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Efficient Cooper pair splitting without interactions
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For the three-terminal NSN device with single-mode normal terminals and without Coulomb blockade,
we propose the interpretation of charge transfer process, which allows us to consistently characterize the
device operation as that of a Cooper pair splitter in terms of scattering matrix elements as well as in terms
of measurable quantities. The obtained explicit expression for the splitting probability notably contains the
two-particle interference term not available from conductance measurements. We show that splitting does not
necessarily rely on single-particle crossed Andreev reflection amplitude thus allowing for the unit efficiency at
zero energy. Our results imply that the current cross correlator generally does not provide definite measure of
splitting.
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I. INTRODUCTION

Cooper pair splitter (CPS) is a solid-state device producing
spin-entangled electron pairs. The original theoretical pro-
posal [1] involved a superconductor coupled to two quantum
dots in the Coulomb blockade regime, so that Cooper pairs
constituting current through the superconductor are forced
to split into the different leads of the setup. Following this
idea, many theoretical and experimental works concentrate
on the Coulomb blockaded devices [2–21]. Hybrid NSN de-
vices without Coulomb blockade are also thoroughly studied
[22–43], in particular with a goal to find out the manifestation
of correlations, different microscopic processes, and inter-
actions in the measurable quantities. While the quantitative
results obtained using various approaches coincide in certain
limits, the interpretations sometimes differ significantly, down
to whether Cooper pair splitting occurs or not [5,36].

The two most important operating characteristics of a CPS
are (i) the splitting probability, p11, determining the magni-
tude of the current of split pairs and (ii) the splitting efficiency,
K , showing which part of the total superconductor current
results in the separated entangled electrons. Unambiguous
interpretation of the experiments requires the demonstration
of the split electrons spin entanglement as well as the ex-
traction of K . Usually, it is estimated from the analysis of
the conductance correlations [3,4,7,9,11,12,15,18–20] with
the recent experiments [21,44,45] performing also the spin
correlation analysis. The existing proposals to achieve unit
efficiency without Coulomb blockade rely on the energy fil-
tering [8,24,46,47] in order to maximize crossed Andreev
reflection (CAR). Both the possibility of reaching K = 1
at zero energy and the corresponding role of CAR remain
weakly explored.

Beyond the average current measurements, a valuable
piece of information is contained in the current cross
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correlations [22,30,33–36,40,48,49]. The basic logic suggests
that for the dominating splitting events coincident arrival of
electrons to two normal terminals would lead to the positive
contribution to the cross correlator. Since in the purely nor-
mal three-terminal Fermi system cross correlators are always
negative, its positive sign in a superconductor-containing
three-terminal device would then reflect the domination of the
splitting events in the total current. However, the manifesta-
tion of splitting in the sign of the cross correlator remains
obscure since, e.g., for the case of transparent NSN junctions
the well-established positive cross correlator was shown to
coexist with the suppressed CAR [36].

Here, we consider the three-terminal NSN device with
single-mode normal (N) terminals in the zero-energy approx-
imation. We show that the well-known general scattering
matrix expressions for current correlators can be transformed
in such a way as to reveal their connection with splitting
processes. We obtain explicit expressions for splitting prob-
ability p11 and splitting efficiency K in terms of scattering
matrix elements. The results contain two-particle interference
term and thus are generally not accessible via the conductance
measurements. We reveal that splitting processes do not rely
solely on CAR. We uncover the previously unexplored role
of device geometry on the possibility of efficient splitting.
Namely, the cases of single-mode and multimode supercon-
ducting (S) terminals are conceptually different. For devices
with single-mode superconducting (S) terminal, we show that
K � 1/2 and that, counterintuitively, the largest p11 and K are
realized at perfectly anticorrelated currents in two arms of the
splitter. For devices with multimode S terminal, we show that
K may reach unit without energy filtering. Finally, our results
imply that the known value of the cross correlator generally
does not allow one to judge on p11 and K .

