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Higher-order topology in Fibonacci quasicrystals
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In crystalline systems, higher-order topology, characterized by topological states of codimension greater than
one, usually arises from the mismatch between Wannier centers and atomic sites, leading to filling anomalies.
However, this phenomenon is less understood in aperiodic systems, such as quasicrystals, where bulk Wannier
centers are absent. In this study, we examine a modification of Fibonacci chains and squares derived from a
typical higher-order topological model, the two-dimensional Su-Schrieffer-Heeger model, to investigate their
higher-order topological properties. We discover that topological interfacial states, including corner states, can
emerge at the interfaces between modified Fibonacci chains and squares derived from topologically distinct
parent systems. These interfacial states can be characterized by a shift in the local Wannier center spectrum,
which indicates filling anomalies in finite samples. We numerically validate these interfacial states using the
finite element method in phononic and photonic Fibonacci quasicrystals. Our results provide insight into the
higher-order topology of quasicrystals and open avenues for exploring novel topological phases in aperiodic
structures.
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I. INTRODUCTION

Over the past two decades, the concept of topology
has become a cornerstone in classifying solid-state materi-
als, revealing essential differences even for materials with
seemingly identical energy-band structures. Heralded by the
topological band theory, this paradigm shift has profoundly
reshaped our understanding of solid-state physics [1–3]. One
of the most striking properties of topological band theory is
the bulk-edge correspondence, connecting the bulk topologi-
cal invariant in crystalline systems to the emergence of robust
interfacial states in finite, topologically distinct samples [4–8].
In this evolving landscape, the exploration of higher-order
topological phases, which deviate from conventional topolog-
ical insulators by exhibiting bulk-corner correspondence, has
gained prominence in recent years. These higher-order topo-
logical phases allow topological states of codimension greater
than one, such as corner states, with potential applications in
topological lasers and quantum computing [9–19].

Significant progress has been made in understanding
higher-order topological states in crystalline systems, as ev-
idenced by a wealth of studies. These studies could be
exemplified by several models based on filling anomalies in-
duced by mismatches between Wannier centers and atomic
sites [20–24]. Protected by various symmetries [25–29], such
as point group symmetry [30–32], inversion symmetry [33],
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and chiral symmetry [34,35], higher-order topological states
are observed not only in solid-state materials [36–42], but
also in metamaterials, such as photonic [43–48], sonic crystals
[49–55], and electric circuit arrays [56–58].

A less explored but equally exciting direction is the ex-
ploration of these states in systems lacking translational
symmetry, such as quasicrystals. These ideas have recently
been explored in two-dimensional (2D) quasicystals [59–65],
which require a fine-tuned mass term to generate a higher-
order topology. While these initial studies have shed some
light on the interplay between aperiodicity and high-order
topology, the fine-tuned mass may hinder the realization of
higher-order topology in quasicrystals. A common approach
to probing the topology in quasicrystals involves examining
their higher-dimensional parent systems. For instance, the
topology of a one-dimensional (1D) Fibonacci quasicrystal
can be elucidated through its mapping to a 2D periodic an-
cestor in the Harper model, which can be characterized by the
Chern number [66–68].

Drawing inspiration from these foundational studies, we
shift our focus to a modified Fibonacci quasicrystal, whose
higher-dimensional ancestor is the 2D Su-Schrieffer-Heeger
(SSH) model [20,69]. The 2D SSH model has several distinct
topological phases characterized by the vector Zak phase or,
equivalently, Wannier centers, depending on the ratio between
intracell hopping γ and intercell hopping γ ′. In the nontrivial
topological phase of the 2D SSH model, filling anomalies give
rise to topological corner states in addition to edge states.
By extending the Fibonacci chains to Fibonacci squares, it is
possible to explore higher-order topological interfacial states
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and investigate the preservation of topological properties from
high-dimensional parent systems to their lower-dimensional
quasicrystal counterparts. Such preservation of topological
property cross dimensions without translational symmetry can
be verified using artificial structures such as the phononic and
photonic quasicrystals, which may offer a hint of the topology
of various aperiodic systems.

