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Optical mode enabled manipulation of topological phase in waveguide-based scattering networks
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In a topological system with an edge, the number of edge states is typically determined by the bulk topological
invariant, as per the well-established bulk-boundary correspondence. However, anomalous topological edge
states can arise in periodically driven Floquet systems even when the bulk Chern number is zero. A topological
invariant (winding number) has been introduced to establish the appropriate bulk-boundary correspondence
in such systems. Nevertheless, manipulating the topological properties of systems, whether static or driven,
remains a significant challenge. In photonic systems, optical fields with diverse inherent dimensions such as
frequency and polarization offer a natural avenue for topological-phase manipulation. In this paper, we present
an alternative scheme for switching the topological invariant (winding number) of the system by changing the
optical-waveguide mode within an integrated waveguide-based scattering network. With creating a bonding in-
terface, this topological-phase switching facilitates the transmissions of the interface state in different directions.
Experimental validation of this concept is demonstrated using a ring-optical-waveguide device. In this paper, we
introduce an alternative strategy for tailoring the topological properties of optical systems.
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I. INTRODUCTION

Topological edge states convey a crucial message about
the topological characteristics of diverse physical systems.
In a two-dimensional gapped system, there must exist edge
states that are localized at the interface of two topologically
nonequivalent materials, with energies falling within the gap.
According to the bulk-boundary correspondence [1–3], the
number of these states is determined by the topological invari-
ants in the surrounding systems, namely, the Chern number,
which characterizes the topological property of the wave func-
tions throughout the Brillouin zone. Notably, Chern number
remains constant unless the energy gap is closed somewhere,
rendering the edge states robust against certain disorders if the
topological properties of the systems remain unchanged [4].

The scenario is somewhat different for periodically driven
systems, also known as Floquet systems, in which the phase
spectrum (i.e., the quasienergy band) is periodic and un-
bounded [5,6]. Edge states can still arise in a system with a
vanishing Chern number, challenging the conventional bulk-
boundary correspondence. Rudner et al. [6] introduced an
alternative topological invariant, the winding number, through
which a more adaptable bulk-boundary correspondence was
established for periodically driven systems. This approach
reveals that the existence of anomalous edge states can be
fully characterized by the winding number of each Flo-
quet gap. Subsequently, these anomalous edge states were

*Contact author: ayst31415926@szu.edu.cn
†Contact author: xcyuan@szu.edu.cn

observed and validated in photonic systems [7–10]. In par-
allel to the tight-binding description for Floquet systems,
the scattering-network scheme [11–13], proposed by Chalker
and Coddington [14] for studying quantum Hall systems, is
an alternative method to describe such systems. Authors of
recent studies have demonstrated that edge-state transmis-
sion in scattering networks can withstand strong disordered
and amorphous perturbations [15,16], protecting the sys-
tems against fabrication imperfections. In addition, photonic
topological systems have paved a path for simulating band
topology [17,18]. One of the powerful platforms is the
microring-waveguide-based configuration, which has been in-
troduced to study various topological systems [19–22] and
the scattering-network models [23–25], showcasing promis-
ing potential for diverse applications in photonics [26–28].

It is noteworthy that the topological phase for these
photonic systems can be manipulated by leveraging fre-
quency [9,15,16] and polarization [29,30] degrees of freedom
(DOFs). However, the manipulations involve the trivial bulk
states, rendering them unsuitable for photonic applications.
In addition, frequency manipulation stands out as a natural
choice due to the frequency dispersion in photonic systems
and its ease of implementation with tailored systems, leaving
other DOFs largely untapped. In this paper, we present an
alternative approach that enables the manipulation of a topo-
logical invariant by the switching between optical-waveguide
transverse electric (TE) and transverse magnetic (TM) modes
in a ring-optical-waveguide (ROW)-based scattering-network
system. Through constructing a bonding interface, the gen-
erated anomalous interface state transitions to an alternate
direction upon mode alteration. As a proof of concept, we

2469-9950/2024/110(7)/075424(9) 075424-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6401-8600
https://orcid.org/0000-0002-9367-7816
https://orcid.org/0000-0001-8869-0031
https://orcid.org/0000-0003-2605-9003
https://ror.org/01vy4gh70
https://ror.org/01yqg2h08
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.075424&domain=pdf&date_stamp=2024-08-19
https://doi.org/10.1103/PhysRevB.110.075424