II. APPROXIMATIONS AND MAIN RESULT

In this paper we will study a spin-degenerate NSN de-
vice with single-mode N terminals depicted schematically
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FIG. 1. Spin degenerate system with single-mode normal termi-
nals (1 and 2) and the superconducting (3) terminal. The central
disordered region is described by the scattering matrix s. The par-
ticular case of V1 = V2 effectively describes the splitter geometry.

in Fig. 1. By single-mode terminals we mean that the arms
connecting the terminals with the disordered region (shaded
gray), described by the scattering matrix s, are single-channel
spin-degenerate conductors without scattering. The N termi-
nals are labeled by 1 and 2, the S terminal is labeled by 3.
Throughout the paper, the upper greek letters denote the parti-
cle type, while the lower latin indices denote the terminals. In
particular, seh

11 and seh
22 are the amplitudes of local Andreev re-

flection (LAR), seh
12 and seh

21 describe CAR, see
11, see

22 and see
12, see

21
are normal reflection and elastic cotunneling, respectively.
The transmission coefficients, T αβ

i j = |sαβ
i j |2, reflect the proba-

bilities for a particle β from the terminal j to be transmitted as
a particle α to the terminal i. Scattering matrix elements obey
the orthogonality sum rules [50]

∑
l∈N,S; δ∈e,h

(
sαδ

il

)∗
sβδ

jl =
∑

lδ

(
sδα

li

)∗
sδβ

l j = δi jδαβ, (1)

with the following particular case for the transmission
coefficients: ∑

j∈N,S; δ∈e,h

T αδ
i j =

∑
j∈N,S; δ∈e,h

T δα
ji = 1,

where the first sum includes all probabilities for a particle α to
find itself in an ith terminal after the scattering event, while the
second sum includes all scattering probabilities for a particle
α from the ith terminal. Currents flowing out of the terminals
are taken to be positive.

In our analysis we will rely on the general formulas for the
average current and current correlations derived by Anantram
and Datta for phase-coherent mesoscopic structures [50]:

Ii = e

h

∫
dE

∑
α, j ∈ NS, β

sgn(α)
[
δi jδαβ − T αβ

i j (E )
]

f jβ (E ),

Si j = 2e2

h

∑
k, l ∈ N,S

α, β, γ , δ ∈ e, h

sgn(α)sgn(β )

×
∫

dE Akγ ; lδ (iα, E )Alδ; kγ ( jβ, E ) fkγ (E )[1 − flδ (E )],

(2)

where Akγ ; lδ (iα, E ) = δikδilδαγ δαδ − (sαγ

ik )∗sαδ
il , fiα are the

Fermi distribution functions for electrons and holes in the
reservoirs limiting in our case of zero temperature to Heav-
iside step functions.

In the following we operate in the subgap energy range
assuming no quasiparticle loss in the superconductor, which
leaves only N-terminals indices in the s matrix and, in partic-
ular, allows us to omit summation over the S-terminal index
in sum rules. Additionally, we assume one may neglect the
energy dependence of the scattering matrix in the considered
energy range. The expressions for average currents linearize
to (see Eq. (31) in [50])

I1 = G0
[
V1

(
1 − T ee

11 + T he
11

) + V2
( − T ee

12 + T he
12

)]
,

I2 = G0
[
V1

( − T ee
21 + T he

21

) + V2
(
1 − T ee

22 + T he
22

)]
.

