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Heterostructures of magnetic topological insulators (MTIs) and superconductors (SCs) in two-dimensional
(2D) slab and one-dimensional (1D) nanoribbon geometries have been predicted to host, respectively, chiral
Majorana edge states (CMESs) and Majorana bound states (MBSs). We study the topological properties of such
MTI/SC heterostructures upon variation of the geometry from wide slabs to quasi-1D nanoribbon systems and
as a function of the chemical potential, the magnetic doping, and the induced superconducting pairing potential.
To do so, we construct effective symmetry-constrained low-energy Hamiltonians accounting for the real-space
confinement. For a nanoribbon geometry with finite width and length, we observe different phases characterized
by CMESs, MBSs, as well as coexisting CMESs and MBSs, as the chemical potential, the magnetic doping,

and/or the width are varied.

DOI: 10.1103/PhysRevB.110.075426

I. INTRODUCTION

Topological superconductors are fascinating phases of mat-
ter which have stirred significant interest in the scientific
community [1-3]. These phases display gapped bulk states
with superconducting pairing as well as topologically pro-
tected gapless surface states, which have been predicted to
be Majorana states. The search for these quasiparticles has
stimulated intense research activity, primarily owing to their
potential for quantum computing [4,5]. Nevertheless, pro-
posed realizations of topological superconductors with large
enough bulk gaps remain rare and Majorana states remain
elusive and controversial.

Bringing together superconducting pairing and spin-orbit
(SO) or SO-like interactions is a promising avenue for cre-
ating topological superconductivity. It has for instance been
studied in superconductors with strong SO interactions [6-8],
in topological materials where doping with Nb, Sr, or Cu
yields a superconducting gap in the bulk [9,10], or in het-
erostructures combining strong SO interactions or SO-like
interactions induced by a magnetic texture with a conventional
superconductor [11-21]. Breaking time-reversal symmetry
(TRS) is also often necessary for the emergence of low-
dimensional surface states such as chiral edge states or bound
states.

TRS can also be broken by an external magnetic field,
but this may not be compatible with superconductivity.
It is thus desirable to explore intrinsic magnetism (e.g.,
via magnetic doping) of heterostructures as an alterna-
tive [22-25]. In our work, we study magnetic topological
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insulator/superconductor (MTI/SC) heterostructures where
the interplay between superconducting pairing, spin-orbit
coupling, and TRS breaking leads to the appearance of
topological superconducting phases. Our study will apply to
heterostructures consisting of s-wave SCs and magnetically
doped compounds of the Bi,Se; family. The effective realiza-
tion of such heterostructures has recently shown promising
progress [22,23]. We will consider thin MTI films, which
have become experimentally realizable over the past decade
[26-28]. A comprehensive description of MTI thin films is
achieved by the construction of a symmetry-constrained k - p
Hamiltonian [2,29]. Here, we introduce this model as a basis
for the subsequent finite-size calculations and to relate our
study to concrete material systems. We discuss its applica-
bility for the system we investigate and we comment on the
limits of such a model [30-32].

In recent works, planar translationally invariant geometries
and confined quasi-1D geometries of MTI/SC heterostruc-
tures have been suggested as a potential platform for Majorana
physics. Such systems have been studied for specific values
of the chemical potential w, of the strength A of the magnetic
exchange interaction with the magnetic dopants, and for spe-
cific sizes [18,21,33]. Here, we provide a more comprehensive
treatment, studying a wider region of the phase diagram in
(m, 1) space and the nature of the topological states when the
in-plane size of the heterostructure is varied from infinitely
large to finite. Moreover, we discuss the transition from chi-
ral Majorana edge states (CMESs) to Majorana bound states
(MBSs) and their respective localization. In the following,
we will refer to planar translationally invariant geometries

©2024 American Physical Society
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FIG. 1. Schematic of the systems under consideration and the corresponding notations used in the main text. From left to right: A 3D TI
with translation symmetry (TS) in the three directions of space; an MTI slab with TS only in the plane; an MTI slab with in-plane TS in
contact with s-wave superconductors at its top and bottom surfaces; and an MTI slab with TS only along one direction of the plane, in contact
with s-wave superconductors at its top and bottom surfaces. The notations we use for the Hamiltonian describing each system, along with the
symmetry class of the Hamiltonian, appear respectively below each system schematic.

as “slab geometries” and to in-plane confined geometries as
“nanoribbons.” For nanoribbons with intermediate width, and
depending on the magnitude of the magnetic exchange term in
the MTI, we observe regions in the phase diagram where the
low-energy sector hosts coexisting CMESs and MBSs. Our
understanding of the topological properties associated with
these finite-size systems, from two-dimensional to quasi-one-
dimensional, is based on symmetry-constrained analytical
low-energy models that we construct throughout this paper.
These characterize the appearance of gapless surface (edge or
end) states through the bulk-edge correspondence.

This paper is organized as follows: In Sec. II, we introduce
the effective models we use for the description of the MTL
First, we review the construction of a symmetry-constrained
k - p Hamiltonian which characterizes a 3-dimensional (3D)
topological insulator (TT). Then we construct effective models
for a thin MTI slab system and for a nanoribbon geometry
by considering the low-energy states arising from quantum
confinement in the 3D model. We study the occurrence of
chiral edge modes as a function of the magnetic exchange
term and as a function of the width of the nanoribbon. In
Sec. III, we study the topological properties of an MTI/SC
slab and then we investigate the occurrence of CMESs and
MBSs in MTI/SC with nanoribbon geometries. A schematic
of the systems we consider is given in Fig. 1.

II. EFFECTIVE MODEL FOR THE MTI

A. Symmetry-constrained k - p Hamiltonian

A convenient way of describing the topological properties
of a (3D) compound of the Bi;Se; family is via the following
Hamiltonian [2,29,34,35],

Hip (k) = Ho(k,) + H (ky, k),
Hy(k,) = Dik1 + (M — Bik2) T, + Ak, 70,
Hi(ky, ky) = (C + D2k*)I — Bok’t,
+ Axti(kiox + kyoy), (H

where k* = k2 + kyz, and C, M, Dy, D>, B, By, A}, A,, are real
coefficients. This Hamiltonian acts in the (atomic) low-energy
basis of states {|+,1),|—, 1), |+,{),|—, )} through the
Pauli matrices oy, and 7,,, which act, respectively,

in the spin {1, |} and parity {4+, —} spaces. The parity
operation, equivalent to inversion symmetry in 3D, acts
on {|+, 1), |—, M), |+, 1), |—, })} according to the matrix
representation 7, and flips the momentum vector, leaving
the Hamiltonian invariant: 7, HiP(—k)t, = H3P(k). This
Hamiltonian is valid in the vicinity of the I' point, where it
describes the low-energy properties of the system. In Fig. 2,
we show the eigenenergies of this Hamiltonian.