ZHOU, XIE, LEI, ZHANG, CHEN, AND YUAN PHYSICAL REVIEW B 110, 075424 (2024)

(d)

(b)(a)

1

2
S�

a�
b�

y
x

b�a� S�

(c)

kx
0 π (−π) 0

0

ky

(  , 0)

(0,   )φ

π

−π

−π π

π

π

S�
S�

θ = 0

θ =   /2

θ =   /2

π

π xu

0

0φ

π

−π
−π −π

ku

FIG. 1. Analysis of the scattering-network model. (a) The square
network with a dashed-line marked unit cell. Each unit cell contains
two inequivalent scattering elements (S1, S2) and four inequivalent
links (a1, b1, a2, b2). (b) The phase spectrum (quasienergy band) of
the Ho-Chalker evolution operator of the network model at criticality
θ = π /4. (c) Emergence of the interface state (marked by the black
arrows) at an interface between the two phases θ = π /2 and 0.
The propagating direction is dependent on the bonding sequence
of the adjacent phases. (d) Eigenvalue phase spectrum of the Ho-
Chalker evolution operator for lattice with an infinite cylindrical
strip geometry, which involves the θ ≈ π /2 and 0 phases with two
interfaces. Here, ku is the quasimomentum in the direction parallel to
the interface of the cylinder, as shown in (c).

experimentally demonstrate this switching of the anomalous
interface state by changing the waveguide mode within a
ROW-network device. This methodology offers a promis-
ing alternative for manipulating the topological properties of
physical systems.

II. THEORETICAL ANALYSIS

The proposed network model comprises a series of paired
ROWs arrayed periodically in both x and y directions. The
selected ROW-based network system can be equivalent to a
square Bravais lattice, where each unit cell consists of two
nonequivalent scattering elements (S1, S2) and four distinct
links (a1, b1, a2, b2). The inputs are denoted by (a1, b1) and
the outputs by (a2, b2) of a ROW within the network [see
Fig. 1(a)]. The unitary matrix Sμ (μ = 1, 2) characterizes the
scattering between the links and can be parametrized by

Sμ =
(

cos θμ i sin θμ

i sin θμ cos θμ

)
, (1)

where θμ controls the transmission and reflection during the
scattering process. For simplicity, we adopt θ2 = π/2 − θ1 =
θ in this paper.

One approach for studying the topology of a network
model involves employing the Floquet operator formulism,
a well-documented method in the literature [5,6]. However,
analyzing all the distributed edge states using this method can
be intricate in our design. Instead, we have opted to utilize the
Ho-Chalker evolution operator, which encompasses different
scattering processes simultaneously [12,31]. By considering
the analysis in momentum space and introducing the quasi-
momentum k = (kx, ky), the Bloch version of the Ho-Chalker
operator for the unit cell in Fig. 1(a) is presented as [12]

S(θ, k) =

⎡
⎢⎢⎢⎣

0 0 cos θ exp(−iky) i sin θ exp (−ikx )
0 0 i sin θ exp (ikx ) cos θ exp(iky)

sin θ i cos θ 0 0
i cos θ sin θ 0 0

⎤
⎥⎥⎥⎦, (2)

and the state basis is ψ = [a1(k), b1(k), a2(k), b2(k)]T . The
quasienergy spectrum φ of S(θ , k) reveals that the bands
intersect at the Dirac points k = (π , 0) and (0, π ) at θ =
π /4 [Fig. 1(b)]. As θ deviates from π /4, these Dirac points
transition into band gaps with positive and negative mass
separately, eventually giving rise to four flat bands at θ = 0
or π/2. A conceptual explanation is that each band possesses
both positive and negative Berry flux, resulting in a vanishing
Chern number for all θ [32].

