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Achieving quantized transport in Floquet topological insulators via energy filters
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Due to photon-assisted transport processes, chiral edge modes induced by periodic driving do not directly
mediate quantized transport. Here we show how narrow-bandwidth “energy filters” can restore quantization by
suppressing photon-assisted transport through Floquet sidebands. We derive a Floquet-Landauer-type equation to
describe transport through such an energy-filtered setup, and show how the filter can be integrated out to yield
a sharply energy-dependent renormalized system-lead coupling. We show analytically and through numerical
simulations that a nearly quantized conductance can be achieved in both off-resonantly and resonantly induced
quasienergy gaps when filters are introduced. The conductance approaches the appropriate quantized value on
each plateau with increasing system and filter size. We introduce a “Floquet distribution function” and show both
analytically and numerically that it approaches the equilibrium Fermi-Dirac form when narrow-band filters are
introduced, highlighting the mechanism that restores quantized transport.
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I. INTRODUCTION

The goal of Floquet engineering is to endow a physical
system with new properties or functionalities “on demand”
through the application of time-periodic driving [1]. The tan-
talizing possibility of dynamically inducing robust topological
phenomena in otherwise trivial systems has been a subject of
particular interest in recent years [2–7]. Through a number
of recent experiments, topologically nontrivial Floquet-Bloch
bands have been created and imaged in cold-atomic systems
[8–14], and signatures such as dynamically induced band gaps
and an optically induced Hall effect have been observed in
solid state systems [15–17]. A key signature of topologically
nontrivial Bloch bands is the appearance of robust edge or
surface modes at system boundaries or interfaces where topo-
logical indices differ. In equilibrium, such modes are expected
to facilitate various types of quantized transport [18–21]. Un-
der the assumption of good contacts between the leads and the
sample edges, the Fermi distribution of the source is mapped
directly onto the chiral edge mode, which gives rise to a quan-
tized conductance GH ≡ e2/h. The situation is more subtle
for systems with dynamically induced topological “Floquet”
edge modes [22–27], which mediate photon-assisted transport
processes that break the quantization of conductance.

Topological edge modes of periodically driven systems are
composed of bands of single-particle Floquet states [2–5]; see
the red arrows in Fig. 1(a). Importantly, the spectral weight of
each Floquet state is spread across many sidebands, which are
separated in energy by integer multiples of the driving field
photon energy h̄�, where � is the angular frequency of the
drive, as illustrated in Fig. 2. Through these sidebands, each
Floquet state within the edge mode couples to states at many
energies within the nondriven lead, both above and below the
lead’s Fermi energy. Consequently, the Fermi distributions
of the leads are not simply mapped onto the edge states,

FIG. 1. Energy-filtered leads for achieving quantized transport
through Floquet edge modes. (a) Two “energy filters” are placed
between the metallic leads and the system. Each energy filter is a
short segment of a material hosting a narrow band (of bandwidth less
than h̄�, where � is the drive angular frequency). The energy filters
suppress photon-assisted transport processes that generally violate
the conditions under which quantized transport is expected. (b) The
narrow filter density of states ρ(E ) allows coupling between the lead
and a single peak of the Floquet edge state’s spectral distribution. The
coupling to sidebands outside the filter energy window is strongly
suppressed. (c) Energy selectivity of the filter as a function of fil-
ter length, for an LF-site one-dimensional tight-binding chain with
hopping parameter J . We plot the filter Green’s function component
[GF(ω)]LF1 that describes propagation of a particle from one end of
the filter to the other (as it transits from the lead to the system); see
Eqs. (1) and (2). Large values of |[GF(ω)]LF1| correspond to high
transmission probabilities through the filter.
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FIG. 2. Transport through Floquet edge modes. (a) Time-
averaged spectral function of a graphene-like system subjected to
circularly polarized light, showing drive-induced chiral edge modes
both in the gap that opens near the Dirac point and in the resonance
gap where the drive resonantly couples states in the valence and con-
duction bands. The spectral weight of each state of the Floquet edge
mode is spread across several sidebands, spaced by integer multiples
of the driving field photon energy h̄�. (b), (c) When the system is
connected to leads, each state of the edge mode couples to several
states of the leads via the sidebands exhibited in the time-averaged
spectral function A(E ). This prevents a sharp Fermi surface from
being established in the Floquet edge mode, and leads to deviations
from the quantized conductance that is expected for chiral edge
modes in nondriven systems. Panel (b) illustrates the situation for
chiral edge modes in the off-resonantly induced Floquet gap around
the original Dirac point (at energy E = 0), while panel (c) illustrates
the situation for the chiral edge modes in the resonance-induced
Floquet gap, where valence and conduction band states are strongly
hybridized.

and the differential conductance generically differs from the
quantized value e2/h.