This Hamiltonian relies on a long-wavelength approxima-
tion and is a priori valid only for finite systems above a certain
size. The coefficients appearing in the Hamiltonian can be
determined by fitting the energy spectrum to experimental
data or extracting the parameters from ab initio calculations
(see Ref. [2]). The distance from the I point up to which
this model Hamiltonian is a good approximation allows an
estimate of the possible size of the system. The band structure
of the Hamiltonian (1) is in good agreement With ab initio
calculations for |k,| < 0.02 A~! s lky] $0.02 A= and |k,| <
0.05 A~' [36]. This 1mphes that the system thlckness din the
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FIG. 2. Low-energy spectrum of the 3D TI Hamiltonian (1).
(a) Spectrum as a function of the in-plane momentum k; € {k,, k,}
for k, = 0. (b) Spectrum as a function of k, for k; = 0. We use
the parameters for Bi,Se; given in Ref. [29]: C = —0.0068 eV,
M=028eV,A; =22eVA, Ay =4.1eVA,B, =10eVA%L B, =
56.6 eVA2, D; = 1.3 eVA2 D, =19.6 eV A2, The blue shaded
area indicates the momentum space region where the band structure
of the Hamiltonian in Eq. (1) is in good agreement with ab initio
calculations [36].

075426-2



TOPOLOGICAL PROPERTIES OF FINITE-SIZE ...

PHYSICAL REVIEW B 110, 075426 (2024)

z direction should be larger than 20 A while the width W and
the length L, respectively, in the y direction and x direction
should be larger than 50 A.

It is also important to note that H;iP (k) is constrained by
the symmetries of the system, specifically TRS, inversion
symmetry, and the threefold rotation symmetry around the z
axis. The atomic states used to construct the Hamiltonian are
based on quintuple-layer unit cells which respect the afore-
mentioned symmetries [2]. For the materials we consider, the
thickness (along the z direction) of a quintuple layer is ap-
proximately 1 nm. In the following, we will consider systems
with widths W and lengths L larger than 40 nm, which is
much larger than the length of a unit cell in the x and y
directions (below 1 nm). This allows us to study a continuum
of lengths above 40 nm along these directions. We notice that
W ~ 40 nm or L ~ 40 nm is a reasonable lower limit of what
is currently achieved experimentally. We will consider slabs
and nanoribbons of Bi;Se; family compounds consisting of
two or more quintuple layers (thickness d larger than 20 A).

B. Slab geometry

Let us consider a TI slab (a planar translation-invariant
geometry) with a finite thickness d along the z direction, with
bottom and top surfaces of the slab located, respectively, at
z=0 and z = d. We replace k, - —id,, impose vanishing
wave functions as boundary conditions at z =0 and z = d,
and denote by E. and E_ the two lowest eigenenergies of
Hy(—id;), each of which is twofold degenerate because of
TRS. Magnetic doping can be accounted for by adding a
TRS-breaking Zeeman term Ao; the system is now an MTIL.
The respective eigenstates of the Hamiltonian will be denoted
by |¢?) and |x?), where o € {1, |}. Projecting H%P(k) on
the basis {|@1), [x¥), l@*), |x 1)} gives rise to a 4 x 4 Hamil-
tonian which describes an MTI slab [37,38] (we use i = 1 in
the following),

hok) 0
1@%@:(% wm)

hee(k) = —p — DIZ + v (kyor — ke0y)
+ (mo £ A+ mik)o, 2
where the coefficients are given by

—u=(E_+E;)/2+C,

D = B2/2)({g wle") + (xzlx ") — D2,

vp = iAo (" |Tlx ") € R,
2my=E_—E,,

m = —(B2/2)((p wle") = (xMzlx ). 3

In Table I we list the values of the coefficients mygy, m, D,
and vp for several values of the thickness, starting from two
quintuple layers, and calculated from Eq. (3), using the pa-
rameters of the 3D k - p Hamiltonian (1) for bulk Bi,Se; [29].
A diagonalization of HZ, (k) yields four energy bands with a
finite gap at the I" point. This is shown in Fig. 3(a) where, for
simplicity, we considered the chemical potential of the system
to be tuned to u = 0.

TABLE 1. Values of the coefficients mg, m;, D, and vg for a TI
slab (A = 0) with thickness between two and seven quintuple layers.
Above seven quintuple layers, m( and m; have negligible magnitudes
and D and vg become approximately constant.

d (A) mo (eV) m (eVA2)  D(@EeVA?) e (eVA)
20 6.9 x1072 45.48 —17.35 4.09
30 —2.0 x1072 19.81 —12.64 4.06
40 —1.1 x1072 -2.82 —12.05 4.06
50 —7.5 x1075 —4.29 —12.29 4.06
60 1.2 x1073 —0.59 —12.24 4.06
70 2.6 x107* 0.51 —12.24 4.06

The eigenstates |¢”) and |x“) allow the construction of
states |f, o) and |b, o) localized near the top and bottom
surfaces, respectively. These are indeed given by |f,0) =
(I9°) + 1x)/~/2 and |b, o) = (|p°) — [x°))/+/2 and have
localization lengths ~10 A [see Fig. 3(b)]. In this basis of
states, the Hamiltonian reads

AZR (k) = — i — DI + ve(kyo, — k0%,
+ 2o, + m(K)E,, &)

where m(K) = mgy + mk* and the Pauli matrices Ty, and
Oy, act, respectively, on the top/bottom (z/s) degree of
freedom and the spin degree of freedom. Equation (4) is
the starting point of Sec. III, where we study an MTI/SC
heterostructure.

In the case of magnetic doping (A # 0), the symmetry class
of the Hamiltonian is denoted A (unitary symmetry class) and
the topological phase is characterized by an integer Chern
number [39]. In contrast, at A = 0, the Hamiltonian has TRS
and fits in the symmetry class AIl (symplectic symmetry
class) where the topological sector is characterized by a Z,
topological invariant.

Determining the value of the topological invariant requires
not only the low-energy eigenstates but also information at
large momenta. However, determining the difference between
the topological invariants characterizing two phases separated
by the closing of the gap is possible: in this case, we only
need the eigenstates around the I" point, where the gap closes,

-2 ~1
1x10 1x10
(a) 75 (b)l.o
— l{z|b, 0)|?
5.0 2
0.8 [{z]t, o)
23 0.6
E 0.0 T
" o4
-25
5.0 0.2
_75 /—\ 0.0
-1 0 i, -10 0 10
k[A~11 1x10 z [A]

FIG. 3. (a) Energy spectrum of the translation-invariant MTI slab
model in the QAH regime for thickness d = 30 A, A =25meV,
and u = 0. (b) Probability distributions |(z|, o')|?, where [ € {¢, b},
associated with the top and bottom surface states of the slab for a
thickness d = 30 A.
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which we determine from the Hamiltonian in Eq. (2). These
eigenstates and thus the topological invariants do not depend
on p or D since those enter the Hamiltonian with an identity
matrix. Hence, let us consider the case u = 0.

The low-energy model can predict the occurrence of topo-
logical phase transitions via a sign change of the effective
gap mo = A. At L = 0, the sign change of the gap my, when
increasing the thickness from 2 to 3 quintuple layers, shows
a transition between a trivial insulating and a quantum spin
Hall insulating phase (see Table I). At 0 < |A| < |my], the
Chern number vanishes, indicating a trivial phase. In contrast,
a sufficiently large magnetic exchange term |A| > |my| yields
a quantum anomalous Hall (QAH) phase, independently of the
sign and magnitude of my, as was also observed in Ref. [40].