In this work, we employ the cut-and-project method to
construct modified Fibonacci chains and squares from the
2D SSH model. We introduce topological interfaces in these
structures, derived from parent systems belonging to different
topological classes, and investigate the emergence of topolog-
ical edge and corner states. The emergence of these interfacial
states can be characterized by a shift in the local Wannier
center (LWC) spectrum, which indicates filling anomalies in a
finite sample. We observe these interfacial states in phononic
and photonic quasicrystals through numerical simulations us-
ing the finite element method by COMSOL. Our findings
suggest that lower-dimensional systems, even in the absence
of translational symmetry, can exhibit topological states in-
fluenced by the distinct topological classifications of their
higher-dimensional periodic ancestors.

The paper is organized as follows. In Sec. II, we intro-
duce the modified Fibonacci chains and the corresponding
photonic and phononic quasicrystals whose parent system is
the 2D SSH model using the cut-and-project method, and
we also introduce the concept of LWC spectrum to char-
acterize the topology in aperiodic systems. In Sec. III, we
discuss the topological interfacial states formed in photonic
and phononic Fibonacci chains. In Sec. IV, we extend the
modified Fibonacci chains to modified Fibonacci squares and
explore higher-order topological phases hosting corner states
in the phononic and photonic Fibonacci squares. Finally, the
discussion and summary are given in Sec. V.

II. CONSTRUCTION OF MODIFIED FIBONACCI CHAINS

The Fibonacci sequence is a sequence in which each num-
ber is constructed using a recursive relation Fn = Fn−1 +
Fn−2. Starting with F1 = F2 = 1, Fn−1/Fn−2 asymptotically
approaches the golden ratio τ = (1 + √

5)/2 as n becomes
large. This Fibonacci sequence can be used to construct a
1D quasicrystal, where F1 and F2 represent two nonequiv-
alent atomic sites, as denoted by “A” and “B.” These two
nonequivalent atomic sites differed in the spacing distances
and resulting hopping amplitudes, similar to the SSH model
[70]. Applying the Fibonacci sequence, we can construct a
simple quasicrystal exemplified by an atomic chain such as
“ABBABABBABBA. . . ”. The tight-binding Hamiltonian of
the Fibonacci chain can be written as

H =
∑

n

tnc†
n+1cn + H.c., (1)

where tn = (t + λVn) denotes the hopping amplitude between
site n and n + 1, Vn = 2[�(n + 2)/τ�) − �(n + 1)/τ�)] − 1 is
the characteristic function with �x� the floor function, and λ

is the hopping difference between A and B sites [66,67,71]. It
is noted that the Fibonacci chain can also be obtained using
the cut-and-project method from a parent system of higher
dimensions, such as a simple 2D square lattice [67].

FIG. 1. (a) Schematic of the cut-and-project for the modified
Fibonacci chain. The higher-dimensional parent system is the 2D
SSH model, which has four sites in one unit cell. When the pro-
jection angle is tan θ = 1/τ , Fibonacci sequence forms with parts A
and B differed by the distances, i.e., (l + d ) cos θ and (l + d ) sin θ .
(b) Parts A and B of the modified Fibonacci chain and the corre-
sponding phononic quasicrystal structure. The modified Fibonacci
phononic chain is constructed by mapping the distance between sites
to the width of the coupling waveguide as D(L) = 1/L2. (c) Illustra-
tion of the modified phononic Fibonacci chain.

In the following, we extend the conventional Fibonacci
chain to a modified one through the cut-and-project method.
The higher-dimensional parent system is the 2D SSH model,
which has several distinct topological phases identified by the
Wannier centers and the corresponding vector Zak phase. We
expect these modified Fibonacci chains to inherit topological
properties, including higher-order ones, from their parent sys-
tems. We characterize these topologies by the LWC spectrum
and verify this observation through numerical simulations of
phononic and photonic quasicrystals.