Consider the special case of V1 = V2 = V , effectively describ-
ing the splitter geometry. Using the sum rule and taking into
account the electron-hole symmetry, for the dimensionless
average currents, I = I/(G0V ) with G0 = 2e2/h, one gets

I1 = 1 − T ee
11 + T he

11 − T ee
12 + T he

12 = 2
(
T eh

11 + T eh
12

)
,

I2 = 1 − T ee
22 + T he

22 − T ee
21 + T he

21 = 2
(
T eh

21 + T eh
22

)
. (3)

Generally utilized way to proceed with expressions for
current correlators from (2) is to explicitly write down all
its numerous components [22,36,51]. These components are
commonly identified with specific microscopic processes,
e.g., the term containing the product see

12see
21(see

11)†(see
22)† is put

in correspondence with the combination of elastic cotunneling
and normal reflection, while the term containing the product
she

21she
12(she

11)†(she
22)† is attributed to the combination of LAR and

CAR. Further conclusion on the contribution from splitting
to the cross correlator S12 is based on the input from the
components containing CAR amplitudes [33,36]. Here, we
argue that in fact CAR and splitting are generally not directly
related and, moreover, splitting does not necessarily lead to
the positive contribution to S12. Our claim is based on the
zero-energy transformation of the expressions (2) for current
correlators, which demonstrates the two-particle interference
nature of splitting. Note that in our claim we do not oppose
the specific quantitative results obtained previously by other
authors some of which will be reproduced below. Rather, we
show that the interference form of the transformed expressions
allows the novel elegant interpretation, which may be not as
straightforward as was previously believed.

Similarly to the average currents, further we will consider
the dimensionless zero-frequency current correlators, Si j =
Si j/(G0eV ). In Supplemental Material (SM) [52], Secs. I–
III, we analytically demonstrate that for the system under
consideration the expressions (2) can be rewritten as follows:

S11 = 2I1(2 − I1) − 4
∣∣see

11she
12 − she

11see
12

∣∣2
,

S22 = 2I2(2 − I2) − 4
∣∣see

11she
12 − she

11see
12

∣∣2
,

S12 = 4
∣∣see

11she
12 − she

11see
12

∣∣2 − 2I1I2

+ 8
∣∣she

12she
21 − she

11she
22

∣∣2
. (4)

Note the occurrence of two-particle interference terms not
reduced to average currents. The common to all three expres-
sions term remains the same with the interchange of terminals
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indices,

see
11she

12 − she
11see

12 = (
shh

11

)∗
she

12 + (
seh

11

)∗
see

12

= −{(
seh

21

)∗
see

22 + (
shh

21

)∗
she

22

} = see
22she

21 − she
22see

21,

which is the consequence of the orthogonality rule (1). Below
we will show that (4) allows for a transparent interpretation
of how current flows in a device. It also allows for the in-
troduction of explicit expressions for splitting probability and
efficiency, which are our main result:

p11 = 2
∣∣see

11she
12 − she

11see
12

∣∣2
, K = 2p11/(I1 + I2). (5)

In SM Sec. IV we prove that generally

p11 � 1/2 and K � 1 − |I3|/4, (6)

where I3 is the total superconductor current. In the following
we will first address the case of single-mode S terminal and
then move on to the multimode S-terminal problem.

III. SINGLE-MODE S TERMINAL

We start our analysis with the device with single-mode S
terminal. This implies the following crucial identity for the
Andreev amplitudes:

she
12she

21 = she
11she

22, (7)

which can be derived by connecting the scattering matrix
to that of a complementary device with all N terminals, see
SM, Sec. V [52]. The corresponding expression for cross
correlators are therefore

S11 = 2I1(2 − I1) − 4
∣∣see

11she
12 − she

11see
12

∣∣2
,

S22 = 2I2(2 − I2) − 4
∣∣see

11she
12 − she

11see
12

∣∣2
,

S12 = 4
∣∣see

11she
12 − she

11see
12

∣∣2 − 2I1I2. (8)

Consider now a physical picture of the current flowing
process in the system under consideration. For a quantum con-
ductor at low enough temperature it is a consequence of the
Pauli principle that, up to logarithmically small fluctuations,
each terminal periodically, with a frequency of eV/h per spin,
attempts to emit a particle into each mode of a conductor [53].
In our case, from the point of view of the superconductor,
there are four possible current pulse outcomes, schematically
depicted in Fig. 2(a). Eventually, the Cooper pair is either split
into two different arms connected to normal terminals (with
the splitting probability p11), or both charges are transmitted
into the same arm (p20 and p02), or the attempt is unsuc-
cessful and no charge is transmitted (p0). While the splitting
probability p11 defines the magnitude of the current of split
pairs, the splitting efficiency K shows the fraction of the total
superconductor current, which is split.