In experimental systems, magnetic disorder reduces the
size of the gap at the Dirac points [41], and the fluctuations
in the Dirac mass are directly related to the spatial magnetic
disorder [42]. Studying such disorder is not the focus of our
work, but since our results mostly rely on the appearance of
the QAH phase, we would like to comment briefly on the fate
of this phase when non-negligible magnetic disorder is taken
into account. In Ref. [43], the author studied the transport
properties of a disordered MTI system, starting from the same
model that we presented in Eq. (1). In Ref. [44], the authors
studied the effect of disordered magnetic doping in a massive
Dirac system. In these references, it was found that for suffi-
ciently small disorder strength, the QAH phase is robust. The
effective models for MTIs or MTI/SC structures we present in
the following will eventually reduce to similar massive Dirac
Hamiltonians, so we can conclude qualitatively that the QAH
phases we study in the following are robust for weak disorder.

Whether or not the materials we consider indeed display a
quantum spin Hall phase (without doping) below 6 quintuple
layers is still under debate in the literature. For instance,
for Bi,Se; it has been argued that the Coulomb interaction
leads to a significant hybridization of the surface states, which
could open a trivial gap below 6 quintuple layers [32,45]. GW
computations performed for Bi,Se; also concluded that the
gap below 6 quintuple layers is trivial, but a gap inversion
remains for Bi;Te; [30]. Our following study will apply to
a thin slab in (or near) the QAH regime, which is attainable
independently of the sign of my for a large enough magnetic
exchange magnitude A. Experimental studies on such systems
have already been performed, and the QAH phase has been
characterized, e.g., in Cr- and V-doped (Bi, Sb),Tes [46].

C. One-dimensional model for an MTI nanoribbon

Next, we consider a 2D nanoribbon geometry with a finite
width W along the y direction with left and right edges of the
slab respectively located at y = 0 and y = W. Moreover, we
assume A > |mg| which would correspond to the QAH regime
for W — oo. The goal of this section is to estimate the critical
width above which the nanoribbon effectively enters a QAH
phase, manifested in one chiral state at each edge of the slab.
Below this width, the hybridization of edge states on opposite
edges becomes significant.

The Hamiltonian (2) describes the 2D MTI slab and con-
sists of the two independent blocks A, (k) and i* (k). For
the description of the nanoribbon, we substitute k, — —idy

(@) 6110

500 1000 1500 2 3 4 5

6,
w [A] 1x10°°

FIG. 4. Low-energy spectrum of the MTI nanoribbon at the I
point (k, = 0) with d = 30 A (a) for A = 25 meV as a function of
the width W and (b) for the width W = 600 A as a function of the
magnetic exchange magnitude A. We used the coefficients myg, m;,
and v which appear in Table I, we considered D = —1 eV Az, and
the energy shift —u appearing in Eq. (2) is discarded for simplicity.
The solid and the dashed black lines are the energies associated
to h* (k, —idy) and h,(k., —idy), respectively. The solid and the
dashed blue lines are the bulk energies £(my — A) and %=(mo + A),
respectively. The red line is the energy (mg — A)D/m;.

and we impose vanishing wave functions at the edges of the
slab. In the following, we assume (mgy — A)m; < 0 without
loss of generality, since the case (my — A)m; > 0 would only
exchange the roles of h* (k, —id,) and hy(kc, —id,). The
block h* (ky, —id,) has an inverted mass gap (mo — A)m; < 0,
which results in a pair of edge states arising from the quantum
confinement along the y direction. The associated energies
at k, = 0 converge to —u + (mo — A)D/m; when W or A
is increased as shown respectively in Fig. 4(a) or Fig. 4(b)
(red line). In contrast, hy(k,, —idy) has a normal mass gap
(mp + A)m; > 0, so for the parameter regime we consider its
low-energy states arising from the quantum confinement are
topological trivial. They have energies greater than |mgy + A|
or smaller than —|mg + A|, respectively, as shown in Fig. 4.

For nonvanishing D, the energies of both topological edge
states are shifted compared to the energies of the bulk states.
As a consequence, for large enough D, i.e., |(my — A)D/my| >
|mgy + A|, the low-energy states at the I" point are outside the
energy gap (i.e., for energies bigger than |my + A| or smaller
than —|my + A|). As we would like to build a simple ribbon
model, we will consider small values of D in the following,
such that the low-energy states at the I" point are in the gap
(i.e., for energies between —|mg + A| and |mg + A|). Hence,
in Fig. 4 we have assumed D = —1 eV A. For a description of
the effects of larger values of D, we refer to Ref. [47].

At p = (mg —A)D/m;, where the Fermi energy cor-
responds to the red line in Fig. 4, we can construct a
Hamiltonian which describes the edge states around the Fermi
level by only considering the block A* (k., —i0d,), as it de-
scribes the relevant low-energy physics. Substituting k, —
—1d, and imposing vanishing wave functions at the edges of
the slab, 4* becomes

h* = ho—(—idy) + hi-(ky),
ho_(—idy) = D9; — ivpoxdy + (mg — A — my0})o,
hy_(ky) = —p — Dk* 4 vpkoo, + mik2o,. o)
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FIG. 5. Effects of the finite MTI slab width (a) on the low
eigenenergies EY. and the energy gap 7ty = (Ey — E_)/2, (b) on the
coefficients D, 77,, and on the edge Fermi velocity ¥g. The value of
the magnetic exchange parameter is A = 25 meV, and the thickness
of the slab is d = 30 A. The values of the coefficients mg, m, and vg
are taken from Table I, and we considered D = —1 eV A2,

Let us denote the lowest eigenenergies at k, = 0 by E7 and
EY, and the associated eigenstates by x, and ¢,. Similarly to
the previous section, we project h;_(k,) on the low-energy
eigenstates of hg_(—idy) and thus obtain an effective 1D
Hamiltonian describing the slab with finite width W at low
energies (see Appendix A),

h'®(k,) = — u + Ey — Dk? — vgk, 6, + (7o + ﬁﬂkf)ﬁz,
(6)

where 6, ; are Pauli matrices acting in the {¢y, x,} basis and
the parameters are given by

2E, =E] +E’,
2ig = —E + E,
2D =2D— ml(((py|o'z|(py> + <Xy|az|Xy)),
2my = ml(<¢y|0z|(py> - (Xy|Uz|Xy)),
Up = v ((py|o'y|Xy)- @)

More detailed expressions of D, iy and Dg, can be found
in Appendix A. The coefficients D and 7, are plotted as
functions of the width W in Fig. 5. The coefficient U varies
only very weakly: for the parameters considered in Fig. 5,
p=1 eV A and it has a maximum variation ~1073 eV A
over the range of W investigated.