A. Cut-and-project method

Construction of the Fibonacci chain using the cut-and-
project method provides an intuitive understanding of its
structure. As illustrated in Fig. 1(a), this method starts with
a parent 2D square lattice. The Fibonacci quasicrystal is then
generated by projecting these lattice sites onto an axis la-
beled x′. The orientation of this axis is critical, defined by
an angle θ such that tan θ = ω with ω = 1/τ . The projec-
tion strip used for this operation has a width equal to one
unit cell of the lattice. As a result, the spacing between the
projected centers of the unit cells can have two different
values: (l + d ) cos θ = (l + d )/

√
1 + ω2 and (l + d ) sin θ =
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(l + d )ω/
√

1 + ω2. These spacing values correspond to the A
and B sites of the Fibonacci chain, as previously mentioned. A
modified Fibonacci chain emerges when replacing the simple
2D square lattice with the 2D SSH model in the cut-and-
project method.

Before delving into the modified Fibonacci chain, let us
quickly review the 2D SSH model first. The 2D SSH model
is similar to the 1D case, which has two types of hopping: in-
tracell hopping γ and intercell hopping γ ′, as illustrated with
varying distances and line thicknesses in Fig. 1(a). There are
four sublattices in one unit cell, and the hopping amplitudes
are alternatively arranged along the x- and y- directions in
the 2D SSH model. The topological phases of the 2D SSH
model are distinguished by the ratio between |γ /γ ′| and are
characterized by the vector Zak phase, or equivalently, by
the Wannier center coordinates (νx, νy). νi takes the values
within [0, 1) in terms of the lattice constant along the i di-
rection when there is crystalline translational symmetry. For
the symmetric case under the point group C4v on which we
focus, νx = νy = 0 for γ > γ ′, and νx = νy = 1/2 for γ < γ ′
[20]. For νx = νy = 1/2, topological edge and corner states
emerge.

In the conventional Fibonacci chain, we project every lat-
tice point on the cut axis x′. For the modified Fibonacci chain,
we project every four sublattices on the x′ axis. The projected
unit cells are chosen similarly to that of the conventional
Fibonacci chain, which is determined by the projection angle
θ . For the modified Fibonacci chain, the projected centers of
each unit cell form the Fibonacci sequence, as displayed in
Fig. 1(a). The projected positions of these four sublattices in
the unit cell (m, n) along the x′ axis are given by the following
equations:

x′
a =

(
nl+ l

2

)
sin θ+

(
ml− l

2

)
cos θ+md cos θ + nd sin θ,

x′
b =

(
nl+ l

2

)
sin θ+

(
ml+ l

2

)
cos θ+md cos θ + nd sin θ,

x′
c =

(
nl− l

2

)
sin θ+

(
ml+ l

2

)
cos θ+md cos θ + nd sin θ,

x′
d =

(
nl− l

2

)
sin θ+

(
ml− l

2

)
cos θ+md cos θ + nd sin θ,

(2)

where a, b, c, d are the labels of the sublattices as indicated in
Fig. 1(a), l is the distance between sites within a unit cell, and
d is the distance between adjacent unit cells with a = l + d ,
the lattice constant of the 2D SSH model.

The unit cell index (m, n) can be picked up by the relation

n − 1

m + 1
< tan θ � n

m
. (3)

It is noted that for d > l , there is a possibility that the sublat-
tices of neighboring parts A and B overlap.

B. Modified phononic and photonic Fibonacci quasicrystals

We translate the theoretical framework of the cut-and-
project method from the parent 2D SSH model into tangible
constructs of phononic and photonic Fibonacci chains.