The introduced probabilities obey the normalization condi-
tion and determine the currents:

1 = p0 + p11 + p02 + p20,

I1 = p11 + 2p20,

I2 = p11 + 2p02.

FIG. 2. (a) Possible outcomes of the current pulse in a single-
mode NSN device. (b) Two interfering processes contributing to
p11. Blue and red color correspond to electron and hole states, re-
spectively. (c) Splitting probability, current cross correlator and the
efficiency of splitting in a single-mode NSN device as functions
of I1 and I2. The dashed line on the central panel corresponds to
S12 = 0. Only colored points are available and any of these points is
achievable in, e.g., the quantum Hall Bogoliubov interferometer (see
text).

Moreover, for the current correlators in the terminals, one
obtains

S11 = 2[p11 + 4p20 − (p11 + 2p20)2],

S22 = 2[p11 + 4p02 − (p11 + 2p02)2],

S12 = 2[p11 − (p11 + 2p20)(p11 + 2p02)].

Here, we used the following expression for the zero-frequency
current correlators: Si j = 2〈δQiδQj〉/t , where t is the long
enough observation time and δQi is the fluctuation of charge
Qi, which passes the cross section of the lead connected to the
ith terminal during this time. To bridge these relations with
the scattering matrix approach, we rewrite them in a slightly
different form leaving only the splitting probability:

S11 = 2I1(2 − I1) − 2p11,

S22 = 2I2(2 − I2) − 2p11,

S12 = 2p11 − 2I1I2. (9)

We first test these relations for the well-known two-
terminal case of the NS junction where the lead to the second
terminal is off. One therefore has to take p11 = p02 = 0, so
that the device is effectively described by any of the two other
probabilities with p0 + p20 = 1 and I = 2p20. Here, p20 is
the LAR probability expressed via the normal-state transmis-
sion probability T via the standard relation p20 = T 2/(2 −
T )2. For the conductance and the noise autocorrelator one
then obtains GNS = (4e2/h)p20 and SNS = S11 = 4p0I. In
a particular case of a transparent NS boundary, p0 = 0, the
conductance is GNS = 4e2/h and the current flow is noiseless,
which verifies our assumption of periodical current pulse at-
tempts for a superconductor. In the opposite limit of a tunnel
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NS junction, p0 → 1, the autocorrelator is S = 4I, reproduc-
ing the doubling of shot noise compared to the Poisson value
SP = 2I, characteristic for the normal state tunnel junction
[54–56].

Returning to the case of a three-terminal device, we note
that (9) provides p11, and hence K , in terms of the measurable
quantities. Comparing (8) and (9) we obtain the following
explicit expressions for the splitting probability:

p11 = 2
∣∣see

11she
12 − she

11see
12

∣∣2 = 2
∣∣see

22she
21 − she

22see
21

∣∣2
.

These expressions suggest the splitting events include the
two-particle interference between two processes with indis-
tinguishable results shown in Fig. 2(b). Note that only for the
convenience we illustrate these processes in a geometry where
S terminal supports at least two modes.

The relation for the Andreev amplitudes (7) allows one to
transform p11 as follows, see SM Sec. VI [52]:

p11 = 2T he
21

T he
12 + T he

11

T he
21 + T he

11

= 2T he
12

T he
21 + T he

22

T he
12 + T he

22

.