To illustrate this point, consider the edge modes in the
resonance-induced gaps [near quasienergy ±h̄�/2, shown in
blue in Fig. 2(a)], which are formed by near-equal hybridiza-
tion of states in the original valence and conduction bands.
To probe transport through such modes, one must first choose
whether to place the chemical potentials of the leads at ener-
gies in the resonance-induced gap in the conduction band or
in the valence band. Suppose the chemical potential is placed
in the middle of the resonance-induced gap in the conduction
band, at energy h̄�/2, as depicted in Fig. 2(c) (analogous
considerations apply for the case where the chemical potential
is placed in the resonance-induced gap in the valence band).
Consider a Floquet edge state in this gap, with spectral weight

distributed as shown on the right side of Fig. 2(c), and as
indicated by the blue dots in Fig. 2(a). While the component
of this state near energy h̄�/2 lies above the chemical poten-
tial of the lead, and therefore should be “empty” according
to equilibrium considerations, its strong sideband component
near energy −h̄�/2 is far below the chemical potential of
the lead and therefore provides a channel for this state to be
“filled” by the lead. The steady state population of this state
is determined by the competition between the rates of these
filling and emptying processes, and in general will be close
to neither zero nor one, even for a zero temperature reservoir.
Hence the steady state distribution on the Floquet edge modes
will be far from Fermi-Dirac-like, and these modes generi-
cally will not mediate quantized transport.

In this work we show how quantized transport can be
restored for drive-induced topological systems through the use
of energy-filtered leads. As depicted in Fig. 1(a), the energy
filter (green color) is a finite length segment of material placed
between the metallic contact and the system. The filter ideally
hosts a well-isolated, narrow band of states (of bandwidth
less than h̄�) centered in energy near the chemical potential
of the contact [see filter density of states ρ(E ) in Fig. 1(b)].
Due to the filter’s narrow bandwidth, each Floquet state in the
system effectively couples to the lead only through a single
sideband, at a well-defined energy. Consequently, the Fermi
distributions of the leads can be mapped directly onto the
Floquet edge states, yielding quantized transport through the
edge states. In contrast to previous works which incorporated
idealized narrow-band reservoirs into numerical studies of
ballistic transport [28] and steady states [29,30] and transport
[31] in the presence of driving and dissipation, here we pro-
vide an analytical characterization of energy-filtered transport,
including explicit modeling of the fermionic energy filters and
a systematic study of their restoration of quantization without
the application of additional sum rules (cf. Refs. [22,24,28]).

In Sec. II we begin by describing the general setup. We
first derive a Landauer-type formula for transport through a
periodically driven system coupled to wide-band leads via
narrow-band energy filters. We show how the action of the
filters can be characterized via the energy dependence of
the transmission matrices that describe coupling between the
system and the leads. In Sec. III we then present numerical
results for a graphene-like (honeycomb tight-binding) system
subjected to a circularly polarized driving field [32–35]. These
numerical results explicitly demonstrate how the introduction
of energy filters can promote quantized transport through edge
states in both resonance-induced and off-resonance Floquet
gaps. In Sec. IV we define a time-averaged distribution func-
tion for Floquet states, and show that it takes the Fermi-Dirac
form when filters are introduced. We summarize our results
and discuss directions for future exploration in Sec. V.

II. FLOQUET-LANDAUER TRANSPORT THROUGH
FILTERED LEADS

The setup consists of five elements connected in series:
the left lead, the left filter, the system, the right filter, and
the right lead [Fig. 1(a)]. The corresponding Hamiltonian thus
consists of several parts: H (t ) = HS(t ) + ∑

λ[HL,λ + HF,λ +
HSF,λ + HFL,λ], where λ = {�, r} labels left and right. Here
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HS(t ), HL,λ, and HF,λ act on the system, lead λ, and filter
λ, respectively, while HSF,λ and HFL,λ describe corresponding
system-filter and filter-lead couplings. Throughout this work
we assume that the periodic drive with period T (and cor-
responding angular frequency � ≡ 2π/T ) only acts within
the system. The filter, lead, and coupling Hamiltonians are all
time-independent.

In second-quantized form, we write the system, lead, and
filter Hamiltonians as HS(t ) = c†HS(t )c, HL,λ = a†

λHL,λaλ,
and HF,λ = f†

λHF,λfλ. Here c = (· · · ci · · · )T consists of a
complete set of fermionic annihilation operators for the sys-
tem. The vectors fλ and aλ are defined similarly for the filters
and the leads respectively. With these definitions, the cou-
pling terms become HSF,λ = c†HSF,λfλ + H.c. and HFL,λ =
f†
λHFL,λaλ + H.c.

As detailed in Appendix A, we derive a Landauer-type for-
mula for the current through the energy-filtered driven system
using the equation of motion approach (see, e.g., Ref. [36]).
We begin by expressing the net current flowing out of the
system to the right as the rate of change of the number of par-
ticles in the right filter and right lead: I (t ) = d

dt (NF,r + NL,r ),
where NF,r = f†

r fr and NL,r = a†
r ar . We assume that the setup

was initialized at a time t0 < 0 in the distant past, such that it
has reached a time-periodic steady state by time t = 0. The
period-averaged steady state current that flows through the
system is thus given by Ī = 1

T

∫ T
0 dt 2e

h̄ Im〈c†(t )HSF,rfr (t )〉.
To evaluate Ī , we assume that at the initial time t0 each

lead λ was in an equilibrium state described by the chemical
potential μλ and inverse temperature βλ. This condition is en-
coded mathematically as 〈a†