Starting with the photonic quasicrystal, we follow a straight-
forward method: artificial atoms, such as dielectric rods, are
positioned in accordance with the projected sites on the x′
from the 2D SSH model as indicated by Eq. (2). This arrange-
ment is depicted in the left panel of Fig. 1(b). In our numerical
simulations, we set the radius of the dielectric rod at 0.2 [mm]
and the dielectric constant at 100 on an air background. We
employ a perfect electric conductor as the boundary condition
in the simulation of photonic quasicrystals. Notably, because
Maxwell’s equations do not have a characteristic length, the
size of the photonic quasicrystal can be adjusted without
affecting its fundamental properties. The parameters selected
here serve illustrative purposes only.

For the phononic quasicrystal, we use square resonators
connected by waveguides. The coupling between each res-
onator is proportional to the width of the waveguides, and we
map the distance between the sites to the width of the waveg-
uide as D = 1/Ln with n = 2. It should be noted that for other
mapping functions, the simulation results remain qualitatively
similar. For our simulations, we set the dimensions of each
square resonator to 30 [mm] in length, with the waveguides
also at a length of 30 [mm]. The uniformity of waveguide
length ensures consistent propagation characteristics through-
out the phononic quasicrystals. The hard boundary condition
is applied in the simulation of phononic quasicrystals. It
ensures that the sound pressure is zero at the boundaries, mim-
icking an isolated system. Figure 1(c) illustrates an example
of the modified phononic Fibonacci quasicrystal, where the
various shades denote parts A and B.

C. Topology of modified Fibonacci quasicrystals

Here, we discuss how to characterize the topology of the
proposed modified Fibonacci chains. Because of the simulta-
neous presence of time-reversal and inversion symmetries, the
Chern number of the proposed system is always zero. Further-
more, because of the lack of discrete translational symmetry,
the bulk Wannier center, which corresponds to the Zak phase,
is also not well defined. To solve this issue, we propose to use
the LWC spectrum to characterize the topology of modified
Fibonacci chains and later Fibonacci squares [72,73].

The LWC operator for the unit cell (m, n) can be written as

Wloc = P̂x̂(m,n)P̂, (4)

where P̂ = ∑
E�EF

|ψE 〉〈ψE | is the projection operator for
the eigenstates below the occupied energy EF , and x̂(m,n) =∑

x x|x〉〈x| is the position operator of summation within the
unit cell (m, n). For a finite sample, we define the LWC
spectrum at a given EF as a collection of LWCs for all unit
cells defined by Eq. (4).

To obtain an intuitive picture of the LWC spectrum, we
display the LWC spectra and eigenspectra for the two topo-
logically distinct cases of the finite-size 2D SSH model in
Figs. 2(a) and 2(b) by points blue and orange, respectively. In
Fig. 2(a), it is seen that in the trivial case (blue points, γ > γ ′),
all LWCs stay within the crystalline lattices of the finite sam-
ple, while in the nontrivial case (orange points, γ < γ ′) partial
LWCs jump out of the finite sample range. This is because in
the nontrivial case, the number of available LWCs within the
sample range shortens due to the nontrivial vector Zak phase

075425-3



OUYANG, HE, XU, AND LIU PHYSICAL REVIEW B 110, 075425 (2024)

FIG. 2. (a) Local Wannier center spectrum for the two cases of
the 2D SSH model for γ > γ ′ and γ < γ ′. Arrow indicates a local
Wannier center shift. (b) Eigenspectra of the cases of the 2D SSH
model for γ > γ ′ and γ < γ ′, where the dashed line indicates the
Fermi energy in panel (a). (c) Local Wannier center spectra for the
two cases of the modified Fibonacci chains derived from the 2D SSH
model for γ > γ ′ and γ < γ ′. Insets are two schematics of the mod-
ified Fibonacci chains, where the line width represents the hopping
amplitude. (d) Eigenspectra of the two types of modified Fibonacci
chains solved in the tight-binding scheme, where the dashed line
indicates the Fermi energy in panel (c).