In particular, in the absence of a magnetic field, p11 reduces
to the CAR probability, p11 = 2T he

12 = 2T he
21 . Generally, under

broken time-reversal symmetry, p11 depends also on the LAR
probabilities. For the symmetric device, I1 = I2 (p20 = p02),
where (7) implies T he

12 = T he
22 , T he

11 = T he
21 , the splitting proba-

bility may be written as p11 = T he
12 + T he

21 .
We notice that for the discussed device K , all the probabil-

ities and the current correlators may be expressed in terms of
the currents. In particular:

K = 2I1I2

(I1 + I2)2
, p11 = I1I2

I1 + I2
,

S12 = 2I1I2/(I1 + I2) − 2I1I2,

see Fig. 2(c) summarizing the values of p11,S12, and K as
functions of the normalized currents in N terminals. The above
expressions resolve the whole class of splitters with single-
mode S terminal. Importantly, the sign of the cross correlator
is determined simply by the total current. Moreover, one has
the following bounds:

K � 1
2 , p11 � 1

2 ,

that is only half of the superconductor current can in princi-
ple be split, which is the consequence of (7). Maximization
of the split current requires I1 = I2 = 1, which in terms of
probabilities reduces to p11 = 1/2, p20 = p02 = 1/4, p0 = 0,
coming along with the following N-terminals noise correla-
tors: S11 = S22 = 1,S12 = −1. Therefore the largest possible
p11 and K coexist with the largest possible negative S12. In
fact, the currents in a so-tuned setup are anticorrelated:

〈(δI1 + δI2)2〉 = S11 + S22 + 2S12 = 0 → δI1 = −δI2.

This observation contradicts the general basic logic, which
would require maximizing cross correlator to achieve maxi-
mum splitting current and/or efficiency. The physical reason
for this seemingly counterintuitive result is that for the above
probabilities the momentary currents in a splitting event equal
the average currents and do not contribute to S12, see Fig. 3.

FIG. 3. Time dependence of current in two arms of a device
with single-mode S terminal where splitting processes (marked with
checks) provide maximum possible split current. Splitting processes
do not contribute to the current cross correlator. Maximum possible
split current coexists with perfectly anticorrelated currents.

A. Beam splitter

We now consider the cases where s matrix can be calcu-
lated analytically. As the simplest application of our findings,
consider first the geometry of beam splitter (BS) [22] shown
in the inset of Fig. 4. Here, the scattering region (gray) is
represented by the semitransparent mirror so that the device
is symmetric and is parametrized by the single parameter
0 < τ < 1/2, which controls the transparency of the splitter:
the transmission between the S and the N terminals vanishes at
τ = 0 and is maximal at τ = 1/2. Additionally, the interface
between S terminal and the corresponding lead (black thick
line) is disordered and is characterized by the BTK parameter
Z related to the interface transparency via T = 1/(1 + Z2)
[57]. The scattering matrix of the device is readily available
[51] and provides one with explicit analytical expressions
for currents I1, I2, current correlators S11,S12 and splitting
probability p11 and efficiency K , see SM Sec. VII [52]. Im-
portantly, the symmetry of the device at any Z ensures that the
efficiency is exactly 50%. For the case of transparent interface,
Z = 0, the analytical expressions take simple form:

I1 = I2 = τ 2/(1 − τ )2, S12 = τ 2(1 − 2τ − τ 2)/(1 − τ )4,

p11 = τ 2/[2(1 − τ )2].

Note that up to a factor of 2 coming from the definition, the
expression for S12 is exactly the same as in Ref. [22], however,

FIG. 4. (a) Normalized current cross correlator and (b) splitting
probability in a beam-splitter geometry for different values of disor-
der at S interface.
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FIG. 5. (a) Sketch of the quantum Hall Bogoliubov interfer-
ometer. (b) �-independent splitting efficiency of the HBI. (c),
(d) Splitting probability and current cross correlator for the HBI at
� = 0, |tee|2 = 0.9.

now we have revealed that it is determined just by the total
current of the superconductor:

S12 = I1 − 2I2
1 = I3(1 − I3)/2.