λν (t0)aλ′ν ′ (t0)〉 = δλλ′δνν ′nλ(ελν ),
where nλ is the Fermi distribution for lead λ and ελν is
the energy of single-particle eigenstate ν of HL,λ. By for-
mally integrating the Heisenberg equations of motion for
aλ(t ), fλ(t ), and c(t ), we express Ī in terms of an ex-
pectation value involving only aλ(t0) and a†

λ(t0), and the
single-particle Green’s functions of the system and the filter
(see Appendix A): [GS(t, t ′)]i j = −iθ (t − t ′)〈{ci(t ), c†

j (t
′)}〉

and [GF,λ(t, t ′)]αβ = −iθ (t − t ′)〈{ fλ,α (t ), f †
λ,β (t ′)}〉. We use

labels i and j for sites of the system, and α and β for
sites of the filter. Fourier transforming using GS(t, t ′) =∑

m

∫
dω
2π

e−im�t e−iω(t−t ′ )G(m)
S (ω), where the appearance of the

discrete index m follows from the discrete time translation
symmetry of the system, we find

Ī = e

h

∑
m

∫
dω

[
nr (ω)T (m)

�r (ω) − n�(ω)T (m)
r� (ω)

]
,

T (m)
λλ′ (ω) ≡ Tr

[
G(m)†

S (ω)�̃F,λ(ω + m�)G(m)
S (ω)�F,λ′ (ω)

]
.

(1)

The energy-filtered lead-system couplings �F,λ(ω) and
�̃F,λ(ω) are given by (suppressing ω indices for brevity)

�F,λ(ω) = HSF,λGF,λ(ω)�L,λ(ω)G†
F,λ(ω)H†

SF,λ,

�̃F,λ(ω) = HSF,λG†
F,λ(ω)�L,λ(ω)GF,λ(ω)H†

SF,λ, (2)

where �L,λ(ω) = 2πHFL,λρλ(ω)H†
FL,λ is the familiar lead

coupling appearing in the standard Landauer formula, with
ρλ(ω) = ∑

ν |λν〉〈λν|δ(ω − ελν ) encoding the density of

states of lead λ. At zero temperature and with the bias voltage
labeled V , the differential conductance (our main quantity
of interest) is given by ∂ Ī

dV |V =0 = ∑
m(T (m)

�r + T (m)
r� ). Note

that Eq. (1) itself captures the total time-averaged current
between leads, and can also be used, e.g., to study the zero-
bias pumping currents that may arise in inversion-asymmetric
structures/configurations [36].

Equations (1) and (2) along with the “Floquet distribution
function” in Eq. (4) below are the main analytical results of
this paper. The coefficient T (m)

λλ′ (ω) describes the probability
for an electron emanated from lead λ′ at energy h̄ω to be
transmitted across the system to lead λ while absorbing m
photons from the driving field. Comparing to the standard
Landauer formula, the appearance of �̃F,λ(ω) and �F,λ′ (ω) in
the expression for T (m)

λλ′ (ω) shows how the net effect of in-
troducing the energy filters is transparently manifested in the
transport equation (1) via renormalized effective system-lead
coupling matrices. Due to the narrow bandwidth of the filter,
GF,λ(ω) and hence �̃F,λ(ω) are exponentially suppressed for
energies outside of the filter band. Therefore, for an ideal
filter, all the transmission coefficients in Eq. (1) are suppressed
except for T (0)

λλ′ and the conductance acquires a similar form as
in equilibrium.

In Fig. 1(c) we illustrate the energy filtering effect of a
single filter for the simple case of a one-dimensional system.
Here the filter is modeled as a nearest-neighbor tight-binding
chain of LF sites, with hopping parameter J . The lead is con-
nected to the first site of the chain (α = 1), while the system
is coupled to the last site of the chain (α = LF). We consider
the lead in the wide-band limit [36], which gives a frequency-
independent coupling to the first site: [�L(ω)]αβ = γ δα1δβ1.
Under these conditions, the energy dependence of �F(ω) is
controlled by [GF(ω)]LF1—the Green’s function component
that connects the two ends of the filter. In Fig. 1(c) we plot
log10 |[GF(ω)]LF1| as a function of ω and filter length, LF.
Outside the filter bandwidth, |[GF(ω)]LF1| drops rapidly (with
an amplitude that falls exponentially with the length of the
filter); for energies within the filter window, the transmission
is close to 1. These are precisely the features that we expect
can help to restore nearly quantized transport through Floquet
topological edge modes; see above and Fig. 1(b).