Remarkably, even though both the phases of θ > π /4 and
θ < π /4 have zero Chern numbers, an edge state can still
appear at their interface. The bulk winding number Wη for
each gap η = −π /2 + mπ /2 (m = 0,1,2,3) in the quasienergy
spectrum serves to distinguish these two distinct phases of
the network. According to Ref. [12], the calculated winding
number Wη=0(= Wη=π ) is equal to 1 for the θ < π /4 phase

and 0 for the θ > π /4 phase. Similarly, Wη=π/2 (= Wη=−π/2)
is also equal to 1 for the θ < π /4 phase and 0 for the θ > π /4
phase. This indicates that the θ < π /4 and θ > π /4 phases are
topologically inequivalent. Although the value of Wη relies on
the chosen unit cell, the difference Wη[θ < π/4] − Wη[θ >

π/4] is an invariant that accurately reflects the number of
anomalous states at the interface between these phases. As
shown in Figs. 1(c) and 1(d), a propagating state is located at
the interface between these two phases (θ = π /2 and 0), with
its propagating direction contingent on the bonding sequence
of the two phases. Moreover, by adjusting the parameter θ ,
the topological phase of the network can be manipulated
to govern the propagation direction of the interface state.
This means that the topology of the system can be altered
by adjusting the parameter θ , as elucidated in the preceding
analysis.
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FIG. 2. Simulation results of the topological interface state. Schematic illustrations for ring optical-waveguides (ROWs) (a) S1 and (b) S2

in the network. Each of them has two inputs (a1, b1) and two outputs (a2, b2). Schematic illustrations of the ROWs-network designs for (c)
normal, (d) L-type deflected, and (e) defective-interfaces configurations. The used ROWs S1 and S2 are marked in (c), and the red and green
shaded regions represent two different domains (θ ≈ 0 and π /2 phases). Simulated field distributions for (f) normal, (g) L-type deflected, and
(h) defective-interfaces configurations. The input transverse magnetic (TM) and transverse electric (TE) modes are marked by the red and blue
star, respectively. All the results are simulated at the wavelength of 1552 nm.

III. SIMULATION RESULTS

Significantly, the parameter θ , which determines the input
and output amplitudes of a single ROW, can be adjusted
by changing the mode in the waveguide while keeping the
network model unchanged. This provides an opportunity to
manipulate the topology of the system. As an example, we
have designed two silicon ROWs to simulate the scattering
elements S1 and S2. Each ROW consists of a segments-
embedded ring waveguide and two side-coupled straight
waveguides [Figs. 2(a) and 2(b)], and the coupling between
drop- and through-waveguide channels can be parameterized
by θ , as shown in Eq. (1). The silicon waveguides in our de-
sign have a width of w = 420 nm and a height of h = 350 nm,
allowing only the fundamental TE0 and TM0 modes. Other
designed parameters include the gap distance gμ between the
straight and ring waveguides, the length Lμ of the embedded
segments in the ring waveguide, and the diameter Dµ of the
ring waveguide. In our design, these parameters are g1 =
0.1 µm, L1 = 20.5 µm, and D1 = 6 µm for the ROW of S1

[Fig. 2(a)] and g2 = 0.16 µm, L2 = 8 µm, and D2 = 5.88 µm
for the ROW of S2 [Fig. 2(b)]. These two ROWs are designed
to transmit or reflect the TE (TM) mode as much as possible,
with the effective parameters θ1 ≈ π/2 and θ2 ≈ 0 for the
waveguide TE mode, and θ1 ≈ 0 and θ2 ≈ π/2 for the TM
mode. These configurations simulate the switching of the pa-
rameters θ1 and θ2 in the scattering network (see Appendix C
for design details). In this setup, the bulk topology can be
accurately controlled by simply changing the mode of the
input optical field. It should be noted that this process assumes
a lossless scenario [see Eq. (1)]. However, in actual ROWs,
some loss is inevitable, leading to lower efficiency and spec-
trum deviation in the response of the ROWs. Nevertheless, the
designed ROWs are intended to operate in the off-resonance
range (Appendix C), minimizing the influence on the system
parameter θμ.