(π, π ), and therefore filling anomalies appear. These filling
anomalies manifest as a relative shift in the LCW spectra in
Fig. 2(a), as indicated by an arrow from the blue point most
outside to the orange point most outside. This LCW shift can
be used to characterize the topology of proposed aperiodic
systems in the absence of the Chern number. It is noted that,
although the LCW seems to be a local quantity, the LCW shift
results from all occupied states below the Fermi energy, which
cannot be removed by a single defect.

Figure 2(b) displays the eigenspectra of the two cases of the
finite-size 2D SSH model used to calculate the LWC spectra
in Fig. 2(a), where a dashed line indicates the Fermi energy.
We always put EF in the last gap in the spectrum to avoid
missing any possible filling anomaly state, and we can only
define the LWC shift in the two systems with the same lattice
configuration and size.

In Figs. 2(c) and 2(d), we display the LWC spectra and
eigenspectra for the modified Fibonacci chains derived from
the two topologically distinct 2D SSH models. The position
operator is defined for each A and B part of the Fibonacci
chains. As expected, in Fig. 2(c), it appears the LWC shift,
which suggests that compared to the modified Fibonacci chain
derived from the case of γ > γ ′, there are “more” filling
anomalies in the modified Fibonacci chain derived from the
case of γ < γ ′. Considering that the two modified Fibonacci
chains have the same lattice configuration, if we put these two
cases of modified Fibonacci chains together, interfacial states
due to the LWC shift would appear, as demonstrated in later
sections. The two modified Fibonacci chains are schemati-
cally shown in the inset of Fig. 2(c), where the thickness of the

FIG. 3. (a) Topological interface formed by the two types of
modified phononic Fibonacci chains, whose higher-dimensional par-
ent systems belonging two topological classes of the 2D SSH model.
The coupling between two chains is denoted by tτ and controlled
by the width of the coupling waveguide. (b) Eigenspectra of the
two types of modified phononic Fibonacci chains in panel (a), as
displayed by left and right panels, respectively. (c) Eigenspectra
of the combined structure of the two types of modified phononic
Fibonacci chains. (d) Wave profile of the topological interfacial state
as sound pressure in the setup of panel (a).

lines represents the hopping amplitude. As seen from the inset,
the modified Fibonacci chain of γ < γ ′ (nontrivial case in the
2D SSH model) has more isolated sites at the boundaries, con-
sistent with the result of LCW spectra. Figure 2(d) displays
the eigenspectra of the two modified Fibonacci chains in a
tight-binding model scheme. The Fermi energy is set at the
last band gap.

III. TOPOLOGICAL INTERFACIAL STATES

In this section, we delve into topological interfacial states
that arise at the junction of two distinct topological systems.
We focus on demonstrating the emergence of these topolog-
ical interfacial states in modified Fibonacci chains derived
from phononic and photonic quasicrystals, each with distinct
topological characteristics inherited from parent systems. This
demonstration is intriguing because, in quasicrystals, the con-
cept of a Wannier center is not well defined because of the
absence of translational symmetry, unlike the case of the SSH
model.

In addition to demonstrating the emergence of topological
interfacial states, symmetry protection of topological states
in quasicrystals is also important. Like in the SSH model,
chiral symmetry pins the energy of edge states at zero [69].

075425-4



HIGHER-ORDER TOPOLOGY IN FIBONACCI … PHYSICAL REVIEW B 110, 075425 (2024)

The role of chiral symmetry in these quasicrystalline systems
presents a rich area for exploration, potentially revealing new
insights into symmetry protection in topological states. An
in-depth investigation of the protection of chiral symmetry in
the topological interfacial states of quasicrystals is reserved
for future work.