III. NUMERICAL SIMULATIONS

We numerically investigate transport through a graphene-
like nearest-neighbor tight-binding system of width W and
length LS, with zigzag edges in the direction from one lead
to the other [see Fig. 3(a)]. A circularly polarized vector
potential A(t ) = A0( cos(�t ), sin(�t ), 0) acting on the sys-
tem introduces time-dependent Peierls’ phases to the hopping
matrix elements: HS(t ) = JS

∑
ri

∑
σ e−ie/h̄A(t )·bσ c†

ri+bσ
cri +

H.c. + HBG, where ri runs over all the lattice sites and bσ

runs over the three nearest hopping vectors, JS is the nearest
hopping amplitude, and HBG models a backgate voltage as
a uniform potential on all sites. We use single-band square
lattices to model the energy filters, each with width W equal
to that of the system and length LF. We fix the lead chemical
potential at the center of the filter band and vary the backgate
voltage on the system to probe transport over a range of
energies.
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FIG. 3. (a) Sketch of the system setup. We set the system hop-
ping to JS = 1; all other energies are scaled relative to JS. Throughout
we set the drive amplitude to A0 = 0.5, its frequency to h̄� = 3.25,
and the filter hopping amplitude to JF = 0.25. The latter ensures that
the filter bandwidth is less than h̄�. The system-filter coupling JSF

is set to the geometric mean of JS and JF. The filter-lead coupling
is set to γ = 0.25. (b), (c) Numerical simulations of the differential
conductance with W = 160 sites, LS = 120 sites, and LF = 20 sites
in the off-resonant (b) and resonant (c) gaps.

The leads are connected to the first (last) slice of the left
(right) filter, as indicated via green shading in Fig. 3(a). Taking
the wide-band limit for the lead, the coupling matrix �L,λ(ω)
takes a similar form as in the one-dimensional case, now with
a single parameter γ appearing on all diagonal matrix ele-
ments corresponding to sites in the shaded slice (with all other
matrix elements zero). For simulations without the filters, the
leads connect to the system directly; here �F,λ and �̃F,λ in
Eq. (1) are replaced by �L,λ. We compute the relevant Green’s
functions using the recursive Green’s function algorithm [37];
see Appendix B for details of the numerical implementation.

The differential conductance in the absence of filters is
shown as the blue curves in Figs. 3(b) and 3(c), corresponding
to transport through the off-resonant and resonance gaps, re-
spectively. Note that the resonance gap hosts two chiral modes
[see Fig. 2(a)] and thus the differential conductance is naively
expected to be quantized to 2e2/h. Even though the drive
induces chiral edge modes, the differential conductance is far
from quantized in both cases due to photon-assisted transport
[24,25].

Results for transport with the energy filters are shown as
the orange curves in Figs. 3(b) and 3(c). As designed, the
filters restore the differential conductance in the off-resonant
(resonance) gap to a quantized value of e2/h (2e2/h). In Ap-
pendix C we show further numerical results demonstrating
that this restoration of quantization holds also when the filters
are partially illuminated.

We now characterize the quality of quantization and its
dependence on the filter’s geometry. We start with an LS ×
W = 120 × 120 system and a filter of LF = 10 sites. We then
compute the differential conductance while scaling up the
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FIG. 4. Characterization of energy-filtered topological transport.
We set the initial geometry to be LS × W = 120 × 120 and LF = 10.
Fixing LS , we scale up W and LF by a factor η. All the other param-
eters are the same as in earlier figures. Differential conductance vs
scaling factor in the off-resonant (a) and resonance (b) gaps. Insets:
Zoom-ins of the blue shaded regions; δ1 and δ2 are the deviations
from e2/h and 2e2/h, respectively. Panels (c) and (d) show the aver-
age differential conductance and its variance in the off-resonant and
resonance gaps. The colored dots on the horizontal axis mark the
scaling factors for the curves in (a) and (b).

width W and the filter length LF by a scale factor η, while
fixing the system length at LS = 120 sites [Figs. 4(a) and
4(b)]. To quantify the degree of quantization, we calculate the
average differential conductance across the plateaus within the
off-resonant and resonance gaps, and the associated variances.
As shown in Figs. 4(c) and 4(d), the differential conductance
in the off-resonant (resonance) gap converges toward e2/h
(2e2/h) with increasing η; the average and variance (shown
by the error bars) are taken over the blue shaded regions in
panels (a) and (b). For system dimensions of order 100 sites,
the filters improve quantization by approximately three orders
of magnitude compared to the case without filters [Figs. 3(b)
and 3(c)].

IV. DISTRIBUTION FUNCTION

In the nondriven case, quantized transport follows from
the Fermi distributions in the chiral edge modes. In equi-
librium, the distribution function can be obtained from
the relation between the lesser and the retarded Green’s
function [38]: Im[G<(ω)] = −2Im[G(ω)]n(ω). In driven sys-
tems however, we lack such a simple and general relation.
Inspired by the equilibrium case, we define a nonequilib-
rium distribution function in terms of the time-averaged
retarded and lesser Green’s functions, G(0)

S (ω) (see above) and
G<(0)

S (ω) = 1
T

∫ T
0 dt

∫
dt ′eiω(t−t ′ )G<

S (t, t ′), with G<
S (t, t ′) =

−i〈c†(t ′)c(t )〉:

ñ(ω) = Tr
{
Im

[
G<(0)

S (ω)
]}

Tr
{
Im

[
G(0)

S (ω)
]} . (3)
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function, coinciding with the restoration of quantized transport.
(a) Distribution function for μ = 0 (for transport in the off-resonant
gap). (b) Distribution function for μ = h̄�/2 (for transport in the
resonant gap).