Upon analysis, it is noteworthy that the state localized at
the bonding interface between two topologically inequivalent
phases will move toward the opposite direction when the
mode switches. To demonstrate this concept, we constructed a
single network-model device that incorporates two interfaces
formed by bonding the two topologically inequivalent phases
θ ≈ 0 and π /2 in both ordered and antiordered manners,
as shown in Figs. 2(c)–2(e). With this approach, the state at
each interface can be quantitatively analyzed separately. The
designed two interfaces on the device can be regarded as two
channels in response to the waveguide TE and TM modes
separately. Each channel is allowed to transmit one mode
while suppressing the other one under specific wavelengths.
Figure 2(f) shows the simulation results of the field dis-
tributions in this ROW-based system. When the device is
excited with a TM mode, light is guided at one interface
and eventually exits from the upper waveguide. Conversely,
for the excited TE mode, light is guided along the other
interface and exits from the lower waveguide. Additionally,
we have designed an L-type deflected interface [Fig. 2(d)]
and the defective interfaces that lack some scattering elements
[Fig. 2(e)], and the simulation results are depicted in Figs. 2(g)
and 2(h), respectively. These results demonstrate that the in-
terface state remains unaffected by the deflection or defective
perturbation if the topological properties of surrounding sys-
tems remain unchanged.

Figure 3 illustrates the simulated efficiency curves for the
three configurations designed in Figs. 2(c)–2(e). At specific
wavelengths (indicated by gray shaded regions), the trans-
mission of the TM mode is predominant in the TM-interface
channel, while the TE-mode transmission prevails in the
TE-interface channel. For instance, considering the results
at a wavelength of 1552 nm, in the TM-interface channel,
the simulation efficiencies of the TM mode for the three
configurations are approximately −1.3 dB (74%), −1.8 dB
(66%), and −1.3 dB (74%) [Figs. 3(a)–3(c)], respectively. The
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FIG. 3. Simulated efficiency curves for characterizing the topological interface state. Simulated efficiency curves in the transverse magnetic
(TM) interface channel for three types of configurations: (a) normal, (b) L-type deflected, and (c) defective interfaces. The gray shaded regions
indicate the range of well-working wavelengths. The blue and red curves represent the tested results for transverse electric (TE) and TM
modes, respectively. Simulated efficiency curves in the TE interface channel for (d) normal, (e) L-type deflected, and (f) defective-interfaces
configurations.

corresponding mode-extinction ratios, calculated by the loga-
rithm of the ratio between the desired and undesired modes,
are ∼16.3, 16.4, and 16.5 dB, respectively. In contrast, in
the TE-interface channel, the simulation efficiencies of the
TE mode for the corresponding three configurations are ap-
proximately −0.8 dB (83%), −0.8 dB (83%), and −1 dB
(79%) [Figs. 3(d)–3(f)], with the mode-extinction ratios of
∼17.5, 17.3, and 17.5 dB, respectively. These findings suggest
that the designed devices effectively validate the controlled
transmission of the interface state based on different modes.

IV. EXPERIMENTAL RESULTS

As a proof of concept, we have successfully fabricated
some devices to demonstrate the mode-controlled interface-
state switching (see Appendix D for fabrication details). These
devices were constructed on a 350 nm silicon-on-insulator
(SOI) substrate, with all device parameters matching those
used in the simulations. Scanning electron microscope (SEM)
images depicting three different design types (corresponding
to those in the simulations shown in Fig. 2) are presented in
Figs. 4(a)–4(c). To validate the interface-state evolution, an
infrared camera in our experiment (see Appendix E) was used
to collect the scattered light from the devices. Figure 4(d)
depicts the infrared detected images of the normal configura-
tion in Fig. 4(a) under different excited modes (TE and TM).
These images clearly show the mode-controlled trace of light
along the interface between two topologically nonequivalent
networks, coinciding with the simulations in Fig. 2(f). For
the L-type deflected-interface [Fig. 4(b)] and the defective-
interfaces [Fig. 4(c)] configurations, the traces of light are
also mode dependent and localized at interfaces, as shown in
Figs. 4(e) and 4(f), respectively.

In addition, we measured the transmission efficiencies of
the fabricated devices. The tested wavelengths range from