In Fig. 4 we demonstrate the dependences of normalized
S12 and p11 on mirror transparency for Z = 0, 0.5 and 1. Note
that the curve for S12|Z=1 is almost the same as that by Torres
and Martin plotted for V/� = 0.5, see their Fig. 3 (top curve)
[22] with the difference due to the finite bias used in Ref. [22].
As is dictated by our general analysis, the maximum possible
split current achieved at Z = 0, τ = 1/2 coexists with per-
fectly anticorrelated currents. At the same time, the efficiency
of splitting is both Z and τ independent, K = 1/2, since the
device is symmetric. Note also that at high enough disorder
at the S interface the total superconductor current is I3 � 1,
so that S12 ≈ 2p11 = I3/2. In this limit the correspondence
between splitting and the cross correlator is valid since current
and its fluctuations are almost identical.

B. Quantum Hall Bogoliubov interferometer

We now discuss the more complicated case of the recently
introduced quantum Hall Bogoliubov interferometer (HBI)
[58]. The system is a modification of a Fabry-Perot quan-
tum Hall interferometer [59] with a superconducting terminal
inside. For the HBI at the filling factor ν = 2, the scattering
matrix can be obtained analytically, see SM Sec. VIII [52]. In
particular, maximizing the �-independent splitting efficiency,
K = 2T1T2R2/(1 − R1R2)2 = 1/2, requires T2 = T1/(1 + T1),
see the dashed line in Fig. 5(b). Here, T1 and R1 (T2 and R2)
are transmission and reflection probabilities of the two con-
strictions, � is the Aharonov-Bohm phase. We note that the
obtained condition simultaneously ensures the symmetric de-
vice. For any fixed constrictions, the values of p11, I1 and I2

achieve their largest values at � = 2πm, m ∈ Z. Figures 5(c)
and 5(d) demonstrate p11 and S12 for this specific case at

FIG. 6. Possible outcomes of a current pulse in a device with
multimode S terminal.

|tee|2 = 0.9 (tee and teh are the amplitudes of normal and An-
dreev scattering off the S terminal). The dashed lines here are
the same as in Fig. 5(b). In particular, at T1 = |teh| and T2 =
|teh|/(1 + |teh|), which is indicated by point 1 in Figs. 5(b)–
5(d), both K and p11 are maximal: K = 1/2, p11 = 1/2. At
the same time, I1 = I2 = 1 and S11 = S22 = 1,S12 = −1, so
that the currents here are anticorrelated. Note that by tuning �

one can vary the current of split pairs saving the value of K ,
see SM Fig. 2 [52].

IV. MULTIMODE S TERMINAL

We emphasize that the whole above discussion strongly re-
lies on the fact that exactly one mode connects the S terminal
to the scattering region. To go beyond this geometry, we as-
sume there are at least two modes between the S terminal and
the scattering region. The expressions (4) do not change since
the scattering matrix s includes only N-terminals indices.
However, the relation (7) between AR amplitudes is no longer
valid: the simplest example is when two N terminals are con-
nected to the large superconductor with perfectly transparent
interfaces in two significantly spatially separated places with
no disorder so that she

12 = she
21 = 0, while |she

11| = |she
22| = 1. As

a result, compared to the case of single-mode S terminal the
current cross correlator gets an additional modulus-squared
term while the expressions for autocorrelators remain the
same. Denoting

p22 = ∣∣she
12she

21 − she
11she

22

∣∣2
,

we write

S11 = 2I1(2 − I1) − 2p11,

S22 = 2I2(2 − I2) − 2p11,

S12 = 2p11 − 2I1I2 + 8p22. (10)

Note that for the case of single-mode S-terminal geometry,
destructive interference leads to p22 = 0.