Utilizing the Heisenberg equations of motions for aλ(t ), fλ(t ),
and c(t ) (see Appendix A) and taking the time average over
one period, ñ(ω) can be expressed as

ñ(ω) = −
∑

λ,m Tr
{
Im

[
D(m)

λ �L,λD(m)†
λ nλ

]}
(ω − m�)

2
∑

λ,m′ Tr
{
Im

[
D(m′ )

λ �L,λD(m′ )†
λ

]}
(ω − m′�)

, (4)

where D(m)
λ is given by D(m)

λ = G(m)
S HSF,λGF,λ. By defini-

tion, �L,λ is always a positive semidefinite matrix. Thus
D(m)

λ �L,λD(m)†
λ can be decomposed into a matrix multiplied by

its own Hermitian conjugate. As a result, the trace is always
positive and we necessarily have 0 � ñ(ω) � 1 as desired for
a distribution function.

Without the filter, the behavior of ñ(ω) results from a
complicated interplay of contributions from all harmonics (cf.
Refs. [29,30,39–42]). When the filter is in effect, however, all
the m, m′ �= 0 terms in Eq. (4) will have frequencies outside
the filter band and will thus be exponentially suppressed.
The surviving m = 0 term gives the Fermi distribution n(ω)
(for μ� = μr). The nonequilibrium distribution function ñ(ω)
in the off-resonant and resonance gaps is shown in Fig. 5.
As Eq. (4) predicted, a Fermi distribution is restored when
the filters are inserted. These results for the nonequilibrium
distribution function highlight the mechanism that restores
quantization.

V. DISCUSSION

In conclusion, narrow-band filters inserted between the
leads and system effectively suppress photon-assisted trans-
port in Floquet systems. For topological Floquet systems with
chiral or helical edge modes, this phenomenon can be used
to elicit quantized transport from the nonequilibrium system.
Our numerical studies focused on the regime of a single
resonance within the bands. When multiple resonances are
present, energy filters may still be used to help establish a
sharp Fermi distribution across all chiral edge states within
a given quasienergy gap. Further exploration of this regime
is an interesting direction for future work. As demonstrated
by our numerics, the precision of the quantization improves
as the filter is enlarged. We expect that energy filters present
a promising direction for experiments in the fields of both

cold-atomic gases and solid state systems. The emerging area
of cold-atomic transport with reservoirs [43] as well as syn-
thetic dimensions in driven optical lattices [44] provides an
intriguing platform for potential realization of the energy fil-
ters. It will moreover be interesting to explore narrow impurity
bands or moiré flat bands as promising candidates for energy
filters in solid state systems.
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APPENDIX A: DERIVATION OF THE FILTERED
FLOQUET-LANDAUER FORMULA

In this section we give the detailed derivation for the
Floquet-Landauer formula in Eq. (1), following an analogous
approach to that used for example in Sec. 3 of Ref. [36].
We begin by writing the expression for the current that flows
between the filter and the system:

I (t ) = e

〈
d

dt
(NF,r (t ) + NL,r (t ))

〉

= ie

h̄

〈
[H (t ), NF,r (t ) + NL,r (t )]

〉
, (A1)

where NF,r (t ) + NL,r (t ) is the total particle number in the
right lead and filter. After carrying out the commutator and
averaging over one full period T , we obtain

Ī = 1

T

∫ T

0
dt

2e

h̄
Im〈c†(t )HSF,rfr (t )〉. (A2)

To evaluate Eq. (A2), we solve the Heisenberg equations of
motion for the operators aλ(t ), fλ(t ), and c(t ):

ih̄ȧλ = HL,λaλ + H†
FL,λfλ, (A3)

ih̄ḟλ = HF,λfλ + HFL,λaλ + H†
SF,λc, (A4)

ih̄ċ = HSc +
∑

λ

HSF,λfλ. (A5)

Our goal is to ultimately express the expectation values of the
system and filter operators in Eq. (A2) in terms of expectation
values of operators in the leads in the distant past. By assum-
ing each lead was in thermal equilibrium in the distant past,
we will then be able to evaluate the current via the expectation
value in Eq. (A2); see below.
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We employ the Green’s function method to solve
Eqs. (A3)–(A5). We define the “bare” Green’s function of lead
λ, gλ(t − t ′), via[

i
∂

∂t
− HL,λ

]
gλ(t − t ′) = 1Lδ(t − t ′),

gλ(t − t ′) = 0 for t < t ′. (A6)

The solution to Eq. (A6) is gλ(t − t ′) = −iθ (t −
t ′)e−iHL,λ(t−t ′ ). Using Eq. (A6), we formally integrate Eq. (A3)

to obtain

aλ(t ) = e−iHL,λ(t−t0 )aλ(t0) +
∫ ∞

−∞
dt ′gλ(t − t ′)H†

FL,λfλ(t ′).