1540 to 1560 nm, with intervals of 0.4 nm. Experimental
efficiency curves for both channels of the normal device
are depicted in Figs. 5(a) and 5(d). At specific wavelengths
within the gray shaded region, each mode dominates its
corresponding channel. For instance, at 1552.52 nm, the mea-
sured efficiencies are approximately −5.3 dB (30%) in the
TM-interface channel [TM input in Fig. 5(a)] and −5.4 dB
(29%) in the TE-interface channel [TE input in Fig. 5(d)],
with the mode-extinction ratios of ∼12.7 and 13.6 dB,
respectively. These results quantificationally showcase the
successful switching of the interface state controlled by the
waveguide mode. In the L-type deflected-interface configu-
ration, the measured efficiencies are approximately −9 dB
(12.6%) in the TM-interface channel [Fig. 5(b)] and −10.6
dB (8.7%) in the TE-interface channel [Fig. 5(e)] at 1552.52
nm. The corresponding mode-extinction ratios are ∼8.3 and
10.5 dB, respectively. These results also demonstrate the
switching of the interface state by the input mode, albeit
with lower efficiencies than the normal configuration. For the
defective-interfaces configuration, the measured efficiencies
are approximately −15.6 dB (2.8%) in the TM-interface chan-
nel [Fig. 5(c)] and −2.6 dB (55%) in the TE-interface channel
[Fig. 5(f)] at a wavelength of 1551.72 nm. The corresponding
mode-extinction ratios are ∼11.3 and 11.2 dB, respectively.
The lower measured efficiencies in the TM-interface channel
[Fig. 5(c)] than those in the TE channel may be attributed to
larger fabrication errors, yet the TM mode remains dominant
in this channel.

V. DISCUSSION

In this paper, we experimentally showcase the switching
of an anomalous interface state, controlled by the optical-
waveguide TE and TM modes with the proposed ROW-based
scattering-network system. In this system, the topological
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invariant (winding number) changes with the mode. Our
experimental results demonstrate that the designed devices
perform effectively at specific wavelengths, such as those
∼1552 nm, exhibiting a substantial mode-extinction ratio in

the TE- or TM-interface channel. It is worth noting that
the generated interface state in such a ROW-based system
is inherently nonchiral, allowing for backward propagation.
This characteristic also exists in quantum spin Hall [19,20]
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FIG. 5. Experimentally tested efficiency curves for characterizing the topological interface state. The efficiency curves detected in the
transverse magnetic (TM) interface channel for the (a) normal, (b) L-type deflected, and (c) defective-interfaces configurations. The gray
shaded regions indicate the range of well-working wavelengths. The blue and red curves represent the tested results of transverse electric
(TE) and TM modes, respectively. The efficiency curves detected in the TE interface channel for the (d) normal, (e) L-type deflected, and (f)
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and valley Hall photonic edge modes [33–35]. The under-
lying mechanism for this phenomenon lies in the reversible
scattering process within a single ROW, rooted in the pre-
served time-reversal symmetry in Maxwell’s equations. To
achieve a chiral state, it is necessary to disrupt the time-
reversal symmetry through external means like electrical tun-
ing [36]. Nevertheless, the mode-dependent transmission re-
mains unaffected, as the interface-channel trace only slightly
deviates from the original when the mode changes, as depicted
in Fig. 1(c). Additionally, investigations of utilizing different
scattering-network systems (e.g., triangular or kagome lattice
[11]) or incorporating additional elements into the waveguide
networks may further enrich the manipulation of topological
phase. In this paper, we offer an alternative approach to engi-
neer the topological phase, opening possibilities for a range of
multifunctional applications in topological photonics.
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APPENDIX A: THE SCATTERING-NETWORK MODEL

For the square scattering network in our design, the basic
scattering element is a ROW. There are two scattering ele-
ments alternatively arranged in the square lattice in Fig. 2(a),
the scattering related to the input and output of a single ROW
can be described by a scattering matrix:

Sμ =
(

rμ tμ
−t∗

μ r∗
μ

)
, (A1)

where tμ is the transmission coefficient and rμ is the reflec-
tion coefficient, μ = 1 or 2 represents the marked number of
scattering elements, and the symbol * represents the complex
conjugate operation. The relation |r|2 + |t |2 = 1 is satisfied
to preserve the total energy. Assuming the whole process is

lossless, Eq. (A1) can thus be parametrized by

Sμ =
(

cos θμ i sin θμ

i sin θμ cos θμ

)
, (A2)

where the parameter θμ controls the transmission and reflection of the scattering process. For the chosen unit cell and the square
lattice in Fig. 2(a), the unitary matrix Sμ satisfies

S1

[
a1(x, y, t )

b1(x, y, t )

]
=

[
a2(x, y, t + T )

b2(x, y, t + T )