A. Phononic topological interfacial states

We construct a topological interface by joining two
phononic Fibonacci chains, each originating from the 2D
SSH model but with distinct topological characteristics. This
interface, illustrated in Fig. 3(a), is a physical realization
of the boundary between different topological phases of the
quasicrystals. The left phononic chain is adopted from the 2D
SSH model with l = 1[mm] and d = 3 [mm], effectively re-
sulting in a scenario of γ > γ ′. In contrast, the right phononic
chain adopts the parameters l = 3 [mm] and d = 1[mm],
which correspond to γ < γ ′.

In Fig. 3(b), we display the eigenspectra of the two topo-
logically distinct types of phononic Fibonacci chains derived
from the 2D SSH model. There appear multiple gaps in
the eigenspectra similar to the conventional Fibonacci chain
defined in Eq. (1). The contrast in the eigenspectra of the
modified Fibonacci chain is the four subbands in the middle,
which reflect the underlying structure of the four sublattices in
the 2D SSH model, as displayed by the left panel of Fig. 3(b).
In the 2D SSH model, the two different topological phases
can be exchanged by redefining the unit cell following a half-
period shift. This shift results in a pattern mapping between
the two topologically distinct Fibonacci chains, where part A
is transformed into part B, and part B becomes BA. However,
despite this transformation, parts A and B in the two chains
remain nonequivalent due to the different values of l and d ,
which do not result in the closure of the band gap in their
parent systems.

As displayed in Fig. 3(c), we observe the emergence of a
topological interfacial state within the shared gap of the two
phononic Fibonacci chains. Up to the frequency we solve,
there is only one topological interfacial state. By adjusting the
coupling strength, denoted as tτ , between the two chains, we
can effectively modulate the frequency of this state within a
specific range. This tunability offers a versatile tool for ma-
nipulating the properties of the interfacial state for potential
applications.

The wave profile of the topological interfacial state, shown
in Fig. 3(d), reveals another critical feature: the state exhibits
the expected exponential decay along both directions from the
interface. This decay is a hallmark of topological interfacial
states, indicating the localized nature of these states at the
interface of the two distinct topological phases.

The total number of sites in parts A and B of the simulation
is 48, corresponding to the Fibonacci sequence “ABBABAB-
BABBA.” For a larger number of sites, the eigenspectra
remain qualitatively the same, and the band gaps do not close.

B. Photonic topological interfacial states

In addition to the phononic Fibonacci chains, it is equally
compelling to investigate the topological interfacial states in

FIG. 4. (a) Topological interface formed by the two types of
modified photonic Fibonacci chains, whose higher-dimensional par-
ent systems belonging two topological classes of the 2D SSH model.
The coupling between two chains is denoted by tτ and controlled by
the distance between two chains. (b) Eigenspectra of the two types
of modified photonic Fibonacci chains in panel (a), as displayed by
left and right panels, respectively. (c) Eigenspectra of the combined
structure of the two types of modified photonic Fibonacci chains.
(d) Wave profile of the topological interfacial state as the electric
field in the setup of panel (a).

photonic quasicrystals. One notable aspect of the photonic
case is the nonnegligible impact of long-range interactions.

Figure 4(a) depicts the topological interface between the
two distinct types of photonic Fibonacci chains, represented
by green points that indicate the placement of the dielectric
rods. On examination of the eigenspectra of these photonic
chains, as shown in Fig. 4(b), we find a similarity to the
phononic case, suggesting similar topological behaviors. The
eigenspectra of these two types of photonic Fibonacci chains
are displayed in Fig. 4(b), which looks similar to the phononic
case. The eigenspectra of the combined structure of these
photonic Fibonacci chains, as displayed in Fig. 4(c), reveal a
topological interfacial state marked by a red point. Moreover,
the wave profile of this topological interfacial state repre-
sented as an electric field in photonic Fibonacci chains, is
displayed in Fig. 4(d).