The above expressions describe the random process with
the one new possible event in addition to those depicted in
Fig. 2(a). This new event results in the simultaneous arrivals
of two electrons to both N terminals and is described by the
probability p22, see Fig. 6 for the schematic representation
of this event. Similar to the splitting events, p22 includes the
two-particle interference between two processes with indis-
tinguishable results, see Fig. 7(a). We emphasize significant
difference between contributing to p11 processes see

12she
11 and

see
11she

12, as well as between contributing to p22 processes she
11she

22
and she

12she
21: in the absence of disorder the former ones are

possible while the latter ones are not.
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FIG. 7. (a) Two interfering processes contributing to p22.
(b) NSN hybrid device with S region connected to two single-mode
N terminals with interfaces characterized by BTK parameter Z .
(c) Probabilities p11 and 2p22, current in one of the arms I1 and
efficiency K for NSN device from (b) as functions of the normalized
S-region length for S-interfaces transparency T = 1. (d) Same as in
(c) for the case of T = 0.95. We used kF = 1.36 × 1010 m−1 for the
calculations.

A. Line-shaped NSN device

Consider as an example the geometry of a line-shaped
NSN device with single-mode N terminals and the S region
of length ds with the coherence length ξ , see Fig. 7(b). Both
S interfaces are assumed identical and are characterized by
the BTK parameter Z . This geometry was thoroughly stud-
ied previously [5,30,33,36]. Generally, for the case of not
perfectly transparent S interfaces with Z > 0, propagation
through the superconductor in this one-dimensional model
includes rapidly oscillating factors with the period of λF � ds

[25]. In SM Fig. 3 we demonstrate oscillations of S12 and p11

with ds. In SM Figs. 4, 5 [52] we verify that after averaging our
expressions for current correlators (10) perfectly reproduce
analogous results obtained by other authors [33,36]. In the
following we concentrate on the most interesting limit of both
S interfaces near to perfectly transparent.

We start with the case of ideal interfaces, T = 1 (Z = 0),
where the aforementioned oscillating factors do not come into
play. The scattering matrix reads [60]

see
11 = 0, see

12 = 1/ cosh(ds/ξ ),
she

12 = she
21 = 0, she

11 = she
22 = i tanh(ds/ξ ),

providing p20 = p02 = 0, p0 = 1/ cosh4(ds/ξ ) and

p11 = 2 sinh2(ds/ξ )

cosh4(ds/ξ )
, p22 = tanh4(ds/ξ ),

I1 = I2 = 2 tanh2(ds/ξ ),

S11 = S12 = 4 sinh2(ds/ξ )

cosh4(ds/ξ )
.

Note the limiting case of our expressions, S11 = S12 =
4(ds/ξ )2 at ds � ξ , coinciding with the result for the perfect
interfaces from Ref. [33], see Appendix B. The dependences
on ds/ξ of I1 along with contributing to it p11 and 2p22 is
demonstrated in Fig. 7(c). Note that while CAR is absent,
she

12 = she
21 = 0, splitting events occur as a result of two-particle

interference, see the left part of Fig. 2(b). Importantly, at
small enough ds � ξ , it is splitting events that dominate in the
total current of the superconductor, I3 = 2(p11 + 2p22). The
maximum p11 = 1/2 is achieved around ds ≈ ξ and the fur-
ther increase of the superconductor length predictably leads
to the decrease of p11 (and K) and the domination of 2p22.
This observation reveals LAR events at two S interfaces.
Figure 7(c) also shows the efficiency, K = 1/ cosh2(ds/ξ ),
which in the limit of ds � ξ goes to unity, importantly, at
zero energy and without energy filtering [47]. The observation
of K = 1 at ds/ξ → 0 is reasonable since in this case all
transmission probabilities equal zero besides T he

11 = T he
22 � 1

and T ee
12 = T ee

21 ≈ 1. The processes depicted in the left side of
Fig. 2(b) are therefore the only ones contributing to the cur-
rent flow (along with the processes corresponding to see

21she
22).

Interestingly, for the discussed device as well as for any
setup without CAR (she

12 = she
21 = 0), the cross correlator is

S12 = 2p11 > 0 and provides exactly information about the
splitting processes. However, in the general case of present
CAR there is no obvious connection between splitting pro-
cesses and the value of S12. Finally, we mention that the case
of ideal interfaces delivers an upper boundary on efficiency
from (6).