(A7)

We furthermore define the full Green’s function of filter λ,
GF,λ(t − t ′), which satisfies

[
i
∂

∂t
− HF,λ

]
GF,λ(t − t ′) −

∫ ∞

−∞
dt ′′�FLF,λ(t − t ′′)GF,λ(t ′′ − t ′) = 1Fδ(t − t ′),

fλ(t ) =
∫ ∞

−∞
dt ′GF,λ(t − t ′)[hλ(t ′) + H†

SF,λc(t ′)], (A8)

where �FLF,λ(t − t ′′) = HFL,λgλ(t − t ′′)H†
FL,λ is the self-energy of the filter and hλ(t ′) = HFL,λe−iHL,λ(t ′−t0 )aλ(t0). Similarly, the

full Green’s function of the system, GS(t, t ′), satisfies[
i
∂

∂t
− HS(t )

]
GS(t, t ′) −

∑
λ

∫ ∞

−∞
dt ′′�SFS,λ(t − t ′′)GS(t ′′, t ′) = 1Sδ(t − t ′),

c(t ) =
∑

λ

∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′GS(t, t ′)HSF,λGF,λ(t ′ − t ′′)hλ(t ′′). (A9)

Here �SFS,λ(t − t ′′) = HSF,λGF,λ(t − t ′′)H†
SF,λ is the self-

energy of the system.
In writing Eqs. (A8) and (A9), we have assumed that the

initial time t0 is in the distant past. Due to the finite decay
times of the Green’s functions and self-energies appearing in-
side the integrals, we have therefore extended the lower limits
of integration to −∞. Moreover, we have assumed that on
this timescale any memory of the initial conditions within the
system or the filter has been erased: GF,λ(t − t0)fλ(t0) → 0
and GS(t, t0)c(t0) → 0.

Before proceeding, we note that the filter Green’s func-
tion GF,λ obtained from the equations of motion and the one
defined in the main text are equivalent. To show this, differ-
entiate [GF,λ(t, t ′)]αβ = −iθ (t − t ′)〈{ fλ,α (t ), f †

λ,β (t ′)}〉 with
respect to t . Utilizing Eqs. (A3)–(A5), it can be shown that
the results exactly match the first line of Eq. (A8). Similarly,
the system Green’s function GS defined here is equivalent to
the one defined in the main text.

1. Evaluating expectation values of the source terms
hλ(t ) and h†

λ(t )

The operator hλ(t ) defined below Eq. (A8) acts as a source
term for the operators f (t ) and c(t ) in Eqs. (A8) and (A9),
carrying information about the initial state of lead λ to the
filter and eventually to the system. Using Eqs. (A8) and
(A9), we will express the current in Eq. (A2) in terms of
h†

λ and hλ. Thus, to facilitate the evaluation of the current,
we will first study the expectation values of products of
components of h†

λ and hλ. For later use, it will be most
convenient to work with the Fourier-transformed operators
hλ(ω) = ∫ ∞

−∞ dt eiωt hλ(t ).

Consider a generic expectation value 〈h†
λ,m(ω)hλ′,n(ω′)〉,

where m (n) labels states in an arbitrary orthonormal basis for
filter λ (λ′). Using the definition of hλ and expanding (without
loss of generality) in the basis of energy eigenstates {|λν〉} of
each lead, HL,λ|λν〉 = ελν |λν〉, we obtain

〈h†
λ,m(ω)hλ′,n(ω′)〉 =

∑
ν

∑
ν ′

∫
dt e−iωt eiελν t

∫
dt ′eiω′t ′

e−iελ′ν′ t ′
[H†

FL,λ]νm[HFL,λ′ ]nν ′ 〈a†
λν (t0)aλ′ν ′ (t0)〉

= (2π )2
∑

ν

δλλ′δ(ω − ω′)δ(ω − ελν )[H†
FL,λ]νm[HFL,λ]nνnλ(ελν ). (A10)

To arrive at the second line, we used the assumption that
each lead was in equilibrium in the distant past, captured
by 〈a†

λν (t0)aλ′ν ′ (t0)〉 = δλλ′δνν ′nλ(ελν ), where nλ is the Fermi
distribution for lead λ.

Next, it is helpful to introduce the effective lead coupling
�L,λ(ω) = 2πHFL,λρλ(ω)H†

FL,λ, and the operator ρ(ω) =

∑
ν |λν〉〈λν|δ(ω − ελν ). For any matrix A acting on the

Hilbert space of filter λ, we have

〈h†
λ(ω)Ahλ(ω′)〉 = 2πδ(ω − ω′)Tr[A�L,λ(ω)]nλ(ω). (A11)

In the next subsection, we will use this general expression to
evaluate the expectation value of the current, Eq. (A2).
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2. Evaluation of the current

In Eqs. (A7)–(A9) we obtained a set of closed expressions for the Heisenberg operators aλ(t ), fλ(t ), and c(t ).
Substituting the expression for fλ(t ) in Eq. (A8) into Eq. (A2) gives

Ī = Ī1 + Ī2 = 1

T

2e

h̄

∫ T

0
dt

∫ ∞

−∞
dt ′ [Im〈h†

r (t )G†
F,r (t − t ′)H†

SF,rc(t ′)〉 + Im〈c†(t )�†
SFS,r (t − t ′)c(t ′)〉]. (A12)