Next, we introduce the states [L) = (|¢,) + Ixy))/«/z and
IR) = (lgy) — |Xy>)/\/§ which are localized on the left and
right edges of the ribbon, respectively. The parameter 777y rep-
resents the overlap between both edge states, so it determines
the topological phase of the slab. For small overlap, in the
QAH phase, one chiral state appears at each edge. For large
g, the overlap of these edge states brings the system into a
topologically trivial phase. In this 1D limit, a symmetry class
A Hamiltonian has indeed trivial topological properties [39].

From Fig. 5, we see that for W < 500 A, iy cannot be
neglected compared to the other terms in the Hamiltonian, so
the 1D system becomes topologically trivial. For W 2 500 A,
on the other hand, 7 is negligible, so the slab enters a QAH
phase.

III. MTI/SC HETEROSTRUCTURES

A. Surface states of the MTI and proximity effect

We now consider the superconducting proximity effect
[18,48] originating from the contact with s-wave supercon-
ductors on the top and bottom surfaces of the MTI slab. We
assume that they give rise to the pairing potentials A; and
A,, respectively, with two real parameters A; and A,. This
is described by extending the Hamiltonian (4) to the Nambu
basis,

HédDG(k) = vpkyo, T; + [—vrki0y T, + Ao
+mK)E, — p — Dk’ ly:

Ar+Ary A —As
—( 5 - rz>ayyy, ®)

where the Pauli matrices y,. act in the particle-hole space.
Expressed in this form, it is straightforward to check that
the Hamiltonian has particle-hole symmetry PH]%(?G(k)
P!=—HD.(-k) and at A=0 it also has TRS
OH(K)O™! = H3R.(—k), where © =io,K, P = K,
and /C is the complex conjugation operator.

B. Topological properties for the slab geometry

For a slab geometry, the topological phase transitions are
signaled by the change of the 2D bulk invariant of the model
(8) and happen at the gap closing points. For the special
case A; = —Aj,, u =0, and D = 0 the Hamiltonian can be
simplified to (see Appendix B)

H]%(?G = Z Z Z :,%khg(k)‘/’:,kv

k n=ft«k==%

(k) = ve(kyor — kkeoy) + ml(K)o, ©)

with ml(k) = mg, + m;”Kkz and mg . = kA + nicmo + Al
and m'l7 . = nkemy. It is then straightforward to calculate the
topological invariant [18]. The Hamiltonian is a sum of in-
dependent massive Dirac Hamiltonians, so the topological
invariant is the sum N = 3 N of the winding numbers N,/
associated with each of the independent Hamiltonians 4] (k).
At fixed m, the cases my > 0 and mg < 0 both result in the
same phase diagram for N, even though the decompositions
in terms of N are different. In Fig. 6, we show this phase
diagram along with the details of the decomposition in terms
of NJJ formp < 0 and m; > 0.

Building on this, we can extend the phase diagram for
Ay # —Ay, w#0, and D # 0 by considering the phase
boundaries. As topological phase transitions happen only at
the gap closing points, we find that they are described by the
equation

a? A+ A2[2am(2) —(+a>H? - Mz)]
+ (A 4+ P —md)’ — 2 =0, (10)

with @ = A,/A. This result generalizes the study performed
in Ref. [18] where an equation for the phase boundaries was
given for i = 0. The Dk’ term, being proportional to y, and
involving only terms of second order in the momentum, does
not influence the phase boundaries.
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N=-1 TSC N=1
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(-1,-1,0,0) (-1, (0,0,1,1)
\ my \ 0 —myg L p)

QAH Trivial insulator QAH

FIG. 6. Topological phase diagram of the MTI/SC heterostruc-
ture at myg <0, m; >0, Ay =—A,, u =0, and D =0. N is the
topological invariant and the four-component list given below N is
(N, NT,N_,NZ) (see details in Sec. Il B). The (helical) topologi-
cal superconducting phases are indicated by “(Helical) TSC” and the
quantum anomalous Hall phases by “QAH”.

C. Ribbon geometry for p =0, A; = —A,;

Next we investigate the effect of in-plane confinement on
the topological properties of the MTI/SC heterostructure for
the case where © =0 and A} = —A,. We show that for a
confined geometry, the topological properties depend on the
decomposition of N in terms of N, and on the mass values

. This is in contrast to the translatlon invariant geometry,
where N alone determines the topological properties at A # 0.

First, we consider a ribbon geometry with width W along
the y direction. The calculation performed in Sec. IIC can
be easily adapted since the Hamiltonian (9) is a sum of in-
dependent massive Dirac Hamiltonians. For each term where
the mass mg , and the parameter m] . correspond to the in-
verted regime, i.e., m0 Kml . <0, a pair of low-energy states
appears, which we denote by [ and | Xyk) and which have
the respective energies m0 and m0 o These energies are
plotted in Fig. 7 as a function of the width of the ribbon. Fig-
ure 8(a) shows the localization of |R]) = (l¢],) — |x,))/ V2

and [L]) = (l¢],) + 1x,) )/«/E along the y direction in an
MTI/SC nanoribbon with width W = 2500 A. One finds that

i . decreases when myg , increases and that the overlap be-
tween |R]) and |L]) is proportional to mg’,{ [see Fig. 8(a) and
Fig. 7(a)].

For large regions of the phase diagram the masses m ,
can differ significantly. At intermediate widths W, this causes
the coexistence of chiral low-energy states strongly localized
at the edges with states which overlap along the y direction
[49]. For instance, in Fig. 7, for 1000 A < W < 5000 A,
my . (blue line) and my, (red line) are small, so we expect
that |[R7), [L]), [RZ), and |LZ) are edge states. In contrast,
mgy _ (black line) is larger so the states |[RT) and |L¥) over-
laﬁ along y. The states overlapping along the y direction are
then described by a 1D bulk Hamiltonian, with parameters
i and ] = m] (@, lozloll) — (loz] %), ))/2 which
depends on W.

Next, we also consider confinement along the x direction
such that the length in the x direction satisfies L > W. In
this case, we find that the overlapping states |R}) and |L])
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FIG. 7. (a) Low-energy spectrum of an MTI/SC ribbon het-
erostructure as a function of the width W for ¢ = 0 and A; = —A,.
(b) The coefficients Dt and rh+ are associated to the 1D bulk
Hamiltonian which describes the physics of the low-energy states
‘py,— and Xy_f- The thickness of the slab is 30 A, the values of the
coefficients myg, m;, vr are taken from Table I, D = 0, A = 19 meV,
and |A| =2 meV.

give rise to new low-energy states (|¢) ) £ | Xx o)) / /2 which
are localized at both ends of the ribbon if m0 Km e < 0 [see
Fig. 8(b)]. These states are Majorana bound states (MBSs),
which arise from the confinement of a 1D Bogoliubov-de
Gennes (BdG) Hamiltonian (BAG D symmetry class) with
topologically nontrivial Z, number.