Consider now the case of the finite transparency of both
S interfaces. Here, Z > 0 leads to the rise of oscillations in
the scattering matrix elements resulting also in the oscillations
in average currents, current correlators and probabilities. It is
these oscillations that lead to the previously discussed neg-
ative values of S12 at intermediate interfaces transparencies
[33,36] as we demonstrate in SM Fig. 3 [52]. Here in the
main text, we concentrate on the case of nearly transparent
interfaces where these oscillations are not too strong. The
analytical expressions are obtained symbolically using Ap-
pendix A from Ref. [33] to first derive the scattering matrix
elements, which are then used to compute average currents
and current correlators with (3) and (10), respectively. We
demonstrate our results in Fig. 7(d) for the case of T = 0.95.
At a given value of ds/ξ , the current in each arm of the device
decreases compared to the case of perfect interfaces. At the
same time, p20 and p02 come into play reducing the efficiency
of splitting. The broadened lines represent the oscillations
in I1 and S12, as well as in p11 and p22, which are due to
the finite transparency of interfaces (the corresponding S12 is
demonstrated in SM Fig. 6 [52]). At large enough ds/ξ , the
oscillations in I1 die out and it correctly limits to the value
dictated by the probability of LAR,

I1 ≈ 2pLAR = 2T 2/(2 − T )2 ≈ 1.64.

For such long devices splitting is negligible and we observe
that p22 ≈ p2

LAR, indicating that it describes simultaneous sta-
tistically independent LAR events at two S interfaces.

V. DISCUSSION AND CONCLUSION

Several remarks stem from the discussion of the line-
shaped NSN device and are due to be made. Our results for
average currents and current correlators exactly coincide with
the results obtained previously also using the scattering matrix
formalism [33,36], compare our SM Figs. 3, 4 [52] with Fig. 3
from Ref. [33]. Importantly, in the limit under consideration,
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the result obtained using Keldysh Green’s functions technique
[5] is also consistent with the result of Ref. [33] and therefore
with our result, see the discussion right after equation (37)
in Ref. [5]. While the results coincide, the three interpreta-
tions are different. The authors of Ref. [5] conclude that the
positive cross correlations are due to CAR. On the contrary,
the authors of Ref. [36] reason that since at Z = 0 CAR
processes do not dominate neither in the conductance nor in
the noise, the positive sign of S12 should not be ascribed to
Cooper pair splitting. Important to note here is the implicit
identification of CAR and Cooper pair splitting in both cases.
Our interpretation is different from both of these. Namely, it
is the two-particle processes depicted in Fig. 2(b) that result
in splitting rather than single-particle CAR (she

12 or she
21). Our

analysis suggests that the splitting probability p11 is not deter-
mined solely by CAR amplitude but rather is determined by
the interference of these two processes. Note also that in the
absence of time-reversal symmetry different CAR amplitudes
are not necessarily the same as, e.g., in the case of HBI, see
SM Sec. VIII [52]. In particular, at R1 = R2 = 0 and |teh| = 1
we obtain |she

21| = 1, she
12 = 0 and no splitting. This observation

in itself demonstrates that identification of splitting with CAR
is generally meaningless.

In summary, we describe operation of the NSN-based CPS
with single-mode N terminals and demonstrate the possibil-
ity of unit splitting efficiency without any energy filtering.
The provided examples underline the necessary steps to
make further progress. First, the generalization of our explicit
s-matrix-based expressions for the case of multimode N termi-
nals may shed light on whether efficient Cooper pair splitting
is possible in realistic devices with multimode N terminals.
Note that on the technological side this type of devices will
also require almost transparent S interfaces. HBI-like devices,
at filling factor ν > 2, may provide an appealing alternative
since the number of channels is controllable by the magnetic
field, Coulomb effects can me minimized by the metallic back
gate due to the shunting capacitance [5], and the S-interface
quality is not as crucial as for the line-shaped devices.
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