]
,

S2

[
a2(x, y, t )

b2(x − 1, y + 1, t )

]
=

[
a1(x, y + 1, t + T )

b1(x − 1, y, t + T )

]
, (A3)

where T denotes the time needed in the scattering process. When considering the analysis in momentum space and introducing
the quasimomentum k = (kx, ky), the Bloch version of the Ho-Chalker operator is [12]

S(θ, k) =
[

0 S2(k)

S1(k) 0

]
=

⎡
⎢⎢⎢⎣

0 0 cos θ exp(−iky) i sin θ exp (−ikx )

0 0 i sin θ exp (ikx ) cos θ exp(iky)

sin θ i cos θ 0 0
i cos θ sin θ 0 0

⎤
⎥⎥⎥⎦, (A4)

in the state basis ψ = [a1(k), b1(k), a2(k), b2(k)]T . The eigenvalue phase spectrum of this operator is shown in Fig. 2(b). For
the study of edge state, it is convenient to convert the coordinates (x, y) to a nonorthogonal coordinate (x, u), where u is the
direction along the constructed interface, as shown in Fig. 2(c). Hence the Ho-Chalker operator can be rewritten as

S(θ, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 0 cos θ exp [−i(kx + ku)] i sin θ exp (−ikx )

0 0 i sin θ exp (ikx ) cos θ exp [i(kx + ku)]

sin θ i cos θ 0 0

i cos θ sin θ 0 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (A5)
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by simply substituting ky with kx + ku. Eventually, the
calculated phase spectrum for Eq. (A5) in the infinite cylinder-
geometry network is shown in Fig. 2(d).

APPENDIX B: TOPOLOGICAL PROPERTY
OF THE SCATTERING-NETWORK MODEL

In a periodically driven system, considering the unitary
evolution U(t , k) with the driven period of T, one can construct
an effective Hamiltonian Heff (k) by the relation:

U (T, k) = exp [−iT Heff (k)]. (B1)

It shows the effective Hamiltonian can be defined by the
logarithm of U(T, k). Assuming U(T, k) is gapped, one can
choose the branch cut η of the logarithm in a gap of U(T,
k). Then the effective Hamiltonian in this condition can be
defined by

Hη

eff (k) = i

T
ln−ηU (T, k), (B2)

where the branch cut is chosen by

ln−ηeiϕ = iϕ, −η − 2π < ϕ < −η. (B3)

One can further construct a new evolution operator as [12]

Vη(t, k) = U (t, k) exp
[
itHη

eff (k)
]
, (B4)

and the winding number can be calculated by

Wη(U ) = 1

24π2

∫
[0,T ]×BZ

tr
[(

V −1
η dVη

)3]
, (B5)

where tr represents the trace operator. When an interface is
formed between two periodically driven systems with the
evolution operators Ua and Ub. The number of chiral edge
states Nη in the gap η is thus obtained by

Nη = Wη(Ua) − Wη(Ub). (B6)

Following the construction in Ref. [12], for the scattering-
network construction using the Ho-Chalker operator in this
paper, we can interpolate the original Ho-Chalker operator by

Uint (S) =
(

0 Uint[S2]

Uint[S1] 0

)
, (B7)

where Uint[Sμ] = exp(−itH−π
eff [Sμ]) is a new interpolation

term that corresponds to the original scattering matrix Sμ with
a fixed gap at −π . Then the winding number Wη(S) for the
newly interpolated Ho-Chalker operator in Eq. (B7) can be
calculated by Eqs. (B4) and (B5).