We are interested only in states with negligible energy,
i.e., with energy below a small energy threshold Eyg. If
mg .m . <0, the Hamiltonian A(k) has a nonzero BdG D
winding number [18], and if rhg! « < Eus, the states [R}) and

(a) 1x10° 1x10~° (b) 1x107
1.5
o 1.0

%
: 0.5
- . 0.0
—1000 0 1000 -5000 0 5000
yIA] x[A]

FIG. 8. (a) Localization of the chiral edge states along the y
direction in an MTI/SC nanoribbon which is translationally invariant
along the x direction. The dashed lines represent |[R7), [L]), |RZ),
and |L~) and the solid lines |RT) and |LY). The left (blue) vertical
axis refers to the dashed lines while the right (black) vertical axis
refers to the solid black lines. (b) Localization of the end states
(lpy_) + |X;f7))/ﬁ and (Jo;_) — |X;f7))/ﬁ along the x direction
in an MTI/SC nanoribbon of finite length L = 1 um. The thickness of
the MTI slab is d = 30 A and its width is W = 2500 A. The values
of the coefficients mg, m;, vp are taken from Table I and we used
D=0,A=19meV,and |A| =2 meV.
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|L]) represent a chiral Majorana edge state (CMES) at each
edge of the system. In this description, CMESs with different
chiralities can coexist at the same edge if mg m], <0 and
iy, < Ens for several {n,«}. This description is valid at
vanishing disorder in the system. At finite disorder, CMESs of
opposite chirality will hybridize, resulting in 0, 1, or several
copropagating CMESs at each edge. It is worth noting that a
pair of copropagating CMESs at each edge is topologically
equivalent to a QAH chiral edge state [49]. If mg m| <O,
iy . > Ens, and i i} <0, then the states (|p}], )=+

X7/ /2 form a pair of MBSs with negligible energy, local-
ized at the end of the nanoribbon. If disorder were included in
our description, we would either find O or 1 pairs of MBSs in
the system.

As an example, let us consider a BiSe; nanoribbon with
thickness d = 30 A (see Table 1) and with mg < 0, m; > 0
(the Bi;Se; nanoribbon is a quantum spin Hall insulator at
A=0 and A; = A, =0). We consider the regime where
[mg| >> |A], which corresponds to the experimentally rel-
evant range of superconducting pairings. We arbitrarily set
Es to be one tenth of the superconducting pairing magnitude
|Aq]. Then, below this threshold and considering disorder
hybridization of CMESs with opposite chirality and disorder
hybridization of MBS pairs, we count the resulting number
of copropagating CMESs and of MBSs. For instance, let us
consider the low energies shown in Fig. 7(a), at W = 2500 A.
Here we have Eys = 0.2 meV and both energies gy and
my, (on the blue and red lines) are smaller than this threshold.

The inspection of the associated edge states |R) and |RZ)
(and likewise L) and [LZ)) shows that the latter have the
same chirality. If we further consider confinement along the x
direction, because ﬁﬁ{ 7ﬁ1fr’7 < 0, we find that the overlapping

states |RT) and |L*) give rise to MBSs (o) £ [x;7_))/v/2
at an energy smaller than Ey. These MBSs are localized at
opposite ends of the ribbon [see Fig. 8(b)]. Moreover, ﬁlar 418
non-negligible (nﬁ(‘{ + > Eus) and confinement along the x di-
rection does not yield low-energy states since 7y /i, > 0.
To sum up, in this specific example, we count 2 copropagating
CMESs and 1 MBS which are expected to be robust against
weak disorder. In Fig. 9, we display the number of CMESs
and the number of MBSs appearing below Ey, as a function
of Aand W.

In the limit W — oo, the number of CMESs is in agree-
ment with the phase diagram of Fig. 6. Moreover, for the
region of Fig. 6 where N = 1, and when W is small enough
such that there are no edge states in the y direction, the system
simply hosts a pair of Majorana bound states [21]. For inter-
mediate range of widths, we observe a richer phase diagram.
Indeed, at fixed A, varying the width up to ~10* A, we cross
different phases. Namely, we observe a region characterized
by either one CMES or two CMESs with the same chirality
and MBSs.

In Fig. 10, we display the number of CMESs and the
number of MBSs in the case my > 0, m; > 0 (the BiySe;
nanoribbon is a trivial insulator at A = 0 and A; = A, = 0).
For a straightforward comparison with Fig. 9, we consider
my with opposite sign and otherwise identical parameters.
For wide enough nanoribbons (W > 2 x 10* A), we ob-
serve either O, 1, or 2 CMESs in agreement with Fig. 6.
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2 4 6 8
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FIG. 9. Number of pairs of chiral Majorana edge states (CMES)
and the number of end Majorana bound states (MBS) in an MTI/SC
finite nanoribbon as a function of A and W. To identify “low-energy”
states, we retain eigenenergies below a certain threshold, here chosen
to be one tenth of the superconducting pairing magnitude |A]|.
The thickness of the slab is d = 30 A and the values of the coef-
ficients myg, m;, vg are taken from Table I. Moreover, D = 0 and
A; = —A,; =2 meV. For the results presented here, we checked that
lengths L > 10 W are sufficient.

Similarly to the results shown in Fig. 9, when W is small
enough, we observe 0, 1, and O end states, respectively, for
the regions of Fig. 6 where N =0, N =1, and N = 2. The
region of intermediate width is qualitatively different from
what we observe in Fig. 10. Only in the region of Fig. 6
where N = 2, we observe a phase characterized by one CMES
and MBS.
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FIG. 10. Number of pairs of chiral Majorana edge states (CMES)
and the number of end Majorana bound states (MBS) in an MTI/SC
finite nanoribbon as a function of A and W. To identify “low-
energy” states, we retain eigenenergies below a certain threshold,
here chosen to be one tenth of the superconducting pairing magni-
tude |A,|. The thickness of the slab is d = 30 A and the values of
the coefficients m;, vp are taken from Table 1. Here we considered
my = 20 meV, such that mym; > 0, in order to compare with the
situation mom; < 0. Moreover, D = 0and A; = —A, =2 meV. For
the results presented here, we checked that lengths L > 10W are
sufficient.
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D. Ribbon geometry for general parameters

In the previous section, the choice of parameters D =
0, A; = —A,, and p = 0 made it possible to calculate the
low-energy states for the in-plane confined geometry without
further approximations. Here, we discuss the more general
parameter regime D # 0, u # 0, © < mg, and A| # —A,.

In the following, we consider A; = 2 meV and we write
A, = aAy. Moreover, we restrict our study to the case —1 <
a < 1,and u < Ez 4 where E3 4 are the two highest energies
associated to the Hamiltonian (8) for the specific MTI thick-
ness d = 30 A. For this regime of parameters, we assume that
each pair of energy bands around the I" point [see Eq. (8)]
can be described to a good approximation by a massive Dirac
Hamiltonian. Therefore, close enough to the I point, we ex-
press H2D (k) in Eq. (8) by H(k) = Y"1, H;(k) where

Hi(k) = vi(kyo, — kyo,) + (M; — Bik*)o,,  (11)

where the Pauli matrices act in a transformed basis of states
which coincides with the low-energy states of HédDG(k) at
k = 0. The parameters v;, M;, and B; are obtained by fitting
the resulting energies around the I' point with the corre-
sponding energy band E; of H3;(k). We further impose that
the effective parameters should reduce to ngK and mY.K at
w=0,D=0, A, =—A; and that they evolve adiabatically
in (A, D, o, u) parameter space at constant topological invari-
ant N, which is determined by the phase boundary evolution
according to Eq. (10).