IV. HIGHER-ORDER TOPOLOGICAL
INTERFACIAL STATES

In Sec. II(A), we introduce the cut-and-project method
for constructing modified Fibonacci chains from the 2D SSH
model. Building upon this method, we extend its applica-
tion from constructing Fibonacci chains to Fibonacci squares
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FIG. 5. Schematic of the extended cut-and-project method for
the modified Fibonacci square. There are two projecting axes x′ and
y′, whose projection angles are orthogonal. The diagonal sites of the
2D SSH model are projected to the x′ axis, and the off-diagonal sites
are projected to the y′ axis. The red points indicate the site projected
on the x′ axis, the blue points indicate the site projected on the y′ axis.

by delving into studying higher-order topological interfacial
states in phononic and photonic quasicrystals.

A. Construction of modified Fibonacci squares

In our quest to construct the Fibonacci square, the tradi-
tional chain product method seems somewhat cumbersome. It
results in a complex structure with 16 sites in each of parts A
and B. We have adapted the cut-and-project method to project
sites on both the x′ and y′ axes to streamline this process.
This adaptation involves projecting off-diagonal sites of the
2D SSH model, such as b and d on the x′ axis while aligning
diagonal sites, namely a and c on the y′ axis. The schematic of
the extended cut-and-project method for modified Fibonacci
squares is depicted in Fig. 5, where there are two projection
axes, namely x′ and y′. A key aspect of this method is the
relationship between the projection angles that satisfies θy′ =
θx′ + π/2. This angular arrangement imparts the symmetry
of the C4 point group to the resulting modified Fibonacci
square, which simplifies the construction of the corresponding
phononic and photonic Fibonacci squares. Coordination of the
modified Fibonacci (x′

i, y′
j ) is given by

x′
b =

(
mxa + l

2

)
cos θ +

(
nxa + l

2

)
sin θ,

x′
d =

(
mxa − l

2

)
cos θ +

(
nxa − l

2

)
sin θ,

y′
a =

(
mya − l

2

)
cos θ +

(
nya + l

2

)
sin θ, (5)

y′
c =

(
mya + l

2

)
cos θ +

(
nya − l

2

)
sin θ,

where the range of (mx, nx ), (my, ny) are determined in a
similar way as Eq. (3).

B. LWCs of modified Fibonacci squares

Similarly to the case of a modified Fibonacci chain, we can
use the LWC spectrum to characterize the filling anomaly in
the Fibonacci square. In Fig. 6(a) we display the LWC spectra
for the two modified Fibonacci squares derived from the two
distinct topological cases of the 2D SSH model. As expected,

FIG. 6. (a) Local Wannier center spectra of the two cases of
modified Fibonacci squares. Arrow indicates a local Wannier center
shift. (b) Eigenspectra of the two types of modified Fibonacci squares
solved in a tight-binding scheme. The dashed line indicates the Fermi
energy in panel (a). (c) Schematics of the two modified Fibonacci
squares, where the line width represents the hopping amplitude.

there appears to be an LWC shift between the two squares.
Unlike the 1D case, the γ > γ ′ modified Fibonacci square
has more filling anomalies than the opposite case. This fact
can also be seen from the eigenspectra of the two modified
Fibonacci squares in Fig. 6(b), where more localized states
emerge in the case of γ > γ ′. When inspecting the schematic
of the two Fibonacci squares in Fig. 6(c), the invert of filling
anomaly in Fig. 6(a) can be owing to the interaction along
the second direction. As shown later, when two modified
Fibonacci squares are combined, localized interfacial states
appear in the γ > γ ′ region, consistent with the result of
Fig. 6(a).

C. Phononic and photonic modified Fibonacci squares

Upon determining the projected positions of the sites on
the x′ and y′ axes, we construct the corresponding modified
phononic and photonic Fibonacci squares. Figure 7(a) dis-
plays the structures for the two different topological phases in
the phononic case. In modified phononic Fibonacci squares,
Fibonacci sequences appear along the x and y directions. In
the nontrivial phase that γ < γ ′, we notice a mix of sites for
parts A and B similar to the modified Fibonacci chain. The
length of the squares and the coupling waveguide is 5 [mm].
The mapping function between the distance and the width of
the coupling waveguide is D = 1/L2.

