi gas, the level spacing is

δE2D ≡ 1

D2D(EF)
= EF

N2D
= 1

π

π2

mL2
, (A6)
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with D2D(EF) = EF/N2D and N2D = k2
FL2/2π . Note that the

2D gas level spacing (A6) is independent of the 2D electron
number N2D.

Instead, for a 1D Fermi gas we find

δE1D ≡ 1

D1D(EF)
= EF

2N1D

= N1D

4

π2

mL2
, (A7)

with D1D(EF) = EF/(2N1D) and N1D = kFL/π . Hence, the
1D gas level spacing increases linearly with the 1D electron
number N1D.

APPENDIX B: BOSONIZED MODEL OF THE OHMIC
CONTACT AND DERIVATION OF THE HEAT-CHARGE

CURRENT RELATION

With the bosonization technique (see, e.g.,
Refs. [50,53,58]), the strongly coupled edge channel-OC
system can be treated exactly. The bosonized Hamiltonian of
the edge-OC system is given by [53,78,79]

H = vF

4π

∑
i=in,out

∫ ∞

−∞
dx (∂xφi(x, t ))2 + Q(t )2

2C
, (B1)

where i ∈ {in, out} labels the incoming and outgoing edge
channels, C is the OC charge capacitance, and Q(t ) =∑

i′
∫ 0
−∞ dx ρi′ (x, t ) exp(εx/vF) is the OC charge operator.

Here, the charge is expressed as integrated charge densities
ρi(x, t ) ≡ e

2π
∂xφi(x, t ) inside the OC region x ∈ (−∞, 0].

The exponentially decaying term arises due to the finite
lifetime of excitations ε−1 > 0 inside the OC. Importantly,
the Hamiltonian (B1) is quadratic in the bosonic fields
and can thus be solved exactly. The equations of mo-
tion for the bosons are obtained from the Heisenberg
equation ∂tφi(x, t ) = −i[φi(x, t ),H] and are supplemented
by the boundary conditions ∂tφin(+∞) = −2π Iin(t )/e and
∂tφout (−∞) = −2π IOC(t )/e. The solution of the equations of
motion can be rearranged precisely as the charge dynamics in
Eqs. (2) and (3) [53].

Furthermore, by inspecting the first term in Eq. (B1), we
obtain the heat-current operator, J , for a single channel. In 1D,
this operator must have the form velocity × energy density,
for which the only consistent choice is

J (x, t ) = v2
F

4π
(∂xφi(x, t ))2. (B2)

Identifying in this expression the charge-current operator
I (x, t ) = vFρ(x, t ) = evF∂xφ(x, t )/(2π ) and the resistance
quantum Rq = 2π/e2 leads directly to the heat-charge current
relation in Eq. (4).

APPENDIX C: EQUIVALENCE OF FERMIONIC AND
BOSONIC DESCRIPTIONS OF THE AVERAGE HEAT

CURRENT

For completeness, we provide in this Appendix a derivation
(previously presented in Ref. [80]) of the equivalence between
(i) the equilibrium heat current (17), given in terms of bosonic
density fluctuations and (ii) a description of the equilibrium

heat current in terms of an electronic distribution function of
chiral fermions. The latter quantity is given by

Jferm = 1

2π

∫ ∞

−∞
dε(ε − μ)[ f (ε − μ) − θ (−ε + μ)]

= πT 2

12
, (C1)

where we explicitly included the electrochemical potential μ

for clarity. The definition of the fermionic distribution func-
tion f (ε) is given as

f (ε) ≡
∫ ∞

−∞
dteiεt K (t ), (C2)

K (t ) = 〈ψ†(t )ψ (0)〉, (C3)

where ψ†(t ) is a fermionic operator creating a fermion at time
t . In the time- domain, we express the average fermionic heat
current (C1), via Eqs. (C2) and (C3), as

Jferm = −i∂t

[
K (t ) − 1

2π it

]∣∣∣∣
t→0

, (C4)

where the second term in the brackets is the subtracted
zero-temperature contribution. Next, we express the fermionic
correlation function (C3) with the bosonization technique [58]
as

K (t ) = 1

2πa
〈e−iφ(t )eiφ(0)〉 = 1

2πa
e〈(φ(t )−φ(0))φ(0)〉, (C5)

where φ(t ) is a chiral bosonic field and a is a short-distance
cutoff. The last equality in Eq. (C5), i.e., the formulation
of the fermionic correlation function in terms of a bosonic
correlation function, holds whenever the bosonic theory is
quadratic, or Gaussian, which is particularly true in equilib-
rium. Furthermore, the boson φ(t ) is related to the current
operator as

I (t ) = −e
∂tφ(t )

2π
, (C6)

which permits us to express the bosonic correlation function
in terms of the equilibrium charge-current noise as

− e2

(2π )2
ωω′〈φ(ω)φ(ω′)〉 = 〈δI (ω)δI (ω′)〉

≡ 2πδ(ω + ω′)S(ω), (C7)

where we assumed 〈I (ω)〉 = 〈φ(ω)〉 = 0. Using Eq. (C7) in
Eq. (C5), we write the fermionic correlation function in terms
of the charge-current noise as

ln K (t ) = − ln(2πa) + 2π

e2

∫ ∞

−∞

dω

ω2
S(ω)(e−iωt − 1). (C8)

Next, we identify Rq = 2π/e2 and add and subtract the term
ln(t ), which further allows us to write

ln K (t ) = − ln(2πa) + ln Kn(t ) − ln(t ), (C9)

ln Kn(t ) = Rq

∫ ∞

−∞

dω

ω2

(
S(ω) − ωθ (ω)

Rq

)
(e−iωt − 1).

(C10)
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By expanding ln K (t ) to second order in t , dropping odd
terms in the integrand, and inserting into Eq. (C4), we finally
arrive at

Jferm = − 1

4π
∂2

t ln Kn(t )|t→0

= Rq

4π

∫ ∞

−∞
dω

[
S(ω) − ωθ (ω)

Rq

]
, (C11)

which is precisely the equilibrium heat current in terms of the
charge-current noise, as presented in Eq. (17).

All the above steps can, in fact, be repeated verbatim for
the output heat current. It is defined in terms of an output,

generally out of equilibrium, distribution function fout (ε) as

Jout = 1

2π

∫ ∞

−∞
dε(ε − μ)[ fout (ε) − θ (−ε + μ)], (C12)

which leads to Eq. (C11) with the replacement S(ω) →
Sout (ω). By inspecting the output current (9) and the boson-
current identity (C6), we see that the output boson must be a
linear combination of the input and OC bosons. This implies
further that the output charge-current noise is a linear combi-
nation of the input and OC charge-current noises, as shown in
Eqs. (13). Thus, it follows that the output heat current (C12)
is exactly equivalent to the formulation in Eq. (21).
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