APPENDIX C: DESIGN OF ROWs

For achieving the mode-controlled switch of edge state,
two scattering elements S1 and S2 are set to switchable by
the waveguide mode, to simulate the switch of parameter θμ.
Figures 6(a) and 6(b) show the two designed ROW-based
scattering elements. One is designed to transmit the TM mode
and reflect the TE mode as much as possible [Fig. 6(a)],
and the other one is opposite [Fig. 6(b)], corresponding to
the scattering elements S1 and S2 with switchable parameters
θ1 (θ2) ≈ 0 and θ2 (θ1) ≈ π /2. Such an arrangement is to
simulate the switch of parameter θμ in the scattering network
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FIG. 6. Mode-controlled ring optical-waveguide (ROW) design.
(a) Schematic illustrating the function of the first ROW of transmit-
ting the transverse magnetic (TM) mode and reflecting the transverse
electric (TE) mode. The width and height of the waveguide are 420
and 350 nm, respectively. The design parameters include the gap dis-
tance (g1) between the straight and ring waveguides, the length (L1)
of the embedded segments in the ring waveguide, and the diameter
(D1) of the ring waveguide. The specific parameters are g1 = 0.1 µm,
L1 = 20.5 µm, and D1 = 6 µm. (b) Schematic depicting the function
of the second ROW of transmitting the TE mode and reflecting the
TM mode. The corresponding design parameters are g2 = 0.16 µm,
L2 = 8 µm, and D2 = 5.88 µm. Simulated transmittance curves for
the (c) first ROW and (d) second ROW with the input TE mode.
The legends T12 and T13 represent the transmittance in the through
(channel 2) and drop (channel 3) channels, respectively. Simulated
transmittance curves for the (e) first ROW and (f) second ROW but
with the input TM mode.

by switching the TE and TM modes. The simulation results
show the desired functions work well at some wavelengths in
the off-resonance region, e.g., ∼1550 nm [Figs. 6(c)–6(f)].

APPENDIX D: DEVICE FABRICATION

The devices were fabricated on a SOI wafer, which consists
of a 350-nm-thick device layer and a 2-µm-thick buried oxide
layer. The fabrication process involved several steps. Firstly,
the SOI sample was spin-coated with a 350-nm-thick layer of
ZEP-520A positive resist. It was then baked on a hot plate
at 180 °C for 3 min. Next, the designed pattern was exposed
by the electron beam photolithography using the Raith EBPG
5150. Subsequently, the exposed sample was developed in the
n-amyl acetate for 1 min and then fixed in the isopropanol
for 30 s at room temperature. Finally, reactive ion etching was
employed to remove the undesired silicon layer, with the SiO2

layer of the wafer severing as the etching stop. The residual
resist was wiped off using the N-methyl-2-pyroridone. The
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FIG. 7. The scanning electron microscope (SEM) images of the scattering-network waveguides. (a) SEM images for normal configuration.
Amplified SEM images for ring optical waveguides with waveguide parameters (b) w = 420 nm, g1 = 160 nm and (c) w = 420 nm, g2 =
100 nm. The width (gap) errors for the fabricated samples are <15 nm.

width (gap) errors for the fabricated samples are <15 nm, as
depicted in Fig. 7.

APPENDIX E: EXPERIMENTAL SETUP

In the experimental test, the fabricated device was tested
by the infrared detection and the direct measurement of the
output power using a coupled lensed fiber. To generate the
desired input mode (TE or TM), the state of polarization was
modulated in free space using a combination of a polarizer
and a half-wave plate. Then the modulated light was coupled
to a polarization-maintaining lensed fiber to preserve the po-
larization states. Finally, the output light from the device was
coupled to another lensed fiber and then recorded by a power
meter (Fig. 8).

For the infrared-detection part, a near-infrared objective
(Mitutoyo, M Plan Apo NIR, 100×, numerical aperture = 0.7)
and a near-infrared camera (YAMAKO, YM-SC640) were
used to collect the light scattered from the devices. The de-
tected images are presented in Fig. 4.

FIG. 8. Experimental setup in the test. PM: polarization main-
taining, Col: collimator, HWP: half wave plate, Pol: polarizer.

For the power-measurement part, the measured efficiencies
were calibrated with a reference straight waveguide to elimi-
nate the coupling loss of the lensed fiber and the transmission
loss in the waveguide, and the results are presented in Fig. 5.

[1] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[2] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74, 045125

(2006).
[3] Y. Hatsugai, Phys. Rev. B 48, 11851 (1993).
[4] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
[5] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B

82, 235114 (2010).
[6] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys. Rev.

X 3, 031005 (2013).
[7] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Nat.

Commun. 8, 13756 (2017).
[8] S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P.

Öhberg, N. Goldman, and R. R. Thomson, Nat. Commun. 8,
13918 (2017).

[9] S. Afzal, T. J. Zimmerling, Y. Ren, D. Perron, and V. Van, Phys.
Rev. Lett. 124, 253601 (2020).

[10] F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D.
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