The steps for evaluating the two integrals I1 and I2 in Eq. (A12) are similar; here we only give the detailed procedure for the first
one. The next step is to substitute the expression for c(t ) in Eq. (A9) into Eq. (A12). After Fourier transformation, the integrand
takes the form of the general expectation value in Eq. (A11). Using Eq. (A11), we find

Ī1 = e

h

1

T

∫ T

0
dt

∫ ∞

−∞
dω Im{Tr[G†

F,r (ω)H†
SF,rGS(t, ω)HSF,rGF,r�L,r (ω)]}nr (ω). (A13)

Here we have used the Fourier transform GS(t, ω) = ∫
dt ′eiω(t−t ′ )GS(t, t ′).

Using the fact that �L,λ is Hermitian by definition, taking the imaginary part of the trace in Eq. (A13) brings out a piece
[GS(t, ω) − G†

S(t, ω)]/2i. To evaluate this we need to utilize the first line of Eq. (A9). The trick is the following: first use the
Fourier transform defined above on both sides to obtain an equation for GS(t, ω); multiply G†

S(t, ω) from the left to get the first
temporary expression; complex-conjugate the first line of Eq. (A9) and then multiply GS(t, ω) from the right to get the second
temporary expression. Subtract these two expressions, then expand GS(t, ω) = ∑

m e−im�t G(m)
S (ω) in a discrete Fourier series

[noting the time periodicity of GS(t, ω)], and finally take the time average over one period:

1

T

∫ T

0
dt[ GS(t, ω) − G†

S(t, ω)] =
∑

λ

∑
m

G(m)†
S (ω)[�SFS,λ − �†

SFS,λ](ω + m�)Gm
S (ω)

=
∑

λ

∑
m

G(m)†
S (ω)HSF,λ[GF,λ − G†

F,λ](ω + m�)H†
SF,λG(m)

S (ω).
(A14)

Applying the same trick on GF,λ − G†
F,λ in Eq. (A14), but using the first line of Eq. (A8), we arrive at our final expression:

Ī1 = e

h

∑
λ

∑
m

∫ ∞

−∞
dω Tr

[
G(m)†

S �̃F,λ(ω + m�)G(m)
S (ω)�F,r (ω)

]
nr (ω), (A15)

where �F(ω) and �̃F(ω) are as defined in the main text. After a similar procedure on the second term of Eq. (A12) and adding
up the two terms, we obtain the Floquet-Landauer formula given in Eq. (1) of the main text.

APPENDIX B: NUMERICAL CALCULATION OF THE
FLOQUET GREEN’S FUNCTION

In this section we discuss the detailed implementation
of our numerical simulations. The main difficulties in this
are time dependence of the Hamiltonian and inverting large
matrices of size many times larger than the Hilbert-space
dimension. Below we review the recursive Green’s function
algorithm [37] and discuss its adaptation to the extended-
space representation for Floquet systems [3,45] to address
these two challenges.

The recursive Green’s function algorithm is commonly
used to calculate transport properties in equilibrium systems
with open boundary conditions. The algorithm breaks the
lattice into N slices and recursively computes the Green’s
functions for each individual slice. Components of the full
Green’s function can then be obtained by combining the slice
Green’s functions in appropriate ways. This algorithm avoids
inverting large matrices by performing many inversions in the
subspace of individual slices, thus speeding up computations
dramatically.

The recursive Green’s function algorithm was developed
for equilibrium (nondriven) systems. To implement it for Flo-
quet systems, we utilize the extended-space representation
(see, e.g., Refs. [45,46]). Importantly, this representation re-
formulates the time-dependent Schrödinger equation into an

effective time-independent one. The equation for the full
Floquet Green’s function can be written in a compact and
convenient form (see, e.g., Ref. [33]):

[ω + � − H − �(ω)]G(ω) = 1, (B1)

where

G(ω) =

⎛
⎜⎜⎜⎜⎜⎝

. . .

G0(ω − �) G−1(ω) G−2(ω + �)
G1(ω − �) G0(ω) G−1(ω + �)
G2(ω − �) G1(ω) G0(ω + �)

. . .

⎞
⎟⎟⎟⎟⎟⎠

.

(B2)

Each Fourier component of the Green’s function, Gm, is a
matrix of the same dimension as the Hilbert space of the
system. The matrix � has the same block structure as G(ω)
above, and is zero in all off-diagonal blocks. Within diagonal
block n [counted in increasing order from the upper left to
the lower right, with n = 0 corresponding to the block with
G0(ω) in Eq. (B2)], � is given by n� times the identity (of
dimension equal to that of the system’s Hilbert space).

Note that the extended-space Green’s function G(ω) in-
corporates an infinite redundancy: every column individually
carries complete information about the physical Green’s
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function of the system. To obtain physical quantities/
observables, the physical Green’s function components must
be extracted from the appropriate blocks of the extended-
space Green’s function. In particular, to generate the differ-
ential conductance, we take the central column of G(ω) and
combine these Fourier components according to Eq. (1) of the
main text.