For sufficiently small width W and M;B; > 0, the low-
energy edge states associated to H;(k, —id,) hybridize.
Similarly to Sec. II C, a 1D Hamiltonian H;(k,) can be derived
from H;(k,, —id,),

Hi(k,) = —vik&, + (M; — Bik})5,, (12)

where 6, and &, are Pauli matrices acting in the {|¢,), |xy)}
basis where |g,) and |x,) are the eigenstates of H(k, =
0, k, — —id,) with the two lowest eigenenergies E.. The
coefficients appearing in the previous equation are given by
Ur = v{(gyloy|xy), 2myg=—-E+ +E_, 2B= B({pylo:ley) —
(xylozlxy))

I.D#0

First, we consider —1 eV A2 < D < 0 [such that |(mg —
A)D/my| < |mg+ A| as we already consider in Sec. 11 C],
A} = —A,, and p = 0. This case is simplified by the facts
that (i) the parameter D appears in the Hamiltonian with a y,
matrix, in contrast to the m; term proportional to %y, and
(ii) the parameter D multiplies a factor k%. Therefore the D
term does not change the value of the masses M; and has an
important effect only if Dk?> > A;. Since here we consider
at most D = —1 eV A2, for k < 0.02 A~' D has no strong
qualitative effect on the low-energy states at the system widths
and lengths we consider.

As an illustration in Fig. 11, we show the change of B;
with D for a specific value of A, and we show how Fig. 7(a) is
modified for D = —1 eV A? due to the evolution of the low-
energy states +=M; which appear due to the confinement along
y when M;B; > 0.

(a) 1x10' (b) ,1x107
2 .
JE— M2
X ) —
< B gl - — My
T o 21 3 0
v — B |
9, _ 5
-2 >
-1.0 -0.5 0.0 5 0 |
D[eVA?] WIA] 1x10

FIG. 11. (a) The fitted parameters B; appearing in Eq. (11), for
u =0and A; = —A,;. (b) The resulting low-energy spectrum for a
ribbon as a function of W. The thickness of the slab is 30 A, the
values of the coefficients my, m;, vp are taken from Table I, and D =
—1eV A2 We consider A = 19 meV and A =—A; =2 meV.

2. Ay # —A,

At Ay # —Aj, the phase boundaries are shifted according
to Eq. (10). However, for each phase with a fixed topological
invariant, we checked from H (k) that each pair of bulk bands
retains the same topological character. Therefore, no strong
qualitative changes happen for the phase diagram, as we show
in Fig. 12 for the case o = 0.

3. n#0

The case u # 0 is more subtle because the energies around
the I" point can change significantly. For simplicity, we only
consider values for A and u corresponding to the region with
topological phase N =1 in the infinite 2D geometry with

2 CMES
1 MBS

1 CMES
1 MBS

0 CMES
1 MBS

2 CMES
0 MBS

1 CMES
0 MBS

0 CMES
0 MBS

FIG. 12. Number of pairs of chiral Majorana edge states (CMES)
and the number of end Majorana bound states (MBS) in an MTI/SC
finite nanoribbon as a function of X and W. To identify “low-energy”
states, we retain eigenenergies below a certain threshold, here chosen
to be one tenth of the superconducting pairing magnitude |A,|. The
thickness of the slab is d = 30 A and the values of the coefficients
mg, my, vg are taken from Table 1. Moreover, D = 0, A; =2 meV,
and A, = 0. For the results presented here, we checked that lengths
L > 10W are sufficient.

075426-8



TOPOLOGICAL PROPERTIES OF FINITE-SIZE ...

PHYSICAL REVIEW B 110, 075426 (2024)

—3 3
1x10 1x10
(a) ; (b)
— Ml
5 — M,
;‘ o~
@ 0 =
W 9,
15

10

5 10 15
w4l 1o

5
WAl 10’

FIG. 13. (a) Low-lying energies of an MTI/SC ribbon het-
erostructure, as a function of the width W and for A = 19 meV, u =
3meV, A; =2 meV, and A, = 0. (b) The coefficients D, and M,
associated to the 1D bulk Hamiltonian which describe the physics of
the low-energy states |¢,) and | x,). The thickness of the slab is 30 A,
the values of the coefficients my, m;, vr are taken from Table I, and
D=—1eVA2

max(]Aq], |Az]) S u K E3 4 where Ej 4 are the two highest
energies of the Hamiltonian (8). Moreover, we focus on the
case W > Wy = 10° A, unless otherwise stated. From our
study in the previous section, we expect this region to be in-
teresting since at i = 0 it shows a coexistence of two CMESs
and one MBS (or 1 CMES at very large W). How do these
topological states change for v # 0?

First, both high energies E3 4 remain similar as in the case
u = 0, since here 1 < E3 4. Therefore, above W = 1000 A,
the low-energy states arising from confinement of the bulk
states associated to E3 4 are copropagating CMESs with neg-
ligible energy, as is the case for © = 0 [blue and red lines
in Fig. 7(a)]. Second, we describe the evolution of the low-
energy bands E| » at u #£ 0by H(k) = Zizzl H;(k) with H;(k)
given in Eq. (11).

For the N = 1 phase we consider, we know that at W —
oo the topological low-energy states correspond to only one
CMES at each edge. This means that the total number of
inverted bulk bands cannot change when p changes. Taking
this constraint into account, we observe from our fit that the
topological characters of the first and second energy bands are
exchanged at small p with concomitant sign changes of B
and B,. Although this has no impact on the phase diagram at
W — oo, this is important for the topological properties of the
low-energy states for nanoribbons of intermediate width W.

In the example of Fig. 13, we observe that M, takes non-
negligible values for W < 15 x 10° A, with an oscillating
behavior as a function of W. This oscillating behavior is also
observed as a function of £ and A when the width W is fixed,
as shown in Fig. 14. Moreover, the sign of B; and the resulting
sign of M B, also oscillate as function of W, 1, and A. For the
parameters p and A considered in Fig. 14, By is positive, so the
sign changes of M, B, are determined by M;. From our theory,
this signals topological transitions as W, u, and A are varied.