Figure 7(b) displays the eigenspectra for the modified
phononic Fibonacci squares. A common band gap for the
two topologically distinct modified Fibonacci squares around
104 [Hz] allows us to explore the higher-order topological
states.

Turning to the photonic counterpart, Fig. 7(c) illustrates
the modified photonic Fibonacci squares, with the left panel
representing the γ > γ ′ case and the right panel depicting the
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FIG. 7. (a) Schematics of the two types of modified phononic
Fibonacci squares, which belongs two topologically distinct classes
of the 2D SSH model, constructed by the extended cut-and-project
method. (b) Eigenspectra of the two types of modified phononic
Fibonacci squares. Left panel is for the case of γintra > γinter, and right
panel is for γintra < γinter. (c) Similar to (a) for the modified photonic
Fibonacci squares. (d) Similar to (b) for the modified photonic Fi-
bonacci squares.

opposite case. The radius of the dielectric robs is 0.2 [mm],
and the dielectric constant is 100. The remaining part is air.
Figure 7(d) displays the eigenspectra of the modified photonic
Fibonacci squares. Similarly to the phononic case, we observe
a common band gap for both types of squares. In photonic
Fibonacci squares, boundary effects lead to the emergence of
localized states within the band gap.

FIG. 8. (a) Topological interface with a corner structure formed
by two types of modified phononic Fibonacci squares. (b) Topologi-
cal interface with a corner structure formed by two types of modified
photonic Fibonacci squares. (c) Eigenspectra for the combined struc-
ture in panel (a). (d) Eigenspectra for the combined structure in
panel (b). (e) Wave profiles as sound pressure of the topological
corner states in panel (c). (f) Wave profiles as electric fields of the
topological corner states in panel (d).

D. Corner states in modified Fibonacci squares

We demonstrate that topological corner states emerge when
combining two distinct types of modified Fibonacci squares.
The combined modified phononic and photonic Fibonacci
square setup are displayed in Figs. 8(a) and 8(b), respectively.
The different shades indicate their topological classifications.
A corner structure is constructed in the combined phononic
and photonic Fibonacci squares in each setup.
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The eigenspectra of these combined structures for the
phononic and photonic cases are displayed in Figs. 8(c) and
8(d) with zooming in around the last band gap. A notable
observation is the appearance of corner states within the com-
mon band gaps of these configurations. Interestingly, these
corner states exhibit double degeneracy, distinguishing them
from the topological interfacial states observed in the modi-
fied Fibonacci chain. This characteristic is further elucidated
in the wave profiles of the corner states for both the phononic
and photonic cases, shown in Figs. 8(e) and 8(f). Here, we
observe that, unlike the corner states typically seen in the
2D SSH model, which are localized at the corner sites, the
corner states in our modified Fibonacci square model manifest
around the corner sites rather than directly at them. This
unique localization pattern of the corner states in our model
provides new insights into the behavior of topological states in
quasicrystalline systems. It contributes to our understanding
of their topological characteristics.

V. SUMMARY

In summary, we have proposed a modified Fibonacci
quasicrystal whose higher-dimensional parent system is the

two-dimensional Su-Schrieffer-Heeger model. By construct-
ing the corresponding phononic and photonic quasicrystals of
the modified Fibonacci chains and squares, we observe that
topological interfacial states including higher-order ones such
as corner states that emerge in the finite-element simulations.
Our results suggest that, in addition to the Chern-insulator
states, higher-order topological states induced by filling
anomalies can also be inherited from the parent systems
in quasicrystals. The discussed phononic and photonic qua-
sicrystals of modified Fibonacci quasicrystals offer a platform
for further study of the higher-order topological properties in
quasicrystals.
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