Implementation

We point out that there are two equivalent ways of for-
mulating the transport with filters: (a) separate the filter and
system Green’s functions as in Eq. (1) and connect them
with a system-filter coupling matrix; (b) treat everything in
between the two leads as one whole system with different
local Hamiltonians and coupling matrices for slices in the
filter and the system. The former is useful for highlighting
the role of the filter and exposing the physical mechanism
through which it helps enable quantized transport in periodi-
cally driven systems; the latter is more numerically convenient
and is implemented in our simulation.

Finally, we give the specific details of our implementation,
in particular specifying the form of the lead-system coupling
matrix used in our simulations. The whole setup (including
both the filter and system) is divided into N = 2LF + LS verti-
cal slices. To label a site, we need to specify one index for the
slice and another index for the position in that slice. Thus we
work in a real-space basis that can be written as |i〉H ⊗ |a〉V,
where i labels the horizontal (H) position of a slice and a
labels the vertical (V) position of a site in that slice. We label
the first slice (indicated by the left green shading in Fig. 3 of
the main text) as i = 1 and the last slice (right green shading
in Fig. 3) as i = N . We have assumed that the system is
coupled to the lead only via the first and last slices, and that the
imaginary part of the self-energy takes the form 〈ia|�1| jb〉 =
γ δiNδ jNδab and 〈ia|�2| jb〉 = γ δi1δ j1δab. The coupling matri-
ces �1 (�2) take the form γ IV in the block that corresponds
to the first (last) slice (i = j = 1 or i = j = N), where IV

is the identity matrix in the subspace of that slice; all other
elements are zero. As a result, the trace in Eq. (1) of the
main text is reduced to two partial traces and further simplifies
to

Tr[G(m)†�1G(m)�2] = TrVTrH[G(m)†�1G(m)�2]

= γ 2TrV
[(

G(m)
1N

)†
G(m)

1N

]
,

Tr[G(m)†�2G(m)�1] = γ 2TrV
[(

G(m)
N1

)†
G(m)

N1

]
. (B3)

These components of the Green’s function can be easily com-
puted using the recursive algorithm.

In summary, to enable our simulations we first write all
the matrices and equations into the extended-space repre-
sentation; we then perform the recursive calculation using
Eqs. (B1) and (B2); from this calculation we obtain the
matrix G(ω) and extract the Fourier components we need
from Eq. (B2); finally, we assemble those Fourier com-
ponents according to Eq. (1) to obtain the differential
conductance.
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FIG. 6. Simulation with 1/4 of the filters illuminated. The illumi-
nation intensity Af = 0.1(0.5)A0 is shown in purple (orange). (a) and
(b) are calculated at the off-resonance/resonance gaps, respectively.
The conductance without filters is shown in blue for comparison.

APPENDIX C: RESILIENCE TO ILLUMINATION
OF THE FILTER

In the main text we consider the ideal situation where
the drive laser illuminates only the system region, and not
the filters and leads. To help achieve a sharp cutoff of the
laser intensity at the system-filter interfaces, reflective “mask”
layers may be incorporated on top of the filters to cast shadows
over the filters. Even with such masks, however, in a realistic
setup it is natural to expect that some field intensity will reach
parts of the filters, near the system-filter interfaces. In this
Appendix, we demonstrate that the qualitative features of our
results hold up in the situation where the filters are partially
illuminated; incorporating even imperfect filters into the setup
greatly improves the fidelity of quantized transport.

To see why we expect our results to be robust to stray illu-
mination of the filters, consider a situation where part of the
narrow-band material used as the filter is illuminated by the
drive laser, while the rest remains unilluminated. In this situa-
tion, we can resegment the setup such that the “filters” consist
only of the the unilluminated regions of the narrow-band ma-
terial placed between the leads and the target material. In this
way, the filter Hamiltonian remains time-independent. The
“system” region then consists of both the originally intended
target material and the illuminated segments of the filter. In the
illuminated region the drive would spread the spectral weight
of the narrow “filter bands” across several Floquet sidebands.
However, the unilluminated filter regions would still inhibit
transport between the lead and these filter sidebands. As long
as a significant part of the filter remains unilluminated, thus
barring direct tunneling between the lead and the filter side-
bands, we expect the quantized transport through the system
to persist.

We numerically demonstrate this robustness by simulating
a setup where the 1/4 of each filter adjacent to the system-
filter boundary is illuminated. To approximately capture the
decay of the drive intensity in the fringes of the laser spot, we
take the drive amplitude in the illuminated part of the filter, Af ,
to be constant and smaller than the intensity in the system, A0.
In Fig. 6 we show the two-terminal time-averaged differential
conductance through the device, with Af = 0.1A0 and 0.5A0,
in both the resonance and off-resonance gaps. All other pa-
rameters remain the same as in the main text. Although partial
illumination of the filters slightly degrades the quality of quan-
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tization, the qualitative behavior holds: compared to the case
without filters, the degree of quantization is still dramatically

improved (particularly for the case of transport through the
Floquet “π” edge modes in the resonance-induced gap).
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