Let us also consider confinement along the x direction,
such that the length of the nanoribbon satisfies L > W. Here
again, for concreteness, we are interested only in states with
energy below a certain threshold Eys which we arbitrarily

1><10'32'0
3.7541 1.5
3.50 1 1.0
3.25 1 0.5
E 3.00 1 0.0
3
2.75 4 -0.5
2.50 1 -1.0
2.254 -1.5

1.7 1.8 1.9 2.0 2.1 2.2 2.3
A [eV] 1x1072

FIG. 14. Gap value M, [see Eq. (12)] for an MTI/SC slab with
thickness d = 30 A and width W = 5200 A. The parameters of the
2D model, mg, m;, and vg, are taken from Table I, D = —1 eV A2,
and we considered A =2 meV, A, = 0. The values we consider
for A and u correspond to the region with topological phase N = 1
in the infinite 2D geometry.

set to be one tenth of the superconducting pairing magnitude
|Ay]. If M| < Egs, the state associated to the energy M, is a
CMES with negligible energy and with chirality opposite to
the copropagating states associated to E3 4. This description
is valid at vanishing disorder in the system. At finite disorder,
CMESs of opposite chirality hybridize, resulting in only one
CMES in the system. If M; > Egy, and M,B; > 0 (see, e.g.,
the red phase in Fig. 14), then a pair of MBSs with negligible
energy, localized at the ends of the nanoribbon, appears. In
this case, the low-energy states in the system are both coprop-
agating CMESs associated with E3 4 and a pair of MBSs. In
Fig. 15, we display the number of CMESs and the number of
MBSs appearing at low energies as a function of u and A for
W = 5200 A.

Finally, let us comment on the situation in which the
nanoribbon is very thin, here meaning W < 500 A, where the
states arising from confinement of the bulk states associated
to E3 4 hybridize in the bulk and do not result in topological
low-energy states. In this case, M, > Egy, and M,B; > 0 (see
Fig. 13), which yields a topological phase with a pair of
MBSs, localized at the ends of the nanoribbon, and without
any CMESs, reflecting the scenario proposed in Refs. [21,33].
Note that this topological phase can arise for A both greater
and smaller than |my|, hence not requiring the MTI system
(with A} = A, = 0) to be in the QAH phase for very large
widths. While this phase only appears in a narrow window
of A near |my/|, this region is enlarged when p is increased,
similar to the topological phase with 2 CMESs and 1 MBS
in Fig. 15.

IV. CONCLUSION

We have studied the topological properties of finite
MTI/SC heterostructures using symmetry-constrained low-
energy models. We started by developing analytical models
for MTI slabs with a finite thickness as well as MTI nanorib-
bons with finite thickness and width. We investigated the
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FIG. 15. Number of pairs of chiral Majorana edge states (CMES)
and the number of end Majorana bound states (MBS) in an MTI/SC
finite nanoribbon as a function of A and p and for thickness of the
slab d = 30 A and width W = 5200 A. To identify “low-energy”
states, we retain eigenenergies below a certain threshold, here cho-
sen to be one tenth of the superconducting pairing magnitude |A;|.
The parameters of the 2D model, mg, m;, and vg, are taken from
Table I, D = —1eV 10\2, and we considered A; =2 meV, A, = 0.
The values we consider for A and u correspond to the region with
topological phase N = 1 in the infinite 2D geometry.

appearance of low-energy states as a function of the magnetic
doping, the chemical potential, and the system size. Next, we
considered such finite geometries subject to superconducting
pairing induced by two superconductors at the top and bottom
surfaces. For very wide nanoribbons the low-energy states are
the chiral edge states as predicted by the 2D bulk topological
invariant. For finite-width nanoribbons, we constructed and
studied low-dimensional models describing the low-energy
properties of our system. In a nanoribbon geometry with finite
width and length, we observed regions where the low-energy
states can host coexisting chiral edge states and Majorana
bound states depending on the strength of the magnetic ex-
change term. Finally, we investigated the effect of a finite
chemical potential on the topology of our system. We have
studied how the bulk invariant is modified and we have built
low-energy models to study the modifications in the low-
energy states which appear at the boundaries of the system.
When varying the magnetic doping, the chemical potential,
and the size of the system, we observed topological transitions
between two phases which differ by the presence or absence
of MBS:s.
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APPENDIX A: EFFECTIVE RIBBON HAMILTONIAN VIA
A PROJECTION ONTO THE LOW-ENERGY STATES

Here we determine the lowest eigenenergies and the asso-
ciated eigenstates of the Hamiltonian block,

ho—(—idy) = D] — iveoydy + (mo — A —m3;)oz.  (Al)
The energies E are given by the transcendental equation

M[E(mg — 1) — E — (=D + Emy)A?] _tanh Apw

M[E(mo— 1) —E — (=D +&m)A3]  tanhiw’ (A2
with w = W/2,
_ _1)—1
ho= | EHED ;/I_e,az{l,Z}, (A3)
2(mi +D2)

as well as F = v2 —2DE +2(my—A)m; and R = F? —
4(D? — m3)[E? — (mg — 1)*]. The values & = +1 denote, re-
spectively, the solutions for the energy E., with eigenstate | x,)
and the energy E_ with eigenstate |@,). We restrict the study
to both low-lying energies. Their dependency with respect to
the width W is shown in Fig. 5. The eigenvectors are given by

I (—(=D —m)nf+(y)
Blxy) = —( . ! (Ad)
N pf-(y)
and
1 (—(=D —m)nf-(y)
Olgy) = —( . , (AS)
N, rf4(y)
with
_coshhy cosh Ay
F+0) = coshijw coshiw’
sinh Ay sinh A,y
f*(y) = - ’
sinhAjw  sinhA,w
n = )L% - A%
Ajtanh Aqw — Ay tanh A w’
A2 — 22
= [ = 3] : (A6)
AicothAjw — Ay coth Aw
and normalization constants N; and N, are given by
w 172
Ny = [/ dy(D +m)’ I fr* + vﬁlflz] .
0
W 1/2
N, = [ / dy(D +m)*|mi f-* + vé|f+|2] (A7)
0
Next we project hy_(k,),
h_(k;) = —p — D> 4 vpkyo, + mik’o,,  (AS8)
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on the low-energy eigenstates of hy_(—id,) and we obtain
an effective Hamiltonian for the system initially described
by h*, valid around k, = 0. Here we consider only the two
low-energy eigenstates of hy_ (—id,) and we assume that these
eigenstates are well separated in energy from the other eigen-
states. This assumption is valid for the mass inverted regime
(my — A)m; < 0 we are considering here. Then we find the
Hamiltonian given by Eq. (6):

h'P(ky) = — p + Ey — Dk} — Tk, + (1o + ik} )6,
(A9)
The coefficients D, 71, and T appearing in the latter are
2D =2D — ml((ﬁ"ylo—zl(py) + (Xy|0'z|Xy)),
2y = m1(<§0)'|az|(p)’> - (Xy|o-z|Xy))y
UF = UF<§0y|Gy|Xy>s (A10)
with
(D+m1)2|n1f > — vF|f+|
<‘P)'|Uz|(py> = NZ
0
PRCES m ) imfil? = vilf )
<Xy|GZIX}'> = ) s
0 Nj
ve(D +my) [V N
(oyloylxy) = == | dyi1f- P+ ml 1P,

NN, 0
(A11)
Note that the functions f., f—, 11, and 1, depend on A; and A,

which are obtained from the solutions E of the transcendental
equation (A2).

APPENDIX B: TRANSFORMING THE HAMILTONIAN
INTO A SUM OF DIRAC TERMS IN SPIN SPACE

The matrix 0,7, commutes with the Hamiltonian at u = 0
and D =0and A| = —A,,
Hpao(K) = veky0, T + [—vpkeoy T + Aoy + m(K)T ]y
— AT00). (B1)
Therefore it is possible to diagonalize Hé(lj)G (k) and o, %, using
a common basis transformation defined via a unitary matrix
U which diagonalizes o,%,. For U = (%. 4 %,)/~/2 one finds
Uo,t,U" = 0,%,. This diagonal matrix has only two different
eigenvalues %1. It is convenient to define P as the projector on

the eigenspace with eigenvalue 1 whereas P = 1 — P projects
on the eigenspace with eigenvalue —1. Then we have

Hpo = Y YU PUHpa (K)U " PU i,
k

+ > WU PUHyaa(K)U "PU .. (B2)
k

Next, we have
UHgic(K)U" = vpkyo, 7, —
+ [_UFkxO'yfx + )LGZ + m(k)%z]yz (B3)

|AlToyyy

Choosing P = (0.7, + =o.Pand £.P =

—o,P, we write

Hgac = ) ¥y U PHy(KPU i

1)/2 and using 7.P

+ 3 WU PHE(K)PU ., (B4)
k

with
HPE (k) = Agky0, %,
+ [ £ m)]ozy, —

Now we see that applying a basis transformation which
diagonalizes 7, makes the Hamiltonian diagonal in {top,
bottom} space. Therefore we perform another unitary trans-
formation using U,

Hpag = Y _ ¥y UHgo (KU Ty
k

- Azkayfoz
[AlT0yyy. (B5)

+ > v uHE MUY (B6)
k

with ¥ = UPUy and Y} = UPU y, and we have

UHgéFG(k)UT =Askyo, T, — Askyoy Ty
+ [ £ m(K)]oyy, — |AloyT yy. (B7)

Now we almost have a Hamiltonian which is diagonal in {top,
bottom} space and in Nambu space. Only the last term in the
two previous equations remains off-diagonal. Another unitary
transformation, which we denote by U; = (oy + iyy)/ V2,
makes the total Hamiltonian diagonal in {top, bottom} space
and in Nambu space,

Hpag = Hgpqg,1 + Hpag,2, (B8)

with  Hpag1 = Dy ¥y U H (KUY, Hpaca = zk yrt
U, HPUlwk and HP (k)= U1UH§dG(k)U’L H,P =
Uu dG(k)U TU T Then, we indeed have

H{)‘P(k) =Aoky0,T; + Arkoy Ty,

= [A £ mK)]oy, + |AloT,. (B9)

The Hamiltonian is now diagonal in {top, bottom} space and
in Nambu space. We now project it over the eigensubspace of
y, and of 7,.

First we define P, = (y; + 1)/2 as the projector on the
eigenspace with eigenvalue +1 of y, and Py =1-P,
projects on the eigenspace with eigenvalue —1 of y,. Then
we obtain

Hpgg,1 = Z YT HPT (g

+Z¢1P'H1P(k)¢;”’, (B10)
with yF = P, Uy and ¢, " = P, .Uy, and
HOVP (k) = Ayky0, 7, + Ark,0, %,
F A+ m(K)]o; + [Alo:T.. (B11)
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Moreover we notice that the unitary transformation o, %, per-
formed in the eigenspace with eigenvalue +1 of y, gives

o, L. HF (K)o, %, = H]"" (k), (B12)
and because
Vot HPP (k)" =0, (B13)
we obtain
Hpag.1 = Z v HTOP, (B14)
with " = ("o, 7 + ¥, "), Similarly, defining YoP =

P UYL,y =P, Uyl and

H!'P(K) = AskyorE. — Agkyoy 2. + [ — m(K)]o + | Alo. .,
(B15)
we obtain
Hpgcr = Z I H PO (B16)
with 1/;k = (wo PTay %+ wl P') Hence, Hpqg now reads

Hpic = Z &E-I-Hll'P(k)lplf
k

+ > iy HT )P (B17)
k

Now we project this Hamiltonian over the {top, bottom}
space. We define P = (%; + 1)/2 as the projector on the
eigenspace with eigenvalue +1 of 7, and EZ =1— P; . Then
we have

ZI/IPTHIP(k)Wk _ Zwo LPTEOLP () 01
+Zwl LPELLP )yl P (B1S)

with y>'F = Pl and ' = P g, and
HP P (k) =
H]l,l,P(k) _

Arkyo, — Askoy + [A + m(K)]o, + | Ao,
|Alo.

(B19)

—Askyoy + Arkcoy + [A + m(K)]o, —

Let us define

KL (Ks) = Askyo, — Askeoy + [A 4 m(K) + |Allo..  (B20)

Then we have H'P(k)=#h"(k) and o,H (K)o, =
—hP*(—K), so we conclude that

S WTUTH WUy =) U B ). (B21)
k k
with ¥ = (> oy V)T and
N A (S 0
Hf (k) = ( 0 i) (B22)

The same transformations can be applied to the other part of
the Hamiltonian and we find

IO HT @I =Y AT R, (B23)
k
with 7 = (Y17, oy P and
. R (k 0
arw=("% P ) B
0 —hP*(—k)
with Y01 = P (0,2, P, Uy + P U, 9! =P
(0,5 P, Ul +P,.Uyl), and
hE(K) = Agkyo, — Askoy + [A — m(k) & |Allo..  (B25)
To sum up we have
He = Y U BF Y + Y U AT RJE,  (B26)
k k
with
5 ht (k) 0
Ay ="
~F HE (k) 0
AP (k) = _ , (B27)
0 —hP*(—k)
and
12 (k) = Askyo, — Askyoy, + [+ m(K) % | Ao,
hE (K) = Arkyo, — Askyoy + [ — m(k) + |Allo,.  (B28)

We denote the energies of hf (k), —h"*(—k), hf(k), and
—hP*(=Kk) by E\|, E», E3, and E4, respectively. We have

= /A + A+ m(k) + |A|P,

EF = +,JA%2 + D+ m(k) — A,

Ef = /A3 + [ — m(k) + | Al

Ef = i\/Agki +[r —m(k) — |A[T% (B29)
Note that when the system has time-reversal symmetry at
A =0, we have ElﬁE = EﬁE and EzﬁE = EﬁE Generally speaking,
in the presence of time- reversal symmetry, Kramers’ theorem
tells us that every (spin-1/2) Bloch state is degenerate with
its time-reversal conjugate; i.e., a state |,(k)) with energy
E,(K) and a state |{,(—k)) = ®|y,(Kk)), where O is the time-
reversal operator, with energy E,(—Kk) have the same energies,
E,(k) = Ep(—k). Additionally, we have E(k) = E(—k)
(i e{l,2,3,4}) due to the additional presence of inversion
symmetry, so that E,(k) = E,(k), meaning that the energy
bands which come in Kramers pairs E,(k) = E;,(—k) are not
only degenerate at the time-reversal-invariant points k = —k
but at each k point. From Ei* = Eff and E5* = Ef, we find
that £, and E,” form a Kramers pair of energy bands and the
same is true for E,” and E;f, E; and E; , and E;" and E;.
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